JP2014071004A - Water treatment method and device in nuclear power plant - Google Patents

Water treatment method and device in nuclear power plant Download PDF

Info

Publication number
JP2014071004A
JP2014071004A JP2012217133A JP2012217133A JP2014071004A JP 2014071004 A JP2014071004 A JP 2014071004A JP 2012217133 A JP2012217133 A JP 2012217133A JP 2012217133 A JP2012217133 A JP 2012217133A JP 2014071004 A JP2014071004 A JP 2014071004A
Authority
JP
Japan
Prior art keywords
water
ion exchange
nuclear power
treated
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012217133A
Other languages
Japanese (ja)
Other versions
JP6077250B2 (en
Inventor
Takeshi Izumi
丈志 出水
Makoto Komatsu
誠 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2012217133A priority Critical patent/JP6077250B2/en
Publication of JP2014071004A publication Critical patent/JP2014071004A/en
Application granted granted Critical
Publication of JP6077250B2 publication Critical patent/JP6077250B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method and device in a nuclear power plant which reduce oxidation accelerating substances in the water to be treated before demineralizing the water to be treated including the oxidation accelerating substances caused by the radiolysis of water in a nuclear power plant by an ion exchange resin and maintain the quality of the treatment water at high purity by reducing a load of a demineralizer, and extend the life of the ion exchange resin and reduce a generated amount of the spent ion exchange resin.SOLUTION: The water to be treated including the oxidation accelerating substance generated by the radiolysis of water in the nuclear power plant is brought into contact with a filter having an ion exchange functional group introduced by radiation graft polymerization on a polyolefin non-woven fabric and metallic oxidation fine particles loaded on a part of the ion exchange functional group so as to decompose the oxidation accelerating substance, and subsequently brought into contact with the iron exchange resin.

Description

本発明は、原子力発電プラントにおける、原子炉水や燃料プール水、サイトバンカープール水、放射性物質含有廃水の処理技術に関する。特に、本発明は、原子力発電プラントにおける水の放射線分解により生成する過酸化水素などの酸化促進物質を含む被処理水の処理方法及び装置に関する。   The present invention relates to a technology for treating nuclear reactor water, fuel pool water, site bunker pool water, and radioactive material-containing wastewater in a nuclear power plant. In particular, the present invention relates to a method and apparatus for treating water to be treated containing an oxidation promoting substance such as hydrogen peroxide generated by radiolysis of water in a nuclear power plant.

原子力発電プラントでは、原子炉水や各種プール水、復水、廃水などを浄化する目的で、粒状イオン交換樹脂を用いた復水脱塩装置や廃液脱塩装置、中空糸膜やプリーツフィルタなどを用いたろ過装置、粉末イオン交換樹脂を用いたプリコート型ろ過装置などの浄化設備が設置されている。   In nuclear power plants, for the purpose of purifying reactor water, various pool water, condensate, wastewater, etc., condensate demineralizers, wastewater demineralizers, hollow fiber membranes, pleated filters, etc. using granular ion exchange resins are used. Purification equipment such as the filtration device used and a precoat filtration device using powder ion exchange resin is installed.

復水脱塩装置を例にして概要を説明する。沸騰水型原子力発電(BWR)プラントは、原子炉で発生した蒸気をタービンに導き、タービンに連結された発電機を回転させて発電し、タービンで仕事を終えた蒸気を復水器で復水して再び原子炉に給水するようにしている。復水器からの復水を原子炉に供給する復水系に復水脱塩装置が設けられ、復水に含まれるクラッドと呼ばれる鉄酸化物を主とする懸濁性腐食性物質や、冷却に用いている海水由来の海水成分などのイオン状不純物を除去する。また、原子炉水に含まれるクラッドやイオン状不純物などを除去するために原子炉冷却材浄化系が設けられており、原子炉水を原子炉冷却材浄化系の原子炉冷却材浄化系ろ過脱塩装置に導き、炉水中に含まれるクラッドおよびイオン状不純物を除去する。こうして、原子炉水を適正に浄化し高純度の純水に保つ。   An outline will be described taking a condensate demineralizer as an example. A boiling water nuclear power plant (BWR) plant directs steam generated in a nuclear reactor to a turbine, rotates a generator connected to the turbine to generate electricity, and condenses the steam that has finished work in the turbine with a condenser. Then, water is supplied to the reactor again. A condensate demineralizer is installed in the condensate system that supplies the condensate from the condenser to the reactor, and it is used for cooling and suspending corrosive substances mainly composed of iron oxide called clad contained in the condensate. Remove ionic impurities such as seawater components derived from the seawater used. In addition, a reactor coolant purification system is provided to remove cladding, ionic impurities, etc. contained in the reactor water, and the reactor water is filtered and removed from the reactor coolant purification system. Lead to salt equipment to remove clad and ionic impurities in reactor water. In this way, the reactor water is properly purified and kept in high purity pure water.

定検(定期点検)中など、原子炉停止中においては、原子炉水位を適正に保つため常に適当量の水を原子炉から余剰水として排出し続ける場合がある。また、燃料交換の際には、燃料交換のために上昇させた原子炉水位を元に戻すために一時的に大量の水を原子炉から余剰水として排出する必要がある。すなわち、原子炉の燃料交換の際には、原子炉と燃料プールとの燃料移動経路に水を張り、原子炉水位を大きく上昇させ、燃料交換の終了後には元の原子炉水位に戻す。このために一時的に大量の水を原子炉から余剰水として排出する必要がある。これらの原子炉からの余剰水排出にあたっては、原子炉冷却材浄化系の原子炉冷却材浄化系ろ過脱塩装置で炉水中に含まれるクラッドおよびイオン状不純物を除去した後、その処理水のうち余剰分を液体廃棄物処理系に導く。液体廃棄物処理系では、原子炉冷却材浄化系からの余剰水を一旦廃液収集槽に蓄え、液体廃棄物処理系でさらにクラッドおよびイオン状不純物を除去して、浄化された水を復水貯蔵プールにおいて貯蔵し、プラント内での再利用に備える。ここで、復水系の復水脱塩装置においては、イオン交換樹脂の能力低下時にはイオン交換樹脂を交換することが必要になり、その際には、新しいイオン交換樹脂の費用に加えて、使用済みイオン交換樹脂が放射性廃棄物として発生してしまい、放射性廃棄物の処理に伴う費用及び場所が必要になる。そのため、イオン交換樹脂の長寿命化を図ることが望まれている。そこで、原子力発電プラントの定検中においては、復水貯蔵プールに貯蔵された水を使用してイオン交換樹脂を逆洗し、イオン交換樹脂の長寿命化を図っている。更に、原子力発電プラント内に設置されている燃料プールやサイトバンカープールでは、保管されている燃料や種々の材料の腐食を抑止し、プール水中の放射性物質を除去することにより作業員の被ばく量を低減するなど健全性を長期間にわたり維持する目的で、粒状イオン交換樹脂を用いた脱塩装置や、粉末状イオン交換樹脂を用いたろ過装置が設置されている。   When the reactor is shut down, such as during regular inspections (periodic inspections), an appropriate amount of water may always be discharged from the reactor as surplus water in order to maintain the reactor water level appropriately. In addition, when the fuel is changed, it is necessary to temporarily discharge a large amount of water as surplus water from the reactor in order to restore the reactor water level raised for the fuel change. That is, at the time of fuel exchange in the nuclear reactor, water is added to the fuel transfer path between the nuclear reactor and the fuel pool, the reactor water level is greatly increased, and the fuel level is returned to the original reactor water level after the fuel exchange is completed. For this reason, it is necessary to temporarily discharge a large amount of water from the reactor as surplus water. When draining surplus water from these reactors, after removing the cladding and ionic impurities contained in the reactor water with the reactor coolant purification system filtration demineralizer of the reactor coolant purification system, Lead excess to the liquid waste treatment system. In the liquid waste treatment system, surplus water from the reactor coolant purification system is temporarily stored in the waste liquid collection tank, and the clad and ionic impurities are further removed in the liquid waste treatment system, and the purified water is stored as condensate. Store in the pool and prepare for reuse in the plant. Here, in the condensate demineralizer, it is necessary to replace the ion exchange resin when the capacity of the ion exchange resin is reduced. The ion exchange resin is generated as radioactive waste, and the cost and location associated with the treatment of the radioactive waste are required. Therefore, it is desired to extend the life of the ion exchange resin. Therefore, during the regular inspection of the nuclear power plant, the ion exchange resin is backwashed using the water stored in the condensate storage pool to extend the life of the ion exchange resin. In addition, in fuel pools and site bunker pools installed in nuclear power plants, corrosion of stored fuel and various materials is suppressed, and radioactive substances in the pool water are removed to reduce the exposure of workers. In order to maintain soundness for a long period of time, such as by reducing, a desalinator using a granular ion exchange resin and a filtration device using a powder ion exchange resin are installed.

ところが、原子炉水や燃料プール水には、水中にある燃料棒からの放射線により水が分
解されて、過酸化水素や過酸化水素から生成するヒドロペルオキシラジカルやヒドロキシラジカルなどの酸化促進物質(以下「酸化促進物質」という。)が含まれている。原子炉冷却材浄化系および液体廃棄物処理系では、これら酸化促進物質を除去することはできず、燃料プール水、サイトバンカープール水及びこれらを浄化して回収される復水貯蔵プールに貯蔵される水には、酸化促進物質が含まれたままとなっている。この酸化促進物質は、非常に強力な酸化作用を有するため、イオン交換樹脂のカチオン樹脂を酸化し、ポリスチレンスルホン酸(PSS)を溶出させる。溶出したPSSは、イオン交換樹脂のアニオン樹脂に付着してアニオン樹脂の反応速度を低下させ、結果として脱塩率を低下させる。また、過酸化水素によるカチオン樹脂の酸化劣化により、カチオン樹脂から硫酸イオン等が溶出し、イオン交換樹脂の出口の導電率を上昇させる。さらに、強力な酸化作用により、配管やタンク等の鋼材の腐食の一因ともなる。
However, in reactor water and fuel pool water, water is decomposed by radiation from the fuel rods in the water, and oxidation promoting substances such as hydroperoxy radicals and hydroxy radicals generated from hydrogen peroxide and hydrogen peroxide (hereinafter referred to as “hydrogen peroxide”) "Oxidation promoter"). In the reactor coolant purification system and the liquid waste treatment system, these oxidation-promoting substances cannot be removed, and are stored in the fuel pool water, the site bunker pool water, and the condensate storage pool that is collected and recovered. The water still contains oxidation promoting substances. Since this oxidation promoting substance has a very strong oxidizing action, it oxidizes the cation resin of the ion exchange resin and elutes polystyrene sulfonic acid (PSS). The eluted PSS adheres to the anion resin of the ion exchange resin and decreases the reaction rate of the anion resin, resulting in a decrease in the desalting rate. In addition, due to the oxidative degradation of the cation resin due to hydrogen peroxide, sulfate ions and the like are eluted from the cation resin, increasing the conductivity at the outlet of the ion exchange resin. Furthermore, the strong oxidizing action also contributes to corrosion of steel materials such as pipes and tanks.

通常運転中は、酸化促進物質は熱分解して消滅するが、定検中及び2011年3月11日以後運転停止している福島第一原子力発電所などの使用済み燃料プールでは炉水温度が50℃程度であることから熱分解が起こりにくく、燃料棒から出る放射線により一次軽水中の過酸化水素濃度が上昇し、過酸化水素を数ppmオーダーで含んでいる。   During normal operation, oxidation-promoting substances are thermally decomposed and disappear, but the reactor water temperature is low in spent fuel pools such as the Fukushima Daiichi Nuclear Power Station, which are undergoing regular inspection and have been shut down since March 11, 2011. Thermal decomposition hardly occurs because it is around 50 ° C, and the hydrogen peroxide concentration in the primary light water is increased by the radiation emitted from the fuel rod, and contains hydrogen peroxide in the order of several ppm.

停止中の原子炉水は、原子炉冷却材浄化系の原子炉冷却材浄化系ろ過脱塩装置、液体廃棄物処理系のろ過器および脱塩塔で処理される。これら原子炉冷却材浄化系や液体廃棄物処理系では酸化促進物質は処理されず、復水貯蔵プールに移送されることになる。この水を使って復水脱塩装置のイオン交換樹脂の逆洗を行うため、イオン交換樹脂が酸化劣化を起こす。また、原子炉水浄化系脱塩装置や燃料プール浄化装置では、直接これらの水をイオン交換樹脂で処理するため、酸化促進物質がイオン交換樹脂を酸化劣化させ、イオン交換樹脂の交換頻度が増加する。   The stopped reactor water is treated by a reactor coolant purification system filtration desalination apparatus of a reactor coolant purification system, a filter and a desalting tower of a liquid waste treatment system. In these reactor coolant purification system and liquid waste treatment system, the oxidation promoting substance is not treated and transferred to the condensate storage pool. Since this water is used to backwash the ion exchange resin of the condensate demineralizer, the ion exchange resin undergoes oxidative degradation. In addition, in the reactor water purification system desalination system and fuel pool purification system, these waters are directly treated with ion exchange resin, so that the oxidation promoting substance oxidizes and degrades the ion exchange resin, increasing the frequency of ion exchange resin replacement. To do.

イオン交換樹脂の劣化の主原因は、原子力発電プラントの定検中の原子炉水に含まれる酸化促進物質の接触によるものと考えられており、イオン交換樹脂に酸化促進物質を含んだ水が接触する前に酸化促進物質を分解することが、処理水質の高度化やイオン交換樹脂の寿命延長に繋がることとなる。このような知見に基づいて、過酸化水素がカチオン交換樹脂と接触する前に、アニオン交換樹脂を用いてアルカリ分解する方法(特許文献1)、粒状活性体により除去又はイオン交換樹脂に担持した白金族系触媒を用いて分解する方法(特許文献2)、白金をコーティングした触媒コーティング網を用いて分解する方法(特許文献3)、活性炭を用いて除去する方法(特許文献4)などが提案されているが、いずれも実用化されていない。   The main cause of deterioration of ion exchange resin is thought to be due to contact of oxidation promoting substances contained in reactor water during the regular inspection of nuclear power plants. Decomposing the oxidation promoting substance before the treatment leads to the advancement of treated water quality and the extension of the life of the ion exchange resin. Based on such knowledge, before hydrogen peroxide comes into contact with the cation exchange resin, a method of alkali decomposition using an anion exchange resin (Patent Document 1), platinum removed by a granular active material or supported on an ion exchange resin A method of decomposing using a group catalyst (Patent Document 2), a method of decomposing using a platinum-coated catalyst coating network (Patent Document 3), a method of removing using activated carbon (Patent Document 4), etc. have been proposed. However, none has been put into practical use.

特開2000−002787号公報JP 2000-002787 A 特開平10−111387号公報JP-A-10-111387 特開2003−156589号公報JP 2003-156589 A 特開2008−232773号公報JP 2008-232773 A

したがって、本発明の目的は、原子力発電プラントにおいて水の放射線分解により発生する過酸化水素などの酸化促進物質を含む被処理水をイオン交換樹脂による脱塩処理する前に、被処理水中の酸化促進物質を低減させ、脱塩装置の負荷を低減させて処理水の水質を高純度に維持すると共に、イオン交換樹脂の寿命を延長し、放射性二次廃棄物となる使用済みイオン交換樹脂の発生量を低減させる、原子力発電プラントにおける水処理技術を提供することにある。   Accordingly, an object of the present invention is to promote oxidation in treated water before desalting the treated water containing an oxidation promoting substance such as hydrogen peroxide generated by radiolysis of water in a nuclear power plant with an ion exchange resin. Reduce the amount of substances used, reduce the load on the desalination equipment, maintain the quality of the treated water, increase the life of the ion exchange resin, and generate the amount of used ion exchange resin that becomes radioactive secondary waste It is to provide a water treatment technology in a nuclear power plant that reduces the amount of water.

課題を解決する手段Means to solve the problem

上記課題を解決するため、本発明者らは鋭意研究した結果、過酸化水素などの酸化促進物質を含む被処理水をイオン交換樹脂による脱塩処理の前に、特定のフィルタを通過させることによって、被処理水中の酸化促進物質を劇的に低減させることができることを知見し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, the water to be treated containing an oxidation promoting substance such as hydrogen peroxide is passed through a specific filter before the desalting treatment with an ion exchange resin. As a result, it has been found that oxidation promoting substances in the water to be treated can be dramatically reduced, and the present invention has been completed.

具体的には、本発明によれば、原子力発電プラントにおける水の放射線分解により生成する酸化促進物質を含有する被処理水を、ポリオレフィン製不織布に放射線グラフト重合により導入されたイオン交換官能基と当該イオン交換官能基の一部に添着されている金属酸化物微粒子とを有するフィルタに接触させて当該酸化促進物質を分解し、次いでイオン交換樹脂に接触させることを含む、原子力発電プラントにおける水処理方法が提供される。   Specifically, according to the present invention, water to be treated containing an oxidation-promoting substance produced by radiolysis of water in a nuclear power plant, the ion-exchange functional group introduced into the polyolefin nonwoven fabric by radiation graft polymerization and the water A method for treating water in a nuclear power plant, comprising: contacting a filter having metal oxide fine particles attached to a part of an ion-exchange functional group to decompose the oxidation-promoting substance, and then bringing the substance into contact with an ion-exchange resin. Is provided.

前記フィルタは、ポリオレフィン性不織布に放射線グラフト重合によりイオン交換官能基を導入して、当該イオン交換官能基の少なくとも一部に、マンガン、鉄又はチタンから選択される金属イオンを吸着させ、次いで当該金属イオンを酸化して製造することができる。ポリオレフィン性不織布を構成する繊維は、数百nm〜数十μmの繊維径であることが好ましい。従来の過酸化水素分解に用いられていたイオン交換樹脂や活性炭などの微粒子担体と異なり、ポリオレフィン性不織布は繊維間の隙間が大きく被処理水の通水抵抗とならず且つ多数の金属酸化物微粒子がポリオレフィン性不織布を構成する繊維内部にまで導入されるため、被処理水の通水量及び通水速度を損なうことなく被処理水と満遍なく接触することができることから、酸化促進物質との接触状況が極めて良好で、酸化促進物質の分解能力が格段に向上する。   The filter introduces an ion exchange functional group into the polyolefin nonwoven fabric by radiation graft polymerization, adsorbs a metal ion selected from manganese, iron or titanium to at least a part of the ion exchange functional group, and then the metal It can be produced by oxidizing ions. The fibers constituting the polyolefin nonwoven fabric preferably have a fiber diameter of several hundred nm to several tens of μm. Unlike conventional fine particle carriers such as ion exchange resins and activated carbon used for the decomposition of hydrogen peroxide, polyolefin nonwoven fabrics have large gaps between fibers and do not provide resistance to water to be treated. Is introduced even inside the fiber constituting the polyolefin nonwoven fabric, and can be contacted uniformly with the water to be treated without impairing the amount and speed of the water to be treated. It is extremely good, and the decomposition ability of the oxidation promoting substance is remarkably improved.

前記フィルタの金属酸化物微粒子は、マンガン、鉄又はチタンの酸化物微粒子から選択されることが好ましい。イオン交換官能基としては、カチオン交換基又はアニオン交換基の何れでもよい。カチオン交換基の場合はスルホン酸基などの強酸性カチオン交換基が好ましく、アニオン交換基の場合は4級アンモニウム基、低級アミノ基などの強塩基性アニオン交換基又はイミノジエタノール基、イミノジ酢酸基、エチレンジアミン基などの弱塩基性アニオン交換基が好ましい。カチオン交換基を用いる場合には、Mn2+、Fe3+、Ti4+などの金属イオンを吸着させた後、酸化させて、金属酸化物とすることができる。アニオン交換基を用いる場合には、MnO4-、FeO4 2-、TiO3 2-などの金属イオンを吸着させた後、還元させて金属酸化物とすることができる。 The metal oxide fine particles of the filter are preferably selected from oxide fine particles of manganese, iron or titanium. The ion exchange functional group may be either a cation exchange group or an anion exchange group. In the case of a cation exchange group, a strongly acidic cation exchange group such as a sulfonic acid group is preferable. In the case of an anion exchange group, a strongly basic anion exchange group such as a quaternary ammonium group or a lower amino group, an iminodiethanol group, an iminodiacetic acid group, Weakly basic anion exchange groups such as ethylenediamine groups are preferred. When a cation exchange group is used, a metal ion such as Mn 2+ , Fe 3+ , Ti 4+ can be adsorbed and then oxidized to form a metal oxide. When an anion exchange group is used, a metal ion such as MnO 4− , FeO 4 2− , TiO 3 2−, etc. can be adsorbed and then reduced to a metal oxide.

前記被処理水として、燃料プール水、サイトバンカープール水又は放射性物質含有廃水に適用した場合に本発明は特に有効である。これらの被処理水は、50℃程度の低温であるため、過酸化水素などの酸化促進物質が熱分解することがなく、大量の酸化促進物質を含む。   The present invention is particularly effective when applied to fuel pool water, sight bunker pool water, or radioactive material-containing waste water as the treated water. Since these waters to be treated have a low temperature of about 50 ° C., oxidation promoting substances such as hydrogen peroxide are not thermally decomposed and contain a large amount of oxidation promoting substances.

本発明の方法により分解できる前記酸化促進物質としては、過酸化水素、ヒドロペルオキシラジカル又はヒドロキシラジカルを挙げることができる。もっとも、ヒドロペルオキシラジカル又はヒドロキシラジカルは不安定であり生成後すぐに分解するため、通常は過酸化水素が分解対象物質となる。   Examples of the oxidation promoting substance that can be decomposed by the method of the present invention include hydrogen peroxide, a hydroperoxy radical, and a hydroxy radical. However, since hydroperoxy radicals or hydroxy radicals are unstable and decompose immediately after generation, hydrogen peroxide is usually the substance to be decomposed.

また、本発明によれば、原子力発電プラントにおける水の放射線分解により生成する酸化促進物質を含有する被処理水を貯留する被処理水貯留槽と、当該被処理水貯留槽の下流に位置付けられている、ポリオレフィン製不織布に放射線グラフト重合により導入されたイオン交換官能基と当該イオン交換官能基の一部に添着されている金属酸化物微粒子とを有するフィルタが充てんされているろ過装置と、イオン交換樹脂が充てんされている脱塩
装置と、を具備する、原子力発電プラントにおける水処理装置も提供される。
In addition, according to the present invention, the treated water storage tank for storing the treated water containing the oxidation promoting substance generated by radiolysis of water in the nuclear power plant, and the downstream of the treated water storage tank are positioned. A filtration device filled with a filter having ion exchange functional groups introduced into a polyolefin nonwoven fabric by radiation graft polymerization and fine metal oxide particles attached to a part of the ion exchange functional groups, and ion exchange There is also provided a water treatment device in a nuclear power plant comprising a desalination device filled with a resin.

前記被処理水貯留槽は、燃料プール、サイトバンカープール又は放射性物質含有廃水タンクであってもよい。
前記フィルタの形状は、特に限定されず、平膜をプリーツ型とするカートリッジタイプ、平膜を集水管に巻きつけるワインドタイプ、平膜を通水方向に重ねる積層タイプなど、通常使用される形状でよい。
The treated water storage tank may be a fuel pool, a site bunker pool, or a radioactive material-containing wastewater tank.
The shape of the filter is not particularly limited, and is a commonly used shape such as a cartridge type in which the flat membrane is a pleated type, a wind type in which the flat membrane is wound around a water collecting pipe, and a laminated type in which the flat membrane is stacked in the direction of water flow. Good.

本発明の原子力発電プラントの水処理方法及び装置によれば、原子力発電プラントにて水の放射線分解により生成する過酸化水素などの酸化促進物質を効率よく分解できるので、脱塩装置に充填されているイオン交換樹脂の酸化劣化を防止し、処理水の水質を高純度に維持できるとともに、イオン交換樹脂の寿命を長くして放射性二次廃棄物となる使用済みイオン交換樹脂の発生量を低減することができる。   According to the water treatment method and apparatus for a nuclear power plant of the present invention, an oxidation promoting substance such as hydrogen peroxide generated by radiolysis of water in the nuclear power plant can be efficiently decomposed. The quality of the treated water can be maintained at a high purity, and the life of the ion exchange resin can be extended to reduce the amount of used ion exchange resin generated as radioactive secondary waste. be able to.

また、本発明の水処理方法及び装置で用いるフィルタは、繊維間の隙間が大きいポリオレフィン性不織布を基材とするため、被処理水の通水抵抗が小さく、被処理水の通水量を大きく維持できるので、フィルタ処理を行わない場合や従来技術である活性炭やイオン交換樹脂などの中実微粒子を前処理として用いる場合と比較して、短い時間で効率よく被処理水中の酸化促進物質を分解できる。   In addition, the filter used in the water treatment method and apparatus of the present invention is based on a polyolefin non-woven fabric having a large gap between fibers, so that the resistance of water to be treated is small and the amount of water to be treated is kept large. As a result, it is possible to efficiently decompose the oxidation-promoting substance in the water to be treated in a short time compared with the case where the filter treatment is not performed or when solid particles such as activated carbon and ion exchange resin are used as pretreatment. .

放射線暴露の影響を最小限に抑制することが求められる原子力発電プラントにおける水処理にとって、処理時間の短縮及び放射性二次廃棄物の減容化は重要な課題であり、これらを達成することができる本発明の意義は大きい。   Reduction of treatment time and volume of radioactive secondary waste are important issues for water treatment in nuclear power plants that are required to minimize the effects of radiation exposure, and these can be achieved. The significance of the present invention is great.

図1は、放射性物質含有廃水を処理する場合の本発明の水処理装置のフローを示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a flow of the water treatment apparatus of the present invention in the case of treating radioactive substance-containing wastewater. 図2は、燃料プール水を処理する場合の本発明の水処理装置のフローを示す概略構成図である。FIG. 2 is a schematic configuration diagram showing a flow of the water treatment apparatus of the present invention when fuel pool water is treated. 図3は、実施例1の過酸化水素濃度が2mg/Lの場合の処理結果を示すグラフである。FIG. 3 is a graph showing a processing result when the hydrogen peroxide concentration in Example 1 is 2 mg / L. 図4は、実施例1の過酸化水素濃度が20mg/Lの場合の処理結果を示すグラフである。FIG. 4 is a graph showing the treatment results when the hydrogen peroxide concentration of Example 1 is 20 mg / L. 図5は、実施例2の処理結果を示すグラフである。FIG. 5 is a graph showing the processing results of Example 2.

好ましい実施形態Preferred embodiment

以下、添付図面を参照しながら本発明を説明するが、本発明はこれらに限定されるものではない。
図1に、放射性物質含有廃水を処理する場合の本発明の水処理装置の概略フローを示す。原子力発電プラントにおいて発生する放射性物質含有排水は、放射性物質含有廃水タンクである被処理水貯留槽1に貯留されている。被処理水は、被処理水貯留槽1から移送ポンプ2によってろ過装置4に送られ、酸化促進物質が分解された後、脱塩装置3に搬送されて脱塩処理される。脱塩処理後の処理水をサンプルタンク5に送り、処理水の性状を確認する。性状に問題がなければ、処理水は、脱塩装置3から移送ポンプ6によって純水タンク7に送られ、原子力発電プラント内での再利用に供されるか、環境基準に合致している場合には広域水域に放流される。
Hereinafter, the present invention will be described with reference to the accompanying drawings, but the present invention is not limited thereto.
In FIG. 1, the schematic flow of the water treatment apparatus of this invention in the case of processing radioactive substance containing wastewater is shown. The radioactive substance containing waste water generated in a nuclear power plant is stored in the to-be-processed water storage tank 1 which is a radioactive substance containing wastewater tank. To-be-treated water is sent from the to-be-treated water storage tank 1 to the filtration device 4 by the transfer pump 2, and after the oxidation promoting substance is decomposed, it is transported to the desalting device 3 and desalted. The treated water after the desalting treatment is sent to the sample tank 5 to check the properties of the treated water. If there is no problem with the properties, the treated water is sent from the desalinator 3 to the pure water tank 7 by the transfer pump 6 and reused in the nuclear power plant or meets environmental standards. Will be released into wide area waters.

図2に、燃料プール水を処理する場合の本発明の水処理装置の概略フローを示す。燃料プール8では、水中に保管されている燃料棒から出る放射線によって水が放射線分解され
ている。燃料プール8(被処理水貯留槽)からの燃料プール水(被処理水)は、移送ポンプ11によってろ過装置4に送られ、酸化促進物質が分解された後、脱塩装置3に送られて脱塩処理される。脱塩処理後の処理水は復水として、燃料プール8に戻される。
FIG. 2 shows a schematic flow of the water treatment apparatus of the present invention when treating fuel pool water. In the fuel pool 8, water is radiolyzed by radiation emitted from fuel rods stored in water. Fuel pool water (treated water) from the fuel pool 8 (treated water storage tank) is sent to the filtration device 4 by the transfer pump 11 and is sent to the desalting device 3 after the oxidation promoting substance is decomposed. Desalted. The treated water after the desalting treatment is returned to the fuel pool 8 as condensate.

図1及び図2において、ろ過装置4には、ポリオレフィン製不織布に放射線グラフト重合により導入されたイオン交換官能基と当該イオン交換官能基の一部に添着されている金属酸化物微粒子とを有するフィルタが充てんされている。フィルタの形態としては特に限定されず、プリーツフィルタ、ワインドフィルタなどを挙げることができる。脱塩装置3には、粒状イオン交換樹脂が充填されている。脱塩装置3内のイオン交換樹脂は、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を体積比で1:3〜6:1の範囲で混合した混床形態が好ましい。   1 and 2, the filtration device 4 includes a filter having ion exchange functional groups introduced into a polyolefin nonwoven fabric by radiation graft polymerization and metal oxide fine particles attached to a part of the ion exchange functional groups. Is filled. The form of the filter is not particularly limited, and examples thereof include a pleated filter and a wind filter. The desalting apparatus 3 is filled with a granular ion exchange resin. The ion exchange resin in the desalting apparatus 3 is preferably in a mixed bed form in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are mixed in a volume ratio of 1: 3 to 6: 1.

ろ過装置4への被処理水の通水量は、線流速で0.1〜2m/h程度の範囲とすることが望ましい。   It is desirable that the amount of water to be treated to be passed through the filtration device 4 is in the range of about 0.1 to 2 m / h in terms of linear flow velocity.

以下、実施例により本発明を更に詳細に説明する。
[製造例1]マンガン酸化物添着アニオン交換フィルタの製造
繊維径15μmのポリエチレン繊維よりなる目付50g/m、厚さ0.3mmの不織布1枚(寸法21cm×30cm、3.16g)をチャック付ポリエチレン袋に入れ、ポリエチレン袋内部を窒素置換し、ガンマ線を150kGy照射した。不織布を取り出し、メタクリル酸グリシジル溶液に浸漬し、減圧条件下(0.67kPa)、45℃で5時間グラフト重合反応(前照射放射線グラフト重合)させた。不織布を取り出し、ジメチルホルムアミド溶液に浸漬して50℃で2時間洗浄した。その後、アセトン及びメタノールで洗浄し、乾燥して、グラフト済み不織布7.2gを得た。乾燥後の重量変化から算出したグラフト率は128%であった。次に、このグラフト済み不織布をイミノジエタノール30%水溶液に浸漬し、70℃で3時間反応させ、イミノジエタノール基を導入した。乾燥後、2.81meq/gの酸吸着容量を有する弱塩基性アニオン交換不織布を得た。
Hereinafter, the present invention will be described in more detail with reference to examples.
[Production Example 1] Manganese oxide impregnated anion exchange filter Fabrication of 50 g / m 2 polyethylene fiber with a fiber diameter of 15 µm and a nonwoven fabric with a thickness of 0.3 mm (dimensions 21 cm x 30 cm, 3.16 g) It put into the polyethylene bag, the inside of the polyethylene bag was substituted with nitrogen, and 150 gGy was irradiated with gamma rays. The nonwoven fabric was taken out and immersed in a glycidyl methacrylate solution and subjected to a graft polymerization reaction (pre-irradiation radiation graft polymerization) at 45 ° C. for 5 hours under reduced pressure conditions (0.67 kPa). The nonwoven fabric was taken out, immersed in a dimethylformamide solution and washed at 50 ° C. for 2 hours. Thereafter, it was washed with acetone and methanol and dried to obtain 7.2 g of a grafted nonwoven fabric. The graft ratio calculated from the weight change after drying was 128%. Next, this grafted non-woven fabric was immersed in a 30% iminodiethanol aqueous solution and reacted at 70 ° C. for 3 hours to introduce iminodiethanol groups. After drying, a weakly basic anion exchange nonwoven fabric having an acid adsorption capacity of 2.81 meq / g was obtained.

次に、この弱塩基性アニオン交換不織布を0.2mol/Lの過マンガン酸カリウム水溶液中に室温で10分間浸漬して、イミノジエタノール基の少なくとも一部に過マンガン酸イオンを吸着させた。これを純水1リットルで3回洗浄した後、室温で乾燥した。その結果、不織布の色が濃い紫色から酸化マンガンの茶褐色へと速やかに変色し、マンガン酸化物添着アニオン交換フィルタが得られたことが確認できた。マンガン酸化物添着量は、添着に用いた過マンガン酸カリウムの量からMn投入量を求め、処理後に残留するMnイオン濃度は原子吸光光度計を用いて測定し、Mn投入量と残留量の差分から求めた。マンガン酸化物添着量はMnとして21.6g/mであった。 Next, this weakly basic anion exchange nonwoven fabric was immersed in a 0.2 mol / L potassium permanganate aqueous solution at room temperature for 10 minutes to adsorb permanganate ions to at least a part of the iminodiethanol group. This was washed 3 times with 1 liter of pure water and then dried at room temperature. As a result, it was confirmed that the color of the non-woven fabric quickly changed from dark purple to brown of manganese oxide, and that an anion exchange filter impregnated with manganese oxide was obtained. The manganese oxide deposition amount is determined by calculating the amount of Mn input from the amount of potassium permanganate used for the deposition, and the Mn ion concentration remaining after the treatment is measured using an atomic absorption photometer, and the difference between the Mn input amount and the residual amount. I asked for it. The manganese oxide deposition amount was 21.6 g / m 2 as Mn.

[製造例2]マンガン酸化物添着カチオン交換フィルタの製造
ポリエチレンテレフタレート(PET)芯/ポリエチレン鞘の構造の直径15μmの繊維で構成される、目付55g/m、厚さ0.2mmの熱融着不織布1枚(寸法21cm×30cm、3.34g)をチャック付ポリエチレン袋に入れ内部を窒素置換し、ガンマ線を150kGy照射した。不織布を取り出し、メタクリル酸グリシジルに浸漬し、減圧条件下(0.67kPa)、45℃で4時間グラフト重合反応させた(前照射放射線グラフト重合)。不織布を取り出し、ジメチルホルムアミドに浸漬して50℃で2時間洗浄した。その後、アセトン及びメタノールで洗浄した後に乾燥し、不織布7.85gを得た。乾燥後の重量変化から算出したグラフト率135%であった。次に、このグラフト済み不織布をスルホン化液(8%の亜硫酸ナトリウム及び12%のイソプロピルアルコールを含む水溶液)に浸漬し、90℃で10時間反応させ、スルホン酸基を導入した。これを純水で洗浄した後、5%塩酸に浸漬・攪拌することでスルホン酸基をH型とし、再び純水で洗
浄、乾燥することにより、2.62meq/gの中性塩分解容量を有するカチオン交換不織布を得た。
[Production Example 2] Manufacture of manganese oxide impregnated cation exchange filter Thermal fusion with a basis weight of 55 g / m 2 and a thickness of 0.2 mm composed of a 15 μm diameter fiber having a polyethylene terephthalate (PET) core / polyethylene sheath structure. One piece of nonwoven fabric (dimensions 21 cm × 30 cm, 3.34 g) was placed in a polyethylene bag with a chuck, the inside was purged with nitrogen, and 150 gGy was irradiated with gamma rays. The nonwoven fabric was taken out, immersed in glycidyl methacrylate, and subjected to a graft polymerization reaction at 45 ° C. for 4 hours under a reduced pressure condition (0.67 kPa) (pre-irradiation radiation graft polymerization). The nonwoven fabric was taken out, immersed in dimethylformamide and washed at 50 ° C. for 2 hours. Thereafter, it was washed with acetone and methanol and then dried to obtain 7.85 g of a nonwoven fabric. The graft ratio calculated from the change in weight after drying was 135%. Next, this grafted nonwoven fabric was immersed in a sulfonated liquid (an aqueous solution containing 8% sodium sulfite and 12% isopropyl alcohol) and reacted at 90 ° C. for 10 hours to introduce sulfonic acid groups. After washing with pure water, the sulfonic acid group is changed to H-type by immersing and stirring in 5% hydrochloric acid, and the neutral salt decomposition capacity is 2.62 meq / g by washing and drying again with pure water. A cation exchange nonwoven fabric was obtained.

次に、このカチオン交換不織布を500mLの2%塩化マンガン(II)水溶液に30分間浸漬した。次に、不織布を200mLの1%次亜塩素酸ナトリウム水溶液(アルカリ性)中に浸漬することによって、カチオン交換不織布の繊維表面にマンガン酸化物を析出させ、マンガン酸化物添着カチオン交換フィルタを得た。マンガン酸化物添着量を製造例1と同様にして測定したところ、Mnとして66.1g/mであった。 Next, this cation exchange nonwoven fabric was immersed in 500 mL of 2% manganese (II) chloride aqueous solution for 30 minutes. Next, manganese oxide was deposited on the fiber surface of the cation exchange nonwoven fabric by immersing the nonwoven fabric in 200 mL of a 1% sodium hypochlorite aqueous solution (alkaline) to obtain a manganese oxide impregnated cation exchange filter. The manganese oxide deposition amount was measured in the same manner as in Production Example 1 and found to be 66.1 g / m 2 as Mn.

[実施例1]
製造例1により製造したマンガン酸化物添着アニオン交換フィルタを用いて、過酸化水素の分解能力を確認した。
[Example 1]
Using the manganese oxide-impregnated anion exchange filter produced in Production Example 1, the ability to decompose hydrogen peroxide was confirmed.

まず、製造例1で得たマンガン酸化物添着アニオン交換フィルタを2cm×2cmに切断してサンプルフィルタとした。200mlビーカーに過酸化水素水100mlを入れ、サンプルフィルタを浸漬させ、時間経過による過酸化水素濃度を測定した。対照は、サンプルフィルタを浸漬させなかった。過酸化水素濃度は2mg/Lと20mg/Lの2種類とした。結果を図3及び4に示す(○はサンプルフィルタの結果であり、●は対照の結果である)。   First, the manganese oxide impregnated anion exchange filter obtained in Production Example 1 was cut into 2 cm × 2 cm to obtain a sample filter. A 200 ml beaker was charged with 100 ml of hydrogen peroxide water, a sample filter was immersed therein, and the hydrogen peroxide concentration over time was measured. The control did not soak the sample filter. Two types of hydrogen peroxide concentrations were used: 2 mg / L and 20 mg / L. The results are shown in FIGS. 3 and 4 (circles are sample filter results and closed circles are control results).

図3及び4より、サンプルフィルタによる過酸化水素の分解能力が高いことがわかる。特に、過酸化水素濃度が高い図4では、マンガン酸化物添着アニオン交換フィルタの過酸化水素分解能力が極めて高く、浸漬後120分で50%を分解していることがわかる。   3 and 4 show that the sample filter has a high ability to decompose hydrogen peroxide. In particular, in FIG. 4 where the hydrogen peroxide concentration is high, it can be seen that the manganese oxide-impregnated anion exchange filter has an extremely high ability to decompose hydrogen peroxide and decomposes 50% in 120 minutes after immersion.

[実施例2]
製造例2により製造したマンガン酸化物添着カチオン交換フィルタを用いて、過酸化水素の分解能力を確認した。
[Example 2]
Using the manganese oxide impregnated cation exchange filter produced in Production Example 2, the hydrogen peroxide decomposition ability was confirmed.

製造例2により製造したマンガン酸化物添着カチオン交換フィルタ2を直径16mmの円形に切出し、内径16mmのガラスカラムに充填した。約2mg/Lに調整した過酸化水素水を流速3.5mL/min(線速度LV=1m/h)で通水することによってマンガン酸化物添着カチオン交換フィルタの過酸化水素除去性能を調べた。ガラスカラムに充填するマンガン酸化物添着カチオン交換フィルタを3枚及び5枚として、同様に過酸化水素除去性能を調べた。試験結果を図5に示す。図5において、縦軸は入口の過酸化水素濃度(C)に対する出口の過酸化水素濃度(C)の比を表している。マンガン酸化物添着カチオン交換フィルタが1枚の場合はC/C=0.4、すなわち分解率60%程度であった。マンガン酸化物添着カチオン交換フィルタを3枚又は5枚重ねると、6時間の通水試験でも破過しなかったことがわかる。このように、マンガン酸化物添着カチオン交換フィルタによりにより水中の過酸化水素が有効に分解されていることが確認できた。 Manganese oxide impregnated cation exchange filter 2 produced according to Production Example 2 was cut into a circle having a diameter of 16 mm and packed into a glass column having an inner diameter of 16 mm. The hydrogen peroxide removal performance of the manganese oxide impregnated cation exchange filter was examined by passing hydrogen peroxide solution adjusted to about 2 mg / L at a flow rate of 3.5 mL / min (linear velocity LV = 1 m / h). The hydrogen peroxide removal performance was similarly examined using three and five manganese oxide-impregnated cation exchange filters packed in a glass column. The test results are shown in FIG. In FIG. 5, the vertical axis represents the ratio of the hydrogen peroxide concentration (C) at the outlet to the hydrogen peroxide concentration (C 0 ) at the inlet. When there was one manganese oxide impregnated cation exchange filter, C / C 0 = 0.4, that is, the decomposition rate was about 60%. When three or five manganese oxide-impregnated cation exchange filters were stacked, it was found that no breakthrough occurred even in a 6-hour water passage test. Thus, it was confirmed that hydrogen peroxide in water was effectively decomposed by the cation exchange filter impregnated with manganese oxide.

実施例1及び2と同様にして、フィルタ1層当たりのマンガン添着量がMnとして10〜100g/mの範囲のフィルタを製造し、過酸化水素除去性能を調べ、過酸化水素が分解可能であることを確認した。 In the same manner as in Examples 1 and 2, a filter having a manganese deposition amount per filter layer in the range of 10 to 100 g / m 2 as Mn was manufactured, and the hydrogen peroxide removal performance was examined. Hydrogen peroxide can be decomposed. I confirmed that there was.

本発明によれば、原子力発電プラントの燃料プール水、サイトバンカープール水、放射性物質含有廃水などに含まれる過酸化水素などの酸化促進物質を分解し、脱塩装置による被処理水の水質を高純度に維持するとともに、脱塩装置に使用しているイオン交換樹脂の寿命を延長して発生する廃棄物量を低減することが可能である。放射線暴露の影響を最小限に抑制することが求められる原子力発電プラントにおける水処理にとって、処理時間の
短縮及び放射性二次廃棄物の減容化は重要な課題であり、これらを達成することができる本発明の意義は大きい。
According to the present invention, an oxidation promoting substance such as hydrogen peroxide contained in fuel pool water, site bunker pool water, radioactive substance-containing wastewater of a nuclear power plant is decomposed, and the quality of water to be treated by a desalinator is improved. While maintaining the purity, it is possible to extend the life of the ion exchange resin used in the desalting apparatus and reduce the amount of waste generated. Reduction of treatment time and volume of radioactive secondary waste are important issues for water treatment in nuclear power plants that are required to minimize the effects of radiation exposure, and these can be achieved. The significance of the present invention is great.

Claims (7)

原子力発電プラントにおける水の放射線分解により生成する酸化促進物質を含有する被処理水を、ポリオレフィン製不織布に放射線グラフト重合により導入されたイオン交換官能基と当該イオン交換官能基の一部に添着されている金属酸化物微粒子とを有するフィルタに接触させて当該酸化促進物質を分解し、次いでイオン交換樹脂に接触させることを含む、原子力発電プラントにおける水処理方法。   Water to be treated containing an oxidation promoting substance produced by radiolysis of water in a nuclear power plant is attached to a non-woven fabric made of polyolefin by radiation graft polymerization and a part of the ion exchange functional group. A method for treating water in a nuclear power plant, comprising: contacting a filter having metal oxide fine particles, decomposing the oxidation promoting substance, and then bringing the substance into contact with an ion exchange resin. 前記フィルタの金属酸化物微粒子は、マンガン、鉄又はチタンの酸化物微粒子から選択される、請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the metal oxide fine particles of the filter are selected from oxide fine particles of manganese, iron, or titanium. 前記被処理水は、燃料プール水、サイトバンカープール水又は放射性物質含有廃水である、請求項1又は2に記載の水処理方法。   The water treatment method according to claim 1 or 2, wherein the water to be treated is fuel pool water, site bunker pool water, or radioactive material-containing waste water. 前記酸化促進物質は、過酸化水素、ヒドロペルオキシラジカル又はヒドロキシラジカルである、請求項1〜3のいずれかに記載の水処理方法。   The water treatment method according to claim 1, wherein the oxidation promoting substance is hydrogen peroxide, a hydroperoxy radical, or a hydroxy radical. 原子力発電プラントにおける水の放射線分解により生成する酸化促進物質を含有する被処理水を貯留する被処理水貯留槽と、
当該被処理水貯留槽の下流に位置付けられている、ポリオレフィン製不織布に放射線グラフト重合により導入されたイオン交換官能基と当該イオン交換官能基の一部に添着されている金属酸化物微粒子とを有するフィルタが充てんされているろ過装置と、
イオン交換樹脂が充てんされている脱塩装置と、
を具備する、原子力発電プラントにおける水処理装置。
A treated water storage tank for storing treated water containing an oxidation promoting substance generated by radiolysis of water in a nuclear power plant;
An ion-exchange functional group, which is positioned downstream of the treated water storage tank and introduced into the polyolefin nonwoven fabric by radiation graft polymerization, and metal oxide fine particles attached to a part of the ion-exchange functional group A filtration device filled with a filter;
A demineralizer filled with an ion exchange resin;
A water treatment apparatus in a nuclear power plant.
前記被処理水貯留槽は、燃料プール、サイトバンカープール又は放射性物質含有廃水タンクである、請求項5に記載の水処理装置。   The water treatment apparatus according to claim 5, wherein the treated water storage tank is a fuel pool, a site bunker pool, or a radioactive substance-containing wastewater tank. 前記フィルタの金属酸化物微粒子は、マンガン、鉄又はチタンの酸化物微粒子から選択される、請求項5又は6に記載の水処理装置。   The water treatment apparatus according to claim 5 or 6, wherein the metal oxide fine particles of the filter are selected from oxide fine particles of manganese, iron, or titanium.
JP2012217133A 2012-09-28 2012-09-28 Water treatment method and apparatus in nuclear power plant Expired - Fee Related JP6077250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012217133A JP6077250B2 (en) 2012-09-28 2012-09-28 Water treatment method and apparatus in nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012217133A JP6077250B2 (en) 2012-09-28 2012-09-28 Water treatment method and apparatus in nuclear power plant

Publications (2)

Publication Number Publication Date
JP2014071004A true JP2014071004A (en) 2014-04-21
JP6077250B2 JP6077250B2 (en) 2017-02-08

Family

ID=50746340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012217133A Expired - Fee Related JP6077250B2 (en) 2012-09-28 2012-09-28 Water treatment method and apparatus in nuclear power plant

Country Status (1)

Country Link
JP (1) JP6077250B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104867528A (en) * 2015-03-31 2015-08-26 湖南桃花江核电有限公司 Treatment method of process wastewater in nuclear power plant
EP3075712A1 (en) 2015-03-31 2016-10-05 Ebara Corporation Condensate demineralization apparatus and condensate demineralization method
US9999880B2 (en) 2013-10-24 2018-06-19 Ebara Corporation Purification method for purifying water in a spent fuel pool in a nuclear power plant
WO2018180430A1 (en) * 2017-03-30 2018-10-04 倉敷繊維加工株式会社 Filter cartridge and filter
WO2019004477A1 (en) * 2017-06-30 2019-01-03 Jxtgエネルギー株式会社 Functional nonwoven fabric
WO2021241551A1 (en) 2020-05-26 2021-12-02 株式会社荏原製作所 Metal-supporting nonwoven fabric and production method thereof, catalyst, unsaturated compound hydrogenation method, and carbon-carbon bond forming method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005960A1 (en) * 2000-07-19 2002-01-24 Ebara Corporation Ozone removing material and method for preparing the same
JP2003156589A (en) * 2001-11-26 2003-05-30 Tokyo Electric Power Co Inc:The Water treatment device of boiling water reactor power plant
JP2008232773A (en) * 2007-03-20 2008-10-02 Japan Organo Co Ltd Treater for water containing radioactive material in nuclear power plant
JP2009090259A (en) * 2007-10-12 2009-04-30 Japan Atomic Energy Agency Cartridge filter for liquid filtration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005960A1 (en) * 2000-07-19 2002-01-24 Ebara Corporation Ozone removing material and method for preparing the same
JP2003156589A (en) * 2001-11-26 2003-05-30 Tokyo Electric Power Co Inc:The Water treatment device of boiling water reactor power plant
JP2008232773A (en) * 2007-03-20 2008-10-02 Japan Organo Co Ltd Treater for water containing radioactive material in nuclear power plant
JP2009090259A (en) * 2007-10-12 2009-04-30 Japan Atomic Energy Agency Cartridge filter for liquid filtration

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
堀隆博, ほか4名: ""放射線グラフト重合法によるウラン吸着用中空糸状アミドオキシム樹脂の合成"", 日本化学会誌, vol. 12, JPN6016047880, 1986, pages 1792 - 1798, ISSN: 0003459608 *
藤原邦夫: ""放射線グラフト重合法による機能性高分子材料の開発とその応用例"", エバラ時報, JPN6016047879, July 2007 (2007-07-01), pages 11 - 16, ISSN: 0003459607 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9999880B2 (en) 2013-10-24 2018-06-19 Ebara Corporation Purification method for purifying water in a spent fuel pool in a nuclear power plant
CN104867528A (en) * 2015-03-31 2015-08-26 湖南桃花江核电有限公司 Treatment method of process wastewater in nuclear power plant
EP3075712A1 (en) 2015-03-31 2016-10-05 Ebara Corporation Condensate demineralization apparatus and condensate demineralization method
CN106024087A (en) * 2015-03-31 2016-10-12 株式会社荏原制作所 Condensate demineralization apparatus and condensate demineralization method
JP2016191619A (en) * 2015-03-31 2016-11-10 株式会社荏原製作所 Condensate demineralization apparatus and condensate demineralization method
JP2018167223A (en) * 2017-03-30 2018-11-01 倉敷繊維加工株式会社 Filter cartridge and filter
WO2018180430A1 (en) * 2017-03-30 2018-10-04 倉敷繊維加工株式会社 Filter cartridge and filter
WO2019004477A1 (en) * 2017-06-30 2019-01-03 Jxtgエネルギー株式会社 Functional nonwoven fabric
JPWO2019004477A1 (en) * 2017-06-30 2020-06-18 Jxtgエネルギー株式会社 Functional non-woven fabric
WO2021241551A1 (en) 2020-05-26 2021-12-02 株式会社荏原製作所 Metal-supporting nonwoven fabric and production method thereof, catalyst, unsaturated compound hydrogenation method, and carbon-carbon bond forming method
JP2021186705A (en) * 2020-05-26 2021-12-13 株式会社荏原製作所 Metal-supported nonwoven fabric and its manufacturing method, catalyst, hydrogenation method of unsaturated compound, as well as formation method of carbon-nitrogen bond
JP2021188236A (en) * 2020-05-26 2021-12-13 株式会社荏原製作所 Metal-supported nonwoven fabric and its manufacturing method, catalyst, hydrogenation method of unsaturated compound, as well as formation method of carbon-nitrogen bond
JP7113866B2 (en) 2020-05-26 2022-08-05 株式会社荏原製作所 METAL-SUPPORTING NONWOVEN FABRIC AND METHOD FOR MANUFACTURING SAME, CATALYST, METHOD FOR HYDROGENATION OF UNSATURATED COMPOUND, AND METHOD FOR FORMING CARBON-NITROGEN BOND

Also Published As

Publication number Publication date
JP6077250B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6077250B2 (en) Water treatment method and apparatus in nuclear power plant
JP4943378B2 (en) Condensate demineralization method and condensate demineralization apparatus
KR101883895B1 (en) Decontamination and Rad-waste treatment method and a kit therefor reducing the radioactive waste remarkably
EP1487748B1 (en) Electrochemical process for decontamination of radioactive materials
JP2008232773A (en) Treater for water containing radioactive material in nuclear power plant
US20180264458A1 (en) Purification method for purifying water in a spent fuel pool in a nuclear power plant
JP2008076054A (en) Method and device for treating waste liquid containing radionuclide
Abbas et al. Decontamination of aqueous nuclear waste via pressure-driven membrane application–A short review
JP4943376B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP5038232B2 (en) Condensate demineralization method and condensate demineralization apparatus
KR100423749B1 (en) Purification apparatus and method for primary cooling water of nuclear power plant using electrodeioniztion process
KR100764904B1 (en) METHOD FOR RECOVERING OF THE SPENT ION EXCHANGE MATERIALS SELECTIVE FOR THE Cs AND Sr ION SORPTION
JP6543363B2 (en) Nuclear power spent fuel pool water purification method and device and spent fuel pool water treatment method and device
JP2003156589A (en) Water treatment device of boiling water reactor power plant
JP4383091B2 (en) Condensate desalination method and apparatus
JPH11216372A (en) Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent
JPS6020720B2 (en) Decontamination method for metal materials contaminated with radioactivity
Ishida et al. Low corrosive chemical decontamination method using pH control,(II) decomposition of reducing agent by using catalyst with hydrogen peroxide
KR102360529B1 (en) Method for decontaminating oxide layer
KR102273060B1 (en) Method for removing Mn in solution after SP-HyBRID decontamination and SP-HyBRID decontamination comprising the same
JP2938869B1 (en) Treatment of radioactive liquid waste
JP2016191619A (en) Condensate demineralization apparatus and condensate demineralization method
KR0148088B1 (en) Process and apparatus for regeneration of reagent for decontamination using waste water treatment by electrodialysis
JPH06273584A (en) Elimination method for radioactive ruthenium compound
JP2019132774A (en) Method for desalting condensed water or waste water in nuclear power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170112

R150 Certificate of patent or registration of utility model

Ref document number: 6077250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees