JP6912244B2 - Filter cartridge and filter - Google Patents

Filter cartridge and filter Download PDF

Info

Publication number
JP6912244B2
JP6912244B2 JP2017068447A JP2017068447A JP6912244B2 JP 6912244 B2 JP6912244 B2 JP 6912244B2 JP 2017068447 A JP2017068447 A JP 2017068447A JP 2017068447 A JP2017068447 A JP 2017068447A JP 6912244 B2 JP6912244 B2 JP 6912244B2
Authority
JP
Japan
Prior art keywords
woven fabric
group
filter
fabric layer
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017068447A
Other languages
Japanese (ja)
Other versions
JP2018167223A (en
Inventor
西野 徹
徹 西野
拓也 本田
拓也 本田
恵 加地
恵 加地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Kurashiki Textile Manufacturing Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Kurashiki Textile Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd, Kurashiki Textile Manufacturing Co Ltd filed Critical Kurashiki Spinning Co Ltd
Priority to JP2017068447A priority Critical patent/JP6912244B2/en
Priority to CN201880006860.2A priority patent/CN110177616B/en
Priority to PCT/JP2018/009588 priority patent/WO2018180430A1/en
Publication of JP2018167223A publication Critical patent/JP2018167223A/en
Application granted granted Critical
Publication of JP6912244B2 publication Critical patent/JP6912244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D27/00Cartridge filters of the throw-away type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/05Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported
    • B01D29/07Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported with corrugated, folded or wound filtering sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filtering Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filtration Of Liquid (AREA)
  • Laminated Bodies (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、不織布を積層又は巻き付けたフィルターカートリッジ及びフィルターに関する。 The present invention relates to a filter cartridge and a filter in which a non-woven fabric is laminated or wound.

近年、電子工業界における半導体製造技術の進歩により、集積回路の配線ピッチの設計寸法が十数nmにまで小さくなってきている。集積回路の微細化により動作速度の向上や消費電力の低下が進む傾向にある。集積回路の製造過程において、薬液中に含まれる金属不純物は、配線の短絡や電流値の低下を引き起こし、歩留まり低下の原因になるため、薬液を高純度化する必要がある。このような金属不純物を除去する手段として、蒸留やイオン交換樹脂が用いられているが、蒸留では、コストが高く、イオン交換樹脂では、処理速度が遅いことや、溶出物による汚染という問題を有している。従来から溶液中の金属を吸着除去するためのデプス型カートリッジフィルターは知られている。特許文献1には、孔をあけた中空パイプにメルトブローン不織布を巻き付けて使用することが提案されている。本出願人の一部は、特許文献2において、イオン交換基をグラフト重合させた繊維で構成される不織布と、非グラフト重合させた繊維で構成される不織布とを積層したカートリッジフィルターを提案している。 In recent years, with the progress of semiconductor manufacturing technology in the electronic industry, the design dimension of the wiring pitch of integrated circuits has been reduced to a dozen nm. Due to the miniaturization of integrated circuits, the operating speed tends to increase and the power consumption tends to decrease. In the manufacturing process of integrated circuits, metal impurities contained in the chemical solution cause a short circuit of wiring and a decrease in the current value, which causes a decrease in the yield. Therefore, it is necessary to purify the chemical solution. Distillation and ion exchange resins are used as means for removing such metal impurities. However, distillation has a high cost, and ion exchange resins have problems such as slow processing speed and contamination by eluates. is doing. Conventionally, a depth type cartridge filter for adsorbing and removing a metal in a solution has been known. Patent Document 1 proposes to wrap a meltblown non-woven fabric around a hollow pipe having holes for use. In Patent Document 2, some of the applicants have proposed a cartridge filter in which a non-woven fabric composed of fibers obtained by graft-polymerizing an ion exchange group and a non-woven fabric composed of fibers obtained by non-graft polymerization are laminated. There is.

特表平11−504853号公報Special Table No. 11-504853 特開2009−090259号公報JP-A-2009-090259

しかし、従来のフィルターは、金属の吸着除去効率が高くなく、この改善が求められている。 However, the conventional filter does not have high metal adsorption / removal efficiency, and improvement of this is required.

本発明は、前記従来の問題を解決するため、金属の吸着除去効率が高いフィルターカートリッジ及びフィルターを提供する。 The present invention provides a filter cartridge and a filter having high metal adsorption and removal efficiency in order to solve the above-mentioned conventional problems.

本発明のフィルターカートリッジは、複数種類の濾過用基布を積層又は中空状内筒に巻き付けた、溶液中の金属を吸着除去するフィルターカートリッジであって、前記濾過用基布は、ポリオレフィン繊維に金属吸着基を化学結合した不織布であり、前記濾過用基布は、下流側に位置する不織布層A及び上流側に位置する不織布層Bを含み、前記不織布層Aは、金属吸着基としてスルホン酸基を化学結合したポリオレフィン繊維で構成され、前記不織布層Bは、金属吸着基としてN−メチル−D‐グルカミン基、イミノ二酢酸基(イミノジ酢酸基)及びイミノジエタノール基から選択される少なくとも一種を化学結合したポリオレフィン繊維で構成され、前記不織布層A及びBを構成するポリオレフィン繊維は、単繊維平均直径が0.2〜10μmの高密度ポリエチレン繊維からなる、ことを特徴とする。
The filter cartridge of the present invention is a filter cartridge in which a plurality of types of filtration base cloths are laminated or wound around a hollow inner cylinder to adsorb and remove metals in a solution, and the filtration base cloth is made of a metal on a polyolefin fiber. It is a non-woven fabric in which adsorbing groups are chemically bonded, and the filtering base cloth includes a non-woven fabric layer A located on the downstream side and a non-woven fabric layer B located on the upstream side, and the non-woven fabric layer A has a sulfonic acid group as a metal adsorbing group. the consists of chemically bonded polyolefin fibers, the nonwoven fabric layer B, N- methyl -D- glucamine group metal adsorbing group, at least one selected iminodiacetic acid group (iminodiacetic acid groups) and iminodiethanol group or al The polyolefin fibers composed of chemically bonded polyolefin fibers and constituting the nonwoven fabric layers A and B are characterized by being composed of high-density polyethylene fibers having a single fiber average diameter of 0.2 to 10 μm.

本発明のフィルターは、複数種類の濾過用基布を積層又は中空状内筒に巻き付けた濾過部を有する、溶液中の金属を吸着除去するフィルターであって、前記濾過用基布は、ポリオレフィン繊維に金属吸着基を化学結合した不織布であり、前記濾過用基布は、下流側に位置する不織布層A及び上流側に位置する不織布層Bを含み、前記不織布層Aは、金属吸着基としてスルホン酸基を化学結合したポリオレフィン繊維で構成され、前記不織布層Bは、金属吸着基としてN−メチル−D‐グルカミン基、イミノ二酢酸基(イミノジ酢酸基)及びイミノジエタノール基から選択される少なくとも一種を化学結合したポリオレフィン繊維で構成され、前記不織布層A及びBを構成するポリオレフィン繊維は、単繊維平均直径が0.2〜10μmの高密度ポリエチレン繊維からなる、ことを特徴とする。 The filter of the present invention is a filter for adsorbing and removing metal in a solution, which has a filtering portion in which a plurality of types of filtering base cloths are laminated or wound around a hollow inner cylinder, and the filtering base cloth is a polyolefin fiber. It is a non-woven fabric in which a metal adsorbing group is chemically bonded to, and the filtering base cloth includes a non-woven fabric layer A located on the downstream side and a non-woven fabric layer B located on the upstream side, and the non-woven fabric layer A is sulfone as a metal adsorbing group. at least consists of polyolefin fibers chemically bonded acid groups, the non-woven fabric layer B is a metal adsorbing group N- methyl -D- glucamine group is selected iminodiacetic acid group (iminodiacetic acid groups) and iminodiethanol group or al The polyolefin fibers constituting the non-woven fabric layers A and B, which are composed of a type of chemically bonded polyolefin fibers, are characterized by being composed of high-density polyethylene fibers having a single fiber average diameter of 0.2 to 10 μm.

本発明によれば、積層又は巻き付けタイプのフィルターカートリッジであって、下流側に位置する不織布層A及び上流側に位置する不織布層Bを含み、前記不織布層Aは、金属吸着基としてスルホン基を化学結合したポリオレフィン繊維で構成され、前記不織布層Bは、金属吸着基としてアミノ基、N−メチル−D‐グルカミン基、イミノ二酢酸基(イミノジ酢酸基)、イミノジエタノール基、アミドキシム基、リン酸基、カルボン酸基及びエチレンジアミン三酢酸基から選択される少なくとも一種を化学結合したポリオレフィン繊維で構成されることにより、金属の吸着除去効率が高い濾過用基布とすることができる。 According to the present invention, a laminated or wrapping type filter cartridge includes a non-woven fabric layer A located on the downstream side and a non-woven fabric layer B located on the upstream side, and the non-woven fabric layer A contains a sulfone group as a metal adsorption group. The non-woven layer B is composed of chemically bonded polyolefin fibers, and the non-woven layer B has an amino group, an N-methyl-D-glucamine group, an iminodiacetic acid group (iminodiacetic acid group), an iminodiethanol group, an amidoxim group, and a phosphoric acid as metal adsorption groups. By being composed of a polyolefin fiber in which at least one selected from a group, a carboxylic acid group and an ethylenediamine triacetate group is chemically bonded, a base cloth for filtration having high metal adsorption / removal efficiency can be obtained.

図1は本発明の一実施形態のフィルターカートリッジの模式的一部切り取り図である。FIG. 1 is a schematic partial cut-out view of a filter cartridge according to an embodiment of the present invention. 図2は同、デプス型カートリッジフィルターを組み込んだ処理装置の模式的説明図である。FIG. 2 is a schematic explanatory view of the processing apparatus incorporating the depth type cartridge filter. 図3は本発明の一実施例の通液試験装置の模式的説明図である。FIG. 3 is a schematic explanatory view of a liquid flow test apparatus according to an embodiment of the present invention. 図4は実施例1及び比較例1のフィルターのKに対する除去性能を示すグラフである。FIG. 4 is a graph showing the removal performance of the filters of Example 1 and Comparative Example 1 with respect to K. 図5は比較例2及び3のフィルターのKに対する除去性能を示すグラフである。FIG. 5 is a graph showing the removal performance of the filters of Comparative Examples 2 and 3 with respect to K. 図6は実施例2及び比較例4のフィルターのCuに対する除去性能を示すグラフである。FIG. 6 is a graph showing the removal performance of the filters of Example 2 and Comparative Example 4 with respect to Cu. 図7は比較例5及び6のフィルターのCuに対する除去性能を示すグラフである。FIG. 7 is a graph showing the removal performance of the filters of Comparative Examples 5 and 6 with respect to Cu. 図8は実施例3及び比較例7のフィルターのNaに対する除去性能を示すグラフである。FIG. 8 is a graph showing the removal performance of the filters of Example 3 and Comparative Example 7 with respect to Na. 図9は比較例8及び9のフィルターのNaに対する除去性能を示すグラフである。FIG. 9 is a graph showing the removal performance of the filters of Comparative Examples 8 and 9 with respect to Na.

本発明は、複数種類の濾過用基布を積層又は中空状内筒に巻き付けたフィルターカートリッジであって、前記濾過用基布は、ポリオレフィン繊維に金属吸着基を化学結合した不織布であり、前記濾過用基布は、下流側に位置する不織布層A及び上流側に位置する不織布層Bを含む。この順序に巻けば、他の種類の不織布をさらに巻き付けるのは任意である。そして、前記不織布層Aは、金属吸着基としてスルホン基を化学結合したポリオレフィン繊維で構成され、前記不織布層Bは、金属吸着基としてアミノ基、N−メチル−D‐グルカミン基、イミノ二酢酸基(イミノジ酢酸基)、イミノジエタノール基、アミドキシム基、リン酸基、カルボン酸基及びエチレンジアミン三酢酸基から選択される少なくとも一種を化学結合したポリオレフィン繊維で構成される。これにより効率よく金属を除去できる。なお、異なる種類の濾過用基布を結合して1枚の濾過用基布にしたものも、複数種類の濾過用基布に含まれる。 The present invention is a filter cartridge in which a plurality of types of filtration base cloths are laminated or wound around a hollow inner cylinder. The filtration base cloth is a non-woven fabric in which a metal adsorbing group is chemically bonded to a polyolefin fiber, and the filtration is performed. The base cloth includes a non-woven fabric layer A located on the downstream side and a non-woven fabric layer B located on the upstream side. If wrapped in this order, it is optional to further wrap other types of non-woven fabrics. The non-woven layer A is composed of a polyolefin fiber to which a sulfone group is chemically bonded as a metal adsorbing group, and the non-woven layer B has an amino group, an N-methyl-D-glucamine group and an iminodiacetic group as metal adsorbing groups. It is composed of a polyolefin fiber in which at least one selected from (iminodiacetic acid group), iminodiethanol group, amidoxime group, phosphoric acid group, carboxylic acid group and ethylenediamine triacetate group is chemically bonded. As a result, the metal can be removed efficiently. It should be noted that a plurality of types of filtration base cloths are also included in which different types of filtration base cloths are combined to form one filtration base cloth.

本発明においては、不織布層Bはイミノジエタノール基を化学結合したポリオレフィン繊維で構成されるのが特に好ましい。金属の除去効率が高いためである。吸着できる金属については、スルホン酸基は主にNa, Cu, Kを吸着し、イミノジエタノール基は主にCr,Al,Feを吸着する。 In the present invention, the non-woven fabric layer B is particularly preferably composed of a polyolefin fiber to which an iminodiethanol group is chemically bonded. This is because the metal removal efficiency is high. For metals that can be adsorbed, the sulfonic acid group mainly adsorbs Na, Cu and K, and the iminodiethanol group mainly adsorbs Cr, Al and Fe.

不織布A及びBを構成するポリオレフィン繊維は長繊維であるのが好ましい。長繊維不織布は繊維屑が発生しにくく、フィルター性能が高いためである。中でも高い面積当たりの質量(目付け)が10〜100g/m2のメルトブロー長繊維不織布が好ましい。 The polyolefin fibers constituting the non-woven fabrics A and B are preferably long fibers. This is because the long-fiber non-woven fabric is less likely to generate fiber waste and has high filter performance. Among them, a melt-blown long fiber non-woven fabric having a high mass (weight) per area of 10 to 100 g / m 2 is preferable.

前記不織布A及びBを構成するポリオレフィン繊維の単繊維平均直径は0.2〜10μmであるのが好ましい。前記の範囲であれば、フィルター性能が高い。加えて、表面積(比表面積)の増大ができ、グラフト重合反応の基材表面増ともなるので、グラフト率を高めることができる。 The average diameter of the single fibers of the polyolefin fibers constituting the nonwoven fabrics A and B is preferably 0.2 to 10 μm. Within the above range, the filter performance is high. In addition, the surface area (specific surface area) can be increased, and the surface of the base material in the graft polymerization reaction can be increased, so that the graft ratio can be increased.

ポリオレフィン繊維は、ポリプロピレン、プロピレンとエチレンの共重合体、ポリエチレン、又はエチレンと炭素数4以上の他のα−オレフィンとの共重合体より選ばれる一種が好ましく、高密度ポリエチレンが特に好ましい。これらのポリマーは不活性であり、薬液に対して安定であり、グラフト重合が可能である。 The polyolefin fiber is preferably one selected from polypropylene, a copolymer of propylene and ethylene, polyethylene, or a copolymer of ethylene and another α-olefin having 4 or more carbon atoms, and high-density polyethylene is particularly preferable. These polymers are inert, stable to chemicals and capable of graft polymerization.

前記フィルターカートリッジは、中空状内筒及び濾過用基布を含むフィルターカートリッジであって、前記濾過用基布は、ポリオレフィン繊維に金属吸着基を化学結合した不織布であり、前記濾過用基布は、前記中空状内筒に巻き付けられることにより積層構造を形成しているフィルターカートリッジが好ましい。 The filter cartridge is a filter cartridge including a hollow inner cylinder and a filter base cloth, the filter base cloth is a non-woven fabric in which a metal adsorbent is chemically bonded to a polyolefin fiber, and the filter base cloth is a non-woven fabric. A filter cartridge having a laminated structure formed by being wound around the hollow inner cylinder is preferable.

本発明のフィルターは、前記フィルターカートリッジを組み込んだフィルターである。フィルターカートリッジは内筒に濾過用基布が巻き付けられ、容器に収納されている。フィルターカートリッジをフィルターの容器に組み込む際には、容器にフィルターカートリッジを収納した状態でフィルターに組み込む。なお、カートリッジ型フィルターの場合は、フィルターカートリッジのみを交換することで、フィルター機能を再生することができるが、フィルターの容器ごと交換するような、例えばカプセル型フィルターのような場合も、本発明に含むものである。カプセル型フィルターのような場合は、フィルターカートリッジに相当する部分は濾過部となる。 The filter of the present invention is a filter incorporating the filter cartridge. The filter cartridge has a filter base cloth wrapped around the inner cylinder and is stored in a container. When incorporating the filter cartridge into the filter container, incorporate the filter cartridge into the filter with the filter cartridge stored in the container. In the case of a cartridge type filter, the filter function can be regenerated by exchanging only the filter cartridge. However, in the case of exchanging the entire filter container, for example, a capsule type filter, the present invention also applies. It includes. In the case of a capsule type filter, the portion corresponding to the filter cartridge is a filtration portion.

次にポリオレフィン繊維に各種官能基を化学結合させる方法を説明する。ポリオレフィン繊維に電子線、γ線等の放射線を照射した後にGMAなどの反応性モノマ−を含むエマルジョン液と接触させるか、又はポリオレフィン繊維を反応性モノマ−を含むエマルジョン液と接触させた後に電子線、γ線等の放射線を照射して、反応性モノマーをポリオレフィン繊維にグラフト重合させる。電子線を照射する場合、通常は1〜200kGy、好ましくは5〜100kGy、より好ましくは10〜50kGyの照射量が達成されればよい。雰囲気条件は、窒素雰囲気下で照射を行うことが好ましい。電子線照射装置としては市販のものが使用可能であり、例えば、エリアビーム型電子線照射装置としてEC250/15/180L(岩崎電気(株)社製)、EC300/165/800(岩崎電気(株)社製)、EPS300((株)NHVコーポレーション製)などが使用できる。 Next, a method of chemically bonding various functional groups to the polyolefin fiber will be described. The polyolefin fiber is irradiated with radiation such as electron beam or γ-ray and then brought into contact with an emulsion solution containing a reactive monomer such as GMA, or the polyolefin fiber is brought into contact with an emulsion solution containing a reactive monomer and then subjected to an electron beam. , Γ-rays and other radiation is applied to graft-polymerize the reactive monomer onto the polyolefin fiber. When irradiating an electron beam, an irradiation amount of usually 1 to 200 kGy, preferably 5 to 100 kGy, and more preferably 10 to 50 kGy may be achieved. As for the atmospheric conditions, it is preferable to perform irradiation in a nitrogen atmosphere. Commercially available electron beam irradiation devices can be used. For example, EC250 / 15 / 180L (manufactured by Iwasaki Electric Co., Ltd.) and EC300 / 165/800 (Iwasaki Electric Co., Ltd.) are available as area beam type electron beam irradiation devices. ), EPS300 (manufactured by NHV Corporation), etc. can be used.

前記グラフト重合法としては、具体的には、例えば、液相グラフト重合法が挙げられ、不織布を、γ線や電子線などの放射線照射によって活性化した後、水、界面活性剤および反応性モノマーを含むエマルジョンに浸漬して、前記の不織布基材にグラフト重合を完了させ、次に、前記基材に形成されたグラフト鎖に、スルホン酸基、アミノ基、N−メチル−D‐グルカミン基やイミノ二酢酸基(イミノジ酢酸基)、イミノジエタノール基、アミドキシム基、リン酸基、カルボン酸基、エチレンジアミン三酢酸基などの機能性官能基、すなわちイオン交換基及び/又はキレート基を導入する。本発明においては、特に液相グラフト重合法に限定されず、モノマーの蒸気に基材を接触させて重合を行う気相グラフト重合法、基材をモノマー溶液に浸漬した後、モノマー溶液から取り出して気相中で反応を行わせる含浸気相グラフト重合法なども、用いることができる。代表的な機能性官能基の化学式として(化1)にスルホン酸基(SC基)、(化2)にイミノジエタノール基(IDE基)、(化3)にイミノジ酢酸基(IDA基)、(化4)にN−メチル−D‐グルカミン基(NMDG基)を示す。 Specific examples of the graft polymerization method include a liquid phase graft polymerization method, in which a non-woven fabric is activated by irradiation with γ-rays, electron beams, or the like, and then water, a surfactant, and a reactive monomer are used. The graft polymerization is completed on the non-woven substrate by immersing it in an emulsion containing Introduce functional functional groups such as iminodiacetic acid group (iminodiacetic acid group), iminodiethanol group, amidoxime group, phosphoric acid group, carboxylic acid group, ethylenediamine triacetate group, that is, ion exchange group and / or chelate group. The present invention is not particularly limited to the liquid phase graft polymerization method, which is a vapor phase graft polymerization method in which the substrate is brought into contact with the vapor of the monomer for polymerization, the substrate is immersed in the monomer solution, and then taken out from the monomer solution. An impregnated vapor phase graft polymerization method in which the reaction is carried out in the gas phase can also be used. Typical chemical formulas of functional functional groups are (Chemical formula 1) as a sulfonic acid group (SC group), (Chemical formula 2) as an iminodiethanol group (IDE group), and (Chemical formula 3) as an iminodiacetic acid group (IDA group), (Chemical formula 3). The N-methyl-D-glucamine group (NMDG group) is shown in Chemical formula 4).

Figure 0006912244
Figure 0006912244

Figure 0006912244
Figure 0006912244

Figure 0006912244
Figure 0006912244

Figure 0006912244
Figure 0006912244

但し、(化1)〜(化4)におけるRはポリエチレン(PE)+GMA(化5)又はポリプロピレン(PP)+GMA(化6)である。 However, R in (Chemical formula 1) to (Chemical formula 4) is polyethylene (PE) + GMA (Chemical formula 5) or polypropylene (PP) + GMA (Chemical formula 6).

Figure 0006912244
Figure 0006912244

Figure 0006912244
Figure 0006912244

但し、前記(化5)〜(化6)におけるn,mは1以上の整数である。 However, n and m in the above (Chemical 5) to (Chemical formula 6) are integers of 1 or more.

本発明の前記(化1)〜(化4)の機能性官能基の特性をまとめると表1のとおりである。 Table 1 summarizes the characteristics of the functional functional groups of the above-mentioned (Chemical formula 1) to (Chemical formula 4) of the present invention.

Figure 0006912244
Figure 0006912244

以下図面を用いて説明する。以下の図面において、同一符号は同一物を示す。図1は本発明の一実施形態のデプス型カートリッジフィルター内のフィルターカートリッジの模式的一部切り取り図である。このフィルターカートリッジ1は、中空状内筒(孔をあけた中空パイプ)2に濾過用基布を少なくとも2層巻き付けて使用する。下流側に位置する不織布層(A)3及び上流側に位置する不織布層(B)4が積層されている。 This will be described below with reference to the drawings. In the drawings below, the same reference numerals indicate the same thing. FIG. 1 is a schematic partial cut-out view of a filter cartridge in a depth type cartridge filter according to an embodiment of the present invention. The filter cartridge 1 is used by wrapping at least two layers of a filtration base cloth around a hollow inner cylinder (hollow pipe having a hole) 2. The non-woven fabric layer (A) 3 located on the downstream side and the non-woven fabric layer (B) 4 located on the upstream side are laminated.

図2は同、デプス型カートリッジフィルターの模式的説明図である。このデプス型カートリッジフィルター5は、デプス型フィルターカートリッジ10にエンドキャップ9a,9bが取り付けられ、フィルターの容器6内に組み込まれ、供給口7から被処理水が供給され、フィルターカートリッジ10の外側から内側に向けて被処理水が通過し、この間に金属が除去され、処理水取り出し口8から取り出される。 FIG. 2 is a schematic explanatory view of the depth type cartridge filter. The depth type cartridge filter 5 has end caps 9a and 9b attached to the depth type filter cartridge 10, is incorporated in the filter container 6, water to be treated is supplied from the supply port 7, and the filter cartridge 10 is from the outside to the inside. The water to be treated passes toward the water, and the metal is removed during this period, and the water is taken out from the treated water outlet 8.

図3は本発明の一実施例の通液試験装置の模式的説明図である。この通液試験装置11は、容器12に入れた被処理水13をフッ素樹脂(PFA)チューブ14、チューブポンプ15からカラム16を介して積層フィルター17に供給し、金属を吸着除去し、処理水19を容器18にいれる。積層フィルター17は、下流側に位置する不織布層(A)17a及び上流側に位置する不織布層(B)17bで構成されている。図3の通液試験装置は、カラム式積層タイプのフィルターであるが、巻き付け式フィルターと基本構造は同一である。したがって、巻き付け式フィルターの試験結果はカラム式積層タイプの場合と同一とみなすことができる。 FIG. 3 is a schematic explanatory view of a liquid flow test apparatus according to an embodiment of the present invention. The liquid flow test device 11 supplies the water to be treated 13 contained in the container 12 from the fluororesin (PFA) tube 14 and the tube pump 15 to the laminated filter 17 via the column 16, adsorbs and removes the metal, and treats the water. Put 19 in the container 18. The laminated filter 17 is composed of a non-woven fabric layer (A) 17a located on the downstream side and a non-woven fabric layer (B) 17b located on the upstream side. The liquid passage test apparatus shown in FIG. 3 is a column type laminated type filter, but has the same basic structure as the wrapping type filter. Therefore, the test result of the wrapping type filter can be regarded as the same as that of the column type laminated type.

以下実施例を用いて本発明を具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. The present invention is not limited to the following examples.

<グラフト率>
グラフト率は、グラフト前後の不織布質量より、下式により算出した。
グラフト率(%)=100×(B−A)/A
(式中、Aはグラフト前の不織布基材質量、Bはグラフト後の不織布基材質量を表す。)
<元素分析>
微量な元素が定量可能である原子吸光分析を用いてサンプリングした試料中の金属濃度を測定した。得られた金属濃度から 下記式(数1)で金属除去率(%)を求めた。式中のBlank液は、調製した金属溶液中の金属濃度を示す。
<Graft rate>
The graft ratio was calculated by the following formula from the mass of the non-woven fabric before and after the graft.
Graft rate (%) = 100 x (BA) / A
(In the formula, A represents the mass of the non-woven fabric base material before grafting, and B represents the mass of the non-woven fabric base material after grafting.)
<Elemental analysis>
The metal concentration in the sample sampled was measured using atomic absorption spectroscopy in which trace elements can be quantified. From the obtained metal concentration, the metal removal rate (%) was calculated by the following formula (Equation 1). The Blank solution in the formula indicates the metal concentration in the prepared metal solution.

(数1)
金属除去率(%)=[(Blank液中金属濃度-フィルター通液後の液中金属濃度)/Blank液中金属濃度]×100
(Number 1)
Metal removal rate (%) = [(Blank liquid metal concentration-Blank liquid metal concentration after passing through the filter) / Blank liquid metal concentration] x 100

<スルホン酸基導入方法>
(電子線照射工程およびグラフト鎖導入工程)
平均繊維径が6μmの高密度ポリエチレン原料のメルトブロー不織布(目付け質量81g/m2、厚み0.38mm、繊維充填率24%)の片面に対して、電子線を窒素雰囲気下、加速電圧200kV、照射線量50kGyで照射した。次に、照射後のメルトブロー不織布を、予め調液し窒素置換(窒素バブリング)したエマルジョン状態のモノマー溶液に浸漬し、55℃に保持しながら、エマルジョングラフト重合を4時間行った。
使用したモノマー溶液は、溶液全体重量基準で、グリシジルメタクリレート(GMA)1.6質量%と界面活性剤であるTween20(ナカライテスク株式会社製)を0.2質量%含む純水エマルジョン溶液である。
グラフト率を評価したところ、GMAグラフト率は50%であった。
(スルホン酸基導入工程)
亜硫酸ナトリウムをイソプロパノール:15質量%/純水:85質量%に溶解し作製した濃度10質量%の亜硫酸ナトリウム溶液中に上記で得られたGMAグラフト重合不織布を浸漬し、80℃で9時間加熱してスルホン酸基の導入を行った。不織布を取り出し純水で洗浄、乾燥することにより、スルホン酸型不織布を得た。
濃度1Nの硫酸中に上記で得られたスルホン酸型不織布を浸漬し、80℃で2時間加熱して残エポキシ基の開環およびナトリウムイオンの水素イオンへの置換を行った。不織布を取り出し、純水で洗浄、乾燥することにより、イオン交換容量2meq/gのスルホン酸型イオン交換不織布を得た。なお、当該不織布の厚みは0.82mmであった。
<Method of introducing sulfonic acid group>
(Electron beam irradiation process and graft chain introduction process)
One side of a melt-blown non-woven fabric (mesh mass 81 g / m 2 , thickness 0.38 mm, fiber filling rate 24%) made of high-density polyethylene with an average fiber diameter of 6 μm is irradiated with an electron beam under a nitrogen atmosphere at an acceleration voltage of 200 kV. Irradiation was performed at a dose of 50 kGy. Next, the irradiated melt-blown non-woven fabric was immersed in a monomer solution in an emulsion state prepared in advance and replaced with nitrogen (nitrogen bubbling), and emulsion graft polymerization was carried out for 4 hours while maintaining the temperature at 55 ° C.
The monomer solution used is a pure water emulsion solution containing 1.6% by mass of glycidyl methacrylate (GMA) and 0.2% by mass of the surfactant Tween 20 (manufactured by Nacalai Tesque, Inc.) based on the total weight of the solution.
When the graft rate was evaluated, the GMA graft rate was 50%.
(Sulfonic acid group introduction process)
The GMA graft-polymerized non-woven fabric obtained above was immersed in a sodium sulfite solution prepared by dissolving sodium sulfite in isopropanol: 15% by mass / pure water: 85% by mass and having a concentration of 10% by mass, and heated at 80 ° C. for 9 hours. The sulfonic acid group was introduced. The non-woven fabric was taken out, washed with pure water, and dried to obtain a sulfonic acid-type non-woven fabric.
The sulfonic acid-type non-woven fabric obtained above was immersed in sulfuric acid having a concentration of 1N and heated at 80 ° C. for 2 hours to open the ring of the residual epoxy group and replace the sodium ion with a hydrogen ion. The non-woven fabric was taken out, washed with pure water, and dried to obtain a sulfonic acid-type ion-exchanged non-woven fabric having an ion exchange capacity of 2 meq / g. The thickness of the non-woven fabric was 0.82 mm.

<イミノジエタノール基導入工程>
(電子線照射工程およびグラフト鎖導入工程)
スルホン酸基と同様の方法により、電子線照射工程およびグラフト鎖導入工程を実施した。グラフト率を評価したところ、GMAグラフト率は50%であった。
(イミノジエタノール基導入工程)
上記で得られたGMAグラフト重合不織布を、イミノジエタノールを純水に溶解し作製した濃度20質量%のイミノジエタノール溶液中に浸漬し、80℃で4時間加熱してイミノジエタノール基の導入を行った。不織布を取り出し純水で洗浄、乾燥することにより、イオン交換容量2.0meq/gのイミノジエタノール型不織布を得た。なお、当該不織布の厚みは0.75mmであった。
<Iminodiethanol group introduction process>
(Electron beam irradiation process and graft chain introduction process)
The electron beam irradiation step and the graft chain introduction step were carried out by the same method as the sulfonic acid group. When the graft rate was evaluated, the GMA graft rate was 50%.
(Iminodiethanol group introduction process)
The GMA graft-polymerized non-woven fabric obtained above was immersed in an iminodiethanol solution having a concentration of 20% by mass prepared by dissolving iminodiethanol in pure water, and heated at 80 ° C. for 4 hours to introduce iminodiethanol groups. .. The non-woven fabric was taken out, washed with pure water, and dried to obtain an iminodiethanol-type non-woven fabric having an ion exchange capacity of 2.0 meq / g. The thickness of the non-woven fabric was 0.75 mm.

<イミノジ酢酸基導入工程>
(電子線照射工程およびグラフト鎖導入工程)
スルホン酸基と同様の方法により、電子線照射工程およびグラフト鎖導入工程を実施した。グラフト率を評価したところ、GMAグラフト率は50%であった。
(イミノジ酢酸基導入工程)
上記で得られたGMAグラフト重合不織布を、イミノジ酢酸二ナトリウム水和物をレベランLV-8:17質量%/純水:71質量%に溶解し作製した濃度12質量%のイミノジ酢酸二ナトリウム水和物溶液中に上記で得られたGMAグラフト重合不織布を浸漬し、80℃で9時間加熱してイミノジ酢酸基の導入を行った。
濃度6Nの塩酸中に上記で得られたイミノジ酢酸酸型不織布を浸漬し、ナトリウムイオンの水素イオンへの置換を行った。不織布を取り出し、純水で洗浄、乾燥することにより、イオン交換容量0.8meq/gのイミノジ酸型イオン交換不織布を得た。なお、当該不織布の厚みは0.68mmであった。
<金属除去フィルターの作製>
図3に示す積層フィルター17を使用した。すなわち、下流側に位置する不織布層(A)17a及び上流側に位置する不織布層(B)17bで構成されている。前記2種類の不織布基材を直径7mmΦにカットし、7mmΦのPFA(テトラフルオロエチレンとパーフルオロアルキルビニルエーテルとの共重合体)製カラム内に5枚ずつ合計10枚を、順番を入れ替えて積層し、2種類の官能基複合型フィルター17を作製した。
前記不織布層Aとしてスルホン酸基材(以下、SCKと記載)と、前記不織布層Bとしてイミノジエタノール基材(以下、IDECrと記載)を用いた。SCKは、カリウム(K)を吸着し、IDECrはクロム酸(以下、クロム(Cr)と記載)を吸着する。基材重量(g/枚)は下記のとおりである。
SC基材=0.0059(g/枚)
IDE基材=0.0053(g/枚)
IDA基材=0.0055(g/枚)
<Iminodiacetic acid group introduction process>
(Electron beam irradiation process and graft chain introduction process)
The electron beam irradiation step and the graft chain introduction step were carried out by the same method as the sulfonic acid group. When the graft rate was evaluated, the GMA graft rate was 50%.
(Iminodiacetic acid group introduction process)
The GMA graft-polymerized non-woven fabric obtained above was prepared by dissolving iminodiacetic acid disodium hydrate in levelan LV-8: 17% by mass / pure water: 71% by mass to produce iminodiacetic acid disodium hydration at a concentration of 12% by mass. The GMA graft-polymerized non-woven fabric obtained above was immersed in a product solution and heated at 80 ° C. for 9 hours to introduce iminodiacetic acid groups.
The iminodiacetic acid-type non-woven fabric obtained above was immersed in hydrochloric acid having a concentration of 6N to replace sodium ions with hydrogen ions. The non-woven fabric was taken out, washed with pure water, and dried to obtain an iminodic acid-type ion-exchanged non-woven fabric having an ion exchange capacity of 0.8 meq / g. The thickness of the non-woven fabric was 0.68 mm.
<Making a metal removal filter>
The laminated filter 17 shown in FIG. 3 was used. That is, it is composed of the non-woven fabric layer (A) 17a located on the downstream side and the non-woven fabric layer (B) 17b located on the upstream side. The two types of non-woven fabric base materials are cut to a diameter of 7 mmΦ, and a total of 10 sheets of 5 sheets each are laminated in a 7 mmΦ PFA (copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether) columns in a different order. Two kinds of functional group composite type filters 17 were prepared.
A sulfonic acid base material (hereinafter referred to as SC K ) was used as the non-woven fabric layer A, and an iminodiethanol base material (hereinafter referred to as IDE Cr) was used as the non-woven fabric layer B. SC K adsorbs potassium (K), and IDE Cr adsorbs chromic acid (hereinafter referred to as chromium (Cr)). The base material weight (g / sheet) is as follows.
SC base material = 0.0059 (g / sheet)
IDE base material = 0.0053 (g / sheet)
IDA base material = 0.0055 (g / sheet)

(実施例1、比較例1)
<金属溶液の調製>
ナカライテスク社製用途別特製試薬のニクロム酸カリウム標準液(1000ppm)を超純水で希釈し、1000ppbの金属溶液(Cr=1000ppb、K=2000ppb)を調製した。
<通液・サンプリング>
図3に示すようにチューブポンプを用いて、フィルターに金属溶液(ニクロム酸カリウム)を3.1mL/minで通液し、基材通過後の溶液を100mLのPFAボトルにサンプリングした。
本実施例及び比較例は、Kに対する金属除去性能を検討した。
(SCK→IDECr)と(IDECr→SCK)の官能基複合型フィルターの金属除去率を図4に示す。この結果から、KとCrが混在する溶液系でKを除去する場合は、SC単独基でKを除去するよりも、あらかじめIDE基でCrを除去し、その後にSCでKを除去する(IDECr→SCK)方が、高い除去率を示すことが分かった。
(Example 1, Comparative Example 1)
<Preparation of metal solution>
A potassium dichromate standard solution (1000 ppm), which is a special reagent manufactured by Nacalai Tesque, was diluted with ultrapure water to prepare a 1000 ppb metal solution (Cr = 1000 ppb, K = 2000 ppb).
<Liquid flow / sampling>
As shown in FIG. 3, a metal solution (potassium dichromate) was passed through a filter at 3.1 mL / min using a tube pump, and the solution after passing through the substrate was sampled in a 100 mL PFA bottle.
In this example and comparative example, the metal removal performance with respect to K was examined.
FIG. 4 shows the metal removal rates of the functional group composite type filters of (SC K → IDE Cr ) and (IDE Cr → SC K). From this result, when K is removed in a solution system in which K and Cr are mixed, Cr is removed in advance with an IDE group, and then K is removed with SC, rather than K being removed with an SC single group (IDE). Cr → SC K) it is, was found to exhibit a high removal rate.

(比較例2〜3)
不織布層としてスルホン酸基材(SCK)と、不織布層としてイミノジエタノール基材(IDECr)をそれぞれ単独フィルターとした以外は実施例1と同様に実験した。この金属除去率を図5に示す。SCKはKを除去できているが、IDECrは除去できていない。また、これらの単独フィルターの金属除去率を足し合わせた官能基複合型フィルターの値(以下、理論値と記載)は、SCKと同等の値を示した。
(Comparative Examples 2-3)
The experiment was carried out in the same manner as in Example 1 except that the sulfonic acid base material (SC K ) was used as the non-woven fabric layer and the iminodiethanol base material (IDE Cr) was used as the non-woven fabric layer. This metal removal rate is shown in FIG. SC K has been able to remove K, but IDE Cr has not. These single filter value of the combined functional group composite filter plus the metal removal rate (hereinafter, described as the theoretical value), showed comparable values and SC K.

(実施例2、比較例4)
本実施例及び比較例は、Cuに対する金属除去性能を検討した。フィルター構造は実施例1と同様とした。
<金属溶液の調製>
ナカライテスク社製用途別特製試薬のナトリウム(Na)標準液(1000ppm)と銅(Cu)標準液(1000 ppm)を超純水で希釈し、1000ppbの金属溶液(Na=1000ppb、Cu=1000ppb)を調製した。
<通液・サンプリング>
実施例1と同様の流速で金属溶液(Na、Cu)を通液し、サンプリングした。
<金属除去率の結果>
(SCNa,Cu→IDACu)と(IDACu→SCNa,Cu)の官能基複合型フィルターの金属除去率を図6に示す。この結果から、NaとCuが混在する溶液系でCuを除去する場合は、IDA及びSC単独基でCuを除去するよりも、IDAとSCを組み合わせる方が、高い除去率を示すことが分かった。また、IDAとSCの順序については、IDACu→SCNa,Cuの順序の方が、より高い除去率を示すことが分かった。
(Example 2, Comparative Example 4)
In this example and comparative example, the metal removal performance with respect to Cu was examined. The filter structure was the same as in Example 1.
<Preparation of metal solution>
Sodium (Na) standard solution (1000 ppm) and copper (Cu) standard solution (1000 ppm), which are special reagents manufactured by Nacalai Tesque, are diluted with ultrapure water to form a 1000 ppb metal solution (Na = 1000 ppb, Cu = 1000 ppb). Was prepared.
<Liquid flow / sampling>
A metal solution (Na, Cu) was passed through the metal solution (Na, Cu) at the same flow rate as in Example 1 and sampled.
<Result of metal removal rate>
FIG. 6 shows the metal removal rates of the functional group composite type filters of (SC Na, Cu → IDA Cu ) and (IDA Cu → SC Na, Cu). From this result, it was found that when removing Cu in a solution system in which Na and Cu are mixed, the removal rate is higher when the combination of IDA and SC is used than when the Cu is removed by the IDA and SC single groups. .. Regarding the order of IDA and SC, it was found that the order of IDA Cu → SC Na, Cu showed a higher removal rate.

(比較例5〜6)
(SCNa,Cu)と(IDACu)の2種類の単独フィルターの金属除去率を図7に示す。IDACuおよびSCNa,CuでCuを除去できている。また、これらの単独フィルターの金属除去率を足し合わせた官能基複合型フィルターの値(以下、理論値と記載)は、SCNa,Cu+IDACuである。
(Comparative Examples 5 to 6)
The metal removal rates of the two types of single filters (SC Na, Cu ) and (IDA Cu) are shown in FIG. Cu can be removed with IDA Cu and SC Na, Cu. Further, the value of the functional group composite type filter (hereinafter referred to as the theoretical value) obtained by adding the metal removal rates of these single filters is SC Na, Cu + IDA Cu .

(実施例3、比較例7)
本実施例は、Naに対する金属除去性能を検討した。
(SCNa,Cu→IDACu)と(IDACu→SCNa,Cu)の官能基複合型フィルターの金属除去率を図8に示す。この結果から、NaとCuが混在する溶液系でNaを除去する場合は、SC単独基でNaを除去するよりも、あらかじめIDA基でCuを除去し、その後にSCでNaを除去する(IDACu→SCNa,Cu)方が、理論値と比較して、高い除去率を示すことが分かった。
(Example 3, Comparative Example 7)
In this example, the metal removal performance for Na was examined.
FIG. 8 shows the metal removal rates of the functional group composite type filters of (SC Na, Cu → IDA Cu ) and (IDA Cu → SC Na, Cu). From this result, when Na is removed in a solution system in which Na and Cu are mixed, Cu is removed in advance by the IDA group and then Na is removed by SC (IDA), rather than removing Na by the SC single group. It was found that Cu → SC Na, Cu ) showed a higher removal rate than the theoretical value.

(比較例8、比較例9)
(SCNa,Cu),(IDACu)の2種類の単独フィルターの金属除去率を図9に示す。SCNa,CuはNaを除去できているが、IDACuは除去できていない。SCNa,Cuの金属除去率が途中からマイナスの値を示しているのは、Naを吸着していた官能基が、より吸着力の強いCuを吸着することにより、Naが放出されるためである。また、これらの単独フィルターの金属除去率を足し合わせた官能基複合型フィルターの値(以下、理論値と記載)は、SCNa,Cuと同等の値を示した。
(Comparative Example 8, Comparative Example 9)
FIG. 9 shows the metal removal rates of the two types of single filters (SC Na, Cu ) and (IDA Cu). SC Na and Cu were able to remove Na, but IDA Cu could not. The metal removal rate of SC Na and Cu shows a negative value from the middle because Na is released by the functional group adsorbing Na adsorbing Cu with stronger adsorption power. be. In addition, the values of the functional group composite type filter (hereinafter referred to as theoretical values) obtained by adding the metal removal rates of these single filters showed the same values as SC Na and Cu.

以上の実施例及び比較例を考察すると、官能基複合型フィルターにおいて、基材の積層順序の影響を調査した結果、官能基の吸着対象でない金属を減少させてから、吸着対象である金属を吸着するような積層順序にすると、金属除去性能が向上することが分かった。一つの推測としては、官能基の吸着対象である金属に対して、吸着対象でない金属が少ない程、官能基と対象金属の接触確率が上がることが考えられる。 Considering the above examples and comparative examples, as a result of investigating the influence of the stacking order of the base materials in the functional group composite filter, the metals that are not the adsorption target of the functional groups are reduced, and then the metal that is the adsorption target is adsorbed. It was found that the metal removal performance was improved by using such a stacking order. One speculation is that the smaller the number of metals that are not the target of adsorption with respect to the metal that is the target of adsorption of the functional group, the higher the probability of contact between the functional group and the target metal.

本発明のフィルターカートリッジは、不織布を円筒状に巻き付けたデプス型カートリッジフィルターに有用である。 The filter cartridge of the present invention is useful for a depth type cartridge filter in which a non-woven fabric is wound in a cylindrical shape.

1,10 デプス型フィルターカートリッジ
2 中空状内筒(孔をあけた中空パイプ)
3,17a 下流側に位置する不織布層(A)
4,17b 上流側に位置する不織布層(B)
5 デプス型カートリッジフィルター
6 フィルターの容器
7 供給口
8 処理水取り出し口
9a,9b エンドキャップ
11 通液試験装置
12,18 容器
13 被処理水
14 フッ素樹脂(PFA)チューブ
15 チューブポンプ
16 カラム
17 積層フィルター
19 処理水
1,10 Depth type filter cartridge 2 Hollow inner cylinder (hollow pipe with holes)
3,17a Non-woven fabric layer (A) located on the downstream side
4,17b Non-woven fabric layer (B) located on the upstream side
5 Depth type cartridge filter 6 Filter container 7 Supply port 8 Treated water outlet 9a, 9b End cap 11 Liquid flow test device 12, 18 Container 13 Water to be treated 14 Fluororesin (PFA) tube 15 Tube pump 16 Column 17 Laminated filter 19 Treated water

Claims (6)

複数種類の濾過用基布を積層又は中空状内筒に巻き付けた、溶液中の金属を吸着除去するフィルターカートリッジであって、
前記濾過用基布は、ポリオレフィン繊維に金属吸着基を化学結合した不織布であり、
前記濾過用基布は、下流側に位置する不織布層A及び上流側に位置する不織布層Bを含み、
前記不織布層Aは、金属吸着基としてスルホン酸基を化学結合したポリオレフィン繊維で構成され、
前記不織布層Bは、金属吸着基としてN−メチル−D‐グルカミン基、イミノ二酢酸基(イミノジ酢酸基)及びイミノジエタノール基から選択される少なくとも一種を化学結合したポリオレフィン繊維で構成され、
前記不織布層A及びBを構成するポリオレフィン繊維は、単繊維平均直径が0.2〜10μmの高密度ポリエチレン繊維からなる、
ことを特徴とするフィルターカートリッジ。
A filter cartridge that adsorbs and removes metals in a solution by laminating or wrapping multiple types of filtration base cloth around a hollow inner cylinder.
The filtration base cloth is a non-woven fabric in which a metal adsorbing group is chemically bonded to a polyolefin fiber.
The filtration base cloth includes a non-woven fabric layer A located on the downstream side and a non-woven fabric layer B located on the upstream side.
The non-woven fabric layer A is composed of a polyolefin fiber in which a sulfonic acid group is chemically bonded as a metal adsorbing group.
The nonwoven fabric layer B is a metal adsorbing group N- methyl -D- glucamine group, consists of iminodiacetic acid groups (iminodiacetic acid groups) and polyolefin fibers chemically coupling at least one selected iminodiethanol group or al,
The polyolefin fibers constituting the non-woven fabric layers A and B are made of high-density polyethylene fibers having a single fiber average diameter of 0.2 to 10 μm.
A filter cartridge characterized by that.
前記不織布層Bは、イミノジエタノール基を化学結合したポリオレフィン繊維で構成される請求項1に記載のフィルターカートリッジ。 The filter cartridge according to claim 1, wherein the non-woven fabric layer B is composed of a polyolefin fiber in which an iminodiethanol group is chemically bonded. 前記不織布A及びBを構成するポリオレフィン繊維は長繊維である請求項1又は2に記載のフィルターカートリッジ。 The filter cartridge according to claim 1 or 2, wherein the polyolefin fibers constituting the non-woven fabric layers A and B are long fibers. 前記不織布層A及びBは、面積当たりの質量(目付)が10〜100g/m 2 のメルトブロー長繊維不織布である請求項1〜3のいずれかに記載のフィルターカートリッジ。 The filter cartridge according to any one of claims 1 to 3, wherein the nonwoven fabric layers A and B are melt-blown long fiber nonwoven fabrics having a mass (weight) per area of 10 to 100 g / m 2. 請求項1〜4のいずれかに記載のフィルターカートリッジを組み込んだフィルター。 A filter incorporating the filter cartridge according to any one of claims 1 to 4. 複数種類の濾過用基布を積層又は中空状内筒に巻き付けた濾過部を有する、溶液中の金属を吸着除去するフィルターであって、
前記濾過用基布は、ポリオレフィン繊維に金属吸着基を化学結合した不織布であり、
前記濾過用基布は、下流側に位置する不織布層A及び上流側に位置する不織布層Bを含み、
前記不織布層Aは、金属吸着基としてスルホン酸基を化学結合したポリオレフィン繊維で構成され、
前記不織布層Bは、金属吸着基としてN−メチル−D‐グルカミン基、イミノ二酢酸基(イミノジ酢酸基)及びイミノジエタノール基から選択される少なくとも一種を化学結合したポリオレフィン繊維で構成され、
前記不織布層A及びBを構成するポリオレフィン繊維は、単繊維平均直径が0.2〜10μmの高密度ポリエチレン繊維からなる、
ことを特徴とするフィルター。
A filter that adsorbs and removes metals in a solution and has a filtration part in which a plurality of types of filtration base cloths are laminated or wound around a hollow inner cylinder.
The filtration base cloth is a non-woven fabric in which a metal adsorbing group is chemically bonded to a polyolefin fiber.
The filtration base cloth includes a non-woven fabric layer A located on the downstream side and a non-woven fabric layer B located on the upstream side.
The non-woven fabric layer A is composed of a polyolefin fiber in which a sulfonic acid group is chemically bonded as a metal adsorbing group.
The nonwoven fabric layer B is a metal adsorbing group N- methyl -D- glucamine group, consists of iminodiacetic acid groups (iminodiacetic acid groups) and polyolefin fibers chemically coupling at least one selected iminodiethanol group or al,
The polyolefin fibers constituting the non-woven fabric layers A and B are made of high-density polyethylene fibers having a single fiber average diameter of 0.2 to 10 μm.
A filter that features that.
JP2017068447A 2017-03-30 2017-03-30 Filter cartridge and filter Active JP6912244B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017068447A JP6912244B2 (en) 2017-03-30 2017-03-30 Filter cartridge and filter
CN201880006860.2A CN110177616B (en) 2017-03-30 2018-03-12 Filter cartridge and filter
PCT/JP2018/009588 WO2018180430A1 (en) 2017-03-30 2018-03-12 Filter cartridge and filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017068447A JP6912244B2 (en) 2017-03-30 2017-03-30 Filter cartridge and filter

Publications (2)

Publication Number Publication Date
JP2018167223A JP2018167223A (en) 2018-11-01
JP6912244B2 true JP6912244B2 (en) 2021-08-04

Family

ID=63675350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017068447A Active JP6912244B2 (en) 2017-03-30 2017-03-30 Filter cartridge and filter

Country Status (3)

Country Link
JP (1) JP6912244B2 (en)
CN (1) CN110177616B (en)
WO (1) WO2018180430A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210060528A1 (en) * 2017-12-25 2021-03-04 Nissan Chemical Corporation Metal removal agent and metal removal method for removing metal impurities in solution
KR20210102213A (en) 2018-12-20 2021-08-19 닛산 가가쿠 가부시키가이샤 Method for producing a coating film-forming composition for lithography
JP7094874B2 (en) * 2018-12-27 2022-07-04 水ing株式会社 Boron adsorption cartridge filter and boron treatment method using it
JPWO2020184306A1 (en) * 2019-03-11 2020-09-17
IT201900012339A1 (en) 2019-07-19 2021-01-19 Consiglio Nazionale Ricerche Macroporous polymer cryogel based on N-alkyl-D-glucamine to retain and / or remove toxic contaminants
IT201900012624A1 (en) 2019-08-26 2021-02-26 Stazione Zoologica Anton Dohrn Method and kit for predicting cell death in response to biotic and / or abiotic stimuli
JP2023516926A (en) * 2020-02-25 2023-04-21 インテグリス・インコーポレーテッド Ligand modified filters and methods for reducing metals from liquid compositions
JP7498530B1 (en) 2023-09-21 2024-06-12 室町ケミカル株式会社 Organic solvent purification method, method for producing purified organic solvent, and organic solvent purification system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317512A (en) * 1988-06-17 1989-12-22 Sumitomo Chem Co Ltd Method for cleaning air
JPH0360710A (en) * 1989-07-28 1991-03-15 Sumitomo Chem Co Ltd Filter medium for purifying air
JPH04284853A (en) * 1991-03-13 1992-10-09 Japan Atom Energy Res Inst Ion exchange filtering method and apparatus therefor
JP2003020214A (en) * 2001-07-05 2003-01-24 Santoku Kagaku Kogyo Kk Method for manufacturing purified hydrogen peroxide water
JP2003251120A (en) * 2002-02-27 2003-09-09 Ebara Corp Filter cartridge for precise filtering of fine particles/ metal impurities
JP2005349241A (en) * 2004-06-08 2005-12-22 Japan Atom Energy Res Inst Material for removing cation in water at high speed and high efficiency and secondary treatment for waste water using the material
JP5182793B2 (en) * 2007-10-12 2013-04-17 独立行政法人日本原子力研究開発機構 Cartridge filter for liquid filtration
JP2013061426A (en) * 2011-09-12 2013-04-04 Nomura Micro Sci Co Ltd Impurity removal method, impurity removal filtration member and impurity removal filtration device, for resin solution for forming photoresist film
KR102079481B1 (en) * 2011-09-21 2020-04-07 도널드선 컴파니 인코포레이티드 Fine fibers made from polymer crosslinked with resinous aldehyde composition
JP6077250B2 (en) * 2012-09-28 2017-02-08 株式会社荏原製作所 Water treatment method and apparatus in nuclear power plant

Also Published As

Publication number Publication date
JP2018167223A (en) 2018-11-01
CN110177616A (en) 2019-08-27
CN110177616B (en) 2022-10-04
WO2018180430A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6912244B2 (en) Filter cartridge and filter
KR100389575B1 (en) Gas adsorbent
KR100998521B1 (en) ?? treated membranes
KR102287709B1 (en) Ultrapure Water Manufacturing System
KR20240036713A (en) Ligand-modified filter and methods for reducing metals from liquid compositions
KR20140071943A (en) Method and device for refining of purification of hydrogen peroxide
JP3647667B2 (en) Iodine removal filter and iodine removal device carrying silver
JP6228471B2 (en) To-be-treated water processing apparatus, pure water production apparatus and to-be-treated water processing method
US20050218068A1 (en) Filter cartridge
JP3386929B2 (en) Method for producing separation functional fiber and ion exchange fiber and gas adsorbent produced using the same
JP5762863B2 (en) Method and apparatus for purifying alcohol
JP5648231B2 (en) Purification method of alkaline aqueous solution
JP3673452B2 (en) Pollution-resistant porous filtration membrane
KR20210134895A (en) Manufacturing method of organic solvent
JP6134892B2 (en) Method for producing silica / polymer composite type iminodiacetic acid chelate adsorbent, quantitative analysis method using silica / polymer composite type iminodiacetic acid chelate adsorbent, and method for recovering trace metal elements
JP2007130540A (en) Chelate adsorbent material which can be acted in strong acidity range
JP7094874B2 (en) Boron adsorption cartridge filter and boron treatment method using it
JPH0557281A (en) Heavy metal removing method
JP2020116524A (en) Method for filtering liquid medicine containing carboxylic acid derivative
KR20220125811A (en) Ligand-Modified Filters and Methods for Reducing Metals from Liquid Compositions
KR20220096812A (en) Sponge type sorbent media coated with reduced graphene oxide for removal of organic compound and oil contaminants and the manufacturing method thereof
JP2733287B2 (en) Method for simultaneously removing multiple heavy metal ions
JP2015199050A (en) Method of removing metal ion in saturated salt water
JP5311227B2 (en) Anion exchanger, its pretreatment method and regeneration method, and purification method and purification apparatus of alkaline aqueous solution
JP2005349241A (en) Material for removing cation in water at high speed and high efficiency and secondary treatment for waste water using the material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210708

R150 Certificate of patent or registration of utility model

Ref document number: 6912244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250