JP2018165528A - シフトレンジ制御装置 - Google Patents

シフトレンジ制御装置 Download PDF

Info

Publication number
JP2018165528A
JP2018165528A JP2017062772A JP2017062772A JP2018165528A JP 2018165528 A JP2018165528 A JP 2018165528A JP 2017062772 A JP2017062772 A JP 2017062772A JP 2017062772 A JP2017062772 A JP 2017062772A JP 2018165528 A JP2018165528 A JP 2018165528A
Authority
JP
Japan
Prior art keywords
target
motor
speed
deceleration
shift range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017062772A
Other languages
English (en)
Other versions
JP6801551B2 (ja
Inventor
山田 純
Jun Yamada
山田  純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017062772A priority Critical patent/JP6801551B2/ja
Priority to US15/919,438 priority patent/US10539233B2/en
Publication of JP2018165528A publication Critical patent/JP2018165528A/ja
Application granted granted Critical
Publication of JP6801551B2 publication Critical patent/JP6801551B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/24Providing feel, e.g. to enable selection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/38Detents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/092Converters specially adapted for controlling reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0053Initializing the parameters of the controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0087Adaptive control, e.g. the control parameters adapted by learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/24Providing feel, e.g. to enable selection
    • F16H2061/247Detents for range selectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • F16H2061/326Actuators for range selection, i.e. actuators for controlling the range selector or the manual range valve in the transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements

Abstract

【課題】応答性を向上可能であるシフトレンジ制御装置を提供する。
【解決手段】シフトレンジ制御装置40の目標速度設定部63は、モータ10の現在の回転位置と要求シフトレンジに応じた目標回転位置との偏差である角度偏差に基づき、モータ10の目標速度である目標モータ速度Msp*を設定する。要求デューティ演算部69は、目標モータ速度Msp*に基づき、モータ10の駆動に係る駆動制御量として要求デューティDreqを演算する。目標速度設定部63には、要求デューティDreqがフィードバックされ、フィードバックされた要求デューティDreqに基づき、減速時における目標モータ速度Msp*を変更する。要求デューティDreqに応じて目標モータ速度MSp*を変更することで、現在の外乱状態等に応じた最適な目標モータ速度Msp*とすることができる。これにより、シフトレンジ切り替えの応答性を向上することができる。
【選択図】 図4

Description

本発明は、シフトレンジ制御装置に関する。
従来、運転者からのシフトレンジ切り替え要求に応じてモータを制御することでシフトレンジを切り替えるシフトレンジ切替装置が知られている。例えば特許文献1では、現在の回転位置と目標回転位置との偏差に基づき、回転速度に対する位相進み補正量を設定することにより、現在の回転位置と目標回転位置との偏差に応じた所定の回転速度となるように制御している。
特開2004−23931号公報
特許文献1では、直接検出することができない温度やフリクション等の外乱を加味し、モータトルクが最も発生しない、または、伝達できない条件でも成立するように回転速度を設定する必要がある。そのため、通常の状態では、モータが発生可能なトルクを最大限に利用することができていない虞がある。
本発明は、上述の課題に鑑みてなされたものであり、その目的は、応答性を向上可能であるシフトレンジ制御装置を提供することにある。
本発明のシフトレンジ制御装置は、モータ(10)の駆動を制御することでシフトレンジを切り替えるものであって、目標速度設定部(63)と、指令演算部(69)と、を備える。
目標速度設定部は、モータの現在の回転位置と要求シフトレンジに応じた目標回転位置との偏差である角度偏差に基づき、モータの目標回転速度を設定する。
指令演算部は、目標回転速度に基づき、モータの駆動に係る駆動制御量を演算する。
目標速度設定部には、駆動制御量がフィードバックされ、フィードバックされた駆動制御量に基づき、減速時における目標回転速度を変更する。
駆動制御量に応じた目標回転速度を変更することで、現在の外乱状態等に応じた最適な目標回転速度とすることができる。これにより、シフトレンジ切り替えの応答性を向上することができる。
一実施形態によるシフトバイワイヤシステムを示す斜視図である。 一実施形態によるシフトバイワイヤシステムを示す概略構成図である。 一実施形態によるモータおよびモータドライバを示す回路図である。 一実施形態によるシフトレンジ制御装置を示すブロック図である。 一実施形態によるモータ速度の変化を説明する説明図である。 一実施形態による目標モータ速度の設定を説明するタイムチャートである。 一実施形態による減速開始カウント、速度変更カウントおよび停止カウントを説明する説明図である。 一実施形態による各カウントに応じた目標モータ速度を説明する説明図である。 一実施形態による目標速度設定処理を説明するフローチャートである。 一実施形態による減速時目標デューティの設定を説明する説明図である。 一実施形態による目標速度設定処理を説明するタイムチャートである。
以下、シフトレンジ制御装置を図面に基づいて説明する。
(一実施形態)
一実施形態によるシフトレンジ制御装置を図1〜図11に示す。
図1および図2に示すように、シフトバイワイヤシステム1は、モータ10、シフトレンジ切替機構20、パーキングロック機構30、および、シフトレンジ制御装置40等を備える。
モータ10は、図示しない車両に搭載されるバッテリ45(図3参照。)から電力が供給されることで回転し、シフトレンジ切替機構20の駆動源として機能する。モータ10は、フィードバック制御により電流の大きさを変更可能であって、かつ、相ごとに指令を変更可能なものが用いられる。本実施形態のモータ10は、永久磁石式のDCブラシレスモータである。図3に示すように、モータ10は、2組の巻線組11、12を有する。第1巻線組11は、U1コイル111、V1コイル112、および、W1コイル113を有する。第2巻線組12は、U2コイル121、V2コイル122、および、W2コイル123を有する。
図2に示すように、エンコーダ13は、モータ10の図示しないロータの回転位置を検出する。エンコーダ13は、例えば磁気式のロータリーエンコーダであって、ロータと一体に回転する磁石と、磁気検出用のホールIC等により構成される。エンコーダ13は、ロータの回転に同期して、所定角度ごとにA相およびB相のパルス信号を出力する。
減速機14は、モータ10のモータ軸と出力軸15との間に設けられ、モータ10の回転を減速して出力軸15に出力する。これにより、モータ10の回転がシフトレンジ切替機構20に伝達される。出力軸15には、出力軸15の角度を検出する出力軸センサ16が設けられる。出力軸センサ16は、例えばポテンショメータである。
図1に示すように、シフトレンジ切替機構20は、ディテントプレート21、および、ディテントスプリング25等を有し、減速機14から出力された回転駆動力を、マニュアルバルブ28、および、パーキングロック機構30へ伝達する。
ディテントプレート21は、出力軸15に固定され、モータ10により駆動される。本実施形態では、ディテントプレート21がディテントスプリング25の基部から離れる方向を正回転方向、基部に近づく方向を逆回転方向とする。
ディテントプレート21には、出力軸15と平行に突出するピン24が設けられる。ピン24は、マニュアルバルブ28と接続される。ディテントプレート21がモータ10によって駆動されることで、マニュアルバルブ28は軸方向に往復移動する。すなわち、シフトレンジ切替機構20は、モータ10の回転運動を直線運動に変換してマニュアルバルブ28に伝達する。マニュアルバルブ28は、バルブボディ29に設けられる。マニュアルバルブ28が軸方向に往復移動することで、図示しない油圧クラッチへの油圧供給路が切り替えられ、油圧クラッチの係合状態が切り替わることでシフトレンジが変更される。
ディテントプレート21のディテントスプリング25側には、マニュアルバルブ28を各レンジに対応する位置に保持するための4つの凹部22が設けられる。凹部22は、ディテントスプリング25の基部側から、D、N、R、Pの各レンジに対応している。
ディテントスプリング25は、弾性変形可能な板状部材であり、先端にディテントローラ26が設けられる。ディテントローラ26は、凹部22のいずれかに嵌まり込む。
ディテントスプリング25は、ディテントローラ26をディテントプレート21の回動中心側に付勢する。ディテントプレート21に所定以上の回転力が加わると、ディテントスプリング25が弾性変形し、ディテントローラ26が凹部22を移動する。ディテントローラ26が凹部22のいずれかに嵌まり込むことで、ディテントプレート21の揺動が規制され、マニュアルバルブ28の軸方向位置、および、パーキングロック機構30の状態が決定され、自動変速機5のシフトレンジが固定される。
パーキングロック機構30は、パーキングロッド31、円錐体32、パーキングロックポール33、軸部34、および、パーキングギア35を有する。
パーキングロッド31は、略L字形状に形成され、一端311側がディテントプレート21に固定される。パーキングロッド31の他端312側には、円錐体32が設けられる。円錐体32は、他端312側にいくほど縮径するように形成される。ディテントプレート21が逆回転方向に揺動すると、円錐体32が矢印Pの方向に移動する。
パーキングロックポール33は、円錐体32の円錐面と当接し、軸部34を中心に揺動可能に設けられる、パーキングロックポール33のパーキングギア35側には、パーキングギア35と噛み合い可能な凸部331が設けられる。ディテントプレート21が逆回転方向に回転し、円錐体32が矢印P方向に移動すると、パーキングロックポール33が押し上げられ、凸部331とパーキングギア35とが噛み合う。一方、ディテントプレート21が正回転方向に回転し、円錐体32が矢印notP方向に移動すると、凸部331とパーキングギア35との噛み合いが解除される。
パーキングギア35は、図示しない車軸に設けられ、パーキングロックポール33の凸部331と噛み合い可能に設けられる。パーキングギア35と凸部331とが噛み合うと、車軸の回転が規制される。シフトレンジがP以外のレンジであるnotPレンジのとき、パーキングギア35はパーキングロックポール33によりロックされず、車軸の回転は、パーキングロック機構30により妨げられない。また、シフトレンジがPレンジのとき、パーキングギア35はパーキングロックポール33によってロックされ、車軸の回転が規制される。
図2および図3に示すように、シフトレンジ制御装置40は、モータドライバ41、42、および、ECU50等を有する。
モータドライバ41は、第1巻線組11の通電を切り替える3相インバータであって、スイッチング素子411〜416がブリッジ接続される。対になるU相のスイッチング素子411、414の接続点には、U1コイル111の一端が接続される。対になるV相のスイッチング素子412、415の接続点には、V1コイル112の一端が接続される。対になるW相のスイッチング素子413、416の接続点には、W1コイル113の一端が接続される。コイル111〜113の他端は、結線部115で結線される。
モータドライバ42は、第2巻線組12の通電を切り替える3相インバータであって、スイッチング素子421〜426がブリッジ接続される。対になるU相のスイッチング素子421、424の接続点には、U2コイル121の一端が接続される。対になるV相のスイッチング素子422、425の接続点には、V2コイル122の一端が接続される。対になるW相のスイッチング素子423、426の接続点には、W2コイル123の一端が接続される。コイル121〜123の他端は、結線部125で結線される。
本実施形態のスイッチング素子411〜416、421〜426は、MOSFETであるが、IGBT等の他の素子を用いてもよい。
モータドライバ41とバッテリ45との間には、モータリレー46が設けられる。モータドライバ42とバッテリ45との間には、モータリレー47が設けられる。モータリレー46、47は、イグニッションスイッチ等である始動スイッチがオンされているときにオンされ、モータ10側へ電力が供給される。また、モータリレー46、47は、始動スイッチがオフされているときにオフされ、モータ10側への電力の供給が遮断される。
バッテリ45の高電位側には、バッテリ電圧Vを検出する電圧センサ48が設けられる。
また、シフトレンジ制御装置40には、モータ電流Imを検出する図示しない電流センサが設けられる。
ECU50は、スイッチング素子411〜416、421〜426のオンオフ作動を制御することで、モータ10の駆動を制御する。また、ECU50は、車速、アクセル開度、および、ドライバ要求シフトレンジ等に基づき、変速用油圧制御ソレノイド6の駆動を制御する。変速用油圧制御ソレノイド6を制御することで、変速段が制御される。変速用油圧制御ソレノイド6は、変速段数等に応じた本数が設けられる。本実施形態では、1つのECU50がモータ10およびソレノイド6の駆動を制御するが、モータ10を制御するモータ制御用のモータECUと、ソレノイド制御用のAT−ECUとを分けてもよい。以下、モータ10の駆動制御を中心に説明する。
図4に示すように、ECU50は、エンコーダカウンタ演算部51、回転速度演算部52、目標カウンタ設定部61、カウンタ差分演算部62、目標速度設定部63、速度差分演算部64、デューティ比例項演算部65、デューティ積分項演算部66、デューティ補正量演算部67、基本デューティ演算部68、要求デューティ演算部69、および、通電制御部70を有する。ECU50は、マイコン等を主体として構成される。ECU50における各処理は、ROM等の実体的なメモリ装置に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
エンコーダカウンタ演算部51は、エンコーダ13から出力されるA相およびB相のパルスに基づき、エンコーダ13のカウント値である実カウント値Cenを演算する、実カウント値Cenは、モータ10の実際の機械角および電気角に応じた値である。
回転速度演算部52は、エンコーダ13から出力されるA相およびB相のパルスに基づき、モータ10の回転速度であるモータ速度Mspを演算する。
目標カウンタ設定部61は、図示しないシフトレバー等の操作により入力されるドライバ要求シフトレンジに応じた目標カウント値Cen*を設定する。
カウンタ差分演算部62は、目標カウント値Cen*と実カウント値Cenとの差であるカウント偏差ΔCenを演算する(式(1)参照)。カウント偏差ΔCenは、目標位置までの残りカウント数といえる。
ΔCen=Cen*−Cen ・・・(1)
目標速度設定部63は、カウント偏差ΔCenに基づき、モータ10の目標速度である目標モータ速度Msp*を演算する。目標モータ速度Msp*設定の詳細は、後述する。
速度差分演算部64は、目標モータ速度Msp*とモータ速度Mspとの差分である速度偏差ΔMspを演算する(式(2)参照)。
ΔMsp=Msp*−Msp ・・・(2)
デューティ比例項演算部65は、速度偏差ΔMspに比例ゲインを乗じ、デューティ比例項Dpを演算する。
デューティ積分項演算部66は、速度偏差ΔMspに基づき、デューティ積分項Diを演算する。
デューティ補正量演算部67は、デューティ比例項Dpとデューティ積分項Diとを加算し、デューティ補正量Dfbを演算する(式(3)参照)。
Dfb=Di+Dp ・・・(3)
基本デューティ演算部68は、モータ速度Mspおよびカウント偏差ΔCen等に基づき、基本デューティDbsを演算する。
要求デューティ演算部69は、基本デューティDbsとデューティ補正量Dfbを加算し、要求デューティDreqを演算する(式(4)参照)。演算された要求デューティDreqは、バッテリ電圧Vbにより補正され、通電制御部70に出力される。また、補正後の要求デューティDreqは、目標速度設定部63にフィードバックされる。以下、バッテリ電圧Vbによる補正後の値を、単に要求デューティDreqという。
Dreq=Dbs+Dfb ・・・(4)
通電制御部70は、エンコーダ13から出力されるA相およびB相のパルス、および、要求デューティDreqに基づき、スイッチング素子411〜416、421〜426のオンオフ作動を制御する制御信号を生成する。生成された制御信号は、モータドライバ41、42に出力される。
本実施形態のフィードバック制御では、PWM制御等によりデューティを変更することで、コイル111〜113、121〜123に流れる電流およびトルクの大きさを変更可能である。
本実施形態では、120°通電制御により、モータ10の駆動を制御する。120°通電制御では、第1相の高電位側のスイッチング素子、および、第2相の低電位側のスイッチング素子をオンする。また、第1相および第2相の組み合わせを電気角60°ごとに入れ替えていくことで、通電相が切り替わる。これにより、巻線組11、12に回転磁界が発生し、モータ10が回転する。本実施形態では、モータ10を要求シフトレンジに応じた方向に回転させるべく正のトルクを出力するときのデューティを正、ブレーキトルクを出力するときのデューティを負とし、取り得るデューティ範囲を−100[%]〜100[%]とする。
ここで、モータ10の回転に伴うモータ速度Mspの変化を図5に示す。図5では、共通時間軸を横軸とし、上段に実カウント値Cen、下段にモータ速度Mspを示している。
時刻x1にて要求シフトレンジが変化すると、シフトレンジに応じた目標カウント値Cen*が設定される。また、カウント偏差ΔCenに応じ、目標モータ速度Msp*が設定される。
モータ速度Mspが目標モータ速度Msp*に到達する時刻x2までの期間は、加速域であって、モータ10を加速する。
時刻x2から時刻x3までは、定常域であって、モータ10を略一定速度にて駆動し、モータ10の回転位置を目標位置に近づける。
実カウント値Cenが目標カウント値Cen*に近づき、カウント偏差ΔCenが減速開始カウント値C1となる時刻x3以降は、減速域であって、モータ10を目標位置にて適切に停止させるべく、モータ10を減速する。実カウント値Cenが目標カウント値Cen*を含む制御範囲内となる時刻x4にて、実カウント値に応じた固定相に通電することで、モータ10を停止させ、モータ速度Mspは0となる。
減速域における目標モータ速度Msp*は、直接検出できない温度やフリクション等の外乱を加味し、最もモータトルクが発生しない、または、モータトルクを伝達できない条件であっても、オーバーシュートやアンダーシュートなく、目標カウント値Cen*にてモータ10を停止させられるように設定される。
そのため、通常時、減速域において、モータ10が出力可能な最大トルクを使い切っておらず、応答性向上の余地がある。
そこで本実施形態では、目標速度設定部63に要求デューティDreqをフィードバックし、要求デューティDreqに応じて、減速時の目標速度を更新している。
目標速度設定処理の説明に先立ち、目標速度パラメータの初期値を図6〜図8に基づいて説明する。
図6は、要求シフトレンジが変化したときの目標モータ速度Msp*の変化を示すタイムチャートである。横軸の括弧内は、その時刻におけるカウント偏差ΔCenを示す。すなわち、カウント偏差ΔCenは、時刻x11のとき減速開始カウント値C1、時刻x12のとき速度変更カウント値C2、時刻x13のとき停止カウント値C3であることを意味する。
図6に示すように、要求シフトレンジが変化した時刻x10からカウント偏差ΔCenが減速開始カウント値C1となる時刻x11までの目標モータ速度Msp*は、定常時速度Msp_hiとする。
時刻x11から時刻x12において、カウント偏差ΔCenが減速開始カウント値C1のときの目標モータ速度Msp*が定常時速度Msp_hi、カウント偏差ΔCenが速度変更カウント値C2のときの目標モータ速度Msp*が減速中間速度Msp_midとなるように、補完演算により、目標モータ速度Msp*を設定する。
時刻x12から時刻x13において、カウント偏差ΔCenが速度変更カウント値C2のときの目標モータ速度Msp*が減速中間速度Msp_mid、カウント偏差ΔCenが停止カウント値C3のときの目標モータ速度Msp*が減速終了時速度Msp_loとなるように、補完演算により、目標モータ速度Msp*を設定する。
図7には、バッテリ電圧Vbに応じた減速開始カウント値C1、速度変更カウント値C2、および、停止カウント値C3を示す。バッテリ電圧Vbは、kVB1<kVB2<kVB3<kVB4とする。減速開始カウント値C1および速度変更カウント値C2は、バッテリ電圧Vbが小さいほど、大きい値に設定される。停止カウント値C3は、バッテリ電圧Vbによらず同じ値とする。
図8には、バッテリ電圧Vbに応じた定常時速度Msp_hi、減速中間速度Msp_mid、および、減速終了時速度Msp_loを示す。定常時速度Msp_hi、減速中間速度Msp_mid、および、減速終了時速度Msp_loは、バッテリ電圧Vbが大きいほど大きい値に設定される。
図6〜図8に示すように、目標モータ速度Msp*は、補完計算にて、カウント偏差ΔCenおよびバッテリ電圧Vbに基づいて演算される。ここで、減速開始カウント値C1を変更することで、目標モータ速度Msp*の減少割合である減速度が変更され、目標モータ速度Msp*が変更されることになる。例えば、減速開始カウント値C1が小さい値に変更されると、減速開始タイミングが遅れるため、減速度が大きくなる、といった具合である。
なお、図7および図8に示す値は一例にすぎず、適宜設定可能である。また、本実施形態では、速度変更カウントC2を設定することで、減速中に減速度を変更しているが、速度変更カウントC2における減速度の変更を省略してもよい。また、速度変更カウントを複数設け、段階的に減速度を変えていくようにしてもよい。
本実施形態の目標速度設定処理を、図9のフローチャートに基づいて説明する。この処理は、目標速度設定部73にて、所定の周期で実行される。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。他のステップも同様である。
最初のS101では、目標速度設定部73は、要求デューティ演算部69からフィードバックされる要求デューティDreqのフィルタ処理を行う(式(5)参照)。式中、今回のフィルタ処理値に添え字_fi、前回のフィルタ処理値に添え字_fi-1を付す。また、式中の「K2」は、所定の定数(例えば2)である。
Dreq_fi=Dreq_fi-1+(Dreq−Dreq_fi-1)/K2
・・・(5)
以下、フィルタ処理後の値を、単に「要求デューティDreq」とする。
S102では、目標速度設定部73は、カウント偏差ΔCenが減速開始カウント値C1以下か否かを判断する。カウント偏差ΔCenが減速開始カウント値C1より大きいと判断された場合(S102:NO)、S107へ移行する。カウント偏差ΔCenが減速開始カウント値C1以下であると判断された場合(S102:YES)、S103へ移行する。
S103では、目標速度設定部73は、速度偏差ΔMspの絶対値が追従判定値Kf以下か否かを判断する。追従判定値Kfは、モータ速度Mspが目標モータ速度Msp*に追従しているとみなせる程度の値に設定される。速度偏差ΔMspの絶対値が追従判定値Kfより大きいと判断された場合(S103:NO)、モータ速度Mspが目標モータ速度Msp*に追従していないとみなし、S107へ移行する。すなわち本実施形態では、モータ速度Mspが目標モータ速度Msp*に追従していない状態では、後述の速度パラメータ更新処理を行わない。速度偏差ΔMspの絶対値が追従判定値Kf以下であると判断された場合(S103:YES)、モータ速度Mspが目標モータ速度Msp*に追従しているとみなし、S104へ移行する。
S104では、目標速度設定部73は、カウント偏差ΔCenの絶対値に基づき、減速時目標デューティDstを設定する。減速時目標デューティDstは、例えば図10に示すマップに基づいて設定される。カウント偏差ΔCenに係る閾値TH1、TH2は、TH1>TH2である。閾値TH1は、ディテントプレート21の形状に応じ、ディテントの山を乗り越えるタイミングとなる値に応じて設定される。カウント偏差ΔCenの絶対値が閾値TH1より大きい場合、ディテントの山を登りきっていないとみなされれ、本実施形態の速度更新処理が行われないように、減速時目標デューティDstが十分に大きい値に設定されている。
カウント偏差ΔCenの絶対値が閾値TH1より大きい場合、モータ軸に作用するディテントトルクは、モータ10の回転方向とは反対方向に作用する。また、カウント偏差ΔCenの絶対値が閾値TH1より小さい場合、モータ軸に作用するディテントトルクが、モータ10の回転方向に大きくなる。
すなわち、カウント偏差ΔCenに応じて減速時目標デューティDstを設定することは、モータ軸に作用するディテントトルクのトルク特性に応じて減速時目標デューティDstを設定している、と捉えることもできる。
S105では、目標速度設定部73は、要求デューティDreqが減速時目標デューティDst以上か否かを判断する。要求デューティDreqが減速時目標デューティDstより小さいと判断された場合(S105:NO)、S107へ移行する。要求デューティDreqが減速時目標デューティDst以上であると判断された場合(S105:YES)、S106へ移行する。
S106では、目標速度設定部73は、更新判定フラグをオンにする。
S107では、目標速度設定部73は、更新判定フラグをオフにする。
S108では、目標速度設定部73は、更新判定フラグがオフからオンに切り替わったか否かを判断する。更新判定フラグがオフであると判断された場合(S108:NO)、速度パラメータ更新処理を行わず、S110へ移行する。更新判定フラグがオフからオンに切り替わったと判断された場合(S108:YES)、S109へ移行する。
S109では、目標速度設定部73は、速度パラメータを更新する。本実施形態では、減速開始カウント値C1および速度変更カウント値C2を変更することで、速度パラメータを更新する。カウント値C1、C2の補正に係る補正値CVは、式(6)で表される。式中のKcvは所定の定数とし、補正値CVは1以上の値となる。すなわち、CV≧1である。
CV=(Dreq−Dst)×Kcv+1 ・・・(6)
また、補正後の減速開始カウント値および速度変更カウント値は、式(7)、(8)で表される。式(7)、(8)では、補正後のカウント値をC1a、C2aとし、初期値をC1in、C2inとする。
C1a=C1in÷CV ・・・(7)
C2a=C2in÷CV ・・・(8)
速度パラメータの更新が完了した場合、更新判定フラグをリセットする。
S110では、目標速度設定部73は、カウント偏差ΔCenに基づき、目標モータ速度Msp*を演算する。目標モータ速度Msp*の演算には、図7および図8にて説明したパラメータを用いるが、S109にてカウント値C1、C2が更新された場合、更新後の値を用いる。
本実施形態の目標速度設定処理を図11のタイムチャートに基づいて説明する。ここでは、要求シフトレンジをPレンジからDレンジに変えるべく、モータ10を正方向に回転する場合を例に説明する。
図11では、共通時間軸を横軸とし、上段から順に、エンコーダカウント値、モータ速度、および、デューティを示している。実カウント値Cenは、本実施形態の速度パラメータ更新を行った場合を実線、行わない場合を一点鎖線で示す。モータ速度は、本実施形態の速度パラメータ更新処理を行った場合の目標モータ速度Msp*を実線、モータ速度Mspを破線、速度パラメータ更新処理を行わない場合の目標モータ速度Msp*を一点鎖線で示す。デューティについては、速度パラメータ更新処理を行った場合について示す。
時刻x21にて要求シフトレンジがPレンジからDレンジに切り替わると、目標カウント値Cen*および目標モータ速度Msp*が設定され、フィードバック制御によりモータ10の駆動が制御される。図11では、時刻x21から時刻x22までが加速域、時刻x22から時刻x23までが定常域である。
時刻x23にて、カウント偏差ΔCenが減速開始カウント値の初期値C1inより小さくなると、減速制御に移行する。
図12の例では、時刻x23から時刻x24において、カウント偏差ΔCenおよびバッテリ電圧Vbに応じて設定された目標モータ速度Msp*となるように制御したときの要求デューティDreqが、減速時目標デューティDstより大きい。換言すると、減速制御時の要求デューティDreqの絶対値は、減速時目標デューティDstの絶対値より小さい。
減速域において、減速時目標デューティDstよりも絶対値が小さいデューティにて制御している状態は、減速時目標デューティDstにて制御すれば、より大きな減速トルクを出力可能であること意味する。すなわち、減速時目標デューティDstと要求デューティDreqとの差は、減速余裕度と捉えることができ、時刻x23から時刻x24のデューティでモータ10を駆動している状態は、モータ10の出力性能に余裕がある状態といえる。
そこで本実施形態では、要求デューティDreqが減速時目標デューティDstより大きく、出力性能に余裕がある場合、目標モータ速度Msp*の設定に係るパラメータを更新する。
具体的には、時刻x24にて、目標モータ速度Msp*とモータ速度Mspとの差が追従判定値Kfより小さく(S103:YES)、かつ、要求デューティDreqが減速時目標デューティDst以上の場合(S105:YES)、減速開始カウント値C1を更新する。減速開始カウント値C1を補正値CVで補正し、初期値C1inから補正後減速開始カウント値C1aに変更する。時刻x24において、カウント偏差ΔCenが、補正後減速開始カウント値C1aより大きいので、減速制御を一旦中断し、定常域での制御に戻す。
そして、カウント偏差ΔCenが補正後減速開始カウント値C1aとなる時刻x25にて、再度減速制御を開始する。この場合、時刻x23から減速制御を継続する場合と比較し、残りカウント数であるカウント偏差ΔCenが小さい。そのため、図6〜図8にて説明したように目標モータ速度Msp*を補完計算すると、モータ速度Msp*の低下割合である減速度が大きくなる。
また、時刻x26にて、カウント偏差ΔCenが補正後速度変更カウント値C2aとなると、減速度が変更される。
なお、図11の例では、時刻x25での減速制御にて、要求デューティDreqが減速時目標デューティDstとなっているが、例えば、時刻x25の減速制御を行ったときの要求デューティDreqが減速時目標デューティDstより大きければ、再度の速度パラメータ更新処理を行う、といった具合に、速度パラメータ更新処理を繰り返すようにしてもよい。
速度パラメータ更新処理を行わない場合、時刻x28にてモータ10が目標位置に到達している。これに対し、本実施形態では、モータ10の出力性能に余裕がある場合、速度パラメータ更新処理を行うことで減速開始タイミングを遅らせ、定常時速度Msp_hiにてモータ10を高速回転させる期間を長くしている。これにより、速度パラメータ更新処理を行わない場合よりも早いタイミングである時刻x27にてモータ10が目標位置に到達している。
本実施形態では、速度パラメータ更新処理を行うことで、モータ10の減速トルクを可及的十分に使うことができ、速度パラメータ補正処理を行わない場合と比較し、応答性を向上可能である。
以上説明したように、本実施形態のシフトレンジ制御装置40は、モータ10の駆動を制御することでシフトレンジを切り替えるものであって、目標速度設定部63と、要求デューティ演算部69と、を備える。
目標速度設定部63は、モータ10の現在の回転位置と要求シフトレンジに応じた目標回転位置との偏差である角度偏差に基づき、モータ10の目標速度である目標モータ速度Msp*を設定する。
要求デューティ演算部69は、目標モータ速度Msp*に基づき、モータ10の駆動に係る駆動制御量としての要求デューティDreqを演算する。
目標速度設定部63には、要求デューティDreqがフィードバックされ、フィードバックされた要求デューティDreqに基づき、減速時における目標モータ速度Msp*を変更する。
要求デューティDreqに応じて目標モータ速度MSp*を変更することで、現在の外乱状態等に応じた最適な目標モータ速度Msp*とすることができる。これにより、シフトレンジ切り替えの応答性を向上することができる。
要求デューティDreqは、加速時に正、減速時に負となる値とする。目標速度設定部63は、減速制御時における要求デューティDreqが減速時目標デューティDstより大きい場合、減速制御を一旦中断するとともに、減速制御再開後の減速度を減速制御中断前よりも大きくする。
要求デューティDreqが減速時目標デューティDstより大きい場合、モータ10が出力可能な減速トルクに対して余裕があると捉えることができる。このとき、減速タイミングを遅らせて減速度を大きくすることで、高速で回転させる期間が長くなり、応答性が向上する。
減速時目標デューティDstは、カウント偏差ΔCenに応じて可変である。詳細には、減速時目標デューティDstは、カウント偏差ΔCenが小さいほど、マイナス側に大きい値とする。より詳細には、カウント偏差ΔCenがディテントの山を越えたと見なせる領域において、減速時目標デューティDstは、負の値であって、カウント偏差ΔCenが小さいほど、絶対値が大きい値とする。
これにより、モータ10の減速余裕度を見誤らないようにすることができる。
本実施形態では、要求デューティ演算部69が「指令演算部」に対応する。また、カウント偏差ΔCenが「角度偏差」、目標回転速度が「目標モータ速度Msp*」、要求デューティDreqが「駆動制御量」、減速時目標デューティが「基準制御量」に対応する。
(他の実施形態)
上記実施形態では、モータは、永久磁石式の3相ブラシレスモータである。他の実施形態では、モータは、3相ブラシレスモータに限らず、SRモータ等、どのようなモータを用いてもよい。SRモータ等、ブラシレスモータ以外のモータを用いた場合であっても、同様の効果を得ることができる。また、上記実施形態では、モータに2組の巻線組が設けられる。他の実施形態では、モータの巻線組は、1組でもよいし3組以上であってもよい。
上記実施形態では、いわゆる120°通電により、モータ10の駆動を制御する。他の実施形態では、120°通電以外の制御としてもよい。例えば、いわゆる180°通電としてもよい。また例えば、三角波比較方式や瞬時ベクトル選択方式によるPWM制御としてもよい。
上記実施形態では、モータの回転角を検出する回転角センサとして、エンコーダを用いる。他の実施形態では、回転角センサは、エンコーダに限らず、レゾルバ等、どのようなものを用いてもよい。また、エンコーダのカウント値に替えて、モータの回転角に換算可能なエンコーダカウント値以外の値をフィードバックしてもよい。
上記実施形態では、ディテントプレートには4つの凹部が設けられる。他の実施形態では、凹部の数は4つに限らず、いくつであってもよい。例えば、ディテントプレートの凹部を2つとし、PレンジとnotPレンジとを切り替えるものとしてもよい。また、シフトレンジ切替機構やパーキングロック機構等は、上記実施形態と異なっていてもよい。
上記実施形態では、モータ軸と出力軸との間に減速機が設けられる。減速機の詳細について、上記実施形態では言及していないが、例えば、サイクロイド歯車、遊星歯車、モータ軸と略同軸の減速機構から駆動軸へトルクを伝達する平歯歯車を用いたものや、これらを組み合わせて用いたもの等、どのような構成であってもよい。また、他の実施形態では、モータ軸と出力軸との間の減速機を省略してもよいし、減速機以外の機構を設けてもよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
10・・・モータ
13・・・エンコーダ
40・・・シフトレンジ制御装置
50・・・ECU
52・・・回転速度演算部
63・・・目標速度設定部
69・・・要求デューティ演算部(指令演算部)

Claims (3)

  1. モータ(10)の駆動を制御することでシフトレンジを切り替えるシフトレンジ制御装置であって、
    前記モータの現在の回転位置と要求シフトレンジに応じた目標回転位置との偏差である角度偏差に基づき、前記モータの目標回転速度を設定する目標速度設定部(63)と、
    前記目標回転速度に基づき、前記モータの駆動に係る駆動制御量を演算する指令演算部(69)と、
    を備え、
    前記目標速度設定部には、前記駆動制御量がフィードバックされ、フィードバックされた前記駆動制御量に基づき、減速時における前記目標回転速度を変更するシフトレンジ制御装置。
  2. 前記駆動制御量は、加速時に正、減速時に負となる値とすると、
    前記目標速度設定部は、減速制御時における前記駆動制御量が基準制御量より大きい場合、減速制御を一旦中断するとともに、減速制御再開後の減速度を減速制御中断前よりも大きくする請求項1に記載のシフトレンジ制御装置。
  3. 前記基準制御量は、前記角度偏差に応じて可変である請求項2に記載のシフトレンジ制御装置。
JP2017062772A 2017-03-28 2017-03-28 シフトレンジ制御装置 Active JP6801551B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017062772A JP6801551B2 (ja) 2017-03-28 2017-03-28 シフトレンジ制御装置
US15/919,438 US10539233B2 (en) 2017-03-28 2018-03-13 Shift range controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017062772A JP6801551B2 (ja) 2017-03-28 2017-03-28 シフトレンジ制御装置

Publications (2)

Publication Number Publication Date
JP2018165528A true JP2018165528A (ja) 2018-10-25
JP6801551B2 JP6801551B2 (ja) 2020-12-16

Family

ID=63673070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017062772A Active JP6801551B2 (ja) 2017-03-28 2017-03-28 シフトレンジ制御装置

Country Status (2)

Country Link
US (1) US10539233B2 (ja)
JP (1) JP6801551B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200062730A (ko) * 2018-11-27 2020-06-04 현대오트론 주식회사 전동식 쉬프트 바이 와이어 시스템의 모터 제어 장치 및 방법
JP2020139579A (ja) * 2019-02-28 2020-09-03 日本電産株式会社 駆動装置
CN117013916A (zh) * 2023-09-25 2023-11-07 深圳市精锐昌科技有限公司 一种电机的自适应控制方法、系统及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6533167B2 (ja) * 2016-02-03 2019-06-19 株式会社東海理化電機製作所 シフト装置
JP6711324B2 (ja) * 2017-07-10 2020-06-17 株式会社デンソー シフトレンジ制御装置
JP7020862B2 (ja) * 2017-10-26 2022-02-16 株式会社河合楽器製作所 パラメータ制御装置及び制御方法
KR102238146B1 (ko) * 2019-12-13 2021-04-08 주식회사 현대케피코 전동식 변속 레버 시스템의 제어 장치 및 그 제어 방법
CN111532252B (zh) * 2020-05-07 2022-01-18 福建盛海智能科技有限公司 一种变速箱的控制方法及终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2595740B2 (ja) * 1990-01-25 1997-04-02 日産自動車株式会社 自動変速機のシフト指示装置
US7084597B2 (en) 2002-06-03 2006-08-01 Denso Corporation Motor control apparatus
US7161314B2 (en) * 2002-10-07 2007-01-09 Denso Corporation Motor control apparatus having current supply phase correction
JP4403804B2 (ja) * 2004-01-09 2010-01-27 株式会社デンソー モータ制御装置
JP4766955B2 (ja) * 2005-08-23 2011-09-07 株式会社デンソー シフトレンジ切替装置
JP6458689B2 (ja) * 2015-09-10 2019-01-30 株式会社デンソー モータ制御装置
JP6583124B2 (ja) 2016-04-26 2019-10-02 株式会社デンソー シフトレンジ制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200062730A (ko) * 2018-11-27 2020-06-04 현대오트론 주식회사 전동식 쉬프트 바이 와이어 시스템의 모터 제어 장치 및 방법
KR102202955B1 (ko) * 2018-11-27 2021-01-14 주식회사 현대케피코 전동식 쉬프트 바이 와이어 시스템의 모터 제어 장치 및 방법
JP2020139579A (ja) * 2019-02-28 2020-09-03 日本電産株式会社 駆動装置
JP7338168B2 (ja) 2019-02-28 2023-09-05 ニデック株式会社 駆動装置
CN117013916A (zh) * 2023-09-25 2023-11-07 深圳市精锐昌科技有限公司 一种电机的自适应控制方法、系统及存储介质
CN117013916B (zh) * 2023-09-25 2024-01-16 深圳市精锐昌科技有限公司 一种电机的自适应控制方法、系统及存储介质

Also Published As

Publication number Publication date
US20180283545A1 (en) 2018-10-04
JP6801551B2 (ja) 2020-12-16
US10539233B2 (en) 2020-01-21

Similar Documents

Publication Publication Date Title
JP6801551B2 (ja) シフトレンジ制御装置
US10948073B2 (en) Shift range control device
US11002360B2 (en) Shift range control apparatus
US11226037B2 (en) Shift range control device
CN109075728B (zh) 换挡挡位控制装置
US11226033B2 (en) Shift range control device
JP6569584B2 (ja) シフトレンジ制御装置
US10615724B2 (en) Shift range control apparatus
JP6658416B2 (ja) シフトレンジ制御装置
US10236807B2 (en) Shift range controller
WO2020158434A1 (ja) シフトレンジ制御装置
WO2018047916A1 (ja) シフトレンジ制御装置
JP7230674B2 (ja) モータ制御装置
JP2019033620A (ja) モータ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R151 Written notification of patent or utility model registration

Ref document number: 6801551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250