JPH07323231A - Metal deposited porous film and method for chemically removing dissolved oxygen in water - Google Patents

Metal deposited porous film and method for chemically removing dissolved oxygen in water

Info

Publication number
JPH07323231A
JPH07323231A JP6118925A JP11892594A JPH07323231A JP H07323231 A JPH07323231 A JP H07323231A JP 6118925 A JP6118925 A JP 6118925A JP 11892594 A JP11892594 A JP 11892594A JP H07323231 A JPH07323231 A JP H07323231A
Authority
JP
Japan
Prior art keywords
water
dissolved oxygen
membrane
catalyst
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6118925A
Other languages
Japanese (ja)
Inventor
Masatoshi Hashino
昌年 橋野
Noboru Kubota
昇 久保田
Shoichi Takamura
正一 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6118925A priority Critical patent/JPH07323231A/en
Publication of JPH07323231A publication Critical patent/JPH07323231A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To provide a method for rapidly removing dissolved oxygen at up to extremely low concn. of 0.08ppb a low cost. CONSTITUTION:A metal deposited film is obtained by depositing one or more metal selected from palladium, niobium, vanadium and tantalum on a porous film having 10Angstrom to 10mum pore diameter and the dissolved oxygen is chemically removed by passing a water to be treated, into which a reducing agent such as hydrazine is added, through the metal deposited film to convert the dissolved oxygen to water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、純水又は超純水中の溶
存酸素の化学的除去に有用な金属担持多孔膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-supporting porous membrane useful for chemically removing dissolved oxygen in pure water or ultrapure water.

【0002】[0002]

【従来の技術】ボイラー用水、冷却用水、半導体製造用
超純水等、水中の溶存酸素が問題となる分野は少なくな
い。中でも半導体製造分野で使用される超純水中の溶存
酸素は、イオン交換樹脂の酸化劣化や超純水製造系内に
おける生菌の繁殖、さらにシリコンウェハ表面上の自然
酸化膜の形成等に影響を及ぼすことが知られており、今
後、高集積化が進むにつれ数ppb以下の極低濃度まで
除去することが必要となる。
2. Description of the Related Art There are many fields in which dissolved oxygen in water poses a problem, such as boiler water, cooling water, and ultrapure water for semiconductor production. Among them, dissolved oxygen in ultrapure water used in the semiconductor manufacturing field affects the oxidative deterioration of ion exchange resins, the growth of live bacteria in the ultrapure water production system, and the formation of natural oxide film on the silicon wafer surface. It is known that the concentration is increased, and it is necessary to remove even a very low concentration of several ppb or less as the degree of integration increases.

【0003】従来の純水又は超純水中の溶存酸素の除去
方法は、大別すると二つに分類され、一つは物理的脱気
法であり、この中には、加熱により溶存気体を脱気す
る加熱脱気法、減圧にすることにより溶存酸素を脱気
する真空脱気法、疎水性高分子膜を用いた膜脱気法、
窒素等の不活性ガスで曝気する窒素ガス曝気法があ
る。もう一つは化学的脱酸素法であり、これは純水又は
超純水中に水素やヒドラジン等の還元剤を添加し、触媒
と接触させることにより溶存酸素を水に変えて除去する
化学的触媒脱気法である。
The conventional methods for removing dissolved oxygen in pure water or ultrapure water are roughly classified into two, one is a physical degassing method, in which a dissolved gas is heated by heating. Heat degassing method for degassing, Vacuum degassing method for degassing dissolved oxygen by reducing pressure, Membrane degassing method using hydrophobic polymer membrane,
There is a nitrogen gas aeration method of aeration with an inert gas such as nitrogen. The other is the chemical deoxygenation method, which is a chemical method in which a reducing agent such as hydrogen or hydrazine is added to pure water or ultrapure water, and dissolved oxygen is converted into water by contact with a catalyst to remove it. It is a catalytic degassing method.

【0004】〜の物理的脱気法では、溶存酸素を数
ppb〜数百ppb程度までしか除去することができ
ず、高集積化に伴う高純度の超純水の供給方法としては
不十分である。一方、化学的脱酸素法によると水中の溶
存酸素を、数ppb以下の極低濃度まで除去することが
可能であり、高純度の超純水を提供することが可能であ
る。
In the physical deaeration method (1), dissolved oxygen can be removed only up to several ppb to several hundred ppb, which is not sufficient as a method for supplying high-purity ultrapure water with high integration. is there. On the other hand, according to the chemical deoxidation method, dissolved oxygen in water can be removed to an extremely low concentration of several ppb or less, and high-purity ultrapure water can be provided.

【0005】水中の溶存酸素の除去方法として、真空脱
気法等の物理的脱酸素法と化学的脱酸素法を組み合わせ
て、水中の溶存酸素濃度を0.4ppbの極低濃度まで
除去する脱酸素法が開示されている(特開平2−265
604号公報)。この脱酸素法における化学的脱酸素法
では、強塩基性又は弱塩基性アニオン交換樹脂に金属パ
ラジウムやその化合物イオンを担持させたものを触媒
(以下、樹脂触媒と称す。)として用い、これとヒドラ
ジン等の水溶性水素貯蔵化合物を還元剤として添加した
水とを接触させて、水中の溶存酸素を0.4ppbの極
低濃度まで除去している。
As a method for removing dissolved oxygen in water, a physical deoxidizing method such as a vacuum degassing method and a chemical deoxidizing method are combined to remove the dissolved oxygen concentration in water to an extremely low concentration of 0.4 ppb. An oxygen method is disclosed (Japanese Patent Laid-Open No. 2-265).
No. 604). In the chemical deoxidation method in this deoxidation method, a strongly basic or weakly basic anion exchange resin supporting metal palladium or its compound ion is used as a catalyst (hereinafter referred to as a resin catalyst). Water dissolved in a water-soluble hydrogen storage compound such as hydrazine is added as a reducing agent to remove dissolved oxygen in the water to an extremely low concentration of 0.4 ppb.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
強塩基性又は弱塩基性アニオン交換樹脂に金属パラジウ
ムやその化合物イオンを担持させた樹脂触媒を溶存酸素
除去用の触媒として用いる場合、以下に示した4つの問
題点がある。即ち、(1)アニオン交換樹脂に担持させ
た金属パラジウム又はその化合物イオンと、水中の溶存
酸素及びヒドラジン等の還元剤との接触が、溶存酸素及
びヒドラジン等の還元剤の樹脂中の細孔内への拡散に支
配されているため、樹脂表面上のアニオン交換基が占有
されてしまうと、拡散が遅いために、溶存酸素やヒドラ
ジン等の還元剤が樹脂間(数十μm〜数百μm)を素抜
けする現象(チャネリングと呼ぶ。)が起こる。この現
象が起こるために、極低濃度の溶存酸素濃度を持つ処理
水は得られ難く、樹脂触媒は、高純度の超純水を安定し
て供給するには不向きである。 (2)上述の(1)の理由により、被処理水を樹脂触媒
を充填したカラム中に高速で通水することはできず、高
速処理は難しい。 (3)さらに、樹脂触媒を充填したカラムに被処理水を
通水した場合、被処理水の圧力損失が大きくエネルギー
コストが高い。 (4)触媒樹脂は細孔の洗浄性が悪いため、樹脂自身か
らTOC(全有機炭素)成分の溶出があり、高純度の超
純水製造には不向きである。
However, when the above-mentioned resin catalyst in which metallic palladium or its compound ion is supported on the strongly basic or weakly basic anion exchange resin is used as a catalyst for removing dissolved oxygen, the following is shown. There are four problems. That is, (1) contact between a metal palladium or its compound ion supported on an anion exchange resin and a reducing agent such as dissolved oxygen and hydrazine in water causes pores in the resin of the reducing agent such as dissolved oxygen and hydrazine. When the anion-exchange group on the resin surface is occupied, the reducing agent such as dissolved oxygen or hydrazine is inter-resin (several tens of μm to several hundreds of μm) because it is controlled by Phenomenon (called channeling) occurs. Since this phenomenon occurs, it is difficult to obtain treated water having an extremely low concentration of dissolved oxygen, and the resin catalyst is not suitable for stably supplying high-purity ultrapure water. (2) Due to the reason (1) above, the water to be treated cannot be passed through the column filled with the resin catalyst at a high speed, which makes high-speed treatment difficult. (3) Further, when the treated water is passed through the column filled with the resin catalyst, the pressure loss of the treated water is large and the energy cost is high. (4) Since the catalyst resin has poor cleaning properties of pores, TOC (total organic carbon) component is eluted from the resin itself, which is not suitable for producing high-purity ultrapure water.

【0007】このように、従来技術では、超純水中の溶
存酸素を極低濃度まで、高速、低コストで除去する方法
は提供されていなかった。
As described above, the prior art has not provided a method for removing dissolved oxygen in ultrapure water to an extremely low concentration at high speed and at low cost.

【0008】[0008]

【課題を解決するための手段】本発明は、従来の樹脂触
媒を用いた化学的脱酸素法に替えて、触媒として、パラ
ジウム等の金属を多孔膜に担持した触媒(以下、膜触媒
と称す。)を用いることにより、溶存酸素濃度が極低濃
度の処理水を、高速、低コストで供給することができる
ことを見出したことによるものである。
The present invention replaces the conventional chemical deoxygenation method using a resin catalyst with a catalyst having a metal such as palladium supported on a porous membrane as a catalyst (hereinafter referred to as a membrane catalyst). This is because it was found that treated water having an extremely low concentration of dissolved oxygen can be supplied at high speed and at low cost.

【0009】即ち、本発明は以下のとおりである。 1.パラジウム、ニオブ、バナジウム及びタンタルから
選ばれる一つ以上の金属を担持した孔径10Å〜10μ
mの金属担持多孔膜。 2.純水又は超純水中の溶存酸素の、金属触媒を用いる
化学的除去方法において、該金属触媒として請求項1記
載の金属担持多孔膜を用いることを特徴とする水中溶存
酸素の化学的除去方法。
That is, the present invention is as follows. 1. Pore size 10Å-10μ carrying one or more metals selected from palladium, niobium, vanadium and tantalum
m metal-supported porous membrane. 2. A method for chemically removing dissolved oxygen in pure water or ultrapure water using a metal catalyst, wherein the metal-supported porous membrane according to claim 1 is used as the metal catalyst. .

【0010】以下に本発明を詳細に説明する。本発明に
おける多孔膜とは、液透過の容易な膜であって、金属担
持後の孔径が10Å〜10μmの細孔を持った膜のこと
であり、形状は平膜又は中空糸膜のいずれでも良い。た
だし、被処理水を高速で多量に処理することを考慮する
と、孔径は、0.01〜10μmの精密濾過膜程度が好
ましい。また、装置のスペース効率を考えると、単位体
積当たりの膜面積が大きい中空糸膜が好ましい。
The present invention will be described in detail below. The porous membrane in the present invention is a membrane that is easily permeable to liquids and has pores having a pore size of 10 Å to 10 μm after being supported on a metal, and the shape is either a flat membrane or a hollow fiber membrane. good. However, considering that a large amount of water to be treated is treated at high speed, the pore size is preferably about 0.01 to 10 μm microfiltration membrane. Further, considering the space efficiency of the device, a hollow fiber membrane having a large membrane area per unit volume is preferable.

【0011】本発明の多孔膜の素材としては、多孔膜と
なる有機高分子であれば良く、例えば、セルロース、ポ
リビニルアルコール、ポリアクリルニトリル系、ポリス
ルフォン、ポリエーテルスルフォン、ポリテトラフルオ
ロエチレン、ポリフッ化ビニリデン、ポリアミド系、ポ
リイミド系、ポリエーテルケトン系、ポリエチレン、ポ
リプロピレン等を用いることができる。
The material for the porous membrane of the present invention may be any organic polymer that forms the porous membrane, such as cellulose, polyvinyl alcohol, polyacrylonitrile, polysulfone, polyether sulfone, polytetrafluoroethylene, polyfluorine. Vinylidene chloride, polyamide-based, polyimide-based, polyetherketone-based, polyethylene, polypropylene and the like can be used.

【0012】担持される金属は、ヒドラジン等の還元剤
と水中の溶存酸素との反応において触媒作用を示す金
属、金属イオン又はその化合物イオンであれば良い。具
体的には、金属パラジウム、パラジウムイオン及びその
化合物イオン(Pd2+、PdCl4-等)、金属ニオブ、
ニオブイオン及びその化合物イオン(Nb5+、NbO4
3-等)、金属バナジウム、バナジウムイオン及びその化
合物イオン(V5+、VO 3-等)、金属タンタル、タンタ
ルイオン及びその化合物イオン(Ta5+、Ta619 8-
等)がある。
The supported metal is a reducing agent such as hydrazine.
Gold Catalyzes the Reaction of Alkali with Dissolved Oxygen in Water
Any metal, metal ion or compound ion thereof may be used. Ingredient
Physically, metallic palladium, palladium ion and its
Compound ion (Pd2+, PdClFour-Etc.), niobium metal,
Niobium ion and its compound ion (Nb5+, NbOFour
3-Etc.), metal vanadium, vanadium ion and its conversion
Compound ion (V5+, VO 3-Etc.), metal tantalum, tantalum
Ru ion and its compound ion (Ta5+, Ta6O19 8-
Etc.)

【0013】また、上述の金属、金属イオン又はその化
合物イオンは、単独又は幾つかを組み合わせて多孔膜に
担持させることができる。上述の金属、金属イオン又は
その化合物イオンの担時方法は、特に限定されないが、
従来法である無電解メッキ法、多孔膜上の強塩基性
又は弱塩基性アニオン交換基にパラジウム等の上述の化
合物イオンを静電結合させる方法、多孔膜上のキレー
ト形成基にパラジウム等の上述の金属イオンを配位結合
させる方法があげられる。、の様に金属イオン又は
その化合物イオンを化学結合により担持させる方法は、
の無電解メッキ法により担持させた場合に比べ、耐久
性に優れる利点がある。
The above-mentioned metal, metal ion or compound ion thereof may be supported on the porous membrane either individually or in combination. The method for carrying the above-mentioned metal, metal ion or compound ion thereof is not particularly limited,
The conventional electroless plating method, the method of electrostatically binding the above-mentioned compound ion such as palladium to the strongly basic or weakly basic anion exchange group on the porous membrane, the above-mentioned palladium or the like to the chelate forming group on the porous membrane. There is a method of coordinating the metal ion of. The method of supporting a metal ion or its compound ion by a chemical bond like,
Compared with the case of supporting by the electroless plating method, there is an advantage that the durability is excellent.

【0014】とりわけ、溶存酸素の除去効率を高くする
ためには、これらの金属触媒と水中の溶存酸素及びヒド
ラジン等の還元剤との接触効率が高い方が好ましいこと
から、多孔膜上のモビリティの高いグラフト重合鎖上の
アニオン交換基又はキレート形成基にパラジウム等の金
属イオン又はその化合物イオンを担持させた形態が好ま
しい。
In particular, in order to increase the efficiency of removing dissolved oxygen, it is preferable that the contact efficiency of these metal catalysts with the dissolved oxygen in water and a reducing agent such as hydrazine is high. A form in which a metal ion such as palladium or a compound ion thereof is carried on an anion exchange group or a chelate forming group on a high graft polymer chain is preferable.

【0015】パラジウム等の金属イオン又はその化合物
イオンの担持は、通常の方法でよい。即ち、膜を直接、
パラジウム等の金属化合物の酸性溶液に浸せきするか、
あるいは、モジュール化後にモジュール内への金属化合
物の溶液を通水しても良い。また、パラジウム等の金属
を担持させる場合は、前述の処理を施した後にホルマリ
ンにより還元すればよい。
The metal ion such as palladium or its compound ion may be supported by a usual method. That is, directly on the membrane
Immerse in an acidic solution of a metal compound such as palladium,
Alternatively, the solution of the metal compound may be passed through the module after the module is formed. When a metal such as palladium is supported, it may be reduced with formalin after the above treatment.

【0016】本発明の膜触媒を用いて、化学的に水中の
溶存酸素を除去することができる。樹脂触媒を使った化
学的溶存酸素除去方法自体はかなり確立した方法であり
(半導体基盤技術研究会編:超純水の科学、リアライズ
社、P.329−346(1990))、本発明の膜触
媒を使った溶存酸素除去方法も通常の樹脂触媒を使った
化学的溶存酸素除去方法に従って行うことができる。純
水又は超純水等の被処理水に、水素H2 、ヒドラジンN
2 4 、水素化ホウ素ナトリウムNaBH4 等の還元剤
を添加し、触媒として上述のパラジウム等の金属、金属
イオン又はその化合物イオンを多孔膜に担時させた膜触
媒を用いて、溶存酸素を水に変えて除去する。
[0016] The membrane catalyst of the present invention can be used to chemically remove dissolved oxygen in water. The chemical dissolved oxygen removal method itself using a resin catalyst is a fairly established method (Semiconductor Basic Technology Research Group: Science of Ultrapure Water, Realize, P.329-346 (1990)), and the film of the present invention. The dissolved oxygen removing method using a catalyst can also be carried out according to the usual chemical dissolved oxygen removing method using a resin catalyst. Hydrogen H 2 and hydrazine N are added to treated water such as pure water or ultrapure water.
A reducing agent such as 2 H 4 or sodium borohydride NaBH 4 is added, and dissolved oxygen is dissolved using a membrane catalyst in which a metal such as palladium described above, a metal ion or a compound ion thereof is carried on a porous membrane as a catalyst. Replace with water and remove.

【0017】本発明の化学的溶存酸素除去方法は、この
うち樹脂触媒を膜触媒に替えたところに特徴があり、本
発明の膜触媒は、以下の四つの樹脂触媒には無い特性を
持つ。即ち、(I)溶存酸素及びヒドラジンなどの還元
剤を含む被処理水は、強制流により多孔膜中の細孔内
(樹脂触媒における樹脂ビーズ間の間隔より狭い)へ運
ばれ、そこで膜上に担時されたパラジウム等の金属、金
属イオン又はその化合物イオンと効率よく接触するた
め、樹脂触媒で起きたチャネリング現象が起こらない。
従って、水中の溶存酸素を極低濃度まで除去することが
可能となる。 (II)上述の(I)の理由により、水中の溶存酸素及び
還元剤と本発明の膜触媒上のパラジウム等の金属との接
触効率が良いので、被処理水を高速で通水する事が可能
であり、高速処理が可能となる。本発明では、膜触媒モ
ジュールへ被処理水を通水する際のSV値は、50〜1
000l/hr・lの範囲をとることが可能である。こ
こで、SVとは、単位時間、単位モジュール容積(イオ
ン交換樹脂の場合は、単位樹脂容量)当たりの処理水量
である。 (III )被処理水を本発明の膜触媒の入ったモジュール
へ通水した時の圧力損失は、樹脂触媒が充填されたカラ
ムへ通水した時の圧力損失より小さいため、本発明の膜
触媒を用いると低コストで高純度の処理水を得ることが
できる。 (IV)本発明の膜触媒は、多孔膜中の細孔を強制流によ
って洗い流せるため、樹脂触媒に比べて洗浄性が良く、
従って、半導体製造時に問題となるTOC成分の膜触媒
自身からの溶出は極めて少ない。よって、本発明の膜触
媒は、高純度の処理水質が要求される半導体製造分野に
対して特に有効である。
The method of removing chemically dissolved oxygen of the present invention is characterized in that the resin catalyst is replaced by a membrane catalyst, and the membrane catalyst of the present invention has characteristics that the following four resin catalysts do not have. That is, (I) the water to be treated containing a reducing agent such as dissolved oxygen and hydrazine is carried into the pores in the porous membrane by the forced flow (narrower than the interval between the resin beads in the resin catalyst), and there on the membrane. The channeling phenomenon that occurs in the resin catalyst does not occur because it makes efficient contact with the carried metal such as palladium, metal ion or its compound ion.
Therefore, it becomes possible to remove dissolved oxygen in water to an extremely low concentration. (II) Due to the above-mentioned reason (I), since the contact efficiency between the dissolved oxygen and reducing agent in water and the metal such as palladium on the membrane catalyst of the present invention is good, the water to be treated may be passed at high speed. It is possible and high speed processing is possible. In the present invention, the SV value when water to be treated is passed to the membrane catalyst module is 50 to 1
It is possible to take the range of 000 l / hr · l. Here, SV is the amount of treated water per unit time and unit module volume (unit resin capacity in the case of ion exchange resin). (III) Since the pressure loss when water to be treated is passed to the module containing the membrane catalyst of the present invention is smaller than the pressure loss when water is passed to the column filled with the resin catalyst, the membrane catalyst of the present invention By using, it is possible to obtain highly purified treated water at low cost. (IV) Since the membrane catalyst of the present invention can wash away the pores in the porous membrane by the forced flow, it has better detergency than the resin catalyst,
Therefore, the TOC component, which is a problem during semiconductor manufacturing, is hardly eluted from the membrane catalyst itself. Therefore, the membrane catalyst of the present invention is particularly effective in the field of semiconductor manufacturing, where high-purity treated water quality is required.

【0018】本発明の膜触媒は、純水又は超純水中の溶
存酸素の化学的な除去法における触媒として、高速、低
コストで高純度の処理水を提供できることから半導体製
造用超純水の製造には好適である。
The membrane catalyst of the present invention can provide high-purity treated water at high speed and at low cost as a catalyst in a method for chemically removing dissolved oxygen in pure water or ultrapure water. Is suitable for manufacturing.

【0019】[0019]

【実施例】以下、本発明を実施例を挙げて説明する。EXAMPLES The present invention will be described below with reference to examples.

【0020】[0020]

【実施例1】アニオン交換基を有する多孔膜にパラジウ
ムを担持させた膜を作成し、これを膜触媒として用い、
超純水中の溶存酸素の除去を行った。膜触媒の製法は、
特願平5−189926号の実施例1に基づいてポリエ
チレン精密ろ過膜にクロロメチルスチレンとジビニルベ
ンゼンをグラフト共重合し、続いて、この膜をトリメチ
ルアミン30重量%水溶液とアセトンの等量混合液に浸
漬することにより4級アミンを導入した中空糸状アニオ
ン吸着膜を得た。なお、ジビニルベンゼンのクロロメチ
ルスチレンに対する重量比は7%である。次に、この膜
を塩化パラジウムの濃度が0.5mmol/lの希塩酸
溶液中に浸漬することにより塩化パラジウムイオンをア
ニオン交換基に担持させた触媒膜を得た。このとき、塩
化パラジウムイオンの担持量は、ポリエチレン基材膜1
g当たり0.8mmolであった。得られた膜の平均孔
径は0.2μmであった(ASTM−F316記載のエ
アーフロー法による測定)。続いて、得られた膜触媒を
モジュール化し、膜面積2m2 (外表面積)の膜触媒モ
ジュールを作成した。この膜触媒モジュールを組み込ん
だ本実施例の実験装置を図1に示す。本装置における被
処理水の流れを説明すると、所定の前処理を施した原水
は、配管4を通って流れる途中、ヒドラジンタンク1よ
りヒドラジンが添加される。続いて、膜触媒モジュール
2を通り、配管5を経て溶存酸素モニタ3に入り、そこ
で処理水中の溶存酸素濃度が測定される。ここで、原水
としては、水道水にUF処理、逆浸透処理、混床式イオ
ン交換樹脂処理等の通常の処理を施したものを、さら
に、真空脱気装置にて脱気処理した純水を用いた。この
原水中の溶存酸素濃度は50ppbであった。この原水
を上記パラジウム担持膜触媒モジュールに、外圧全濾過
方式で流量0.23m3 /hrで通水した。このときモ
ジュールにおけるSVは50l/hr・lであり、ま
た、添加されたヒドラジンの濃度は250ppbであ
る。以上の処理を行ったところ、処理水の溶存酸素モニ
タ3における溶存酸素濃度は0.08ppbであった。
Example 1 A membrane in which palladium is supported on a porous membrane having an anion exchange group is prepared, and this is used as a membrane catalyst.
Dissolved oxygen in ultrapure water was removed. The manufacturing method of the membrane catalyst is
Based on Example 1 of Japanese Patent Application No. 5-189926, a polyethylene microfiltration membrane was graft-copolymerized with chloromethylstyrene and divinylbenzene, and then this membrane was mixed with an equal volume mixture of 30% by weight trimethylamine aqueous solution and acetone. A hollow fiber-like anion adsorption film having a quaternary amine introduced therein was obtained by immersion. The weight ratio of divinylbenzene to chloromethylstyrene is 7%. Next, this membrane was immersed in a dilute hydrochloric acid solution having a palladium chloride concentration of 0.5 mmol / l to obtain a catalyst membrane having palladium chloride ions supported on anion exchange groups. At this time, the amount of palladium chloride ions supported is determined by the polyethylene base film 1.
It was 0.8 mmol per g. The average pore size of the obtained membrane was 0.2 μm (measured by the air flow method described in ASTM-F316). Then, the obtained membrane catalyst was modularized to prepare a membrane catalyst module having a membrane area of 2 m 2 (outer surface area). FIG. 1 shows an experimental apparatus of this example incorporating this membrane catalyst module. To explain the flow of the water to be treated in the present apparatus, hydrazine is added from the hydrazine tank 1 while the raw water which has been subjected to a predetermined pretreatment flows through the pipe 4. Then, it passes through the membrane catalyst module 2 and enters the dissolved oxygen monitor 3 through the pipe 5, where the dissolved oxygen concentration in the treated water is measured. Here, as the raw water, tap water that has been subjected to ordinary treatment such as UF treatment, reverse osmosis treatment, mixed-bed ion-exchange resin treatment, and pure water deaerated with a vacuum deaeration device are used. Using. The dissolved oxygen concentration in this raw water was 50 ppb. This raw water was passed through the palladium-supported membrane catalyst module at a flow rate of 0.23 m 3 / hr by the external pressure total filtration method. At this time, the SV in the module was 50 l / hr · l, and the concentration of added hydrazine was 250 ppb. When the above treatment was performed, the dissolved oxygen concentration in the dissolved oxygen monitor 3 of the treated water was 0.08 ppb.

【0021】[0021]

【実施例2】次に、キレート形成基を有する多孔膜にパ
ラジウムを担持させた膜触媒を作成し、これを用いて化
学的脱酸素実験を行った。膜触媒の製法は、特願平5−
192715号の実施例1に基づいてポリエチレン精密
ろ過膜にメタクリル酸グリシジルとエチレングリコール
ジメタクリルレートをグラフト共重合し、続いて、この
膜をイミノジ酢酸を10%溶存するジメチルスルホキシ
ドと水の1対1溶液に浸漬して、イミノジ酢酸基を導入
したキレート型イオン吸着膜を得た。次に、この膜を、
塩化パラジウムの濃度が0.5mmol/lの希塩酸溶
液に浸漬して、パラジウムイオンをキレート形成基に担
持させた膜触媒を得た。この膜中のパラジウムイオンの
担持量は、ポリエチレン基材膜1g当たり1.5mmo
lであった。得られた膜の孔径は、0.2μmであった
(ASTM−F316記載のエアーフロー法による)。
この膜触媒をモジュール化し、膜面積2m2 (外表面
積)の膜触媒モジュールを作成した。この膜触媒モジュ
ール以外は、実施例1と同様にして化学的脱酸素実験を
行った。処理水のモニタ3における溶存酸素濃度は、
0.08ppbであった。
Example 2 Next, a membrane catalyst in which palladium was supported on a porous membrane having a chelate-forming group was prepared, and a chemical deoxidation experiment was conducted using this. The method for producing a membrane catalyst is described in Japanese Patent Application No. 5-
Glycidyl methacrylate and ethylene glycol dimethacrylate are graft-copolymerized on a polyethylene microfiltration membrane based on Example 1 of 192715, and this membrane is subsequently subjected to a 1: 1 ratio of dimethyl sulfoxide containing 10% iminodiacetic acid and water. By immersing in a solution, a chelate-type ion-adsorbing film having an iminodiacetic acid group introduced therein was obtained. Next, this film
It was immersed in a dilute hydrochloric acid solution having a palladium chloride concentration of 0.5 mmol / l to obtain a membrane catalyst in which palladium ions were supported on chelate-forming groups. The amount of palladium ions supported in this membrane was 1.5 mmo per 1 g of polyethylene base membrane.
It was l. The pore size of the obtained membrane was 0.2 μm (according to the airflow method described in ASTM-F316).
The membrane catalyst was modularized to prepare a membrane catalyst module having a membrane area of 2 m 2 (outer surface area). A chemical deoxidation experiment was conducted in the same manner as in Example 1 except for this membrane catalyst module. The dissolved oxygen concentration in the treated water monitor 3 is
It was 0.08 ppb.

【0022】[0022]

【実施例3及び4】実施例1、2において、原水の通水
量を2.3m3 /hrとし、モジュールのSVを500
l/hr・lとした以外は、実施例1、2と同様にして
化学的脱酸素実験を行った。その結果を表1に示す。
[Embodiments 3 and 4] In Embodiments 1 and 2, the water flow rate of raw water is 2.3 m 3 / hr and the SV of the module is 500.
Chemical deoxygenation experiments were conducted in the same manner as in Examples 1 and 2 except that 1 / hr · l was used. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【比較例1】図1において、膜触媒モジュール2の代わ
りに、ドイツ バイエル社製のパラジウム担持アニオン
交換樹脂Lewatit OC−1045を10リット
ル充填した樹脂触媒装置を設置し、通水量0.5m3
hr、触媒樹脂におけるSVを50l/hr・l、ヒド
ラジン添加量250ppbとして、実施例1、2と同様
の実験を行った。処理水の溶存酸素モニタ3における溶
存酸素濃度は、0.4ppbであった。
[Comparative Example 1] In FIG. 1, in place of the membrane catalyst module 2, a resin catalyst device filled with 10 liters of a palladium-supporting anion exchange resin Lewatit OC-1045 manufactured by Germany Bayer was installed, and a water flow rate of 0.5 m 3 /
The same experiment as in Examples 1 and 2 was conducted with hr, SV in the catalyst resin of 50 l / hr · l, and hydrazine addition amount of 250 ppb. The dissolved oxygen concentration in the dissolved oxygen monitor 3 of the treated water was 0.4 ppb.

【0025】[0025]

【発明の効果】本発明の金属担持多孔膜は、水中の溶存
酸素除去用の触媒として用いることにより、高速、低コ
ストで、0.08ppbの極低濃度まで、純水又は超純
水中の溶存酸素を除去することができる。
INDUSTRIAL APPLICABILITY By using the metal-supporting porous membrane of the present invention as a catalyst for removing dissolved oxygen in water, high-speed, low-cost, ultra-low concentration of 0.08 ppb in pure water or ultrapure water can be obtained. Dissolved oxygen can be removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた溶存酸素除去装置の説
明図である。
FIG. 1 is an explanatory diagram of a dissolved oxygen removing device used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 ヒドラジンタンク 2 膜触媒モジュール 3 溶存酸素モニタ 4、5 配管 1 Hydrazine tank 2 Membrane catalyst module 3 Dissolved oxygen monitor 4, 5 Piping

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 パラジウム、ニオブ、バナジウム及びタ
ンタルから選ばれる一種以上の金属を担持した孔径10
Å〜10μmの金属担持多孔膜。
1. A pore size 10 carrying one or more metals selected from palladium, niobium, vanadium and tantalum.
Å ~ 10μm metal-supporting porous membrane.
【請求項2】 純水又は超純水中の溶存酸素の、金属触
媒を用いる化学的除去方法において、該金属触媒として
請求項1記載の金属担持多孔膜を用いることを特徴とす
る水中溶存酸素の化学的除去方法。
2. A method for chemically removing dissolved oxygen in pure water or ultrapure water using a metal catalyst, wherein the metal-supported porous membrane according to claim 1 is used as the metal catalyst. Chemical removal method.
JP6118925A 1994-05-31 1994-05-31 Metal deposited porous film and method for chemically removing dissolved oxygen in water Withdrawn JPH07323231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6118925A JPH07323231A (en) 1994-05-31 1994-05-31 Metal deposited porous film and method for chemically removing dissolved oxygen in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6118925A JPH07323231A (en) 1994-05-31 1994-05-31 Metal deposited porous film and method for chemically removing dissolved oxygen in water

Publications (1)

Publication Number Publication Date
JPH07323231A true JPH07323231A (en) 1995-12-12

Family

ID=14748600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6118925A Withdrawn JPH07323231A (en) 1994-05-31 1994-05-31 Metal deposited porous film and method for chemically removing dissolved oxygen in water

Country Status (1)

Country Link
JP (1) JPH07323231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070937A (en) * 1999-09-06 2001-03-21 Kurita Water Ind Ltd Membrane for treating water containing oxidizing agent and treating method
JP2009195824A (en) * 2008-02-21 2009-09-03 Toshiba Corp Antioxidation filtration filter, method for manufacturing antioxidation filtration filter, apparatus for manufacturing antioxidation filtration filter, and filtration apparatus having antioxidation filtration filter
WO2022153604A1 (en) * 2021-01-12 2022-07-21 オルガノ株式会社 Catalyst having platinum-group metal ion supported thereon, and carbon-carbon bond formation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070937A (en) * 1999-09-06 2001-03-21 Kurita Water Ind Ltd Membrane for treating water containing oxidizing agent and treating method
JP2009195824A (en) * 2008-02-21 2009-09-03 Toshiba Corp Antioxidation filtration filter, method for manufacturing antioxidation filtration filter, apparatus for manufacturing antioxidation filtration filter, and filtration apparatus having antioxidation filtration filter
WO2022153604A1 (en) * 2021-01-12 2022-07-21 オルガノ株式会社 Catalyst having platinum-group metal ion supported thereon, and carbon-carbon bond formation method

Similar Documents

Publication Publication Date Title
CN101374769B (en) Method and apparatus for removing hydrogen peroxide
EP0634364B1 (en) Pure water manufacturing method
US6858145B2 (en) Method of removing organic impurities from water
JP5704979B2 (en) Method for producing purified hydrogen peroxide water
US8771522B2 (en) Method and apparatus for treating organic matter-containing water
KR102287709B1 (en) Ultrapure Water Manufacturing System
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
JP6365624B2 (en) Method and apparatus for purifying hydrogen peroxide aqueous solution
KR102393133B1 (en) Wet cleaning apparatus and wet cleaning method
JPH07323231A (en) Metal deposited porous film and method for chemically removing dissolved oxygen in water
JP5320723B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP2002210494A (en) Device for manufacturing extrapure water
KR20010042857A (en) Highly pure aqueous hydrogen peroxide solutions, method for producing same and their use
JP4604907B2 (en) Method and apparatus for purifying ultrapure water
CN115893769A (en) System for fine processing return circuit carries pure water
JP2004181364A (en) Ultrapure water making method and apparatus therefor
JPH0780259A (en) Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
JP4826864B2 (en) Ultrapure water production equipment
JP2000301145A (en) Deionizer
JP3829501B2 (en) Composite semipermeable membrane and method for producing the same
JP7171671B2 (en) Ultrapure water production system and ultrapure water production method
JPH06206069A (en) Removal of ion
JPH0515790A (en) New hollow fiber ion adsorbing membrane structure
JP4106810B2 (en) Electrodeionization equipment
JP2003119007A (en) Method for producing refined hydrogen peroxide solution

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731