JP2018160802A - 振動素子、電子デバイス、電子機器および移動体 - Google Patents

振動素子、電子デバイス、電子機器および移動体 Download PDF

Info

Publication number
JP2018160802A
JP2018160802A JP2017057138A JP2017057138A JP2018160802A JP 2018160802 A JP2018160802 A JP 2018160802A JP 2017057138 A JP2017057138 A JP 2017057138A JP 2017057138 A JP2017057138 A JP 2017057138A JP 2018160802 A JP2018160802 A JP 2018160802A
Authority
JP
Japan
Prior art keywords
vibration element
arm
vibration
arm portion
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2017057138A
Other languages
English (en)
Other versions
JP2018160802A5 (ja
Inventor
明法 山田
Akinori Yamada
明法 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2017057138A priority Critical patent/JP2018160802A/ja
Publication of JP2018160802A publication Critical patent/JP2018160802A/ja
Publication of JP2018160802A5 publication Critical patent/JP2018160802A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

【課題】熱弾性損失が抑制され、高いQ値を有する振動素子を提供する。【解決手段】振動素子1は、第1方向に屈曲振動する腕部12を含み、腕部12の長手方向を第2方向とし、第1方向および第2方向と交差する方向を第3方向とした場合に、腕部12は、第1方向における2つの端部領域と、第3方向からの平面視において2つの端部領域の間に位置し、第3方向に凸である凸部14と、を含み、且つ、W<((πk)/(2ρCpf))1/2を満たす。【選択図】図1A

Description

本発明は、振動素子、この振動素子を備えた電子デバイス、電子機器および移動体に関する。
一般的に、携帯電話等の移動体通信機、電波時計、ICカード等の民生用機器の基準周波数源として振動子(圧電振動子やMEMS振動子等)が広く用いられている。近年では、民生用機器の小型化が進むのに伴い、それに用いられる振動子に対し小型化の要求が強まっている。
特に、屈曲振動を用いた振動子においては、小型化を図ると、熱弾性損失に伴うQ値の低下も生じてしまうという課題があった。つまり、屈曲振動する振動子において、振動子の屈曲により生じる圧縮あるいは引張(伸張)の歪によって、振動子の温度変化が生じる。具体的には圧縮歪の部位は温度上昇し、引張歪の部位では温度下降する。従って、屈曲振動する振動子では、屈曲方向の一方の面側に圧縮歪が生じると、他方の面側では引張歪が生じ、振動子の一方の面側から他方の面側に温度勾配が発生する。この温度勾配を均衡させるために熱移動が振動素子内部に生じ、これが振動エネルギーの損失、すなわち熱弾性損失を生じ、Q値の低下を招いていた。
そこで、特許文献1では、振動片に屈曲振動方向に突起する凸部を設けることで、屈曲振動によって歪の発生を抑圧し、温度の上昇あるいは下降の無い部位を振動片表面に形成している。そのため、屈曲振動によって振動片の表面の温度の上昇あるいは下降が生じても、温度変化が無い凸部が振動片表面に形成されているため、短時間で熱移動が行われ振動片の温度平衡が維持し易くなり、熱弾性損失によるQ値の低下を抑制することができる。
特開2007−181131号公報
本発明は上述した課題に鑑みて為されたものであり、その目的とするところは、振動片(振動素子)の小型化と共に、熱弾性損失に伴うQ値の低下を抑制する新たな手法を提案することにある。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の適用例又は形態として実現することが可能である。
[適用例1]本適用例に係る振動素子は、第1方向に屈曲振動する腕部を含み、前記腕部の長手方向を第2方向とし、前記第1方向および前記第2方向と交差する方向を第3方向とした場合に、前記腕部は、前記第1方向における2つの端部領域と、前記第3方向からの平面視において前記2つの端部領域の間に位置し、前記第3方向に凸である凸部と、を含み、且つ、前記屈曲振動の固有周波数をf、前記腕部の質量密度をρ、前記腕部の熱容量をCp、前記腕部の前記第1方向の熱伝導率をk、前記腕部の前記第1方向の長さをW、とした場合、W<((πk)/(2ρCpf))1/2を満たす。
本適用例の振動素子によれば、W<((πk)/(2ρCpf))1/2の等温的領域において、振動素子の腕部の両端部の間に、振動方向と交差する第3方向に凸である凸部が設けられているため、屈曲振動によって腕部の表面に温度の上昇あるいは下降が生じても、凸部が設けられた領域での熱移動が早まり、短時間で行われる。そのため、振動素子の温度平衡が維持し易くなり、熱弾性損失によるQ値の低下が抑制され、信頼性の高い、安定した共振周波数を出力する振動素子を得ることができる。
[適用例2]上記適用例に記載の振動素子において、前記第2方向において、前記腕部と連続する基部を含み、前記凸部は、前記第2方向に沿って、前記腕部の長さの前記基部から1/3以内の範囲に配置されていることが好ましい。
本適用例によれば、屈曲振動による歪は基部に近い位置が最大となり、基部から離れるに従い歪が小さくなる。そのため、凸部を腕部の長さの基部から1/3以内の範囲に配置することにより、屈曲振動による歪の大きい領域、つまり、腕部の表面の温度の上昇あるいは下降が大きい領域で効率的に熱移動を行うことができるので、熱弾性損失によるQ値の低下を抑制することができる。
[適用例3]上記適用例に記載の振動素子において、前記凸部の前記第2方向における長さは、前記腕部の長さよりも長いことが好ましい。
本適用例によれば、凸部の第2方向における長さが腕部の長さよりも長いので、腕部および腕部以外に生じる歪による熱についても効率的に熱移動させることができ、熱弾性損失によるQ値の低下を抑制することができる。
[適用例4]上記適用例に記載の振動素子において、前記凸部は、前記基部と前記腕部とに連続して配置されていることが好ましい。
本適用例によれば、凸部が基部と腕部とに連続して配置されているので、基部に生じる歪による熱についても効率的に熱移動させることができ、熱弾性損失によるQ値の低下を抑制することができる。
[適用例5]上記適用例に記載の振動素子において、前記腕部の前記基部とは反対側に配置された錘部を含み、前記凸部は、前記錘部と前記腕部とに連続して配置されていることが好ましい。
本適用例によれば、凸部が錘部と腕部とに連続して配置されているので、錘部に生じる歪による熱についても効率的に熱移動させることができ、熱弾性損失によるQ値の低下を抑制することができる。
[適用例6]本適用例に係る電子デバイスは、上記適用例に記載の振動素子と、前記振動素子を発振させる発振回路と、を備えている。
本適用例によれば、熱弾性損失が抑制され高いQ値を有し、所望の共振周波数を安定して取り出すことができる振動素子を備えることにより、所望の共振周波数を安定して取り出すことができる電子デバイスを得ることができる。
[適用例7]本適用例に係る電子機器は、上記適用例に記載の振動素子を備えている。
本適用例によれば、熱弾性損失が抑制され高いQ値を有し、所望の共振周波数を安定して取り出すことができる振動素子を備えることにより、高性能な電子機器を得ることができる。
[適用例8]本適用例に係る移動体は、上記適用例に記載の振動素子を備えている。
本適用例によれば、熱弾性損失が抑制され高いQ値を有し、所望の共振周波数を安定して取り出すことができる振動素子を備えることにより、高性能な移動体を得ることができる。
第1実施形態に係る振動素子の構成を示す概略平面図。 図1AのA1−A1線における概略断面図。 振動素子の振動状態における熱の発生について説明する概略平面図。 振動素子の振動状態における熱の発生源を説明する概略断面図。 振動素子の振動状態における熱流促進部を説明する概略断面図。 振動素子の等温的領域および断熱的領域について説明する模式図。 変形例1に係る振動素子の凸部の概略断面図。 変形例2に係る振動素子の凸部の概略断面図。 変形例3に係る振動素子の凸部の概略断面図。 変形例4に係る振動素子の凸部の概略断面図。 変形例5に係る振動素子の凸部の概略断面図。 変形例6に係る振動素子の凸部の概略断面図。 第2実施形態に係る振動素子の構成を示す概略平面図。 第3実施形態に係る振動素子の構成を示す概略平面図。 第4実施形態に係る振動素子の構成を示す概略平面図。 図7AのA2−A2線における概略断面図。 第5実施形態に係る振動素子の構成を示す概略平面図。 第6実施形態に係る振動素子の構成を示す概略平面図。 電子デバイスの一例としての発振器の構成を示す概略断面図。 電子機器の一例としてのモバイル型のパーソナルコンピューターの構成を示す斜視図。 電子機器の一例としての携帯電話機の構成を示す斜視図。 電子機器の一例としてのデジタルスチールカメラの構成を示す斜視図。 移動体の一例としての自動車を概略的に示す斜視図。
以下に本発明を具体化した実施形態について、図面を参照して説明する。以下は、本発明の一実施形態であって、本発明を限定するものではない。なお、以下の各図においては、説明を分かりやすくするため、実際とは異なる尺度で記載している場合がある。
(第1実施形態)
[振動素子]
先ず、本実施形態に係る振動素子として、一対の腕部を有する音叉形状の振動素子を図1Aおよび図1Bを参照して説明する。
図1Aは、第1実施形態に係る振動素子1の構成を示す概略平面図である。図1Bは、図1AのA1−A1線における概略断面図である。なお、各図および以降で参照する図では、説明の便宜上、互いに直交する3つの軸として、X軸、Y軸およびZ軸を図示している。また、以下の説明では、説明の便宜上、Z軸方向から見たときの平面視を単に「平面視」とも言う。更に、説明の便宜上、Z軸方向から見たときの平面視において、+Z軸方向の面を上面、−Z軸方向の面を下面として説明する。
第1実施形態に係る振動素子1は、図1Aおよび図1Bに示すように、基部10と、基部10から同一方向に延在する一対の腕部12と、腕部12の上下面に配置された凸部14と、を含み一体化して構成されている。
振動素子1を構成する材料は、水晶、特に、Zカット水晶板で構成されている。これにより、振動素子1は、優れた振動特性を発揮することができる。Zカット水晶板とは、水晶のZ軸(光軸)を厚さ方向とする水晶基板である。Z軸は、振動素子1の厚さ方向と一致しているのが好ましいが、常温近傍における周波数温度変化を小さくする観点からは、厚さ方向に対して若干(例えば、15°未満程度)傾けることになる。
また、振動素子1を構成する材料は、水晶基板に限定されず、振動素子を圧電駆動させる場合は、ニオブ酸リチウム(LiNbO3)、タンタル酸リチウム(LiTaO3)、リチウムテトラボレート(Li247)、ニオブ酸カリウム(KNbO3)、リン酸ガリウム(GaPO4)、ランガサイト(La3Ga5SiO14)、等がある。また、振動素子を静電駆動させる場合は、単結晶シリコン、多結晶シリコン、非晶質シリコン、等がある。
なお、振動素子1の腕部12の表面に形成された駆動電極(図示せず)に電圧を印加すると、腕部12の一方の側面(X軸方向と交差する面)がY軸方向に伸張又は収縮し、他方の側面がY軸方向に収縮または伸張するので、腕部12がX軸方向に変位する屈曲振動が発生する。また、本実施形態の音叉形状の振動素子1では、一対の腕部12に形成する駆動電極の正極と負極とをそれぞれ反転する構成とすることにより、一対の腕部12が互いに接近・離間するように屈曲振動させることができるため、安定した屈曲振動を発生させることができる。
基部10は、XY平面に広がりを有し、Z軸方向に厚さを有する略板状をなしている。
一対の腕部12は、腕部12が屈曲振動する方向である第1方向としてのX軸方向に並んで設けられており、それぞれ、基部10からX軸方向と交差する方向である第2方向としてのY軸方向に沿って延出(突出)している。よって、腕部12の長手方向は、Y軸方向となる。また、腕部12の上下面には、凸部14が設けられている。
凸部14は、平面視で、腕部12の長手方向の2つの端部領域の間に位置し、X軸方向およびY軸方向と交差する方向である第3方向としてのZ軸方向に凸である。また、凸部14は、Y軸方向に沿って、腕部12の長さLの基部10から1/3以内の範囲に配置されている。なお、凸部14は、幅(X軸方向の長さ)Wpが腕部12の幅Wよりも狭く、長さ(Y軸方向の長さ)Lpが腕部の長さLよりも短くなるように構成されている。
このような凸部14を腕部12に設けることで、屈曲振動によって発生する熱が拡散(熱伝導)し易くなり、屈曲振動の固有周波数(機械的屈曲振動の固有周波数)fが熱緩和周波数f0より小さな領域(f<f0)である等温的領域では、熱弾性損失を抑制することができる。
次に、本発明の課題であった、熱弾性損失に伴うQ値の低下を抑制する手法について、図2A〜図2Cを参照して説明する。
図2Aは、振動素子の振動状態における熱の発生について説明する概略平面図であり、図2Bは、振動素子の振動状態における熱の発生源を説明する概略断面図であり、図2Cは、振動素子の振動状態における熱流促進部を説明する概略断面図である。
上述したように、腕部12がX軸方向に屈曲振動する際、図2Aに示すように、腕部12の一方の側面13aが収縮すると他方の側面13bが伸張し、反対に、一方の側面13aが伸張すると他方の側面13bが収縮する。腕部12がGough−Joule効果を発生しない(エネルギー弾性がエントロピー弾性に対して支配的な)場合、図2Bに示すように、収縮する側面13a側の温度は上昇し、伸張する側面13b側の温度は下降するため、両側面13a,13bの間つまり腕部12の内部に温度差が発生する。このような温度差から生じる熱伝導によって振動エネルギーの損失が発生し、これにより振動素子1のQ値が低下する。このようなQ値の低下を熱弾性損失と謂う。
ここで、一般的に、屈曲振動する振動素子1の熱弾性損失のみを考慮した際のQ値は、下記式で表される。
Q={(ρCp)/(cα2Θ)}×[{1+(f/f02}/(f/f0)] (1)
0=(πk)/(2ρCp2) (2)
ここで、ρは腕部12の質量密度[kg/m3]、Cpは腕部12の熱容量[J/(kg・K)]、cは腕部12の長さ方向(Y軸方向)に関する弾性定数[N/m2]、αは腕部12の長さ方向(Y軸方向)に関する熱膨張係数[1/K]、Θは環境温度[K]、fは屈曲振動の固有周波数[Hz]、f0は熱緩和周波数[Hz]、πは円周率、kは腕部12の振動方向(X軸方向)に関する熱伝導率[W/(m・K)]、Wは腕部12の幅方向(X軸方向)の長さ[m]である。
また、式(2)を式(1)に代入し整理すると、次式を得る。
Q={(ρCp)/(cα2Θ)}×[{1+(W/W04}/(W/W02] (3)
0=((πk)/(2ρCpf))1/2 (4)
ここで、W0は熱緩和距離と定義する。なお、屈曲振動の固有周波数fを固定して腕部12の幅Wのみを変化させたグラフが図3である。
振動素子1のような構成の屈曲振動する振動素子において、腕部12の屈曲振動(X軸方向)の幅Wが熱緩和距離W0と一致するときにQ値が最小となる。なお、凸部14が省略された構成(断面が矩形)の腕部12の熱緩和距離W0は、式(4)で求めることができる。
前述したように、腕部12では、両側面13a,13bの間に位置するように凸部14が配置されている。そのため、図2Cに示すように、腕部12の屈曲振動時に生じる両側面13a,13bの温度差を熱伝導により温度平衡させるための熱の移動経路の幅が凸部14により拡がり、両側面13a,13b間を熱が流れ易くなる。従って、腕部12に凸部14を設けていない場合と比較して熱が伝導する時間が短縮され、凸部14を設けた際にQ値が最小となる腕部12の幅Wを熱緩和距離Wmとすれば、Wmは熱緩和距離W0よりも大きくなる。
図3は、屈曲振動する振動素子1のQ値のW/Wm依存性を表すグラフである。図3において、実線で示されている曲線Eは、腕部12に凸部14が形成されていない場合を示し、点線で示されている曲線E1は、本実施形態の振動素子1の腕部12に凸部14が形成されている場合を示している。図3に示すように、曲線E,E1の形状は変わらないが、前述のような熱緩和距離Wmの増大に伴って、曲線E1が曲線Eに対して横軸の値が大きくなる方向へシフトしている。従って、振動素子1のように腕部12に凸部14が形成されている場合の熱緩和距離Wmに対して、下記式(5)を満たすことにより、常に、腕部12に凸部14が形成されている振動素子1のQ値が、腕部12に凸部14が形成されていない振動素子のQ値に対して高くなる。更に、W/W0<1の関係に限定すれば、より高いQ値を得ることができる。
W<(W0m1/2 (5)
なお、図3において、W/Wm<1の領域を等温的領域と定義する。この等温的領域ではW/Wmが小さくなるにつれてQ値が高くなる。これは、腕部12の幅が狭くなるにつれて、前述のように発生する腕部12内の温度差がより短時間で小さくなり、W/Wmを0(零)に限りなく近づけた際の極限では、等温準静的操作となって、熱弾性損失は限りなく0(零)に接近する現象に起因するものである。一方、W/Wm>1の領域を断熱的領域と定義し、この断熱的領域ではW/Wmが大きくなるにつれてQ値が高くなる。これは、腕部12の幅が大きくなるにつれて、前述のように発生する腕部12内の温度差が小さくなるのに長時間を要するため、W/Wmを限りなく大きくした際の極限では断熱操作となって、熱弾性損失は限りなく0(零)に接近する現象に起因するものである。このことから、W/Wm<1の関係を満たすとは、W/Wmが等温的領域にあると言うことができる。そして、本発明に係る振動素子1は、W/Wm<1の関係を満たし、W/Wmが等温的領域にあるものである。
上述したように、W0<Wmの関係が成り立つから、下記式(6)の幅Wは、式(5)の幅Wを更に等温準静的操作の極限に近づけたものとなっており、式(5)の条件よりも更に熱弾性損失を低減して、高いQ値を得ることができる。
W<((πk)/(2ρCpf))1/2 (6)
以上述べたように、第1実施形態に係る振動素子1によれば、以下の効果を得ることができる。
W<((πk)/(2ρCpf))1/2の等温的領域において、振動素子1の腕部12の両端部の間に、振動方向と交差するZ軸方向に凸である凸部14が設けられているため、屈曲振動によって腕部12の表面に温度の上昇あるいは下降が生じても、凸部14が設けられた領域での熱移動が早まり、短時間で行われる。そのため、振動素子1は等温領域において等温準静操作により近づき、熱弾性損失によるQ値の低下が抑制され、信頼性の高い、安定した共振周波数を出力する振動素子1を得ることができる。
また、屈曲振動による歪は基部10に近い位置が最大となり、基部10から離れるに従い歪が小さくなる。そのため、凸部14を腕部12の長さLの基部10から少なくとも1/3以内の範囲に配置することにより、屈曲振動による歪の大きい領域、つまり、腕部12の表面の温度の上昇あるいは下降が大きい領域で効率的に熱移動を行うことができるので、熱弾性損失によるQ値の低下を抑制することができる。
次に、本発明の第1実施形態に係る振動素子1の凸部14の変形例について、図4A〜図4Fを参照して説明する。
以下、変形例について、上述した実施形態との相違点を中心に説明し、同様の構成には、同一の符号を附してあり、同様の事項については、その説明を省略する。
図4Aは、変形例1に係る振動素子の凸部の概略断面図である。
図4Aに示す変形例1の凸部141は、腕部12の上下面にそれぞれZ軸方向に2段階の厚みを有して配置されている。そのため、屈曲振動した際に歪が生じ熱発生部となる腕部12のX軸方向の両端の厚みに対し、凸部141が設けられた領域は厚いので、熱流促進部として作用する。従って、上述した実施形態と同様の効果を得ることができる。
図4Bは、変形例2に係る振動素子の凸部の概略断面図である。
図4Bに示す変形例2の凸部142は、腕部12の上下面にそれぞれ、その断面が腕部12からZ軸方向に沿って幅(X軸方向の長さ)が漸減する台形状を有して配置されている。そのため、屈曲振動した際に歪が生じ熱発生部となる腕部12のX軸方向の両端の厚みに対し、凸部142が設けられた領域は厚いので、熱流促進部として作用する。従って、上述した実施形態と同様の効果を得ることができる。
図4Cは、変形例3に係る振動素子の凸部の概略断面図である。
図4Cに示す変形例3の凸部143は、腕部12の上下面にそれぞれ、そのX軸方向の両端の中心が腕部12のX軸方向の両端の中心から腕部12のどちらか一方の端部側にずれて配置されている。しかし、屈曲振動した際に歪が生じ熱発生部となる腕部12のX軸方向の両端の厚みに対し、凸部143が設けられた領域は厚いので、熱流促進部として作用する。従って、上述した実施形態と同様の効果を得ることができる。
図4Dは、変形例4に係る振動素子の凸部の概略断面図である。
図4Dに示す変形例4の凸部144は、腕部12の上面に設けられている凸部144と、腕部12の下面に設けられている凸部144と、がそのX軸方向の両端の中心がX軸方向ずらして配置されている。しかし、屈曲振動した際に歪が生じ熱発生部となる腕部12のX軸方向の両端の厚みに対し、凸部144が設けられた領域は厚いので、熱流促進部として作用する。従って、上述した実施形態と同様の効果を得ることができる。
図4Eは、変形例5に係る振動素子の凸部の概略断面図である。
図4Eに示す変形例5の凸部145は、腕部12の上下面にそれぞれ、X軸方向に沿って2個ずつ配置されている。そのため、屈曲振動した際に歪が生じ熱発生部となるX軸方向の両端の厚みに対し、凸部145が設けられた領域は厚いので、熱流促進部として作用する。従って、上述した実施形態と同様の効果を得ることができる。
図4Fは、変形例6に係る振動素子の凸部の概略断面図である。
図4Fに示す変形例6の凸部146は、腕部12の上面に設けられている凸部146と、腕部12の下面に設けられている凸部146と、のX軸方向の長さが異なっている。しかし、屈曲振動した際に歪が生じ熱発生部となる腕部12のX軸方向の両端の厚みに対し、凸部146が設けられた領域は厚いので、熱流促進部として作用する。従って、上述した実施形態と同様の効果を得ることができる。
(第2実施形態)
次に、本発明の第2実施形態に係る振動素子1aについて、図5を参照して説明する。
図5は、第2実施形態に係る振動素子の構成を示す概略平面図である。なお、上述した実施形態との相違点を中心に説明し、同様の構成には、同一の符号を附してあり、同様の事項については、その説明を省略する。
第2実施形態に係る振動素子1aは、第1実施形態に係る振動素子1と比較し、凸部14aの構成が異なる。
本実施形態の振動素子1aは、図5に示すように、凸部14aのY軸方向の長さLpが腕部12の長さLより長く、凸部14aのY軸方向の一方の端部が腕部12の基部10と反対側の端部領域付近まで配置され、且つ、凸部14aの他方の端部が基部10に配置されている。つまり、凸部14aは腕部12と基部10とに連続して配置されている。
従って、凸部14aのY軸方向における長さLpが腕部12の長さLよりも長いので、腕部12および腕部12以外に生じる歪による熱についても効率的に熱移動させることができ、上述した実施形態と同様に熱弾性損失によるQ値の低下を抑制することができる。
また、凸部14aが基部10と腕部12とに連続して配置されているので、基部10に生じる歪による熱についても効率的に熱移動させることができ、上述した実施形態と同様に熱弾性損失によるQ値の低下を抑制することができる。
(第3実施形態)
次に、本発明の第3実施形態に係る振動素子1bについて、図6を参照して説明する。
図6は、第3実施形態に係る振動素子の構成を示す概略平面図である。なお、上述した実施形態との相違点を中心に説明し、同様の構成には、同一の符号を附してあり、同様の事項については、その説明を省略する。
第3実施形態に係る振動素子1bは、第1実施形態に係る振動素子1と比較し、凸部14bの構成と振動素子1bの構造が異なる。
本実施形態の振動素子1bは、図6に示すように、腕部12bの基部10側とは反対側の端部領域に錘部16が配置されている。錘部16の幅(X軸方向の長さ)は、腕部12bの幅Wよりも広い。なお、腕部12に錘部16を設けることによって、振動素子1bの小型化を図ることができたり、腕部12bの屈曲振動の周波数を低めたりすることができる。また、錘部16に金属膜等を付着または形成された金属膜等を除去することにより、一対の腕部12bの屈曲振動の周波数を高精度に調整することができる。
振動素子1bの凸部14bは、Y軸方向の長さLpが腕部12bの長さLより長く、腕部12bと錘部16とに連続して配置されている。
従って、凸部14bが錘部16と腕部12bとに連続して配置されているので、錘部16に生じる歪による熱についても効率的に熱移動させることができ、上述した実施形態と同様に熱弾性損失によるQ値の低下を抑制することができる。
また、凸部14bが錘部16まで配置されていることにより、凸部14bの錘部16の端部が腕部12bに配置された場合に比べ、屈曲振動に伴う歪が凸部14bの端部に位置する腕部12bに集中し、破損するのを回避することができ、腕部12bの強度を向上させることができる。
(第4実施形態)
次に、本発明の第4実施形態に係る振動素子1cについて、図7Aおよび図7Bを参照して説明する。
図7Aは、第4実施形態に係る振動素子の構成を示す概略平面図であり、図7Bは、図7AのA2−A2線における概略断面図である。なお、上述した実施形態との相違点を中心に説明し、同様の構成には、同一の符号を附してあり、同様の事項については、その説明を省略する。
第4実施形態に係る振動素子1cは、第1実施形態に係る振動素子1と比較し、凸部14cの構成と振動素子1cの構造が異なる。
本実施形態の振動素子1cは、基部10cと、3つの腕部12cと、腕部12cの側面(X軸方向と交差する面)に設けられた凸部14cと、を含み構成されている。
振動素子1cは、図7Aに示すように、3つの腕部12cが基部10cのY軸方向の端部に、X軸方向に並んで設けられており、それぞれ、基部10cからY軸方向に沿って延出(突出)している。
腕部12cの上面には、図示しないが第1電極層、圧電層および第2電極層がこの順で積層されており、第1電極層と第2電極層との間に電圧を印加することで、腕部12cをZ軸方向に屈曲振動させることができる。また、3つの腕部12cにおいて、中央の腕部12cと左右の2つの腕部12cとに印加する電圧の電位を反転することにより、中央の腕部12cが+Z軸方向に変位した場合、左右の2つの腕部12cは−Z軸方向に変位することとなり、安定した屈曲振動を発生させることができる。
凸部14cは、腕部12cが延出するY軸方向および腕部12cが屈曲振動するZ軸方向と交差する方向であるX軸方向の両端からX軸方向に凸である。また、凸部14cの厚み(Z軸方向の長さ)は、図7Bに示すように、腕部12cの厚みより薄くなっている。そのため、屈曲振動による歪によって生じる熱発生部となる腕部12cの上面および下面の間に、腕部12cの幅(X軸方向の長さ)より広い、熱流促進部を設けることができる。また、腕部12cと基部10cとが接続されている領域のXY平面における外縁は、曲線形状とすることで屈曲振動時に発生する歪による熱が大きくなることを抑圧する効果があるが、この曲線形状の領域にも熱流促進部を設けることができる。
従って、屈曲振動することで腕部12cに生じる歪による熱を効率的に熱移動させることができ、上述した実施形態と同様に熱弾性損失によるQ値の低下を抑制することができる。
なお、本実施形態では、腕部12cに第1電極層、圧電層および第2電極層を積層した圧電駆動方式を一例として挙げ説明したが、これに限定する必要はなく、腕部12cに第1電極層を設け、第1電極層と対向する位置に、空間を介して第2電極層を配置し、第1電極層と第2電極層との間に発生する静電力によって腕部12cを屈曲振動させる静電駆動方式でも構わない。また、腕部12cに不純物をドープするなどして静電力を発生させて駆動してもよい。
(第5実施形態)
次に、本発明の第5実施形態に係る振動素子1dについて、図8を参照して説明する。
図8は、第5実施形態に係る振動素子1dの構成を示す概略平面図である。なお、上述した実施形態との相違点を中心に説明し、同様の構成には、同一の符号を附してあり、同様の事項については、その説明を省略する。
第5実施形態に係る振動素子1dは、第1実施形態に係る振動素子1と比較し、駆動方式と構造が異なる。
本実施形態の振動素子1dは、図8に示すように、基部10dと、一対の腕部12dと、腕部12dに設けられた凸部14dと、腕部12dの先端部と連結された錘部16dと、基部10dと連結した固定部18と、腕部12dを駆動するための電極部30と、を含み構成されている。また、基部10dと、一対の腕部12dと、凸部14dと、錘部16dと、固定部18と、はシリコン等の基板によって一体化して形成されている。
基部10dは、腕部12dが連結した側と対向する側に固定部18を備えている。また、基部10dと固定部18との間には、固定部18をパッケージ(図示せず)等に固定する際に用いる接着剤等が基部10dへ流れ込むのを防止するために、くびれ部20が設けられている。なお、くびれ部20は、腕部12dの振動に伴う振動エネルギーが固定部18側に伝達するのを防止する機能も兼ねている。
錘部16dは、腕部12dの2つの端部領域で基部10dと反対側の端部領域に設けられており、腕部12dの屈曲振動する振動方向であるX軸方向の両端がX軸方向に凹凸を有する櫛歯状に形成されている。
電極部30は、一対の腕部12dの先端に設けられた錘部16dの両側に配置されており、錘部16dと対向する面側の端部がX軸方向に凹凸を有する櫛歯状に形成されている。
なお、電極部30に形成された凹部に錘部16dに形成された凸部が挿入できるように、また、錘部16dに形成された凹部に電極部30に形成された凸部が挿入できるように、形成されている。
ここで、2つの錘部16dをGNDとし、2つの錘部16dの間に設置された電極部30と、2つの錘部16dの外周部に設置された2つの電極部30に、交互に電圧を印加すると、2つの錘部16dの間に設置された電極部30とそれぞれ対向する錘部16dとの間と、2つの錘部16dの外周部に設置された2つの電極部30とそれぞれ対向する錘部16dとの間に、交互に静電界が発生する。この電界により静電引力が生じ、錘部16dは対向する電極部30に向かって周期的に吸引させられ、電極部30が設置された方向に変位する。よって、2つの錘部16dの間に設置された電極部30と、2つの錘部16dの外周部に設置された2つの電極部30と、の電位を周期的に切り替えることにより、電極部30に挟まれた錘部16dが、周期的にX軸方向に変位することとなり、錘部16dと連結された腕部12dをX軸方向に屈曲振動させることができる。
従って、振動素子1dは、静電駆動方式で一対の腕部12dを屈曲振動させることができ、腕部12dに凸部14dが設けられているため、屈曲振動することで腕部12dに生じる歪による熱を効率的に熱移動させることができ、上述した実施形態と同様に熱弾性損失によるQ値の低下を抑制することができる。
(第6実施形態)
次に、本発明の第6実施形態に係る振動素子1eについて、図9を参照して説明する。
図9は、第6実施形態に係る振動素子1eの構成を示す概略平面図である。なお、上述した実施形態との相違点を中心に説明し、同様の構成には、同一の符号を附してあり、同様の事項については、その説明を省略する。
第6実施形態に係る振動素子1eは、第5実施形態に係る振動素子1dと比較し、同等の構成であるが、固定部18eの配置位置が異なる。
本実施形態の振動素子1eは、図9に示すように、基部10eと、一対の腕部12eと、腕部12eに設けられた凸部14eと、腕部12eの先端部と連結された錘部16eと、基部10eと連結した固定部18eと、腕部12eを駆動するための電極部30と、を含み構成されている。また、基部10eと、一対の腕部12eと、凸部14eと、錘部16eと、固定部18eと、はシリコン等の基板によって一体化して形成されている。
固定部18eは、一対の腕部12eの間に配置され、基部10eから腕部12eが延出する方向であるY軸方向に沿って延出している。また、固定部18eと基部10eとの間には、くびれ部20eが設けられている。
以上のような構成とすることで、振動素子1eは、腕部12eに凸部14eが設けられているため、上述した実施形態と同様の効果を得ることができる。
また、固定部18eが、一対の腕部12eの間に配置されているため、振動素子1eの全長(Y軸方向の長さ)を短くすることができるため、振動素子1eの小型化を図ることができる。
[発振器]
次に、本発明の一実施形態に係る振動素子1〜1eの少なくとも1つを適用した電子デバイスとしての発振器100について、図10を参照して説明する。
図10は、本発明の振動素子1を備える発振器100の構造を示す概略断面図である。
発振器100は、振動素子1と、振動素子1を収納するパッケージ本体50と、振動素子1を発振させるための発振回路を有するICチップ(チップ部品)60と、ガラス、セラミック、又は金属等から成る蓋部材56と、で構成されている。なお、振動素子1を収容するキャビティー70内はほぼ真空の減圧空間となっている。
パッケージ本体50は、図10に示すように、第1の基板51と、第2の基板52と、第3の基板53と、第4の基板54と、実装端子55と、を積層して形成されている。また、パッケージ本体50は、振動素子1側に開放するキャビティー70と、ICチップ60側に開放するキャビティー80とを有している。
実装端子55は、第4の基板54の第3の基板53側とは反対側の面に複数設けられている。また、実装端子55は、第3の基板53の第4の基板54側の面に設けられた接続電極82と、図示しない貫通電極や層間配線を介して、電気的に導通されている。また、接続電極82は、第1の基板51の第2の基板52側に設けられた台座部72に形成された接続電極74と、図示しない貫通電極や層間配線を介して、電気的に導通されている。
パッケージ本体50のキャビティー70内には、台座部72に設けられた接続電極74上に導通性を有する接着剤等の接合部材76を介して振動素子1が接合され、接続電極74と振動素子1表面に設けられた励振電極(図示せず)とが電気的に導通されている。また、キャビティー70内は、ホウケイ酸ガラス等の封止材58により蓋部材56が接合されることで、気密封止されている。
一方、パッケージ本体50のキャビティー80内には、ICチップ60が収容されており、このICチップ60は、ろう材あるいは接着剤等の接合部材84を介して第1の基板51の第3の基板53側の面に固定されている。また、キャビティー80内には、少なくとも2つの接続電極82が設けられている。接続電極82は、ボンディングワイヤー86によってICチップ60と電気的に導通されている。また、キャビティー80内には、樹脂材料88が充填されており、この樹脂材料88によって、ICチップ60が封止されている。
ICチップ60は、振動素子1の発振を制御するための発振回路を有しており、この発振回路によって接続電極82を介して振動素子1に電圧を印加することにより、振動素子1を発振させ、所定の発振周波数を出力することができる。
従って、熱弾性損失が抑制され高いQ値を有し、所望の共振周波数を安定して取り出すことができる振動素子1〜1eを備えていることにより、所望の共振周波数を安定して取り出すことができる発振器100を得ることができる。
[電子機器]
次に、本発明の一実施形態に係る振動素子1〜1eの少なくとも1つを適用した電子機器について、図11、図12および図13を参照して説明する。なお、以下の例では1つの振動素子1のみを図示しているが、2個以上の振動素子1〜1eが搭載されていてもよいし、2個以上の振動素子1〜1eが同じものでも、振動素子1〜1eのうち異なるものであってもよい。
図11は、本実施形態に係る振動素子1〜1eを備える電子機器としてのモバイル型(又はノート型)のパーソナルコンピューターの構成の概略を示す斜視図である。この図において、パーソナルコンピューター1100は、キーボード1102を備えた本体部1104と、ディスプレイ1000を備えた表示ユニット1106とにより構成され、表示ユニット1106は、本体部1104に対しヒンジ構造部を介して回動可能に支持されている。このようなパーソナルコンピューター1100には、基準クロック等として機能する振動素子1〜1eが内蔵されている。
図12は、本発明の一実施形態に係る振動素子1〜1eを備える電子機器としての携帯電話機(PHS(Personal Handyhone System)やスマートフォンも含む)の構成の概略を示す斜視図である。この図において、携帯電話機1200は、複数の操作ボタン1202、受話口1204および送話口1206を備え、操作ボタン1202と受話口1204との間には、ディスプレイ1000が配置されている。このような携帯電話機1200には、基準クロック等として機能する振動素子1〜1eが内蔵されている。
図13は、本発明の一実施形態に係る振動素子1〜1eを備える電子機器としてのデジタルスチールカメラの構成の概略を示す斜視図である。なお、この図には、外部機器との接続についても簡易的に示されている。デジタルスチールカメラ1300は、被写体の光像をCCD(Charge Coupled Device)等の撮像素子により光電変換して撮像信号(画像信号)を生成する。
デジタルスチールカメラ1300におけるケース(ボディー)1302の背面には、ディスプレイ1000が設けられ、CCDによる撮像信号に基づいて表示を行なう構成になっており、ディスプレイ1000は、被写体を電子画像として表示するファインダーとして機能する。また、ケース1302の正面側(図中裏面側)には、光学レンズ(撮像光学系)やCCD等を含む受光ユニット1304が設けられている。
撮影者がディスプレイ1000に表示された被写体像を確認し、シャッターボタン1306を押下すると、その時点におけるCCDの撮像信号が、メモリー1308に転送・格納される。また、このデジタルスチールカメラ1300においては、ケース1302の側面に、ビデオ信号出力端子1312と、データ通信用の入出力端子1314とが設けられている。そして、図示されるように、ビデオ信号出力端子1312にはテレビモニター1330が、データ通信用の入出力端子1314にはパーソナルコンピューター1340が、それぞれ必要に応じて接続される。さらに、所定の操作により、メモリー1308に格納された撮像信号が、テレビモニター1330や、パーソナルコンピューター1340に出力される構成になっている。このようなデジタルスチールカメラ1300には、基準クロック等として機能する振動素子1〜1eが内蔵されている。
上述したように、電子機器として、熱弾性損失が抑制され高いQ値を有し、所望の共振周波数を安定して取り出すことができる振動素子1〜1eを備えることにより、高性能の電子機器を得ることができる。
なお、本発明の一実施形態に係る振動素子1〜1eは、図11のパーソナルコンピューター1100(モバイル型パーソナルコンピューター)、図12の携帯電話機1200、図13のデジタルスチールカメラ1300の他にも、例えば、インクジェット式吐出装置(例えばインクジェットプリンター)、ラップトップ型パーソナルコンピューター、テレビ、ビデオカメラ、カーナビゲーション装置、ページャー、電子手帳(通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワークステーション、テレビ電話、防犯用テレビモニター、電子双眼鏡、POS(Point of Sale)端末、医療機器(例えば電子体温計、血圧計、血糖計、心電図計測装置、超音波診断装置、電子内視鏡)、魚群探知機、各種測定機器、計器類(例えば、車両、航空機、船舶の計器類)、フライトシミュレーター等の電子機器に適用することができる。
[移動体]
次に、本発明の一実施形態に係る振動素子1〜1eを適用した移動体について説明する。
図14は、本発明の移動体の一例としての自動車1400を概略的に示す斜視図である。自動車1400には、振動素子1〜1eが搭載されている。振動素子1〜1eは、キーレスエントリー、イモビライザー、ナビゲーションシステム、エアコン、アンチロックブレーキシステム(ABS:Antilock Brake System)、エアバック、タイヤプレッシャーモニタリングシステム(TPMS:Tire Pressure Monitoring System)、エンジンコントロール、ハイブリッド自動車や電気自動車の電池モニター、車体姿勢制御システム等の電子制御ユニット(ECU:Electronic Control Unit)1410に広く適用できる。
上述したように、移動体として、熱弾性損失が抑制され高いQ値を有し、所望の共振周波数を安定して取り出すことができる振動素子1〜1eを備えることにより、高性能の移動体を得ることができる。
以上、本発明の振動素子1〜1e、電子デバイス、電子機器、および移動体について、図示の実施形態に基づいて説明したが、本発明は、これに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置換することができる。また、本発明に、他の任意の構成物が付加されていても良い。また、前述した各実施形態を適宜組み合わせても良い。
1…振動素子、10…基部、12…腕部、13a,13b…側面、14…凸部、16…錘部、18…固定部、20…くびれ部、50…パッケージ本体,51…第1の基板、52…第2の基板、53…第3の基板、54…第4の基板、55…実装端子、56…蓋部材、58…封止材、60…ICチップ、70…キャビティー、72…台座部、74…接続電極、76…接合部材、80…キャビティー、82…接続電極、84…接合部材、86…ボンディングワイヤー、88…樹脂材料、100…発振器、1000…ディスプレイ、1100…パーソナルコンピューター、1102…キーボード、1104…本体部、1106…表示ユニット、1200…携帯電話機、1202…操作ボタン、1204…受話口、1206…送話口、1300…デジタルスチールカメラ、1302…ケース、1304…受光ユニット、1306…シャッターボタン、1308…メモリー、1312…ビデオ信号出力端子、1314…入出力端子、1330…テレビモニター、1340…パーソナルコンピューター、1400…自動車、1410…電子制御ユニット。

Claims (8)

  1. 第1方向に屈曲振動する腕部を含み、
    前記腕部の長手方向を第2方向とし、前記第1方向および前記第2方向と交差する方向を第3方向とした場合に、
    前記腕部は、前記第2方向における2つの端部領域と、前記第3方向からの平面視において前記2つの端部領域の間に位置し、前記第3方向に凸である凸部と、を含み、
    且つ、前記屈曲振動の固有周波数をf、前記腕部の質量密度をρ、前記腕部の熱容量をCp、前記腕部の前記第1方向の熱伝導率をk、前記腕部の前記第1方向の長さをW、とした場合、
    W<((πk)/(2ρCpf))1/2
    を満たすことを特徴とする振動素子。
  2. 前記第2方向において、前記腕部と連続する基部を含み、
    前記凸部は、前記第2方向に沿って、前記腕部の長さの前記基部から1/3以内の範囲に配置されていることを特徴とする請求項1に記載の振動素子。
  3. 前記凸部の前記第2方向における長さは、前記腕部の長さよりも長いことを特徴とする請求項1又は請求項2に記載の振動素子。
  4. 前記凸部は、前記基部と前記腕部とに連続して配置されていることを特徴とする請求項3に記載の振動素子。
  5. 前記腕部の前記基部とは反対側に配置された錘部を含み、
    前記凸部は、前記錘部と前記腕部とに連続して配置されていることを特徴とする請求項2乃至請求項4のいずれか一項に記載の振動素子。
  6. 請求項1乃至請求項5のいずれか一項に記載の振動素子と、
    前記振動素子を発振させる発振回路と、
    を備えていることを特徴とする電子デバイス。
  7. 請求項1乃至請求項5のいずれか一項に記載の振動素子を備えていることを特徴とする電子機器。
  8. 請求項1乃至請求項5のいずれか一項に記載の振動素子を備えていることを特徴とする移動体。
JP2017057138A 2017-03-23 2017-03-23 振動素子、電子デバイス、電子機器および移動体 Withdrawn JP2018160802A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017057138A JP2018160802A (ja) 2017-03-23 2017-03-23 振動素子、電子デバイス、電子機器および移動体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017057138A JP2018160802A (ja) 2017-03-23 2017-03-23 振動素子、電子デバイス、電子機器および移動体

Publications (2)

Publication Number Publication Date
JP2018160802A true JP2018160802A (ja) 2018-10-11
JP2018160802A5 JP2018160802A5 (ja) 2020-03-26

Family

ID=63795781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017057138A Withdrawn JP2018160802A (ja) 2017-03-23 2017-03-23 振動素子、電子デバイス、電子機器および移動体

Country Status (1)

Country Link
JP (1) JP2018160802A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252302A (ja) * 2009-03-25 2010-11-04 Seiko Epson Corp 屈曲振動片およびそれを用いた発振器
JP2012019440A (ja) * 2010-07-09 2012-01-26 Seiko Epson Corp 屈曲振動片、振動子、発振器及び電子機器
JP2013005194A (ja) * 2011-06-16 2013-01-07 Citizen Finetech Miyota Co Ltd 圧電振動子、およびその製造方法
JP2015008352A (ja) * 2013-06-24 2015-01-15 セイコーエプソン株式会社 振動片、振動子、電子デバイス、電子機器及び移動体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252302A (ja) * 2009-03-25 2010-11-04 Seiko Epson Corp 屈曲振動片およびそれを用いた発振器
JP2012019440A (ja) * 2010-07-09 2012-01-26 Seiko Epson Corp 屈曲振動片、振動子、発振器及び電子機器
JP2013005194A (ja) * 2011-06-16 2013-01-07 Citizen Finetech Miyota Co Ltd 圧電振動子、およびその製造方法
JP2015008352A (ja) * 2013-06-24 2015-01-15 セイコーエプソン株式会社 振動片、振動子、電子デバイス、電子機器及び移動体

Similar Documents

Publication Publication Date Title
US9088264B2 (en) Resonator element, resonator, oscillator, electronic device, and moving object
US8373333B2 (en) Resonator element, resonator, electronic device, and electronic apparatus
US10659006B2 (en) Resonator element, resonator, electronic device, electronic apparatus, and moving object
KR20140118840A (ko) 진동 소자, 진동자, 발진기, 전자 기기 및 이동체
US20150137901A1 (en) Resonator element, resonator, oscillator, electronic device, and mobile object
CN104079263A (zh) 振动元件、振子、振荡器、电子设备、传感器以及移动体
KR20140113383A (ko) 진동 소자, 진동자, 발진기, 전자 기기 및 이동체
JP2018164126A (ja) 振動デバイス、発振器、ジャイロセンサー、電子機器および移動体
US9354128B2 (en) Resonator element, resonator, oscillator, electronic apparatus, sensor, and mobile object
US20140368288A1 (en) Resonator element, resonator, oscillator, electronic device, and moving object
CN106017448B (zh) 角速度检测元件、角速度检测装置、电子设备以及移动体
CN104753491B (zh) 振子、振荡器、电子设备、物理量传感器和移动体
JP2014200050A (ja) 振動素子、振動子、発振器、電子機器および移動体
JP2015149591A (ja) 振動素子、振動子、発振器、電子機器、センサー、および移動体
JP2015005787A (ja) 振動片、振動子、発振器、電子機器および移動体
US20140368287A1 (en) Resonator element, resonator, oscillator, electronic device, and moving object
JP6044222B2 (ja) 振動片、振動子、電子デバイス、電子機器、および移動体
JP6884981B2 (ja) 振動子、発振器、リアルタイムクロック、電子機器および移動体
JP2015149592A (ja) 振動素子、振動子、発振器、電子機器および移動体
JP2014086933A (ja) 振動片、振動子、発振器、電子機器及び移動体
JP2018160802A (ja) 振動素子、電子デバイス、電子機器および移動体
US9444403B2 (en) Resonation element, resonator, oscillator, electronic device and moving object
JP6488861B2 (ja) 振動片、振動子、発振器、リアルタイムクロック、センサー、電子機器および移動体
JP6056265B2 (ja) 振動片、振動子、発振器、電子機器、および移動体
JP6465152B2 (ja) 振動片、振動子、電子デバイス、電子機器及び移動体

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180910

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20200803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20210322