JP2018161736A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2018161736A
JP2018161736A JP2017061784A JP2017061784A JP2018161736A JP 2018161736 A JP2018161736 A JP 2018161736A JP 2017061784 A JP2017061784 A JP 2017061784A JP 2017061784 A JP2017061784 A JP 2017061784A JP 2018161736 A JP2018161736 A JP 2018161736A
Authority
JP
Japan
Prior art keywords
layer
crystal grains
fine crystal
tool
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017061784A
Other languages
Japanese (ja)
Inventor
隆之 木村
Takayuki Kimura
隆之 木村
強 大上
Tsutomu Ogami
強 大上
健志 山口
Kenji Yamaguchi
健志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017061784A priority Critical patent/JP2018161736A/en
Publication of JP2018161736A publication Critical patent/JP2018161736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool exerting excellent defect resistance and wear resistance in a high-speed intermittent cutting work.SOLUTION: There is provided a surface-coated cutting tool in which a hard coating layer including at least a TiAlN layer having an average thickness of 0.5-10.0 μm is provided on the surface of a tool base substance. The cutting tool has the following characteristics (a) to (d): (a) the TiAlN layer has an average composition satisfying 0.10≤x≤0.35 (x is an atomic ratio) when representing the compositional formula thereof by (TiAl)N; (b) in the longitudinal section of the TiAlN layer, the layer includes the fine crystal grain whose crystal grain width measured in a direction parallel to the surface of the tool base substance is 30 to 100 nm, and does not include the coarse crystal grains having the grain width wider than 100 nm; (c) in the longitudinal section of the layer, the area ratio occupied by the fine crystal grain is 10 to 70 area%; and (d) in the longitudinal section of the layer, the area ratio occupied by the fine crystal grain in which the angle made by a normal line of the surface of the tool base substance and a normal line of (001) of the fine crystal grain having the cubic structure is 20 degrees or less, is 10 area% or more.SELECTED DRAWING: Figure 3

Description

この発明は、合金鋼などの高速断続切削加工において、硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮し、長期の使用にわたってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a surface-coated cutting tool (hereinafter referred to as a coated coating tool) that exhibits excellent chipping resistance and wear resistance in a high-speed intermittent cutting process such as alloy steel, and exhibits excellent cutting performance over a long period of use. Tool).

一般に、被覆工具として、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、前記被削材の面削加工や溝加工、肩加工などに用いられるエンドミル、前記被削材の歯形の歯切加工などに用いられるソリッドホブ、ピニオンカッタなどが知られている。
そして、被覆工具の切削性能改善を目的として、従来から、数多くの提案がなされている。
In general, as a coated tool, for throwing inserts that can be used detachably attached to the tip of a cutting tool for turning and planing of various materials such as steel and cast iron, and for drilling and cutting the work material Known drills and miniature drills, end mills used for chamfering and grooving, shoulder processing, etc. of the work material, solid hob, pinion cutter used for gear cutting of the tooth profile of the work material, etc. Yes.
Many proposals have been made for the purpose of improving the cutting performance of the coated tool.

例えば、特許文献1に示すように、工具基体表面に、物理蒸着によって堆積された耐火性層を含むコーティングを含む被覆工具であって、 前記耐火性層がM1−xAlN(式中、x≧0.68であり、MがTi、CrまたはZrである)を含み、前記耐火性層が立方晶結晶相を含有し、少なくとも25GPaの硬度を有する厚膜、高硬度および低残留応力の耐摩耗性被覆工具が提案されている。 For example, as shown in Patent Document 1, a coated tool including a coating including a refractory layer deposited by physical vapor deposition on the surface of a tool base, wherein the refractory layer is M 1-x Al x N (wherein X ≧ 0.68, and M is Ti, Cr or Zr), and the refractory layer contains a cubic crystal phase and has a hardness of at least 25 GPa, high hardness and low residual stress Abrasion-resistant coated tools have been proposed.

また、特許文献2には、工具基体表面にTiAlN層からなる硬質被覆層を被覆した被覆工具において、上記硬質被覆層が、層厚方向にそって、Al最高含有点(Ti最低含有点)とAl最低含有点(Ti最高含有点)とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、さらに、上記Al最高含有点が、組成式:(Ti1−XAl)N(ただし、原子比で、Xは0.70〜0.95を示す)、上記Al最低含有点が、組成式:(Ti1−YAl )N(ただし、原子比で、Yは0.40〜0.65を示す)、をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmである耐摩耗性にすぐれた被覆工具が提案されている。 Further, in Patent Document 2, in a coated tool in which a hard coating layer composed of a TiAlN layer is coated on the surface of a tool base, the hard coating layer has an Al maximum content point (Ti minimum content point) along the layer thickness direction. Al lowest content points (Ti highest content points) are alternately present at predetermined intervals, and the Al highest content point to the Al lowest content point, the Al lowest content point to the Al highest content point Al ( Ti) It has a component concentration distribution structure in which the content changes continuously, and the Al highest content point is the composition formula: (Ti 1-X Al X ) N (wherein the atomic ratio, X is 0. 70 to 0.95), and the above-mentioned lowest Al content point is a composition formula: (Ti 1-Y Al Y ) N (wherein Y represents 0.40 to 0.65 in atomic ratio), respectively. Satisfied and adjacent Al highest content point and Al lowest Distance Yu points, coated tool having excellent wear resistance is 0.01~0.1μm have been proposed.

特開2015−36189号公報Japanese Patent Laying-Open No. 2015-36189 特開2003−211304号公報JP 2003-211304 A

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高速化・高能率化の傾向にあるが、上記従来の被覆工具においては、これを鋼や鋳鉄などの通常の切削条件での切削加工に用いた場合には、特段の問題は生じないが、これを、例えば、合金鋼等の高速断続切削加工のような、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷がかかる切削加工に用いた場合には、クラックの発生・伝播を抑制することができないため、欠損が発生しやすく、また、摩耗進行も促進されるため、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been dramatically improved, while there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and as a result, cutting has become a trend toward higher speed and higher efficiency. However, in the above-mentioned conventional coated tool, when this is used for cutting under normal cutting conditions such as steel and cast iron, no particular problem occurs. Crack generation / propagation cannot be suppressed when used for cutting that involves high heat generation, such as high-speed interrupted cutting, and that imposes an impact and intermittent high load on the cutting edge. Therefore, defects are likely to occur and the progress of wear is promoted, so that the service life is reached in a relatively short time.

例えば、特許文献1に示される従来被覆工具においては、M1−xAlNの一つの形態であるTiAlN層は高硬度で耐摩耗性にすぐれる層であり、Al含有量が多いほど耐摩耗性にすぐれるが、その一方で、格子歪が大きくなるため、耐欠損性が低下するという問題がある。
また、特許文献2に示される従来被覆工具においては、層厚方向に組成変化を形成することで高温硬さと耐熱性、靱性を両立せしめることができるが、層厚方向に形成される層内の異方性によって、層厚と垂直方向のクラックの発生・伝播を十分に防止することはできないという問題がある。
For example, in the conventional coated tool shown in Patent Document 1, a TiAlN layer which is one form of M 1-x Al x N is a layer having high hardness and excellent wear resistance, and the higher the Al content, the more resistant it is. Although it is excellent in wearability, on the other hand, there is a problem in that fracture resistance is lowered because lattice strain increases.
Moreover, in the conventional coated tool shown by patent document 2, although high temperature hardness, heat resistance, and toughness can be made compatible by forming a composition change in the layer thickness direction, in the layer formed in the layer thickness direction There is a problem that the generation and propagation of cracks in the direction perpendicular to the layer thickness cannot be sufficiently prevented due to the anisotropy.

そこで、本発明者等は、上述の観点から、合金鋼などの高速断続切削加工のような、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する切削加工条件下で、硬質被覆層がすぐれた耐欠損性と耐摩耗性を両立し得る被覆工具を開発すべく、硬質被覆層の成分組成、結晶構造および層構造等に着目し研究を行った結果、以下のような知見を得た。   In view of the above, the present inventors, from the above-mentioned viewpoint, are accompanied by high heat generation such as high-speed intermittent cutting of alloy steel and the like, and a cutting operation in which a shocking and intermittent high load acts on the cutting blade. As a result of conducting research focusing on the component composition, crystal structure and layer structure of the hard coating layer in order to develop a coated tool that can achieve both fracture resistance and wear resistance with excellent hard coating layer under the conditions, The following findings were obtained.

即ち、本発明者は、工具基体表面に、少なくともTiとAlの複合窒化物(以下、「TiAlN」で示す場合がある。)層を含む硬質被覆層を設けた被覆工具において、該層におけるAlのTiとAlの合量に占める組成割合を比較的高くし、もって、硬質被覆層全体としての耐摩耗性を確保し、さらに、前記TiAlN層を超微粒結晶粒と微細結晶粒で構成するとともに、前記微細結晶粒の占める面積割合を10〜70面積%とし、かつ結晶粒幅が100nmより大きい粗大結晶粒を含まず、しかも、前記微細結晶粒の(001)面の法線と工具基体表面の法線とのなす角度が20度以下となる前記微細結晶粒の占める面積割合を、微細結晶粒の全面積の10面積%以上とすることによって、微細結晶粒で耐摩耗性を向上させつつ、超微粒結晶粒で切削加工時の衝撃を緩和することができるため、本発明の被覆工具は、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する高速断続切削加工条件下で、すぐれた耐欠損性と耐摩耗性を両立することができるのである。   That is, the inventor of the present invention provides a coated tool in which a hard coating layer including at least a composite nitride of Ti and Al (hereinafter sometimes referred to as “TiAlN”) layer is provided on the surface of the tool base. The composition ratio of the total amount of Ti and Al is relatively high, thereby ensuring the wear resistance of the hard coating layer as a whole, and the TiAlN layer is composed of ultrafine crystal grains and fine crystal grains. The area ratio of the fine crystal grains is 10 to 70 area%, the crystal grain width does not include coarse crystal grains larger than 100 nm, and the normal line of the (001) plane of the fine crystal grains and the tool base surface While improving the wear resistance of the fine crystal grains, the ratio of the area occupied by the fine crystal grains whose angle to the normal line is 20 degrees or less is 10 area% or more of the total area of the fine crystal grains. , Ultrafine grain Since the impact at the time of cutting can be mitigated with crystal grains, the coated tool of the present invention is accompanied by high heat generation, and high-speed interrupted cutting in which impact and intermittent high loads act on the cutting blade. Under the conditions, it is possible to achieve both excellent fracture resistance and wear resistance.

この発明は、上記の知見に基づいてなされたものであって、
「WC基超硬合金、TiCN基サーメットおよび立方晶窒化硼素焼結体のいずれかからなる工具基体表面に、0.5〜10.0μmの平均層厚のTiとAlの複合窒化物層を少なくとも含む硬質被覆層が設けられた表面被覆切削工具において、
(a)前記TiとAlの複合窒化物層は、その組成を、
組成式:(TiAl1−x)N
で表した場合、0.10≦x≦0.35(ただし、xは原子比)を満足する平均組成を有し、
(b)前記TiとAlの複合窒化物層の縦断面において、工具基体表面と平行な方向に測定した結晶粒幅が30〜100nmである微細結晶粒を含み、かつ結晶粒幅が100nmより大きい粗大結晶粒を含まず、
(c)前記TiとAlの複合窒化物層の縦断面において、前記微細結晶粒が前記縦断面に占める面積割合は10〜70面積%であり、
(d)前記TiとAlの複合窒化物層の縦断面において、工具基体表面の法線と立方晶構造を有する微細結晶粒の(001)の法線とのなす角度が20度以下である立方晶構造を有する前記微細結晶粒が、前記縦断面の微細結晶粒の全面積に占める面積割合は、10面積%以上であることを特徴とする表面被覆切削工具。」
を特徴とするものである。
This invention has been made based on the above findings,
“At least a composite nitride layer of Ti and Al having an average layer thickness of 0.5 to 10.0 μm is formed on the surface of a tool base made of any one of a WC-based cemented carbide, a TiCN-based cermet, and a cubic boron nitride sintered body. In a surface-coated cutting tool provided with a hard coating layer containing,
(A) The composite nitride layer of Ti and Al has the composition
Composition formula: (Ti x Al 1-x ) N
Represented by 0.10 ≦ x ≦ 0.35 (where x is an atomic ratio),
(B) In the longitudinal section of the composite nitride layer of Ti and Al, fine grain having a crystal grain width measured in a direction parallel to the surface of the tool base is 30 to 100 nm, and the crystal grain width is larger than 100 nm Does not contain coarse grains
(C) In the longitudinal section of the composite nitride layer of Ti and Al, the area ratio of the fine crystal grains in the longitudinal section is 10 to 70 area%,
(D) In the longitudinal section of the composite nitride layer of Ti and Al, the angle formed by the normal of the tool base surface and the (001) normal of the fine crystal grains having a cubic structure is 20 degrees or less. The surface-coated cutting tool characterized in that the area ratio of the fine crystal grains having a crystal structure to the total area of the fine crystal grains in the longitudinal section is 10 area% or more. "
It is characterized by.

つぎに、この発明の被覆工具について、詳細に説明する。   Next, the coated tool of the present invention will be described in detail.

TiAlN層の平均層厚:
硬質被覆層は、少なくともTiAlN層を含むが、該TiAlN層の平均層厚が0.5μm未満では、TiAlN層によって付与される耐摩耗性向上効果が十分に得られず、一方、平均層厚が10.0μmを超えると、TiAlN層の中の歪みが大きくなり自壊しやすくなるため、TiAlN層の平均層厚を0.5〜10.0μmとする。
Average thickness of the TiAlN layer:
The hard coating layer includes at least a TiAlN layer, but if the average layer thickness of the TiAlN layer is less than 0.5 μm, the effect of improving wear resistance imparted by the TiAlN layer cannot be sufficiently obtained, while the average layer thickness is If the thickness exceeds 10.0 μm, the strain in the TiAlN layer increases and the layer itself tends to break. Therefore, the average thickness of the TiAlN layer is set to 0.5 to 10.0 μm.

TiAlN層の平均組成:
TiAlN層を、
組成式:(TiAl1−x)N
で表した場合、0.10≦x≦0.35(ただし、xは原子比)を満足する平均組成を有することが必要である。
Ti成分の平均組成を表すxが0.10未満である場合には、六方晶構造のTiAlN結晶粒が形成されやすくなり、TiAlN層の硬度が低下し十分な耐摩耗性を得ることができない。
一方、Ti成分の平均組成を表すxが0.35を超える場合には、Al成分の組成割合が減少するため、TiAlN層の高温硬さおよび高温耐酸化性が低下する。
したがって、Ti成分の平均組成xは、0.10≦x≦0.35とする。
なお、前記組成式において、N/(Ti+Al+N)の値は、必ずしも、化学量論比である0.5である必要はなく、工具基体表面の汚染の影響などで不可避的に検出される炭素や酸素などの元素をのぞいてTi、Al、Nの含有割合の原子比を定量し、TiとAlとNの含有割合の原子比の合計に対するNの含有割合の原子比が0.45以上0.65以下の範囲であれば、本発明のTiAlN層において同等の効果が得られ特に問題は無い。
Average composition of TiAlN layer:
TiAlN layer,
Composition formula: (Ti x Al 1-x ) N
It is necessary to have an average composition that satisfies 0.10 ≦ x ≦ 0.35 (where x is an atomic ratio).
When x representing the average composition of the Ti component is less than 0.10, TiAlN crystal grains having a hexagonal structure are easily formed, the hardness of the TiAlN layer is lowered, and sufficient wear resistance cannot be obtained.
On the other hand, when x representing the average composition of the Ti component exceeds 0.35, the composition ratio of the Al component decreases, so that the high-temperature hardness and high-temperature oxidation resistance of the TiAlN layer decrease.
Accordingly, the average composition x of the Ti component is 0.10 ≦ x ≦ 0.35.
In the above composition formula, the value of N / (Ti + Al + N) does not necessarily need to be a stoichiometric ratio of 0.5. Carbon or carbon that is inevitably detected due to the influence of contamination on the surface of the tool base or the like. Excluding elements such as oxygen, the atomic ratio of the content ratio of Ti, Al, and N is quantified, and the atomic ratio of the content ratio of N to the total atomic ratio of the content ratios of Ti, Al, and N is 0.45 or more. In the range of 65 or less, the same effect can be obtained in the TiAlN layer of the present invention, and there is no particular problem.

TiAlN層中の微細結晶粒:
本発明のTiAlN層では、工具基体表面と平行な方向に測定したTiAlN結晶粒の幅が30〜100nmである微細結晶粒を含み、かつ結晶粒幅が100nmより大きい粗大結晶粒を含まず、前記微細結晶粒が前記TiAlN層の縦断面に占める面積割合は10〜70面積%とする。
ここで、微細結晶粒の結晶粒幅を30〜100nmと定め、かつ結晶粒幅が100nmより大きい粗大結晶粒を含めなかったのは、次の理由による。
結晶粒幅が100nmを超える過度に粗大なTiAlN結晶粒が存在すると、TiAlN層全体における粒界の長さが短くなるために、切削加工時に加わる衝撃を分散しにくくなるため、耐欠損性が低下する。
一方、微細結晶粒の結晶粒幅が30nm未満になると粒界が増えるため、切削加工時に被削材と粒界部との接触確率が高くなった結果、結晶粒の脱粒が起きやすくなるため、微細結晶粒による耐摩耗性の確保ができなくなるという理由による。
また、微細結晶粒の面積割合を、10〜70面積%と定めたのは、次の理由による。
微細結晶粒の面積割合が10面積%未満になると、TiAlN層中の超微粒結晶粒の割合が増加して粒界が増えるため、切削加工時に、粒内より相対的にもろい粒界部分での破壊が生じやすくなり、耐摩耗性が低下する。
一方、微細結晶粒の面積割合が70面積%を超えると、切削加工時の衝撃を分散化する役割を担う超微粒結晶粒の減少によって、耐欠損性が低下する。
Fine crystal grains in the TiAlN layer:
In the TiAlN layer of the present invention, the TiAlN crystal grains measured in a direction parallel to the tool substrate surface include fine crystal grains having a width of 30 to 100 nm and no coarse crystal grains having a crystal grain width of more than 100 nm, The area ratio of the fine crystal grains in the vertical section of the TiAlN layer is 10 to 70 area%.
Here, the reason why the crystal grain width of the fine crystal grain is set to 30 to 100 nm and the coarse crystal grain having a crystal grain width larger than 100 nm is not included is as follows.
When excessively coarse TiAlN crystal grains with a grain width exceeding 100 nm are present, the grain boundary length in the entire TiAlN layer is shortened, so that it is difficult to disperse the impact applied during cutting, resulting in a reduction in fracture resistance. To do.
On the other hand, since the grain boundaries increase when the crystal grain width of the fine crystal grains is less than 30 nm, the probability of contact between the work material and the grain boundary portion at the time of the cutting process is increased, so that the grains are likely to fall apart. This is because the wear resistance cannot be ensured by the fine crystal grains.
The reason why the area ratio of the fine crystal grains is set to 10 to 70 area% is as follows.
When the area ratio of the fine crystal grains is less than 10 area%, the ratio of the ultrafine crystal grains in the TiAlN layer increases and the grain boundaries increase. Breaking easily occurs and wear resistance decreases.
On the other hand, when the area ratio of the fine crystal grains exceeds 70 area%, the fracture resistance decreases due to the reduction of the ultrafine crystal grains that play a role of dispersing the impact during the cutting process.

また、本発明では、TiAlN層の縦断面において測定した場合、工具基体表面の法線と、立方晶構造を有する微細結晶粒の(001)の法線とのなす角度が20度以下である立方晶構造を有する前記微細結晶粒が、前記縦断面の微細結晶粒の全面積に占める面積割合を、10面積%以上(100面積%の場合も含む)とする。
これは、耐摩耗性に優れる(001)方位を有する立方晶構造の微細結晶粒のうち、工具基体表面の法線とのなす角度が20度以下となるような(001)方位を有する立方晶構造の微細結晶粒が多く存在する(10面積%以上)ことによって、切削加工時にTiAlN結晶粒の表面と被削材が接触した際に、いずれのTiAlN結晶粒も同一方向に均一に削られるため、偏摩耗の発生が抑えられ、その結果(001)方位を有する立方晶構造の微細結晶粒の耐摩耗性の効果を向上することができるからである。
仮に、工具基体表面の法線と、立方晶構造を有する微細結晶粒の(001)の法線とのなす角度が20度以下である立方晶構造を有する前記微細結晶粒の、前記縦断面の微細結晶粒の全面積に占める面積割合が10面積%未満であるような場合には、切削加工時に、各結晶粒がそれぞれ異なる方向に削られるため、切削加工の進展につれ偏摩耗が発生し、耐摩耗性の低下を招くことになる。
Further, in the present invention, when measured in the longitudinal section of the TiAlN layer, a cube whose angle formed by the normal line of the tool base surface and the (001) normal line of the fine crystal grains having a cubic structure is 20 degrees or less. The area ratio of the fine crystal grains having a crystal structure to the total area of the fine crystal grains in the longitudinal section is 10 area% or more (including the case of 100 area%).
This is because, among the fine crystal grains having a (001) orientation having excellent wear resistance, a cubic crystal having a (001) orientation such that the angle formed with the normal to the tool substrate surface is 20 degrees or less. Since there are many fine crystal grains with a structure (10 area% or more), when the surface of the TiAlN crystal grains comes into contact with the work material during cutting, any TiAlN crystal grains are uniformly cut in the same direction. This is because the occurrence of uneven wear is suppressed, and as a result, the effect of wear resistance of the fine crystal grains having a cubic structure having the (001) orientation can be improved.
Temporarily, the longitudinal cross section of the fine crystal grains having a cubic structure in which the angle formed by the normal line of the tool base surface and the normal line of (001) of the fine crystal grains having a cubic structure is 20 degrees or less. When the area ratio of the total area of the fine crystal grains is less than 10 area%, since each crystal grain is cut in a different direction at the time of cutting, uneven wear occurs as the cutting progresses, This leads to a decrease in wear resistance.

本発明の硬質被覆層は、前記したTiAlN層の単層構造として構成することができるが、
2層以上の積層構造として構成された硬質被覆層にあっては、該積層構造を構成する層のうちの少なくとも一つの層として前記TiAlN層を形成することもできる。
The hard coating layer of the present invention can be configured as a single layer structure of the TiAlN layer described above,
In the hard coating layer configured as a laminated structure of two or more layers, the TiAlN layer can be formed as at least one of the layers constituting the laminated structure.

微細結晶粒の結晶粒幅、微細結晶粒の面積割合、微細結晶粒の(001)の法線と工具基体表面の法線とのなす角度、ならびに度数分布の算出方法:
本発明のTiAlN層の微細結晶粒の結晶粒幅、結晶構造、面積割合及び工具基体表面に対する結晶方位の測定は、例えば、透過型電子顕微鏡に付属する結晶方位解析装置を用いて、TiAlN層を含む硬質被覆層の縦断面を観察、測定することにより求めることができる。
なお、本発明における「硬質被覆層の縦断面」とは、硬質被覆層と工具基体の界面(工具基体表面)に対して垂直方向の断面のことをいう。
透過型電子顕微鏡で、TiAlN層を含む硬質被覆層の縦断面を観察する方法は以下の通りである。まず、TiAlN層を含む硬質被覆層の縦断面を切り出した後、結晶粒径と同程度の厚さ(30nm)以下に研磨した切片をセットし、200kVに加速された電子線を前記切片の表面(すなわちTiAlN層を含む硬質被覆層に相当する表面)に照射することで観察を行う。
次にTiAlN層を含む硬質被覆層の縦断面の観察結果から、結晶粒幅、結晶構造、面積割合及び工具基体表面に対する結晶方位の解析範囲を決める方法は以下の通りである。
まず、硬質被覆層の縦断面の観察画像における、硬質被覆層と工具基体との界面上の2点を任意で選定する。その際、2点間を線分でつないだ長さは1000nmになるよう選定する。結晶方位の解析範囲は、前記線分と平行方向に1000nm(この方向を以下「解析範囲の横方向」と定義する)、垂直方向に400nm(この方向を以下「解析範囲の縦方向」と定義する)の長方形の範囲とする。その際、前記の範囲には全てTiAlN層の縦断面のみ含める(工具基体、ならびにTiAlN層以外の硬質被覆層は含めない)。
前記の測定範囲において、結晶方位のマップデータを得る解析方法は以下の通りである。前記切片の表面に、切片の表面の法線方向に対して0.5〜1.0度に傾けた電子線をPrecession(歳差運動) 照射しながら、電子線を任意のビーム径及び間隔でスキャンし、連続的に電子線回折パターンを取り込み、個々の測定点の結晶方位を解析する。なお、本測定に用いた回折パターンの取得条件は、カメラ長20cm、ビームサイズ2.2nmで、測定ステップは2.0nmである。
得られる電子線回折パターンから個々の結晶粒を判別するための解析方法は、以下の通りである。まず、測定点の隣接点同士の結晶方位が5度以上離れている場合、粒界に属する測定点と判断する。次に、粒界に属する測定点同士を線分でつなぎ合わせることで、前記線分に囲まれている部分を結晶粒と定義する。ただし、この線分がTiAlN層表面、TiAlN層と硬質被覆層が接する面、または工具基体表面と接する場合は、それぞれの表面または界面の粒界とみなす。そして解析範囲の横方向に平行な方向における粒界と粒界との距離から結晶粒幅を測定し、結晶粒幅が30nm以上かつ100nm以下の結晶粒を微細粒部とする。さらに、微細粒部内に含まれる測定点の全数を、結晶粒の測定点の全数で割ることにより、微細結晶粒の面積割合を算出する。なお、1つの測定点が占める面積は一定のため、測定点数の割合から面積割合が求められる。
工具基体表面の法線と立方晶構造を有する微細結晶粒の(001)の法線とのなす角度、ならびに角度数分布の算出方法について説明する。まず前記の結晶方位解析装置を用いて、工具基体表面1aの法線L1(工具基体表面1aと垂直な方向)に対して、微粒部内に含まれる測定点での結晶面である(001)面の法線L2がなす傾斜角(図1A、1B参照)を測定する。その傾斜角のうち、法線方向L1に対して0〜20度の範囲内(図1Aの0度から図1Bの20度までの範囲内)にある傾斜角を5度のピッチ毎に区分して各区分内に存在する割合を集計する。なお20度以上に関しては5度のピッチ毎に区分するのではなく、20度以上のものを全て1つの区分として集計する。その結果を、横軸を傾斜角区分とし、縦軸を割合とした傾斜角度数分布グラフ(図2)で表す。
以上1つの解析範囲において結晶粒幅、微細結晶粒の面積割合、ならびに微細結晶粒の(001)の法線とのなす角度、ならびに角度数分布の算出方法の算出方法について説明したが、実際観察、解析を行う際には5つの解析範囲を設定し、平均値を算出する。
なお、超微粒結晶粒(結晶粒幅30nm未満)ならびに粗大結晶粒(結晶粒幅100nmより大)の面積割合に関しても、微細結晶粒の面積割合と同様の方法で算出する。
Calculation method of crystal grain width, fine crystal grain area ratio, fine crystal grain (001) normal and tool substrate surface normal, and frequency distribution:
The crystal grain width, crystal structure, area ratio, and crystal orientation of the TiAlN layer of the present invention are measured with respect to the tool substrate surface using, for example, a crystal orientation analyzer attached to a transmission electron microscope. It can obtain | require by observing and measuring the longitudinal cross-section of the hard coating layer to contain.
In the present invention, the “longitudinal section of the hard coating layer” refers to a cross section perpendicular to the interface between the hard coating layer and the tool base (tool base surface).
The method of observing the longitudinal section of the hard coating layer including the TiAlN layer with a transmission electron microscope is as follows. First, a longitudinal section of a hard coating layer including a TiAlN layer is cut out, and then a section polished to a thickness (30 nm) or less comparable to the crystal grain size is set, and an electron beam accelerated to 200 kV is applied to the surface of the section. Observation is performed by irradiating the surface (that is, the surface corresponding to the hard coating layer including the TiAlN layer).
Next, the method for determining the analysis range of the crystal grain width, crystal structure, area ratio, and crystal orientation with respect to the tool base surface from the observation result of the longitudinal section of the hard coating layer including the TiAlN layer is as follows.
First, two points on the interface between the hard coating layer and the tool base in the observation image of the longitudinal section of the hard coating layer are arbitrarily selected. At that time, the length connecting the two points with a line segment is selected to be 1000 nm. The analysis range of the crystal orientation is 1000 nm in a direction parallel to the line segment (this direction is hereinafter defined as “the lateral direction of the analysis range”), and 400 nm in the vertical direction (hereinafter, this direction is defined as “the longitudinal direction of the analysis range”). )) Rectangle range. At that time, all the above ranges include only the longitudinal section of the TiAlN layer (not including the tool base and the hard coating layer other than the TiAlN layer).
An analysis method for obtaining crystal orientation map data in the measurement range is as follows. While irradiating the surface of the slice with an electron beam inclined at 0.5 to 1.0 degree with respect to the normal direction of the surface of the slice, the electron beam is irradiated at an arbitrary beam diameter and interval. Scan and continuously capture the electron diffraction pattern and analyze the crystal orientation of each measurement point. The acquisition conditions of the diffraction pattern used in this measurement are a camera length of 20 cm, a beam size of 2.2 nm, and a measurement step of 2.0 nm.
An analysis method for discriminating individual crystal grains from the obtained electron beam diffraction pattern is as follows. First, when the crystal orientations of the adjacent points of the measurement point are separated by 5 degrees or more, it is determined that the measurement point belongs to the grain boundary. Next, the measurement points belonging to the grain boundary are connected by a line segment, thereby defining a portion surrounded by the line segment as a crystal grain. However, when this line segment is in contact with the TiAlN layer surface, the surface where the TiAlN layer and the hard coating layer are in contact, or the surface of the tool substrate, it is regarded as the grain boundary of each surface or interface. Then, the crystal grain width is measured from the distance between the grain boundary in the direction parallel to the lateral direction of the analysis range, and the crystal grain having a crystal grain width of 30 nm or more and 100 nm or less is defined as a fine grain part. Further, the area ratio of the fine crystal grains is calculated by dividing the total number of measurement points included in the fine grain part by the total number of measurement points of the crystal grains. Since the area occupied by one measurement point is constant, the area ratio is obtained from the ratio of the number of measurement points.
A method of calculating the angle formed by the normal of the tool base surface and the (001) normal of the fine crystal grains having a cubic structure and the calculation of the angular number distribution will be described. First, using the crystal orientation analyzer, the (001) plane is a crystal plane at a measurement point included in the fine grain part with respect to the normal L1 of the tool base surface 1a (direction perpendicular to the tool base surface 1a). An inclination angle (see FIGS. 1A and 1B) formed by the normal L2 is measured. Among the inclination angles, the inclination angles within the range of 0 to 20 degrees (within the range from 0 degrees in FIG. 1A to 20 degrees in FIG. 1B) with respect to the normal direction L1 are divided every 5 degrees pitch. The percentages present in each category. In addition, about 20 degree | times or more, it does not classify | categorize for every pitch of 5 degree | times, but totals the thing of 20 degree | times or more as one division. The result is represented by a tilt angle number distribution graph (FIG. 2) in which the horizontal axis is the tilt angle section and the vertical axis is the ratio.
The calculation method of the calculation method of the crystal grain width, the area ratio of the fine crystal grains, the angle formed with the (001) normal of the fine crystal grains, and the angular number distribution has been described in one analysis range. When performing analysis, five analysis ranges are set, and an average value is calculated.
Note that the area ratio of the ultrafine crystal grains (the crystal grain width is less than 30 nm) and the coarse crystal grains (the crystal grain width is larger than 100 nm) is also calculated by the same method as the area ratio of the fine crystal grains.

TiAlN層の成膜方法:
本発明のTiAlN層は、例えば、スパッタリング装置とアークイオンプレーティング装置を併設した物理蒸着装置(以下、「SP/AIP装置」という)を用いたスパッタリングとアークイオンプレーティングの同時放電によって成膜することができる。
図3(a)、(b)に、本発明のTiAlN層を成膜するための、SP/AIP装置の概略図を示す。
図3(a)、(b)に示すSP/AIP装置の相対向する壁面に、アークイオンプレーティング用の所定組成のTi−Al合金カソード電極(ターゲット)を対向配置するとともに、同じく前記SP/AIP装置の他の相対向する壁面には、スパッタリング用の金属Tiカソード電極(ターゲット)を対向配置し、装置中央に設けられたテーブル上には、Ti−Al合金カソード電極(ターゲット)と金属Tiカソード電極(ターゲット)からほぼ等距離となる位置(例えば、図3(a)に示されるような4箇所)に、工具基体を載置する。
次いで、テーブル上で工具基体を自転させながら、工具基体を所定の温度範囲に加熱し、反応ガスを装置内に導入し、スパッタリングとアークイオンプレーティングを同時に行うことにより、本発明のTiAlN層を成膜することができる。
なお、この場合のスパッタリング条件とアークイオンプレーティング条件は、概ね、以下のとおりである。
・スパッタリング条件
スパッタリングターゲット(カソード電極):金属Ti
スパッタリング電流(A):6〜7
・アークイオンプレーティング条件
TiAl合金ターゲット(カソード電極)のTi組成(原子%):5〜30
アーク電流(A):100〜110
・共通する条件
ガス圧力(Pa):2〜2.5
工具基体温度(℃):450〜500
バイアス電圧(−V):300〜320
Method for forming TiAlN layer:
The TiAlN layer of the present invention is formed, for example, by simultaneous discharge of sputtering and arc ion plating using a physical vapor deposition apparatus (hereinafter referred to as “SP / AIP apparatus”) provided with a sputtering apparatus and an arc ion plating apparatus. be able to.
3A and 3B are schematic views of an SP / AIP apparatus for forming a TiAlN layer of the present invention.
A Ti-Al alloy cathode electrode (target) having a predetermined composition for arc ion plating is disposed opposite to the opposing wall surfaces of the SP / AIP apparatus shown in FIGS. 3 (a) and 3 (b). A metal Ti cathode electrode (target) for sputtering is disposed opposite to the opposite wall surfaces of the AIP apparatus, and a Ti-Al alloy cathode electrode (target) and a metal Ti are placed on a table provided in the center of the apparatus. The tool base is placed at positions (for example, four places as shown in FIG. 3A) that are substantially equidistant from the cathode electrode (target).
Next, while rotating the tool base on the table, the tool base is heated to a predetermined temperature range, a reaction gas is introduced into the apparatus, and sputtering and arc ion plating are performed simultaneously, thereby forming the TiAlN layer of the present invention. A film can be formed.
In this case, sputtering conditions and arc ion plating conditions are generally as follows.
Sputtering conditions Sputtering target (cathode electrode): metal Ti
Sputtering current (A): 6-7
Arc ion plating conditions Ti composition (atomic%) of TiAl alloy target (cathode electrode): 5 to 30
Arc current (A): 100-110
Common conditions N 2 gas pressure (Pa): 2 to 2.5
Tool substrate temperature (° C.): 450 to 500
Bias voltage (-V): 300-320

本発明の被覆工具は、硬質被覆層が少なくともTiAlN層を含み、該TiAlN層は、結晶粒幅が30〜100nmである微細結晶粒を含み、かつ結晶粒幅が100nmより大きい粗大結晶粒を含まず、前記微細結晶粒がTiAlN層の縦断面に占める面積割合は10〜70面積%であり、さらに、立方晶構造を有する微細結晶粒の(001)の法線と工具基体表面の法線とのなす角度が20度以下である立方晶構造を有する前記微細結晶粒は、前記縦断面の微細結晶粒の全面積の10面積%以上を占めることから、微細結晶粒の存在によって耐摩耗性を向上させつつ、一方、超微粒結晶粒が切削加工時の衝撃を緩和することができるため、本発明の被覆工具は、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する高速断続切削加工条件下で、すぐれた耐欠損性と耐摩耗性を両立することができる。   In the coated tool of the present invention, the hard coating layer includes at least a TiAlN layer, the TiAlN layer includes fine crystal grains having a crystal grain width of 30 to 100 nm, and includes coarse crystal grains having a crystal grain width of greater than 100 nm. The area ratio of the fine crystal grains in the longitudinal section of the TiAlN layer is 10 to 70 area%. Further, (001) normal line of the fine crystal grains having a cubic structure and the normal line of the tool base surface Since the fine crystal grains having a cubic structure with an angle of 20 degrees or less occupy 10% by area or more of the total area of the fine crystal grains in the longitudinal section, wear resistance is achieved by the presence of the fine crystal grains. On the other hand, since the ultrafine crystal grains can alleviate the impact during cutting, the coated tool of the present invention is accompanied by high heat generation, and also has an impact and intermittent high on the cutting edge. Load acts Fast intermittent cutting processing conditions, it is possible to achieve both excellent chipping resistance and wear resistance.

工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対する微細結晶粒の結晶面である(001)面の法線がなす傾斜角が0度の場合を示した模式図である。Schematic diagram showing a case where the inclination angle formed by the normal of the (001) plane, which is the crystal plane of the fine crystal grains, with respect to the normal of the tool base surface (direction perpendicular to the tool base surface in the cross-section polished surface) is 0 degree. is there. 工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対する微細結晶粒の結晶面である(001)面の法線がなす傾斜角が20度の場合を示した模式図である。FIG. 6 is a schematic diagram showing a case where the inclination angle formed by the normal line of the (001) plane, which is the crystal plane of the fine crystal grains, with respect to the normal line of the tool base surface (direction perpendicular to the tool base surface in the cross-section polished surface) is 20 degrees. is there. 工具基体表面の法線と立方晶構造を有する微細結晶粒の(001)の法線とのなす傾斜角度数分布の一例を示すグラフである。It is a graph which shows an example of inclination-angle number distribution which the normal line of a tool base | substrate surface and the normal line of (001) of the fine crystal grain which has a cubic crystal structure make. 本発明被覆工具のTiAlN層を成膜するのに用いるスパッタリング装置とアークイオンプレーティング装置を併設した物理蒸着装置(SP/AIP装置)の概略図を示し、(a)は概略平面図、(b)は概略正面図である。The schematic diagram of the physical vapor deposition apparatus (SP / AIP apparatus) which used together the sputtering apparatus used for film-forming the TiAlN layer of this invention coated tool and an arc ion plating apparatus is shown, (a) is a schematic plan view, (b) ) Is a schematic front view.

つぎに、この発明の被覆工具を実施例により具体的に説明する。
なお、具体的な説明としては、WC基超硬合金を工具基体とする被覆工具について説明するが、TiCN基サーメットあるいは立方晶窒化硼素焼結体を工具基体とする被覆工具についても同様である。
Next, the coated tool of the present invention will be specifically described with reference to examples.
As a specific description, a coated tool using a WC-based cemented carbide as a tool base will be described, but the same applies to a coated tool using a TiCN-based cermet or a cubic boron nitride sintered body as a tool base.

原料粉末として、いずれも1〜3μmの平均粒径を有する、Co粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力でプレス成形し、これらの圧粉成形体を1370〜1470℃の範囲内の所定温度に1時間保持の条件で真空焼結し、所定寸法となるように加工して、ISO規格SEEN1203AFENのインサート形状をもったWC基超硬合金工具基体1〜3を製造した。 As raw material powders, Co powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 2 C 3 powder, and WC powder, all having an average particle diameter of 1 to 3 μm, were prepared. After adding the wax, mixing in a ball mill in acetone for 24 hours, drying under reduced pressure, press molding at a pressure of 100 MPa, and these compacts are in the range of 1370 to 1470 ° C. WC-based cemented carbide tool bases 1 to 3 having an ISO standard SEEN1203AFEN insert shape were manufactured by vacuum sintering under conditions of holding at a predetermined temperature for 1 hour and processing to a predetermined size.

上記の工具基体1〜3を、アセトン中で超音波洗浄し、乾燥した後、スパッタリング用金属Tiカソード電極(ターゲット)とアークイオンプレーティング用の所定組成のTi−Al合金カソード電極(ターゲット)が配置されたSP/AIP装置内に配置し、かつ、その配置位置は、SP/AIP装置内に設けられた工具基体装着用のテーブルの中心軸から離れた位置であって、Ti−Al合金カソード電極(ターゲット)と金属Tiカソード電極(ターゲット)からほぼ等距離となる位置(例えば、図3(a)に示す4箇所)に配置した。
SP/AIP装置内には、装置内を排気して真空に保持しながら、ヒータで工具基体を400℃に加熱した後、前記テーブル上で自転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ、Ti−Al合金カソード電極(ターゲット)に100Aのアーク電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄した。
ついで、装置内に反応ガスとして窒素ガスを導入して表2に示す窒素圧にすると共に、前記テーブル上で自転する工具基体の温度を表2に示す温度に加熱維持し、表2に示すバイアス電圧を工具基体に印加し、表2に示す所定組成のTi−Al合金カソード電極(ターゲット)に表2に示すアーク電流を流してアーク放電を発生させ、アークイオンプレーティングを行った。
さらに、前記アークイオンプレーティングと同時に、工具基体と金属Tiカソード電極(ターゲット)に表2に示すバイアスを印加するとともに、金属Tiカソード電極(ターゲット)に表2に示す電流を印加することにより、スパッタリングを行った。
上記の工程で、スパッタリングとアークイオンプレーティングを同時に行うことにより、本発明のTiAlN層を成膜した表4に示す本発明被覆工具1〜10(以下、本発明工具1〜10という)を製造した。
After the tool bases 1 to 3 are ultrasonically cleaned in acetone and dried, a metal Ti cathode electrode (target) for sputtering and a Ti—Al alloy cathode electrode (target) having a predetermined composition for arc ion plating are obtained. Arranged in the arranged SP / AIP apparatus, and the arrangement position is a position away from the central axis of the table for mounting the tool base provided in the SP / AIP apparatus, and is a Ti-Al alloy cathode. The electrode (target) and the metal Ti cathode electrode (target) were arranged at substantially equal distances (for example, four places shown in FIG. 3A).
In the SP / AIP apparatus, the tool base is heated to 400 ° C. with a heater while the inside of the apparatus is evacuated and kept in vacuum, and then a DC bias voltage of −1000 V is applied to the tool base that rotates on the table. In addition, an arc current of 100 A was passed through the Ti—Al alloy cathode electrode (target) to generate an arc discharge, and the tool base surface was bombarded.
Next, nitrogen gas is introduced as a reaction gas into the apparatus to obtain the nitrogen pressure shown in Table 2, and the temperature of the tool base rotating on the table is maintained at the temperature shown in Table 2, and the bias shown in Table 2 is used. A voltage was applied to the tool base, and an arc discharge was generated by applying an arc current shown in Table 2 to a Ti—Al alloy cathode electrode (target) having a predetermined composition shown in Table 2 to perform arc ion plating.
Furthermore, simultaneously with the arc ion plating, applying the bias shown in Table 2 to the tool base and the metal Ti cathode electrode (target), and applying the current shown in Table 2 to the metal Ti cathode electrode (target), Sputtering was performed.
By carrying out sputtering and arc ion plating at the same time in the above steps, the present coated tools 1 to 10 (hereinafter referred to as the present tools 1 to 10) shown in Table 4 on which the TiAlN layer of the present invention is formed are manufactured. did.

比較の目的で、図3に示すSP/AIP装置を用いて、工具基体1、2のそれぞれに、本発明工具1〜10の場合と同様な条件でボンバード洗浄を施したのち、表3に示すアークイオンプレーティング条件のみでTiAlN層を形成することにより、表5に示す比較例被覆工具1〜10(以下、比較例工具1〜10という)をそれぞれ製造した。
また、参考のため、表3に示すスパッタリング条件のみでTiN層を形成することにより、表5に示す参考被覆工具1(以下、参考例工具1という)を製造した。
For comparison purposes, the SP / AIP apparatus shown in FIG. 3 is used to perform bombard cleaning on each of the tool bases 1 and 2 under the same conditions as in the case of the tools 1 to 10 of the present invention. By forming the TiAlN layer only under the arc ion plating conditions, comparative example coated tools 1 to 10 (hereinafter referred to as comparative example tools 1 to 10) shown in Table 5 were produced.
For reference, a reference coated tool 1 (hereinafter referred to as Reference Example Tool 1) shown in Table 5 was manufactured by forming a TiN layer only under the sputtering conditions shown in Table 3.

上記で作製した本発明工具1〜10、比較例工具1〜10のTiAlN層および参考例工具1のTiN層について、工具基体に垂直な断面を走査型電子顕微鏡を用いて複数視野観察し、5点の層厚の平均値から、平均層厚を算出した。
また、本発明工具1〜10、比較例工具1〜10のTiAlN層におけるAlとTiの合量に対するTiの平均組成(原子比)を電子線マイクロプローブアナライザ(EPMA)を用いて測定した。TiAlN層の縦断面を研磨した試料の表面に電子線を照射し、発生した特性X線の解析結果からTiの平均組成を算出し、10点の平均値を求めた。
表4、表5に、それぞれの値を示す。
For the TiAlN layers of the inventive tools 1 to 10 and the comparative example tools 1 to 10 and the TiN layer of the reference example tool 1 produced as described above, the cross section perpendicular to the tool base is observed with a plurality of fields of view using a scanning electron microscope. The average layer thickness was calculated from the average value of the point layer thicknesses.
Moreover, the average composition (atomic ratio) of Ti with respect to the total amount of Al and Ti in the TiAlN layers of the inventive tools 1 to 10 and comparative tools 1 to 10 was measured using an electron beam microprobe analyzer (EPMA). An electron beam was irradiated to the surface of the sample whose longitudinal section of the TiAlN layer was polished, and the average composition of Ti was calculated from the analysis result of the generated characteristic X-ray, and the average value of 10 points was obtained.
Tables 4 and 5 show the respective values.

また、本発明工具1〜10および比較例工具1〜10のTiAlN層について、透過型電子顕微鏡を用いて、TiAlN層中の結晶粒幅、微細結晶粒(結晶粒幅:30〜100nm)、超微粒結晶粒(結晶粒幅30nm未満)、粗大結晶粒(結晶粒幅100nmより大)の面積割合、ならびに微細結晶粒の結晶構造、工具基体表面の法線と立方晶構造を有する微細結晶粒の(001)の法線とのなす角度の算出を行った。
具体的には、以下のとおりである。
結晶粒幅は以下のように算出する。まず、測定点の隣接点同士の結晶方位が5度以上離れている場合、粒界に属する測定点と判断した。次に、粒界に属する測定点同士を線分でつなぎ合わせることで、前記線分に囲まれている部分を結晶粒と定義した。ただし、この線分が表面、または基体となす界面と接する場合は、この表面または界面の粒界とみなす。そして解析範囲の横方向に平行な方向における粒界と粒界との距離から結晶粒幅を測定した。
微細結晶粒の面積割合は、結晶粒幅が30nm以上かつ100nm以下の結晶粒を微細粒部とし、微細粒部内に含まれる測定点の全数を、結晶粒の測定点の全数で割ることにより、微細結晶粒の面積割合を算出した。なお、1つの測定点が占める面積は一定のため、測定点数の割合から面積割合が求められる。なお、超微粒結晶粒は結晶粒幅を30nm未満、粗大結晶粒は100nmより大きい結晶粒として微細結晶粒と同様の方法で面積割合を求めた。
微細粒部の結晶構造は、微細粒部の電子回折像から立方晶か六方晶かを判断した。
工具基体表面の法線と立方晶構造を有する微細結晶粒の(001)の法線とのなす角度は、工具基体表面1aの法線L1(工具基体表面1aに垂直な方向)に対して、微細粒部に含まれる測定点での結晶面である(001)面の法線L2がなす傾斜角(図1A、1B参照)を測定した。
表4、表5に、それぞれの値を示す。
Moreover, about the TiAlN layer of this invention tools 1-10 and comparative example tools 1-10, using a transmission electron microscope, the crystal grain width in a TiAlN layer, a fine crystal grain (crystal grain width: 30-100 nm), super Area ratio of fine crystal grains (grain width less than 30 nm), coarse crystal grains (greater than grain width 100 nm), crystal structure of fine crystal grains, fine crystal grains having normal line and cubic structure of tool base surface The angle formed with the normal line of (001) was calculated.
Specifically, it is as follows.
The crystal grain width is calculated as follows. First, when the crystal orientations of the adjacent points of the measurement point are separated by 5 degrees or more, it is determined that the measurement point belongs to the grain boundary. Next, the measurement points belonging to the grain boundaries were connected by line segments, and the portion surrounded by the line segments was defined as crystal grains. However, when this line segment is in contact with the surface or the interface with the substrate, it is regarded as the grain boundary of this surface or interface. And the crystal grain width was measured from the distance between the grain boundaries in the direction parallel to the lateral direction of the analysis range.
The area ratio of the fine crystal grains is a crystal grain having a crystal grain width of 30 nm or more and 100 nm or less as a fine grain part, and the total number of measurement points included in the fine grain part is divided by the total number of measurement points of the crystal grains. The area ratio of fine crystal grains was calculated. Since the area occupied by one measurement point is constant, the area ratio is obtained from the ratio of the number of measurement points. The ultrafine crystal grains have crystal grain widths of less than 30 nm, and the coarse crystal grains have crystal grains larger than 100 nm, and the area ratio was determined in the same manner as the fine crystal grains.
The crystal structure of the fine grain part was judged as cubic or hexagonal from the electron diffraction image of the fine grain part.
The angle formed between the normal of the tool base surface and the normal of (001) of the fine crystal grains having a cubic structure is relative to the normal L1 of the tool base surface 1a (direction perpendicular to the tool base surface 1a). The inclination angle (see FIGS. 1A and 1B) formed by the normal line L2 of the (001) plane, which is the crystal plane at the measurement point included in the fine grain part, was measured.
Tables 4 and 5 show the respective values.



次いで、本発明工具1〜10、比較例工具1〜10および参考例工具1について、以下の条件で、高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
切削試験: 乾式高速正面フライス、センターカット切削加工
カッタ径: 125 mm、
被削材: JIS・SCM445 幅100mm、長さ380mmのブロック材、
切削速度: 355 m/min、
切り込み: 2.0 mm、
一刃送り量: 0.21 mm/刃、
切削時間: 8 分、
表6に、試験結果を示す。
Next, the inventive tools 1 to 10, the comparative tools 1 to 10 and the reference tool 1 were subjected to a dry high-speed face milling, which is a kind of high-speed interrupted cutting, and a center cut cutting test under the following conditions. The flank wear width was measured.
Cutting test: Dry high-speed face mill, center cut cutter diameter: 125 mm,
Work material: JIS / SCM445 Block material with a width of 100 mm and a length of 380 mm,
Cutting speed: 355 m / min,
Cutting depth: 2.0 mm,
Single blade feed amount: 0.21 mm / tooth,
Cutting time: 8 minutes,
Table 6 shows the test results.

表6に示される結果から、本発明の被覆工具は、TiAlN層が10〜70面積%の微細結晶粒を含み、さらに、該微細結晶粒の(001)の法線と工具基体表面の法線とのなす角度が20度以下である微細結晶粒が、微細結晶粒の全面積の10面積%以上を占めることから、該TiAlN層の微細結晶粒の存在が耐摩耗性を高め、一方、超微粒結晶粒によって、切削加工時の衝撃が緩和されるため、合金鋼の高速断続切削加工において、すぐれた耐欠損性と耐摩耗性を発揮する。   From the results shown in Table 6, in the coated tool of the present invention, the TiAlN layer contains fine crystal grains of 10 to 70 area%, and the (001) normal line of the fine crystal grain and the normal line of the tool base surface. Since the fine crystal grains having an angle of 20 degrees or less occupy 10% by area or more of the total area of the fine crystal grains, the presence of the fine crystal grains in the TiAlN layer increases the wear resistance, The fine crystal grains relieve the impact during cutting, and thus exhibit excellent fracture resistance and wear resistance in high-speed intermittent cutting of alloy steel.

これに対して、TiAlN層中に、10〜70面積%の微細結晶粒が存在していない比較例工具2、4、6、7、8と参考例工具1、あるいは、微細結晶粒の(001)の法線と工具基体表面の法線とのなす角度が20度以下である微細結晶粒が、微細結晶粒の全面積の10面積%以上存在しない比較例工具1、3、5、9、10と参考例工具1、また、粗大結晶粒が存在する比較例工具2、参考例工具1においては、欠損の発生あるいは耐摩耗性の低下によって、比較的短時間で使用寿命に至ることが明らかである。   On the other hand, the comparative tool 2, 4, 6, 7, 8 and the reference tool 1 or (001) of the fine crystal grains in which 10 to 70 area% of fine crystal grains are not present in the TiAlN layer. Comparative tool 1, 3, 5, 9, in which the fine crystal grains whose angle formed between the normal line of (1) and the normal line of the tool substrate surface is 20 degrees or less do not exist in an area of 10 area% or more of the total area of the fine crystal grains 10 and the reference example tool 1, and the comparative example tool 2 and the reference example tool 1 in which coarse crystal grains are present, it is apparent that the service life is reached in a relatively short time due to the occurrence of defects or a decrease in wear resistance. It is.

この発明の被覆工具は、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する合金鋼などの高速断続切削加工に供した場合に、すぐれた耐欠損性とともに長期の使用に亘ってすぐれた耐摩耗性を発揮するものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。

The coated tool according to the present invention has excellent fracture resistance when it is subjected to high-speed intermittent cutting such as alloy steel that is accompanied by high heat generation and impact and intermittent high load acts on the cutting edge. Since it exhibits excellent wear resistance over a long period of use, it can satisfactorily respond to the FA of the cutting device, the labor saving and energy saving of the cutting, and the cost reduction.

Claims (1)

WC基超硬合金、TiCN基サーメットおよび立方晶窒化硼素焼結体のいずれかからなる工具基体表面に、0.5〜10.0μmの平均層厚のTiとAlの複合窒化物層を少なくとも含む硬質被覆層が設けられた表面被覆切削工具において、
(a)前記TiとAlの複合窒化物層は、その組成を、
組成式:(TiAl1−x)N
で表した場合、0.10≦x≦0.35(ただし、xは原子比)を満足する平均組成を有し、
(b)前記TiとAlの複合窒化物層の縦断面において、工具基体表面と平行な方向に測定した結晶粒幅が30〜100nmである微細結晶粒を含み、かつ結晶粒幅が100nmより大きい粗大結晶粒を含まず、
(c)前記TiとAlの複合窒化物層の縦断面において、前記微細結晶粒が前記縦断面に占める面積割合は10〜70面積%であり、
(d)前記TiとAlの複合窒化物層の縦断面において、工具基体表面の法線と立方晶構造を有する微細結晶粒の(001)の法線とのなす角度が20度以下である立方晶構造を有する前記微細結晶粒が、前記縦断面の微細結晶粒の全面積に占める面積割合は、10面積%以上であることを特徴とする表面被覆切削工具。





















At least a composite nitride layer of Ti and Al having an average layer thickness of 0.5 to 10.0 μm is included on the surface of a tool base made of any one of a WC-based cemented carbide, a TiCN-based cermet, and a cubic boron nitride sintered body. In surface-coated cutting tools provided with a hard coating layer,
(A) The composite nitride layer of Ti and Al has the composition
Composition formula: (Ti x Al 1-x ) N
Represented by 0.10 ≦ x ≦ 0.35 (where x is an atomic ratio),
(B) In the longitudinal section of the composite nitride layer of Ti and Al, fine grain having a crystal grain width measured in a direction parallel to the surface of the tool base is 30 to 100 nm, and the crystal grain width is larger than 100 nm Does not contain coarse grains
(C) In the longitudinal section of the composite nitride layer of Ti and Al, the area ratio of the fine crystal grains in the longitudinal section is 10 to 70 area%,
(D) In the longitudinal section of the composite nitride layer of Ti and Al, the angle formed by the normal of the tool base surface and the (001) normal of the fine crystal grains having a cubic structure is 20 degrees or less. The surface-coated cutting tool characterized in that the area ratio of the fine crystal grains having a crystal structure to the total area of the fine crystal grains in the longitudinal section is 10 area% or more.





















JP2017061784A 2017-03-27 2017-03-27 Surface-coated cutting tool Pending JP2018161736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017061784A JP2018161736A (en) 2017-03-27 2017-03-27 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017061784A JP2018161736A (en) 2017-03-27 2017-03-27 Surface-coated cutting tool

Publications (1)

Publication Number Publication Date
JP2018161736A true JP2018161736A (en) 2018-10-18

Family

ID=63860707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017061784A Pending JP2018161736A (en) 2017-03-27 2017-03-27 Surface-coated cutting tool

Country Status (1)

Country Link
JP (1) JP2018161736A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131360A (en) * 2019-02-20 2020-08-31 三菱マテリアル株式会社 Surface-coated cutting tool
JP2020151798A (en) * 2019-03-19 2020-09-24 三菱マテリアル株式会社 Surface-coated cutting tool
US20210402486A1 (en) * 2018-09-28 2021-12-30 Mitsubishi Materials Corporation Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210402486A1 (en) * 2018-09-28 2021-12-30 Mitsubishi Materials Corporation Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
US11998992B2 (en) * 2018-09-28 2024-06-04 Mitsubishi Materials Corporation Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2020131360A (en) * 2019-02-20 2020-08-31 三菱マテリアル株式会社 Surface-coated cutting tool
JP7144747B2 (en) 2019-02-20 2022-09-30 三菱マテリアル株式会社 surface coated cutting tools
JP2020151798A (en) * 2019-03-19 2020-09-24 三菱マテリアル株式会社 Surface-coated cutting tool
JP7217866B2 (en) 2019-03-19 2023-02-06 三菱マテリアル株式会社 surface coated cutting tools

Similar Documents

Publication Publication Date Title
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6394898B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
CN103801718B (en) Surface-coated cutting tool
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
CN104108014B (en) Hard coating layer plays the resistance to surface-coated cutting tool for collapsing knife
JP6481897B2 (en) Surface coated cutting tool
JP2016137549A (en) Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
JP7068646B2 (en) Surface coating cutting tool
JP2016005863A (en) Surface-coated cutting tool with hard coating layer showing excellent chipping resistance
CN107073590A (en) Hard coating layer plays the excellent resistance to surface-coated cutting tool for collapsing knife
JPWO2014136755A1 (en) Coated cutting tool
CN104789938A (en) Surface coating cutting tool hard coating layer of which gives play to excellent anti-tipping performance
JP2017064845A (en) Surface coating cutting tool excellent in chipping resistance and abrasion resistance
JP2018161736A (en) Surface-coated cutting tool
CN107073593A (en) Surface-coated cutting tool
JP2015120224A (en) Surface-coated cutting tool
JP6850995B2 (en) Surface coating cutting tool
JP6604138B2 (en) Surface-coated cutting tool having excellent chipping resistance and wear resistance with a hard coating layer and method for producing the same
JP7205709B2 (en) surface coated cutting tools
JP2016036873A (en) Surface-coated cutting tool excellent in wear-resistance
JP2019010707A (en) Surface-coated cutting tool of which hard coating layer exhibits excellent abrasion resistance and chipping resistance
CN107000069A (en) Surface-coated cutting tool
JP2018051705A (en) Surface-coated cutting tool