JPH0360710A - Filter medium for purifying air - Google Patents

Filter medium for purifying air

Info

Publication number
JPH0360710A
JPH0360710A JP19729389A JP19729389A JPH0360710A JP H0360710 A JPH0360710 A JP H0360710A JP 19729389 A JP19729389 A JP 19729389A JP 19729389 A JP19729389 A JP 19729389A JP H0360710 A JPH0360710 A JP H0360710A
Authority
JP
Japan
Prior art keywords
fibers
ion exchange
diameter
air
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19729389A
Other languages
Japanese (ja)
Inventor
Makoto Kurimoto
誠 栗本
Katsuo Baba
馬場 勝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP19729389A priority Critical patent/JPH0360710A/en
Publication of JPH0360710A publication Critical patent/JPH0360710A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a filter medium fit to purify air contg. salts as solid matter, etc., by using highly acidic ion exchange fibers, highly basic ion exchange fibers and fibers other than ion exchange fibers and specifying the diameter of each of the fibers. CONSTITUTION:When a filter medium is obtd., highly acidic ion exchange fibers of 1-50mum diameter, highly basic ion exchange fibers of 1-50mum diameter and fibers of 0.1-10mum diameter other than ion exchange fibers are used and the diameter of >=70wt.% of the fibers other than ion exchange fibers is regulated to <=1/10 of the average diameter of the highly acidic and highly basic ion exchange fibers. In the case where air contg. salts as solid matter or fine particles of a soln. is filtered with the resulting filter medium, the intrusion of salt by rescattering phenomenon and pressure drop are reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は特定のイオン交換繊維を含む濾過材であって、
塩類を固体又は溶液微粒子として含有する空気の浄化用
濾過材に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is a filter medium containing specific ion exchange fibers,
The present invention relates to a filter material for air purification containing salts as solid or solution particles.

(従来の技術) 最近、超清浄空間を必要とする産業が増加しつつあり、
今や殆どの産業で、クリーンルーム技術が必要であると
言っても過言ではない。ここで、空気中に浮遊する微粒
子状物質を集塵し、超清浄空間を得る方法としては、空
気浄化用濾過材を利用した濾過集塵技術が一般的である
。これは、捕集効率の異なる数種類の濾過材に外気を通
して集塵を行う技術である。現在、常時固体である微粒
子の捕集技術は非常に高度のレベルに達している。
(Conventional technology) Recently, the number of industries that require ultra-clean spaces is increasing.
It is no exaggeration to say that clean room technology is now required in most industries. Here, as a method of collecting particulate matter floating in the air and obtaining an ultra-clean space, a filtration and dust collection technique using an air purifying filter material is generally used. This is a technology that collects dust by passing outside air through several types of filter media with different collection efficiencies. At present, the technology for collecting fine particles, which are always solid, has reached a very advanced level.

しかし空気中の浮遊している物質は常に固体であるとは
限らない、空気中にはこの他の液状の微粒子であるξス
ト、及び相対湿度の上昇によって潮解現象を起こし、容
易に液状化する塩類微粒子も含まれている場合がある。
However, substances suspended in the air are not always solid; there are other liquid particles in the air, such as ξst, which deliquesce and easily liquefy due to an increase in relative humidity. It may also contain fine salt particles.

これ等の塩類は海洋での波による気泡破裂をその源とす
るものであり、海塩粒子とも呼ばれている(諌早典夫他
蕩 空気清浄のための浮遊微粒子の計測・制御総合技術
3章10項等参考)、海塩粒子の存在は海洋に四方を囲
まれ、かつまた生産拠点を臨海地帯におかざるを得ない
我が国では大きな問題となっている。
These salts originate from the bursting of bubbles caused by waves in the ocean, and are also called sea salt particles (Norio Isahaya et al. Comprehensive Technology for Measurement and Control of Suspended Particulates for Air Purification Chapter 3, 10) The presence of sea salt particles is a major problem in Japan, which is surrounded by the ocean on all sides and has no choice but to locate production bases in coastal areas.

それは従来の空気浄化用濾過材を用いて浮′I11海塩
粒子を含む空気を処理する場合、濾過材上に浦獲された
海塩粒子が相対湿度の上昇とともに液状化し、濾過材の
内部に浸透し、再び下流側に飛び出す現象、所謂再飛散
現象が発生する為である。半導体製造クリーンルームに
於いて、再飛散によって室内に侵入した塩は、半導体ウ
ェハーの上に沈着し、絶縁不良を含む歩留まり低下の大
きな原因となる。また、電子計算機や、OA機器を多用
する現在のオフィスビルに於いても、空!Ja器を通し
ての海塩の進入は、コネクター類の腐食によるトラブル
の大きな原因となっている。またこれらの濾過材上に捕
獲された海塩類は、空気iIt過システムの運転中、吸
湿、潮解現象を起こし、固化するかもしくは潮解して粘
度の高い液体となり、圧力(l失を上昇させる。よって
臨海地区に建設されるクリーンルーム等の空調設備には
各種の除塩対策が施されている。その方法とは、空気を
加熱し、相対湿度を下げ、常に乾燥した状態で前記の濾
過材に通す方法、あるいは空気中に純水をスプレーし、
海塩を液滴にすると共に、粒径を大きくし、撥水処理を
施した濾過材で濾過する方法、あるいは純水スクラバー
に空気を通す方法及びそれらの組合わせ等である。しか
るにこれらの方法は設備費、運転費が膨大なものになる
という欠点を有する。また濾過材を厚くしたり、複層化
してミスト保有量を増加させ、再飛散の発生を遅らせる
方法も採られているが、これは根本的な解決法ではなく
、また濾過材の圧力損失の上昇による運転費の上昇とい
う問題もひきおこす。
When treating air containing floating sea salt particles using conventional air purification filter media, the sea salt particles caught on the filter media liquefy as the relative humidity increases, and become trapped inside the filter media. This is because a so-called re-scattering phenomenon occurs, which is a phenomenon in which particles penetrate and then fly out downstream again. In a semiconductor manufacturing clean room, salt that enters the room by re-splattering is deposited on semiconductor wafers and becomes a major cause of yield reduction including poor insulation. In addition, even in today's office buildings that use many computers and OA equipment, empty! Sea salt entering through the Ja vessel is a major cause of troubles due to corrosion of connectors. In addition, the sea salts captured on these filter media absorb moisture and undergo deliquescence during operation of the air filtration system, and solidify or deliquesce to become a highly viscous liquid, increasing the pressure (l loss). Therefore, air conditioning equipment such as clean rooms built in coastal areas is equipped with various salt removal measures.The method is to heat the air, lower the relative humidity, and filter the air in a dry state. or by spraying pure water into the air.
Methods include turning sea salt into droplets, enlarging the particle size, and filtering with a water-repellent filter material, passing air through a pure water scrubber, and combinations thereof. However, these methods have the disadvantage that equipment costs and operating costs are enormous. In addition, methods have been adopted to delay the occurrence of re-entrainment by making the filter medium thicker or multi-layered to increase the amount of mist retained, but this is not a fundamental solution and also reduces the pressure loss of the filter medium. This also causes the problem of increased operating costs.

イオン交換繊維を空気濾過材として使用する方法につい
ては、既に特開昭63−12315号公報等で報告され
ている。上記公報には、イオン交換繊維に、それより径
の細いガラス111維を混入せしめた大気浄化装置用フ
ィルターを用いて、気体中の粒子状物質、酸性ガス、ア
ルカリ性ガス、臭気性ガス等の汚染物質の捕集、除去を
行うことが記載されている。しかし上記公報には、塩類
の固体又は液体微粒子を含有する空気を処理する場合に
於ける上記の問題点及びその解決策について記載されて
いない。上記公報の実施例には例えば、四級アミノ基を
有するアニオン繊維とカルボン酸ナトリウム基を有する
カチオン繊維とガラス繊維を含む空気浄化用フィルター
が示されている。しかし本発明者らの検討によれば、こ
のフィルターでは、大気中に含まれる塩ξストや海塩粒
子を浦捉する場合、充分な効力を発揮し得ない。
A method of using ion exchange fibers as an air filtering material has already been reported in Japanese Patent Laid-Open Publication No. 12315/1983. The above publication describes the use of a filter for air purification equipment in which ion-exchange fibers are mixed with glass 111 fibers having a smaller diameter than the ion-exchange fibers to remove contaminants such as particulate matter, acid gas, alkaline gas, and odorous gas in the gas. It is described that it collects and removes substances. However, the above-mentioned publication does not describe the above-mentioned problems and their solutions when treating air containing solid or liquid fine particles of salts. Examples of the above publication disclose, for example, an air purifying filter containing an anionic fiber having a quaternary amino group, a cationic fiber having a sodium carboxylate group, and glass fiber. However, according to studies by the present inventors, this filter cannot exhibit sufficient effectiveness when capturing salt particles and sea salt particles contained in the atmosphere.

(発明が解決すべき課題) 本発明の目的は、塩類の固体又は溶液微粒子を含有する
空気を濾過する場合、上記のように塩類が濾過材の下流
側に漏れる現象である再飛散現象による塩の侵入が少な
く、また濾過材の圧力損失の上昇の少ない濾過材を提供
することである。
(Problems to be Solved by the Invention) When filtering air containing solid or solution particles of salts, it is an object of the present invention to solve the problem of salts due to the re-entrainment phenomenon, which is a phenomenon in which salts leak to the downstream side of the filter medium as described above. It is an object of the present invention to provide a filter medium in which there is little intrusion of water, and the increase in pressure loss of the filter medium is small.

(課題を解決する為の手段) 本発明は強酸性イオン交換繊維(a)、強塩基性イオン
交換繊維(9)、及びイオン交換繊維以外の繊維(c)
、を含む濾過材であって、繊維(a)及び(b)の径が
1〜50μmであり、繊維(c)の70wt%以上が(
a)及び(blの平均径のl/10以下の径を有する、
塩類を固体又は液体微粒子として含有する空気の浄化用
濾過材に関する。
(Means for Solving the Problems) The present invention provides strong acidic ion exchange fibers (a), strong basic ion exchange fibers (9), and fibers other than ion exchange fibers (c).
, wherein the fibers (a) and (b) have a diameter of 1 to 50 μm, and 70 wt% or more of the fiber (c) is (
a) and (having a diameter of 1/10 or less of the average diameter of bl,
The present invention relates to an air purifying filter material containing salts as solid or liquid particles.

本発明に用いられるイオン交換繊維としては有機高分子
化合物のイオン交換繊維が入手し易い。
Ion exchange fibers made of organic polymer compounds are easily available as the ion exchange fibers used in the present invention.

イオン交換機能を持つ有機繊維の基材繊維としては、セ
ルロース系、ポリスチレン系、ビニロン系、フェノール
系、ニトリル系等の種類が知られている。 これらの中
でも、紡糸時の長繊維製造の容易さ、繊維の柔軟性、強
度、イオン交換基の導入の容易さなどの点からニトリル
系繊維が好ましい。
As base fibers for organic fibers having an ion exchange function, there are known types such as cellulose-based, polystyrene-based, vinylon-based, phenol-based, and nitrile-based fibers. Among these, nitrile fibers are preferred from the viewpoints of ease of producing long fibers during spinning, flexibility and strength of fibers, and ease of introducing ion exchange groups.

これらの基材繊維にイオン交換官能基を導入する方法は
公知の方法で行われる。ここで、強酸性イオン交換繊維
の官能基としては、スルホン酸基、強塩基性イオン交換
繊維の官能基としては第四級アンモニウム基が一般的で
ある。 本発明に於いて用いられるイオン交換繊維は海
塩等の中性塩を吸着する場合、その交換容量は、吸着効
果及びイオン交換濾過材としての寿命の点から、ある水
準以上が好ましい、中性塩イオン交換容量が0.5 m
eq/g−イオン交換繊維以上、更に好ましくは1. 
Omeq/g−イオン交換繊維以上であることが好まし
い。
The ion exchange functional group can be introduced into these base fibers by a known method. Here, the functional group of the strongly acidic ion exchange fiber is generally a sulfonic acid group, and the functional group of the strongly basic ion exchange fiber is generally a quaternary ammonium group. When the ion exchange fiber used in the present invention adsorbs neutral salts such as sea salt, its exchange capacity is preferably above a certain level from the viewpoint of adsorption effect and life as an ion exchange filter material. Salt ion exchange capacity is 0.5 m
eq/g - ion exchange fiber or more, more preferably 1.
It is preferable that it is more than Omeq/g of ion exchange fiber.

本発明に用いられるイオン交換繊維以外の繊維としては
、有機、無機あるいは金属wJ&繊維が挙げられるが特
に制限はない。具体的には天然繊維として綿、麻、羊毛
等;再生、半金tm維としてレーヨン、セルロース、ア
セテート等; 有a合tm維としてポリアミド、ポリイ
ミド、ポリビニルアルコール、ポリ塩化ビニル、ポリア
クリロニトリル、ポリエステル、ポリオレフィン、ポリ
ウレタン、ポリスルホン、ポリカーボネート、ポリエス
テルエーテル等;無機繊維としてガラス繊維、炭素繊維
、活性炭繊維、アルミナ繊維環;金属繊維としてスチー
ルウール等が挙げられる。更に導電性炭素製品等を混合
あるいは塗布した合成繊維等の使用もできる。ガラス繊
維はサブミクロン径のものが比較的容易に作製でき、ま
た充分な強度、剛性及び加工性の良さ等で、空気濾過材
の構成材料としては最良のものである。
Fibers other than ion-exchange fibers used in the present invention include organic, inorganic, and metal wJ&fibers, but are not particularly limited. Specifically, natural fibers include cotton, linen, wool, etc.; recycled and half-metal TM fibers include rayon, cellulose, acetate, etc.; and a combination TM fibers include polyamide, polyimide, polyvinyl alcohol, polyvinyl chloride, polyacrylonitrile, polyester, Polyolefin, polyurethane, polysulfone, polycarbonate, polyester ether, etc.; inorganic fibers include glass fiber, carbon fiber, activated carbon fiber, alumina fiber ring; metal fibers include steel wool, etc. Furthermore, synthetic fibers mixed with or coated with conductive carbon products or the like may also be used. Glass fibers can be produced relatively easily with submicron diameters, and have sufficient strength, rigidity, and workability, making them the best material for forming air filtration media.

空気濾過材としての十分な性能を得る為には、使用する
繊維の径が問題となってくるが、製法上の問題で、イオ
ン交換m維はその繊維径が通常空気濾過材に用いられて
いる繊維より太いことが多い。このように太い繊維を多
く含む濾過材では、0.5μ以下の微小ダスト流入時の
濾過性能を充分に発揮することが出来ない為に、本発明
の濾過材ではイオン交換繊維と、それよりも細い他の繊
維を組合わせて用いる。
In order to obtain sufficient performance as an air filtration material, the diameter of the fibers used is an issue, but due to manufacturing process issues, ion-exchange m-fibers have a diameter that is not normally used for air filtration materials. They are often thicker than the fibers that are present. In this way, a filtration material containing many thick fibers cannot fully demonstrate the filtration performance when microscopic dust of 0.5μ or less inflows, so the filtration material of the present invention uses ion-exchange fibers and Used in combination with other thin fibers.

イオン交換繊維のmm径は1〜50μm、望ましくは1
〜20μmのものが良い。またイオン交換繊維以外の繊
維の繊維径は、目標とする濾過材の捕集効率、圧損等に
よって変化するが、充分な捕集効率を得る為には、0.
1〜10μmであることが好ましい。
The mm diameter of the ion exchange fiber is 1 to 50 μm, preferably 1
~20 μm is preferable. The fiber diameter of fibers other than ion-exchange fibers varies depending on the target collection efficiency of the filtration medium, pressure loss, etc., but in order to obtain sufficient collection efficiency, it is necessary to
It is preferable that it is 1-10 micrometers.

イオン交換繊維以外の繊維の径は、その繊維の70−1
%以上がイオン交換繊維の平均径の1710以下の径を
有することが望ましい。これらのm維の組合わせによっ
て、細$11!1による捕集効率の向上と、捕捉したミ
ストのイオン交換繊維への速やかな移動が起り、イオン
交換機能が最大限に発揮できる。
The diameter of fibers other than ion exchange fibers is 70-1
It is desirable that at least % of the ion exchange fibers have a diameter of 1710 or less of the average diameter of the ion exchange fibers. By combining these m-fibers, the collection efficiency is improved by fine $11!1, and the captured mist is quickly transferred to the ion-exchange fibers, so that the ion-exchange function can be maximized.

本発明の濾過材に於ける組合わせとは、各繊維を予め均
一に混合して濾過材に加工する以外に、各繊維を別々に
加工して出来た濾過材を重ね合わせることを含む。
The combination in the filter medium of the present invention includes not only uniformly mixing each fiber in advance and processing it into a filter medium, but also superimposing filter materials obtained by processing each fiber separately.

濾過材の製造方法は問わないが、シート状のものの製法
としては、湿式抄紙法、乾式抄紙法等が挙げられる。
Although the method for producing the filter medium is not limited, examples of the method for producing the sheet-like material include a wet papermaking method, a dry papermaking method, and the like.

本発明に於いて、濾過材の強度を保ち、濾過材が崩れる
のを防ぐ為に、バインダー物質を挿入することが望まし
い。バインダーとしては、繊維状バインダー、特に熱可
塑性有機高分子繊維があげられ、これを用いたホットメ
ルトによる製法によって高性能の濾過材を得ることがで
きる。本発明の濾過材に於いて、イオン交換繊維の含有
比率が多い程、濾過材の寿命は長くなるが、固体微粒子
の捕集効率が低下する。例えば、イオン交換繊維以外の
繊維としてガラス繊維を使用する場合、イオン交換繊維
の比率は重量比率で全種過材重量の70%以内にあるこ
とが望ましい。更にこの場合濾過付寿命等を勘案すると
、イオン交換繊維の比率は50〜70%前後が適当であ
る。
In the present invention, it is desirable to insert a binder substance in order to maintain the strength of the filter medium and prevent the filter medium from collapsing. Examples of the binder include fibrous binders, particularly thermoplastic organic polymer fibers, and a high-performance filtering medium can be obtained by a hot-melt manufacturing method using this binder. In the filter medium of the present invention, the greater the content ratio of ion exchange fibers, the longer the life of the filter medium, but the lower the solid particulate collection efficiency. For example, when glass fibers are used as fibers other than ion-exchange fibers, it is desirable that the proportion of ion-exchange fibers be within 70% of the total weight of the overmaterial. Furthermore, in this case, taking into account the life of the filter, etc., the proportion of ion exchange fibers is suitably about 50 to 70%.

本発明の濾過材に於いて強酸性イオン交換$a維と強塩
基性イオン交換繊維の比率は、両繊維の交換容量が等し
くなる比率が最良であることがわかった。しかしこの比
率は濾過する空気の性状によって変化させても良く、例
えば亜硫酸ガス等のガス状物質の含まれた工業地帯の空
気を濾過するような場合、ある程度、強塩基性イオン交
換繊維の量を増加させても良いし、逆に強酸性イオン交
換繊維の量を増加させた方が望ましい場合もありうる。
It has been found that in the filter medium of the present invention, the best ratio of the strongly acidic ion-exchanged $a fibers and the strongly basic ion-exchanged fibers is such that the exchange capacities of both fibers are equal. However, this ratio may be changed depending on the properties of the air to be filtered. For example, when filtering air in an industrial area containing gaseous substances such as sulfur dioxide gas, the amount of strong basic ion exchange fibers may be changed to a certain extent. The amount of strongly acidic ion exchange fibers may be increased, or conversely, it may be desirable to increase the amount of strongly acidic ion exchange fibers.

しかしあくまで強酸性イオン交換繊維と強塩基性イオン
交換繊維が共存状態であることが必要であり、その比率
は交換容量が1対0.5〜2以内であることが望ましい
However, it is necessary that the strongly acidic ion-exchange fiber and the strongly basic ion-exchange fiber coexist, and it is desirable that the ratio of the exchange capacity is within 1:0.5 to 2.

空気中に浮遊する塩類としては、主にに、 Na、 C
aMg等の塩化物、硫化物、炭酸塩など、さらに各種金
属元素の塩類が挙げられる。
The salts floating in the air are mainly Na and C.
Examples include chlorides such as aMg, sulfides, carbonates, and salts of various metal elements.

空気中には、上記以外に例えば硝酸塩、アンモニウム塩
、ガス状物質等のイオン性物質が存在しているが、本発
明の濾過材によればそれらを同時にイオン交換分離する
ことが可能である。
In addition to the above, ionic substances such as nitrates, ammonium salts, and gaseous substances are present in the air, and the filter medium of the present invention allows them to be simultaneously separated by ion exchange.

本発明の濾過材は、これらの塩類を固体又は液体微粒子
として1〜50.000μg 7m 3含有する空気か
ら、これらの塩類を除去するのに適している。
The filter medium of the present invention is suitable for removing these salts from air containing 1 to 50.000 μg 7 m 3 of these salts as solid or liquid fine particles.

本発明の濾過付内のイオン交換機能が最大限に発揮され
るのは、塩類のミストが液状である場合、また気体中の
相対湿度が高い場合である。しかし、乾燥空気濾過や固
体状塩類粒子濾過の場合において、本濾過材は、通常に
使用されている空気濾過材と全く同様な性能を持つ。す
なわち、本濾過材は乾燥空気濾過状態では従来の濾過材
と同等の性能を持ち、湿潤空気流入時には再飛散によっ
て起こる通常の濾過材の機能低下が全く発生しない。
The ion exchange function of the filtration device of the present invention is maximized when the salt mist is in liquid form and when the relative humidity in the gas is high. However, in the case of dry air filtration and solid salt particle filtration, the present filter material has exactly the same performance as commonly used air filter materials. In other words, this filter material has the same performance as a conventional filter material when dry air is being filtered, and when humid air enters the filter material, there is no deterioration in the function of a normal filter material caused by re-scattering.

本濾過材の特徴は、天候の変動等による空気状態の変化
に効果的にかつ自動的に対応できるところにある。ここ
で、本濾過材の性能を最大限に発揮させる為に、空気に
対して一定の湿度を付与することを妨げるものではない
。空気に対して一定の湿度を付与する方法としては、空
気の水中へのバブリング、水の噴霧などの気液接触方法
、もしくは濾過付自身への水スプレィ、滴下などがあげ
られる。
A feature of this filter material is that it can effectively and automatically respond to changes in air conditions due to changes in the weather. Here, in order to maximize the performance of the filter medium, it is not prohibited to apply a certain level of humidity to the air. Examples of methods for imparting a certain level of humidity to air include air-liquid contact methods such as bubbling air into water and spraying water, or spraying or dripping water onto the filter itself.

さらに本濾過材の大きな特徴として、アニオン、カチオ
ン両種のイオン交換繊維の同時使用によって圧力損失上
昇を低く抑えることができることがあげられる1通常の
空気濾過材を臨海地域で使用する場合、吸湿性、潮解性
の激しい塩化カリウム、塩化マグネシウム、塩化アンモ
ニウムが濾過材上に捕獲される。これ等の物質は透過材
使用中に吸湿し固化するか、あるいは潮解して粘性の極
端に高い液となり、濾過材の圧力損失を増大させる(日
本粉体工業協会編:バグフィルターハンドブック125
P等が参考になる。)0本発明による濾過材上に捕獲さ
れた塩は潮解すると同時にイオン交換によって繊維内に
化学的に捕獲される為に、上記理由による圧力損失の上
昇が少ない、この特徴は海岸付近や埋立地内のように、
空気中に塩粒子が多く含まれる環境に設置される場合に
顕著に現れる。
Furthermore, a major feature of this filter material is that it is possible to suppress the increase in pressure loss by using both anion and cation exchange fibers at the same time. , highly deliquescent potassium chloride, magnesium chloride, and ammonium chloride are captured on the filter medium. These substances either absorb moisture and solidify during the use of the permeable material, or deliquesce and become extremely viscous liquids, increasing the pressure loss of the filter material (edited by the Japan Powder Industry Association: Bag Filter Handbook 125).
P etc. may be helpful. ) 0 Since the salt captured on the filter medium of the present invention deliquesces and is chemically captured within the fibers through ion exchange, there is little increase in pressure loss due to the above reasons. like,
This is noticeable when installed in an environment where the air contains many salt particles.

(発明の効果) 本発明の空気浄化用 濾過材は、建物、装置内に取り入
れる大気の処理は勿論、建物、装置内の循環空気の処理
あるいは放出空気の処理に適用できる0本発明による濾
過材を使用すると空気中に浮遊する微粒子(エアロゾル
)、特に海塩その低塩類等のイオン性物質の微粒子を効
率良く捕集し、化学的に固定することによって再飛散を
防ぎ、温度、湿度、風速、天候等の外気環境条件の変動
に対しても効果的に追随し、濾過システム後段に流入す
る塩分を減少させることが出来る。またイオン交換の効
果により、イオン性成分による圧填上昇を抑制すること
ができる。
(Effects of the Invention) The air purifying filter material of the present invention can be applied not only to the treatment of air taken into buildings and equipment, but also to the treatment of circulating air within buildings and equipment, or to the treatment of released air. When used, it efficiently collects fine particles (aerosols) suspended in the air, especially fine particles of ionic substances such as sea salt and low-salt substances, and chemically fixes them to prevent them from being re-dispersed. It can effectively follow changes in outside environmental conditions such as weather, and reduce the amount of salt flowing into the latter stages of the filtration system. Furthermore, due to the effect of ion exchange, it is possible to suppress the increase in pressure caused by ionic components.

(実施例) 以下の実施例により本発明を具体的に説明するが、本発
明はこれらに限定されるものではない。
(Examples) The present invention will be specifically explained using the following examples, but the present invention is not limited thereto.

実施例1 ポリアクリロニトリル系繊維で、スルホン酸基を持つ強
酸性イオン交換繊維(繊維径20μ)35wL%、同繊
維で4級アンモニウム基を持つ強塩基性イオン交換繊維
(繊維径20μ)35i+t%、ガラス繊維(繊維径1
μ)23wt%及び熱可塑性バインダー繊維(繊維径1
0μ)7wt%を用いて、湿式抄紙法で厚さ約0.  
am  、空隙率約90%の濾過材を作製した。これは
圧力損失4.7−水柱、粒径0.3μのDOP (ジオ
クチルフタレート)粒子透過率が50%以下の中性能フ
ィルターである。このフィルターを使って、イオン交換
能力を有する濾過材(イ) 、NaC1によって飽和さ
れイオン交換能力をもたない濾過材(ロ)を用意した。
Example 1 Polyacrylonitrile fiber, strongly acidic ion exchange fiber with sulfonic acid group (fiber diameter 20μ) 35wL%, strongly basic ion exchange fiber with quaternary ammonium group (fiber diameter 20μ) 35i+t%, Glass fiber (fiber diameter 1
μ) 23 wt% and thermoplastic binder fiber (fiber diameter 1
0μ) 7wt%, the thickness was approximately 0.0μ by wet paper making method.
am, a filter medium with a porosity of about 90% was produced. This is a medium performance filter with a pressure drop of 4.7 - water columns and a particle size of 0.3 microns and a DOP (dioctyl phthalate) particle permeability of less than 50%. Using this filter, a filter material (a) having ion exchange ability and a filter material saturated with NaCl and having no ion exchange ability (b) were prepared.

また、前記のイオン交換繊維の代りに同様の繊維径を持
ち、ポリアクリロニトリル系の弱酸性イオン交換繊維3
5−t%及び弱塩基性イオン交換繊維35wt%を含む
以外は同様にして中性能フィルター相当の濾過材(ハ)
を作製した。これら3枚の濾過性能を比較した。これら
はDOP捕集効率には全く差異がないが、第1表に示す
ように、塩捕集能力には大きな差異がある。これはNa
C+の0.3%溶液ミスト(中位径約2μ)をNa″濃
度5000μg/m3、流速5.3 cm/secで8
時間流し、出口側の気体中のイオン濃度を測定したもの
である。
In addition, instead of the above-mentioned ion-exchange fiber, a polyacrylonitrile-based weakly acidic ion-exchange fiber 3 having the same fiber diameter may be used.
A filtration material equivalent to a medium-performance filter (c) was prepared in the same manner except that it contained 5-t% and weakly basic ion exchange fibers 35wt%.
was created. The filtration performance of these three sheets was compared. There is no difference in DOP trapping efficiency between these, but as shown in Table 1, there is a large difference in salt trapping ability. This is Na
A 0.3% solution mist of C+ (median diameter approximately 2μ) was applied at a Na″ concentration of 5000μg/m3 and a flow rate of 5.3cm/sec.
The ion concentration in the gas on the outlet side was measured over time.

Na”及びC1−濃度の測定は、純水を使ったインビン
ジャーで捕集し、それぞれ原子吸光法及びイオンクロマ
ト法でおこなった。
The Na'' and C1- concentrations were collected using an inbinger using pure water, and were carried out by atomic absorption spectrometry and ion chromatography, respectively.

弱酸性、弱塩基性を組合わせたものは全く交換能力を持
たない繊維とほぼ等しい能力しか持たないことがわかる
It can be seen that the combination of weakly acidic and weakly basic fibers has almost the same ability as fibers that have no exchange ability at all.

入口 出口 実施例2 実施例1の濾過材(イ)と同様の中性能フィルターにお
いて、イオン交換繊維の含量を変えたものを作製した0
両イオン交換繊維の交換容量は約1 meq/g−I 
EF (イオン交換繊維)でほぼ等しい為、常に同量を
用い、両イオン交換繊維合計の濾過材中の重量比を0%
、20%、50%、70%、100%に変化させた。こ
れらを使ってNaC1の0.3%溶液ミスト(中位径約
2μ)の濾過性能を調べた結果を図1に示す、もストの
Na″濃度約5,000tIg/s’、流速5.3 c
+*/secで、試験時間は8時間である。この結果か
ら、濾過材中のイオン交換繊維の存在比率は70%前後
が望ましいことがわかる。
Inlet/Outlet Example 2 A medium-performance filter similar to the filter material (a) of Example 1 was prepared with a different content of ion exchange fiber.
The exchange capacity of both ion exchange fibers is approximately 1 meq/g-I
Since they are almost equal in EF (ion exchange fiber), always use the same amount, and the total weight ratio of both ion exchange fibers in the filter medium is 0%.
, 20%, 50%, 70%, and 100%. Figure 1 shows the results of investigating the filtration performance of a 0.3% solution mist of NaCl (median diameter approximately 2μ) using these materials. c.
+*/sec and the test time is 8 hours. From this result, it can be seen that the abundance ratio of ion exchange fibers in the filter medium is preferably around 70%.

実施例3 実施例1の濾過(イ)と同様の中性能フィルターとこれ
をNaC1で飽和処理を行い、イオン交換能力を無くし
たものを準備した。この両者の平膜濾過材を用いて、N
aC1の0.3%溶液ミスト(中位径約2μ)をNa″
濃度約10000 u g/m”、流速5゜3cm/s
ecで濾過した。この時、温度は20’C。
Example 3 A medium-performance filter similar to the filtration (a) of Example 1 was prepared, and this filter was saturated with NaCl to eliminate the ion exchange ability. Using both of these flat membrane filtration media, N
0.3% solution mist of aC1 (median diameter approx. 2μ) was mixed with Na″
Concentration approximately 10,000 u g/m”, flow rate 5°3 cm/s
Filtered with ec. At this time, the temperature was 20'C.

相対湿度は90%であった。2時間毎に弓スト、乾燥空
気(温度20°C1相対温度20%以下)、の順番で8
時間濾過させた。最終圧損は、イオン交換能力を持つも
のが初期圧損と等しい4.7am水柱であり、対してイ
オン交換能力を持たない濾過材は11m水柱であった。
Relative humidity was 90%. Every 2 hours, dry air (temperature 20°C 1 relative temperature 20% or less), in the order of 8
filtered for hours. The final pressure drop was 4.7 am water column for the filter medium with ion exchange capacity, which is equal to the initial pressure drop, whereas the filter medium without ion exchange capacity was 11 m water column.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、濾過材中のイオン交換繊維の存在比率とNaC
1溶液ミストの捕集効率との関係図である。 揮咳効率 (〆ン トJ   令   り) 0  0   く)
Figure 1 shows the abundance ratio of ion exchange fibers in the filter medium and NaC
1 is a relationship diagram with the collection efficiency of one solution mist. Coughing efficiency (〆nt J order)

Claims (1)

【特許請求の範囲】[Claims]  強酸性イオン交換繊維(a)、強塩基性イオン交換繊
維(b)、及びイオン交換繊維以外の繊維(c)、を含
む濾過材であって、繊維(a)及び(b)の径が1〜5
0μmであり、繊維(c)の径が0.1〜10μmであ
り、繊維(c)の70wt%以上が、繊維(a)及び(
b)の平均径の1/10以下の径を有する、塩類を含有
する空気の浄化用濾過材。
A filtration medium comprising strongly acidic ion exchange fibers (a), strongly basic ion exchange fibers (b), and fibers other than ion exchange fibers (c), wherein the fibers (a) and (b) have a diameter of 1 ~5
0 μm, the diameter of the fiber (c) is 0.1 to 10 μm, and 70 wt% or more of the fiber (c) is composed of the fibers (a) and (
A filter material for purifying air containing salts, which has a diameter that is 1/10 or less of the average diameter of b).
JP19729389A 1989-07-28 1989-07-28 Filter medium for purifying air Pending JPH0360710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19729389A JPH0360710A (en) 1989-07-28 1989-07-28 Filter medium for purifying air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19729389A JPH0360710A (en) 1989-07-28 1989-07-28 Filter medium for purifying air

Publications (1)

Publication Number Publication Date
JPH0360710A true JPH0360710A (en) 1991-03-15

Family

ID=16372053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19729389A Pending JPH0360710A (en) 1989-07-28 1989-07-28 Filter medium for purifying air

Country Status (1)

Country Link
JP (1) JPH0360710A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228135B1 (en) 1992-11-02 2001-05-08 Ebara Corporation Purification of very slightly contaminated air within a clean room
JP2003105543A (en) * 2001-09-28 2003-04-09 Taisei Giken Co Ltd Recovering system and recovering method for cvd source material
JP2009202116A (en) * 2008-02-28 2009-09-10 Kurita Water Ind Ltd Filter and liquid treatment method
JP2011111688A (en) * 2009-11-24 2011-06-09 Japan Vilene Co Ltd Ion-exchanging nonwoven fabric and method for producing the same
WO2018180430A1 (en) * 2017-03-30 2018-10-04 倉敷繊維加工株式会社 Filter cartridge and filter
US10639588B2 (en) 2015-08-28 2020-05-05 Serionix, Inc. Gas filters for acidic contaminants
US10926219B2 (en) 2015-08-28 2021-02-23 Serionix, Inc. Gas filters for basic contaminants

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228135B1 (en) 1992-11-02 2001-05-08 Ebara Corporation Purification of very slightly contaminated air within a clean room
JP2003105543A (en) * 2001-09-28 2003-04-09 Taisei Giken Co Ltd Recovering system and recovering method for cvd source material
JP2009202116A (en) * 2008-02-28 2009-09-10 Kurita Water Ind Ltd Filter and liquid treatment method
JP2011111688A (en) * 2009-11-24 2011-06-09 Japan Vilene Co Ltd Ion-exchanging nonwoven fabric and method for producing the same
US10639588B2 (en) 2015-08-28 2020-05-05 Serionix, Inc. Gas filters for acidic contaminants
US10926219B2 (en) 2015-08-28 2021-02-23 Serionix, Inc. Gas filters for basic contaminants
WO2018180430A1 (en) * 2017-03-30 2018-10-04 倉敷繊維加工株式会社 Filter cartridge and filter
JP2018167223A (en) * 2017-03-30 2018-11-01 倉敷繊維加工株式会社 Filter cartridge and filter

Similar Documents

Publication Publication Date Title
JP2651279B2 (en) Particle-filled nonwoven fibrous articles for separation and purification
US5468847A (en) Method of isolating and purifying a biomacromolecule
US20050229562A1 (en) Chemical filtration unit incorporating air transportation device
US8337601B2 (en) Air filter sheet, process for manufacturing same, and air filter
RU2394627C1 (en) Notwoven material including unltrafine or nano-size particles
US5922105A (en) Method and apparatus for the preparation of clean gases
US7029518B2 (en) Method and apparatus for the preparation of clean gases
US20050022671A1 (en) Chemical filter and method for manufacturing same
US20050212174A1 (en) Method for manufacturing chemical filter
JPH0360710A (en) Filter medium for purifying air
JP2003126846A (en) Cylindrical filter member, method for manufacturing it and water purifier
JPH0360711A (en) Filter medium for purifying air
US20220356083A1 (en) Ion-Exchange Apparatus
JPH10230117A (en) Chemical filter device and its control method
JP2015047570A (en) Filter element
JP4100744B2 (en) Boron removal filter and contaminated gas purification method
JP2001239122A (en) Filter and filter member
JP2000317243A (en) Chemical filter
US5022997A (en) Method for treating aqueous solutions
RU2782467C2 (en) Filter material and personal protective equipment based on it
RU155458U1 (en) FILTER FOR CLEANING DRINKING WATER CONTAINING IRON
JP3542001B2 (en) Gas treatment method
JP2000033217A (en) Chemical filter
JPH01317512A (en) Method for cleaning air
JPS6391116A (en) Air filter