JP2018141784A - Steel plate shape measurement device and steel plate shape straightening device - Google Patents

Steel plate shape measurement device and steel plate shape straightening device Download PDF

Info

Publication number
JP2018141784A
JP2018141784A JP2018031510A JP2018031510A JP2018141784A JP 2018141784 A JP2018141784 A JP 2018141784A JP 2018031510 A JP2018031510 A JP 2018031510A JP 2018031510 A JP2018031510 A JP 2018031510A JP 2018141784 A JP2018141784 A JP 2018141784A
Authority
JP
Japan
Prior art keywords
steel plate
shape
plate shape
steel sheet
shape measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018031510A
Other languages
Japanese (ja)
Other versions
JP6645526B2 (en
Inventor
青江 信一郎
Shinichiro Aoe
信一郎 青江
順 衞藤
Jun Eto
順 衞藤
岳則 湯浅
Takenori Yuasa
岳則 湯浅
岩田 輝久
Teruhisa Iwata
輝久 岩田
高橋 功
Isao Takahashi
高橋  功
優介 桾澤
Yusuke Gumisawa
優介 桾澤
三宅 勝
Masaru Miyake
勝 三宅
宏彰 浅野
Hiroaki Asano
宏彰 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2018141784A publication Critical patent/JP2018141784A/en
Application granted granted Critical
Publication of JP6645526B2 publication Critical patent/JP6645526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Straightening Metal Sheet-Like Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel plate shape measurement device capable of accurately measuring a steel plate shape.SOLUTION: A steel plate shape measurement device for scanning, with a laser beam, a surface of a steel plate S placed on shape measurement areas A1, A2 set such that the steel plate S can be placed, and for ranging a predetermined detection point group on the surface of the steel plate S to measure the shape of the steel plate S from the obtained ranging data comprises: a light transmission/reception unit; and a mirror for turning the laser beam emitted from the light transmission/reception unit to reflect the laser beam to the surface of the steel plate S, and for reflecting retroreflected light from the surface of the steel plate S to the light transmission/reception unit. The shape measurement areas A1, A2 of the steel plate S are within an area in which a shade ratio indicating a reduction ratio of quantity of light of the retroreflected light from the steel plate S of the laser beam received by the mirror is less than 25%.SELECTED DRAWING: Figure 1

Description

本発明は、鋼板形状計測装置および鋼板形状矯正装置に関する。   The present invention relates to a steel plate shape measuring device and a steel plate shape correcting device.

鋼板の製造では、一般に、コールドレベラー、ホットレベラーと呼ばれる複数のロールを上下に配置し、これらのロールの間に鋼板を搬送することで、製造時に発生した反り、耳波等の形状不良を矯正する。しかし、一般に厚物材と呼ばれる厚さ40mm以上の鋼板の場合、先尾端部位の形状不良をコールドレベラーやホットレベラーでは、矯正しきれない。そのため、厚物材に形状不良が発生した場合には、鋼板をラインから外し、所謂オフラインで操作者が加圧装置(プレス機)を操作して形状矯正を行う。   In the manufacture of steel sheets, generally, multiple rolls called cold levelers and hot levelers are arranged one above the other, and the steel sheets are transported between these rolls, thereby correcting the shape defects such as warpage and ear waves that occur during manufacturing. To do. However, in the case of a steel plate having a thickness of 40 mm or more, which is generally called a thick material, it is impossible to correct the shape defect of the tip end portion with a cold leveler or a hot leveler. Therefore, when a shape defect occurs in a thick material, the steel sheet is removed from the line, and the operator performs a shape correction by operating a pressurizing device (pressing machine) in a so-called offline.

鋼板の形状を矯正するためには、鋼板の形状を正確に計測する必要がある。鋼板の形状を自動計測する装置としては、例えば、特許文献1に記載されるように、複数の光学系距離計からなる計測装置を鋼板の搬送ライン上に設置し、この計測装置を通過する鋼板からの光の反射状態から鋼板表面までの距離、すなわち鋼板表面の高さを検出し、この高さを連続して測定することで鋼板表面の形状を計測するものがある。しかしながら、特許文献1に記載された鋼板形状計測装置は、オフラインでの形状計測には適さない。   In order to correct the shape of the steel plate, it is necessary to accurately measure the shape of the steel plate. As an apparatus for automatically measuring the shape of a steel plate, for example, as described in Patent Document 1, a measuring device composed of a plurality of optical distance meters is installed on a steel sheet conveyance line, and the steel plate passes through this measuring device. The distance from the light reflection state to the steel sheet surface, that is, the height of the steel sheet surface is detected, and the height of the steel sheet surface is measured continuously to measure the shape of the steel sheet surface. However, the steel plate shape measuring apparatus described in Patent Document 1 is not suitable for off-line shape measurement.

これに対し、特許文献2では、オフラインで鋼板の形状を計測する形状矯正装置が提案されている。この特許文献2に記載される形状計測装置は、一つのレーザ光源からのレーザ光をミラーで転向し、転向されたレーザ光を走査して、静止した鋼板上の所定の検出点群を測定し、それらの検出点群データからの鋼板の形状を計測するものである。そのため、オフラインで鋼板が静止している状態でも鋼板の形状を計測することができる。   On the other hand, Patent Literature 2 proposes a shape correction device that measures the shape of a steel sheet offline. The shape measuring apparatus described in Patent Document 2 turns laser light from one laser light source with a mirror, scans the turned laser light, and measures a predetermined group of detection points on a stationary steel plate. The shape of the steel plate is measured from the detected point cloud data. Therefore, the shape of the steel plate can be measured even when the steel plate is stationary offline.

特開平5−237546号公報JP-A-5-237546 特開2010−155272号公報JP 2010-155272 A

しかしながら、上記の特許文献2に記載の鋼板形状矯正装置では、鋼板形状計測装置の設置位置、向き等について具体的に記載されていない。そのため、特許文献2に記載の鋼板形状矯正装置で鋼板の形状を測定するには、まだ改善の余地があった。   However, in the steel plate shape correcting device described in Patent Document 2, the installation position, orientation, and the like of the steel plate shape measuring device are not specifically described. Therefore, there is still room for improvement in measuring the shape of the steel sheet with the steel sheet shape straightening device described in Patent Document 2.

本発明は、上記のような問題点に着目してなされたものであり、精度良く鋼板形状を測定することが可能な鋼板形状計測装置を提供することを目的とする。また、形状矯正前後の搬送装置上の鋼板形状および形状矯正中の加圧ラム下の鋼板形状を精度良く測定し、精度良く形状矯正することが可能な鋼板形状矯正装置を提供することを目的とする。   This invention is made paying attention to the above problems, and it aims at providing the steel plate shape measuring apparatus which can measure a steel plate shape accurately. It is another object of the present invention to provide a steel plate shape correction device capable of accurately measuring the shape of a steel plate on a conveyance device before and after shape correction and the shape of a steel plate under a pressure ram during shape correction and correcting the shape with high accuracy. To do.

本発明の要旨は、以下の通りである。
[1]鋼板を載置可能な形状測定領域が設定され、該形状測定領域上に載置された鋼板表面をレーザ光で走査して、前記鋼板表面上の所定の検出点群を測距し、得られた測距データから前記鋼板の形状を測定する鋼板形状計測装置であって、
送受光ユニットと、前記送受光ユニットから出射されたレーザ光を転向して鋼板表面へと反射させ、また、鋼板表面から再帰反射光を前記送受光ユニットへと反射させるミラーと、を有し、
前記形状測定領域が、前記ミラーが受光する前記レーザ光の前記鋼板からの再帰反射光の光量の低下率を表す影率が25%未満となる領域内にあることを特徴とする鋼板形状計測装置。
[2]前記ミラーは、前記送受光ユニットから出射された前記レーザ光の光軸に一致した第一の回転軸のまわりに回転可能であり、
該ミラーの回転により前記送受光ユニットから出射されたレーザ光の反射方向を変えることで、鋼板表面内の所定の第1の方向に沿って、レーザ光の照射位置を自在に調整可能であることを特徴とする[1]に記載の鋼板形状計測装置。
[3]前記送受光ユニットと前記ミラーとを保持する、前記第一の回転軸に直交する第二の回転軸のまわりに回転可能な回転台と、
前記第二の回転軸を中心に回転台を回転させる回転駆動部と、
を有し、
前記回転台の回転により、前記鋼板表面内の前記第1の方向に直交する第2の方向に沿って、レーザ光の照射位置を自在に調整可能であることを特徴とする[2]に記載の鋼板形状計測装置。
[4]前記第二の回転軸は、
前記鋼板表面に垂直ではなく、
前記鋼板表面に平行な平面への前記第二の回転軸の正射影が、前記鋼板の長手方向となす角度をA度としたとき、A度が10度以上であることを特徴とする[3]に記載の鋼板形状計測装置。
[5]前記鋼板表面に平行な平面への前記第二の回転軸の正射影について、
前記影率が25%以上となる領域の端部の2本の直線で形成される角度をB度としたとき、
前記A度が、(B/2)度以上90度以下であることを特徴とする[4]に記載の鋼板形状計測装置。ただし、Bは0超え180未満である。
[6]前記A度が50度〜70度であることを特徴とする[4]または[5]に記載の鋼板形状計測装置。
[7]加圧ラムを備えたプレス機と、前記プレス機の入側及び出側に設けられ且つ鋼材を搬送する搬送装置とを有する鋼板形状矯正装置において、
前記プレス機の入側及び/又は出側に[1]〜[6]のいずれかに記載の鋼板形状計測装置を備え、
前記形状測定領域は前記入側あるいは出側の少なくとも一方の搬送装置上を含むように設定されているとともに、
前記入側あるいは出側に配置された鋼板形状計測装置のうちの少なくとも一方の鋼板形状計測装置の前記形状測定領域の一部が前記プレス機内にあることを特徴とする、鋼板形状矯正装置。
The gist of the present invention is as follows.
[1] A shape measurement region on which a steel plate can be placed is set, and a surface of the steel plate placed on the shape measurement region is scanned with a laser beam to measure a predetermined detection point group on the steel plate surface. A steel plate shape measuring device for measuring the shape of the steel plate from the obtained distance measurement data,
A light transmission / reception unit, a laser beam emitted from the light transmission / reception unit is reflected and reflected to the steel sheet surface, and a mirror that reflects retroreflected light from the steel sheet surface to the light transmission / reception unit,
The steel plate shape measuring apparatus, wherein the shape measuring region is in a region where a shadow rate indicating a reduction rate of the amount of retroreflected light from the steel plate of the laser beam received by the mirror is less than 25%. .
[2] The mirror is rotatable around a first rotation axis that coincides with the optical axis of the laser beam emitted from the light transmitting / receiving unit,
By changing the reflection direction of the laser light emitted from the light transmitting / receiving unit by the rotation of the mirror, the irradiation position of the laser light can be freely adjusted along a predetermined first direction in the steel plate surface. The steel sheet shape measuring apparatus according to [1], characterized in that:
[3] A turntable that holds the light transmission / reception unit and the mirror and is rotatable around a second rotation axis orthogonal to the first rotation axis;
A rotation drive unit that rotates a turntable around the second rotation axis;
Have
According to [2], the irradiation position of the laser beam can be freely adjusted along the second direction orthogonal to the first direction in the surface of the steel sheet by the rotation of the turntable. Steel plate shape measuring device.
[4] The second rotating shaft is
Not perpendicular to the steel sheet surface,
When the angle of the orthogonal projection of the second rotation axis to the plane parallel to the steel sheet surface with respect to the longitudinal direction of the steel sheet is A degrees, the A degree is 10 degrees or more [3. ] The steel plate shape measuring apparatus of description.
[5] About orthographic projection of the second rotation axis onto a plane parallel to the steel plate surface,
When the angle formed by two straight lines at the end of the region where the shadow ratio is 25% or more is B degrees,
The steel sheet shape measuring apparatus according to [4], wherein the degree A is (B / 2) degrees or more and 90 degrees or less. However, B is greater than 0 and less than 180.
[6] The steel sheet shape measuring apparatus according to [4] or [5], wherein the A degree is 50 degrees to 70 degrees.
[7] In a steel plate shape correcting device having a press machine provided with a pressurizing ram, and a transport device that is provided on the entry side and the exit side of the press machine and transports a steel material,
The steel plate shape measuring device according to any one of [1] to [6] is provided on the entry side and / or the exit side of the press machine,
The shape measurement region is set to include at least one of the entrance side or the exit side conveying device,
A steel plate shape correction device, wherein a part of the shape measurement region of at least one of the steel plate shape measurement devices arranged on the entry side or the exit side is in the press machine.

本発明の鋼板形状計測装置によれば、精度良く鋼板形状を測定することができる。また、本発明の鋼板形状矯正装置によれば、効率的に、形状矯正前後の搬送装置上の鋼板形状および形状矯正中の加圧ラム下の鋼板形状を精度良く測定し、精度良く形状矯正することができる。   According to the steel plate shape measuring apparatus of the present invention, the steel plate shape can be accurately measured. Moreover, according to the steel plate shape correcting device of the present invention, the steel plate shape on the conveyance device before and after the shape correction and the steel plate shape under the pressure ram during the shape correction are efficiently measured, and the shape is accurately corrected. be able to.

本実施形態の鋼板形状矯正装置の概略構成を説明するための図である。It is a figure for demonstrating schematic structure of the steel plate shape correction apparatus of this embodiment. 図1の鋼板形状計測装置のレーザ距離計の概略構成を説明するための図である。It is a figure for demonstrating schematic structure of the laser distance meter of the steel plate shape measuring apparatus of FIG. 鋼板形状計測装置による鋼板Sへのレーザ光の照射状態を示す模式図であり、(a)は影率が0%未満である状態を、(b)は影率が0%超〜50%未満である状態(部分影領域)を、(c)は影率が50%以上である状態(死角領域)を示す。It is a schematic diagram which shows the irradiation state of the laser beam to the steel plate S by a steel plate shape measuring device, (a) shows a state where the shadow rate is less than 0%, and (b) shows a shadow rate of more than 0% to less than 50%. (C) shows a state (blind spot region) where the shadow rate is 50% or more. 死角領域および部分影領域を説明するための図である。It is a figure for demonstrating a blind spot area | region and a partial shadow area | region. 図1の鋼板形状計測装置による鋼板の形状の測定範囲を説明するための図である。It is a figure for demonstrating the measurement range of the shape of the steel plate by the steel plate shape measuring apparatus of FIG. 図1の鋼板形状計測装置の設置角度と旋回角度の関係を示すグラフである。It is a graph which shows the relationship between the installation angle and turning angle of the steel plate shape measuring apparatus of FIG. 鋼板形状矯正装置の第二の回転軸(x’軸)、第二の回転軸に直交し載置面に平行な軸(y’軸)、載置面に直交する軸(z軸)を説明するための図である。Explains the second rotation axis (x 'axis), the axis perpendicular to the second rotation axis and parallel to the placement surface (y' axis), and the axis (z axis) perpendicular to the placement surface of the steel sheet shape correcting device It is a figure for doing. 第二の回転軸(x’軸)が載置面に平行な場合の、ミラー回転角による誤差の影響係数dz/dφの値を長手方向x−幅方向y座標上にマップ化した図であり、(a)はAが0°、(b)はAが30°、(c)はAが60°、(d)はAが90°の場合を、それぞれ示す。It is the figure which mapped the value of the influence coefficient dz / dphi of the error by a mirror rotation angle on the longitudinal direction x-width direction y coordinate when the 2nd rotation axis (x 'axis) is parallel to a mounting surface. (A) shows the case where A is 0 °, (b) shows that A is 30 °, (c) shows that A is 60 °, and (d) shows the case where A is 90 °. 検出点分布を示す図であり、(a)はAが90°である場合を、(b)はAが60°である場合を、それぞれ示す。It is a figure which shows detection point distribution, (a) shows the case where A is 90 degrees, (b) shows the case where A is 60 degrees, respectively. 第二の回転軸(x’軸)が載置面に直交する場合の、ミラー回転角による誤差の影響係数dz/dφの値を長手方向x−幅方向y座標上にマップ化した図である。It is the figure which mapped the value of the influence coefficient dz / dphi of the error by a mirror rotation angle on the longitudinal direction x-width direction y coordinate when the 2nd rotation axis (x 'axis) is orthogonal to a mounting surface. .

以下、本発明の実施形態に係る鋼板形状計測装置および鋼板形状矯正装置について図面を参照しながら説明する。   Hereinafter, a steel plate shape measuring device and a steel plate shape correcting device according to embodiments of the present invention will be described with reference to the drawings.

本実施形態の鋼板形状計測装置は、鋼板を加圧するための加圧ラムを有するプレス機と、プレス機の入側及び出側に設けられ且つ鋼板を搬送する搬送装置とを有する鋼板形状矯正装置に設けられている。鋼板形状計測装置は、鋼板を載置可能な形状測定領域が設定され、この形状測定領域上に載置された鋼板表面をレーザ光で走査して、鋼板表面上の所定の検出点群を測距し、得られた測距データから鋼板の形状を測定する。   The steel plate shape measuring apparatus of this embodiment includes a press machine having a pressurizing ram for pressurizing a steel sheet, and a steel plate shape correcting apparatus that is provided on the entry side and the exit side of the press machine and that conveys the steel sheet. Is provided. The steel plate shape measuring device sets a shape measurement area where a steel plate can be placed, scans the surface of the steel plate placed on the shape measurement area with laser light, and measures a predetermined group of detection points on the steel plate surface. The distance is measured, and the shape of the steel sheet is measured from the obtained distance measurement data.

そして、本実施形態の鋼板形状計測装置では、形状測定領域が、ミラーが受光するレーザ光の鋼板からの再帰反射光の光量の低下率を表す影率が25%未満となる領域内にとなるように設定されている。   And in the steel plate shape measuring apparatus of this embodiment, a shape measurement area | region becomes in the area | region where the shadow rate showing the decreasing rate of the light quantity of the retroreflection light from the steel plate of the laser beam which a mirror receives is less than 25%. Is set to

図1は、本実施形態の鋼板形状矯正装置の概略構成を示す上面図である。この鋼板形状矯正装置は、鋼板Sをオフラインで形状矯正するものである。図1中、符号1は、鋼板Sの形状を矯正するプレス機であり、プレス機1の入側(図中、X軸負方向側)には入側ベッド3、プレス機1の出側(図中、X軸正方向側)には出側ベッド4が配設されている。ベッド3、4は、何れも鋼板Sを搬送するための多数のローラが鋼板Sの搬送方向に配設されており、このローラの回転状態を制御することで鋼板Sの搬送方向を制御することができる。すなわち、これらのベッド3、4が、鋼板Sの搬送装置を構成する。また、入側ベッド3及び出側ベッド4の側方には、鋼板Sの位置を検出する位置検出装置7が設けられている。位置検出装置7は、後述する形状計測装置と同様にレーザ光で鋼板Sを搬送方向に走査して鋼板Sの搬送方向への形状を計測し、その形状測定結果から鋼板Sがどの位置にあるかを検出する。   FIG. 1 is a top view showing a schematic configuration of the steel sheet shape correcting device of the present embodiment. This steel plate shape correction apparatus corrects the shape of the steel plate S offline. In FIG. 1, reference numeral 1 denotes a press machine that corrects the shape of the steel sheet S. The entrance side of the press machine 1 (X-axis negative direction side) is the entrance bed 3 and the exit side of the press machine 1 ( In the drawing, an exit bed 4 is disposed on the X axis positive direction side). Each of the beds 3 and 4 has a large number of rollers for conveying the steel sheet S arranged in the conveying direction of the steel sheet S, and controls the conveying direction of the steel sheet S by controlling the rotation state of the rollers. Can do. That is, these beds 3 and 4 constitute a conveying device for the steel sheet S. In addition, a position detection device 7 that detects the position of the steel sheet S is provided on the sides of the entrance bed 3 and the exit bed 4. The position detection device 7 measures the shape of the steel sheet S in the transport direction by scanning the steel sheet S with the laser beam in the transport direction in the same manner as the shape measuring device described later, and from which position the steel sheet S is located. To detect.

本実施形態の鋼板形状矯正装置のプレス機1では、加圧ラム2で鋼板Sを上から加圧し、主として鋼板Sに曲げモーメントを付与して鋼板Sの形状を矯正する。鋼板Sの形状は、入側ベッド3及び出側ベッド4の側方(図中、Y軸負方向側(Y軸正方向側でもよい))に設置された後述する鋼板形状計測装置5によって計測する。鋼板形状矯正のパラメータとしては、例えば、鋼板Sの形状から求めた差金隙間(所定長さの直線治具を鋼板表面に当てた時に生じるこの直線治具と鋼板表面との隙間の最大値)、加圧ラム2による加圧力、シムと呼ばれる敷板の位置と間隔、鋼板Sの位置が挙げられる。本実施形態の鋼板形状矯正装置におけるプレス機1による鋼板Sの形状矯正は、鋼板Sの下に2本のシムを敷き、そのシムの間の部分の鋼板Sを加圧ラム2で加圧する。加圧ラム2による曲げモーメントは、シムの間の部分の鋼板Sに生じる。本実施形態の鋼板形状矯正装置では、この曲げモーメントによる鋼板Sの変形量と加圧開放時の戻り量であるいわゆるスプリングバック量を加味して、前述した種々のパラメータを調整する。   In the press machine 1 of the steel plate shape straightening apparatus according to the present embodiment, the steel plate S is pressed from above with the pressurizing ram 2 to mainly apply a bending moment to the steel plate S to correct the shape of the steel plate S. The shape of the steel sheet S is measured by a later-described steel sheet shape measuring device 5 installed on the side of the entrance bed 3 and the exit bed 4 (in the figure, the Y-axis negative direction side (or the Y-axis positive direction side)). To do. The parameters for correcting the shape of the steel sheet include, for example, a differential gap obtained from the shape of the steel sheet S (the maximum value of the gap between the straight jig and the steel sheet surface generated when a straight jig having a predetermined length is applied to the steel sheet surface), The pressure applied by the pressurizing ram 2, the position and interval of the floor plate called shim, and the position of the steel sheet S are mentioned. In the shape correction of the steel plate S by the press machine 1 in the steel plate shape correction device of the present embodiment, two shims are laid under the steel plate S, and the steel plate S between the shims is pressurized with the pressure ram 2. The bending moment due to the pressure ram 2 is generated in the steel plate S in the portion between the shims. In the steel plate shape correcting apparatus of the present embodiment, the above-described various parameters are adjusted in consideration of the deformation amount of the steel plate S due to this bending moment and the so-called springback amount that is the return amount when pressure is released.

入側ベッド3及び出側ベッド4の側方には鋼板形状計測装置5を設置し、出側ベッド4の側方には制御装置6を設置することができる。鋼板形状計測装置5は、一つのレーザ光源からのレーザ光を転向し、このレーザ光で鋼板S表面を走査して、鋼板S表面上の所定の検出点群について、測距、すなわち検出点群の各々の検出点までの距離の測定と、検出点群の各々の検出点の方位の測定とを行い、距離データと方位データとを対応づけて、該検出点群データから鋼板Sの形状を計測する。具体的構成としては、鋼板形状計測装置5は、レーザ光によって検出点までの距離を検出するレーザ距離計と、レーザ距離計で検出された距離データおよびその距離データ得た時のレーザ光照射の方位データから鋼板Sの形状を計測するコンピュータシステム(図示せず)を備えて構成される。レーザ距離計は、3次元にレーザ光を走査して走査範囲内にある各検出点までの距離を計測することができる。   A steel plate shape measuring device 5 can be installed on the side of the entrance bed 3 and the exit bed 4, and a control device 6 can be installed on the side of the exit bed 4. The steel plate shape measuring device 5 turns the laser beam from one laser light source, scans the surface of the steel plate S with this laser beam, and performs distance measurement on a predetermined detection point group on the steel plate S surface, that is, a detection point group. Measure the distance to each detection point and measure the orientation of each detection point of the detection point group, associate the distance data with the orientation data, and determine the shape of the steel sheet S from the detection point group data. measure. Specifically, the steel plate shape measuring device 5 includes a laser distance meter that detects a distance to a detection point by laser light, distance data detected by the laser distance meter, and laser light irradiation when the distance data is obtained. A computer system (not shown) for measuring the shape of the steel sheet S from the orientation data is provided. The laser distance meter can measure the distance to each detection point within the scanning range by scanning the laser beam in three dimensions.

レーザ距離計で距離を検出する方法には、周知の位相差法やTime of Flight法がある。位相差法は、強度変調したレーザ光を対象物に照射し、その反射光を受光センサで受光し、発振したレーザ光と受光した反射光の位相差から距離を算出する方法である。また、Time of Flight法は、レーザ光の入射パルスと反射パルスの時間差と光の速度から距離を算出する方法である。位相差法、Time of Flight法のいずれを採用する場合でも、レーザ距離計は、レーザ光照射装置と、レーザ光受光装置を備えることで、鋼板Sの各検出点までの距離を計測し、鋼板Sの形状を求めることができる。   As a method for detecting a distance with a laser distance meter, there are a known phase difference method and a Time of Flight method. The phase difference method is a method of irradiating an object with intensity-modulated laser light, receiving the reflected light with a light receiving sensor, and calculating the distance from the phase difference between the oscillated laser light and the received reflected light. The Time of Flight method is a method for calculating the distance from the time difference between the incident pulse and the reflected pulse of the laser light and the speed of the light. Regardless of whether the phase difference method or the Time of Flight method is adopted, the laser distance meter is provided with a laser light irradiation device and a laser light receiving device, thereby measuring the distance to each detection point of the steel sheet S. The shape of S can be obtained.

図2は、鋼板形状計測装置5のレーザ距離計の概略構成を説明するための図である。図2(a)に示すように、鋼板形状計測装置5のレーザ距離計は、レーザ光を出射するレーザ光源とレーザ光を受光する受光器とを有する送受光ユニットと、出射されたレーザ光の照射位置を鋼板S表面の所定の第1の方向に沿って自在に調整可能なように、レーザ光を反射することで進行方向を調整するレーザ光調整部と、回転軸を中心にレーザ光源とレーザ光調整部とを回転させて、第1の方向に直交する第2の方向に沿ってレーザ光の照射位置を自在に調整可能なようにレーザ光の進行方向を調整する、回転軸上に設置される回転駆動部と、を有する。   FIG. 2 is a diagram for explaining a schematic configuration of the laser distance meter of the steel plate shape measuring apparatus 5. As shown in FIG. 2 (a), the laser distance meter of the steel plate shape measuring apparatus 5 includes a light transmitting / receiving unit having a laser light source that emits laser light and a light receiver that receives the laser light, and A laser beam adjusting unit that adjusts the traveling direction by reflecting the laser beam so that the irradiation position can be freely adjusted along a predetermined first direction on the surface of the steel sheet S; By rotating the laser beam adjusting unit, the traveling direction of the laser beam is adjusted so that the irradiation position of the laser beam can be freely adjusted along the second direction orthogonal to the first direction. And a rotary drive unit to be installed.

本実施形態の鋼板形状矯正装置のレーザ距離計の一例としては、図2(a)に示すように、送受光ユニット11が回転台12の上に搭載され、送受光ユニット11のレーザ出射口に周知のガルバノミラー(上記のミラーの一例である。)13(以下、単にミラー13とも云う)が配設される。ガルバノミラー13の回転軸は本発明における第一の回転軸に対応するもので、送受光ユニット11のレーザ出射口からのレーザ光の光軸に一致し、ガルバノミラー13の回転軸は回転台12の回転軸(本発明における第二の回転軸に対応)と直交する。なお、鋼板形状計測装置5では、入側ベッド3上や出側ベッド4上だけでなく、プレス機1の加圧ラム2下でも鋼板Sの形状を計測することができる。鋼板S表面からの再帰反射光はガルバノミラー13で反射されて、レーザ距離計の送受光ユニット11に届く。   As an example of the laser distance meter of the steel plate shape correcting apparatus of the present embodiment, as shown in FIG. 2A, the light transmitting / receiving unit 11 is mounted on the turntable 12, and is placed at the laser emission port of the light transmitting / receiving unit 11. A well-known galvanometer mirror (an example of the above-described mirror) 13 (hereinafter also simply referred to as a mirror 13) is provided. The rotation axis of the galvanometer mirror 13 corresponds to the first rotation axis in the present invention, and coincides with the optical axis of the laser beam from the laser emission port of the light transmission / reception unit 11, and the rotation axis of the galvanometer mirror 13 is the turntable 12. Is orthogonal to the rotation axis (corresponding to the second rotation axis in the present invention). In the steel plate shape measuring device 5, the shape of the steel plate S can be measured not only on the entry bed 3 and the exit bed 4 but also under the pressurization ram 2 of the press 1. Retroreflected light from the surface of the steel sheet S is reflected by the galvanometer mirror 13 and reaches the light transmitting / receiving unit 11 of the laser distance meter.

図2(b)は、図2(a)を図の左側から見た図であり、装置構成要素の配置を説明するため、一部は透視図を示している。図2(b)の上下方向が、図2(a)の上下方向と一致する。図2(b)の中央部の丸がガルバノミラー13を備えた第一の回転軸であり、この丸を通り左右に伸びる直線は水平方向を示す線である。ガルバノミラー13は第一の回転軸(図2(b)の紙面に垂直な方向)を中心軸として360度回転し、レーザ光の照射方向を、この第二の回転軸を中心とした0度〜360度の範囲で転向することができる。回転台12は第二の回転軸(図2(b)の上下方向)のまわりを回転し、レーザ光の照射方向を、この第二の回転軸を中心とした0度〜360度の範囲で転向することができる。ガルバノミラー13の回転と回転台12の回転により、全方向に対してレーザ光を照射することが可能となっている。   FIG. 2B is a view of FIG. 2A as viewed from the left side of the drawing, and a part thereof is shown in a perspective view for explaining the arrangement of the apparatus components. The vertical direction in FIG. 2B matches the vertical direction in FIG. The circle at the center of FIG. 2B is the first rotation shaft provided with the galvanometer mirror 13, and the straight line extending left and right through this circle is a line indicating the horizontal direction. The galvanometer mirror 13 rotates 360 degrees around the first rotation axis (direction perpendicular to the paper surface of FIG. 2B), and the irradiation direction of the laser beam is 0 degrees around the second rotation axis. It can be turned in the range of ~ 360 degrees. The turntable 12 rotates around a second rotation axis (vertical direction in FIG. 2B), and the irradiation direction of the laser light is in a range of 0 degrees to 360 degrees around the second rotation axis. You can turn around. The rotation of the galvanometer mirror 13 and the rotation of the turntable 12 enables laser light to be irradiated in all directions.

ガルバノミラー13および回転台12の回転角度はエンコーダで測定されており、それぞれの回転角度測定結果から、レーザ光の照射方位が検出できる。そして、検出群の各々の検出点について、距離データと、その距離データを得たときの照射方位データを対応づけることで、鋼板Sの形状を計測する。   The rotation angles of the galvanometer mirror 13 and the turntable 12 are measured by an encoder, and the irradiation direction of the laser light can be detected from the respective rotation angle measurement results. The shape of the steel sheet S is measured by associating the distance data with the irradiation direction data obtained when the distance data is obtained for each detection point of the detection group.

ガルバノミラー13の回転と回転台12の回転により、ガルバノミラー13からは全方位に対してレーザ光を照射することが可能となっているが、回転台12を第二の回転軸のまわりに回転するための回転駆動部14がレーザ光の光路の一部を遮るように回転台下に位置するため、回転駆動部14が邪魔となりレーザ光を鋼板形状計測装置5から外側に放射できない死角領域(影率が50〜100%である領域)および、ガルバノミラー13へ向かう鋼板Sからの再帰反射光の全てをガルバノミラー13で受光できない部分影領域(影率が0%超50%未満である領域)が生じる。レーザ光を照射できない領域(死角領域)および鋼板Sからの再帰反射光の全てをガルバノミラー13で受光できない領域(部分影領域)は、ガルバノミラー13の中心を頂点とした円錐体状に拡がり、死角領域内では形状を測定できない。また部分影領域のうち影率が大きい領域では、精度良く形状を測定することができない。影率がある値以上となる領域も、ガルバノミラー13の中心を頂点とした円錐体状に拡がる。   The rotation of the galvanometer mirror 13 and the rotation of the turntable 12 makes it possible to irradiate the galvanometer mirror 13 with laser light in all directions, but the turntable 12 is rotated around the second rotation axis. Since the rotation drive unit 14 is located under the turntable so as to block a part of the optical path of the laser beam, the rotation drive unit 14 becomes a hindrance and a blind spot region where the laser beam cannot be emitted from the steel plate shape measuring device 5 ( A region where the shadow rate is 50 to 100%) and a partial shadow region where all of the retroreflected light from the steel sheet S toward the galvanometer mirror 13 cannot be received by the galvanometer mirror 13 (region where the shadow rate is greater than 0% and less than 50%) ) Occurs. A region where the laser beam cannot be irradiated (dead angle region) and a region where the retroreflected light from the steel sheet S cannot be received by the galvanometer mirror 13 (partial shadow region) expands in a cone shape with the center of the galvanometer mirror 13 as the apex, The shape cannot be measured in the blind spot area. In addition, in the partial shadow region, the shape cannot be accurately measured in a region where the shadow rate is large. The region where the shadow rate is greater than or equal to a certain value also expands in a conical shape with the center of the galvanometer mirror 13 as a vertex.

ここで、上記の影率とは、ミラー13の全面で再帰反射光を受光する場合の受光される再帰反射光の光量に対する回転駆動部14等の障害物の存在に伴うミラー13が受光する再帰反射光の光量の低下率のことを指す。   Here, the above-mentioned shadow rate is the recursion received by the mirror 13 due to the presence of an obstacle such as the rotational drive unit 14 with respect to the amount of retroreflected light received when the retroreflected light is received on the entire surface of the mirror 13. It refers to the rate of decrease in the amount of reflected light.

図3に示すように、送受光ユニット11から出射されたレーザ光Lは、ミラー13で転向され、鋼板Sに照射される。鋼板S表面での拡散反射により生じた再帰反射光Loutは、ミラー13に向かい、ミラー13に反射して送受光ユニット11で受光される。影率が0%である場合は、図3(a)に示すように、鋼板Sからの再帰反射光Loutをミラーの全面で受光できる状態のことを意味する。   As shown in FIG. 3, the laser light L emitted from the light transmission / reception unit 11 is turned by the mirror 13 and irradiated onto the steel sheet S. The retroreflected light Lout generated by the diffuse reflection on the surface of the steel sheet S is directed to the mirror 13, reflected by the mirror 13, and received by the light transmitting / receiving unit 11. When the shadow rate is 0%, it means that the retroreflected light Lout from the steel sheet S can be received by the entire surface of the mirror as shown in FIG.

一方、部分影領域(影率が0%超50%未満の領域)では、図3(b)に示すように、送受光ユニット11から出射され、ミラー13で転向されたレーザ光Lの全てのスポット領域が、障害物(回転駆動部)14に遮られることなく、鋼板S表面へと照射される。しかし、ミラー13へと向かう鋼板Sからの再帰反射光Loutを、鋼板Sとミラーとの間の障害物(回転駆動部)14の存在によりミラー全面で受光できない状態となっている。影率は、鋼板Sからの再帰反射光Loutを受光していないミラー面の面積のミラー全面の面積に対する割合である。   On the other hand, in the partial shadow region (region where the shadow rate is greater than 0% and less than 50%), as shown in FIG. 3B, all of the laser light L emitted from the light transmitting / receiving unit 11 and turned by the mirror 13 is obtained. The spot region is irradiated onto the surface of the steel sheet S without being obstructed by the obstacle (rotary drive unit) 14. However, retroreflected light Lout from the steel sheet S toward the mirror 13 cannot be received by the entire mirror surface due to the presence of the obstacle (rotation drive unit) 14 between the steel sheet S and the mirror. The shadow ratio is a ratio of the area of the mirror surface that does not receive the retroreflected light Lout from the steel sheet S to the area of the entire mirror surface.

部分影領域において影率が増えると、受光素子が受光する再帰反射光の光量が減少し、外乱(ノイズ)の影響が大きくなるため、測定精度が悪くなる。ミラーが汚れた場合と同じ状態となる。本発明者らの検討によれば、影率が25%超となる部分影領域では、外乱(ノイズ)の影響が大きくなり、測定精度が悪いことがわかった。逆に、影率が25%未満の領域であれば、測定精度は十分に確保できることが確認された。   When the shadow rate increases in the partial shadow region, the amount of retroreflected light received by the light receiving element decreases, and the influence of disturbance (noise) increases, resulting in poor measurement accuracy. It becomes the same state as when the mirror is dirty. According to the study by the present inventors, it was found that in the partial shadow region where the shadow rate exceeds 25%, the influence of disturbance (noise) increases and the measurement accuracy is poor. On the contrary, it was confirmed that the measurement accuracy can be sufficiently secured if the shadow ratio is an area of less than 25%.

死角領域(影率が50〜100%である領域)では、送受光ユニット11から出射され、ミラー13で転向されたレーザ光Lの一部または全部が、障害物(回転駆動部)14により遮られ、鋼板S表面に照射されない状態となる。図3(c)はレーザ光Lの一部が障害物(回転駆動部)14に遮られている状態を示している。この死角領域では、レーザ光が鋼板Sに全く照射されないか、照射されたとしても照射されたレーザ光Lの光量自体が減少してしまい、さらに、ミラー13が受光すべき再帰反射光Loutについても、その多くが障害物(回転駆動部)14に遮られて、結果として送受光ユニットで受光する再帰反射光の光量が不足する。したがって、この死角領域では、鋼板形状の測定ができない。   In the blind spot area (area where the shadow ratio is 50 to 100%), part or all of the laser light L emitted from the light transmission / reception unit 11 and turned by the mirror 13 is blocked by the obstacle (rotation drive unit) 14. Thus, the surface of the steel sheet S is not irradiated. FIG. 3C shows a state in which a part of the laser beam L is blocked by the obstacle (rotation drive unit) 14. In this blind spot region, the laser beam is not irradiated to the steel sheet S at all, or even if it is irradiated, the light amount of the irradiated laser beam L itself decreases, and the retroreflected light Lout that the mirror 13 should receive is also reduced. Many of them are blocked by the obstacle (rotation drive unit) 14, and as a result, the amount of retroreflected light received by the light transmitting / receiving unit is insufficient. Therefore, the steel plate shape cannot be measured in this blind spot region.

図1に示すように、入側ベッド3の側方に設置された鋼板形状計測装置5、および、出側ベッド4の側方に設置された鋼板形状計測装置5は、それぞれ、鋼板の形状を測定可能な領域である形状測定領域A1、A2が設定されている。入側ベッド3の側方に設置された鋼板形状計測装置5についての形状測定領域A1は、入側ベッド3上の領域である。一方、出側ベッド4の側方に設置された鋼板形状計測装置5についての形状測定領域A2は、出側ベッド4上の領域およびプレス機1内の領域とされている。   As shown in FIG. 1, the steel plate shape measuring device 5 installed on the side of the entrance bed 3 and the steel plate shape measuring device 5 installed on the side of the exit bed 4 each have a shape of the steel plate. Shape measurement areas A1 and A2 that are measurable areas are set. The shape measurement region A <b> 1 for the steel plate shape measuring device 5 installed on the side of the entry bed 3 is a region on the entry bed 3. On the other hand, the shape measurement area A2 for the steel plate shape measuring device 5 installed on the side of the exit bed 4 is an area on the exit bed 4 and an area in the press 1.

そして、形状測定領域A1、A2はともに、鋼板形状計測装置5の影率が25%未満となる領域内にある。図1には、それぞれの鋼板形状計測装置5、5について、影率が25%以上となる円錐体領域を上方から見た領域B1、B2を示しているが、形状測定領域A1と影率が25%以上となる領域B1とは重複領域がない。また、形状測定領域A2と影率が25%以上となる領域B2とにも重複領域がない。つまり、形状測定領域A1あるいは形状測定領域A2の上に存在する鋼板Sについては、鋼板形状計測装置5からレーザ光が照射されると、ミラー13の全面で鋼板Sからの再帰反射光を受光できる。したがって、形状測定領域A1、A2それぞれの全域について、鋼板形状測定装置5、5で精度のよい鋼板形状測定を実施することができる。   And both shape measurement area | region A1, A2 exists in the area | region where the shadow rate of the steel plate shape measuring apparatus 5 is less than 25%. FIG. 1 shows regions B1 and B2 of the cone regions where the shadow rate is 25% or more for each of the steel plate shape measuring devices 5 and 5 as viewed from above, but the shape measurement region A1 and the shadow rate are the same. There is no overlapping area with the area B1 of 25% or more. Further, there is no overlapping area in the shape measurement area A2 and the area B2 in which the shadow rate is 25% or more. That is, with respect to the steel sheet S existing on the shape measurement region A1 or the shape measurement region A2, retroreflected light from the steel plate S can be received on the entire surface of the mirror 13 when the laser light is irradiated from the steel plate shape measuring device 5. . Therefore, accurate steel plate shape measurement can be performed by the steel plate shape measuring devices 5 and 5 for each of the shape measurement regions A1 and A2.

鋼板形状計測装置5と測定対象の鋼板Sまでの距離が離れるほど、点群密度が低く、距離精度も悪くなるため、鋼板形状計測装置5と測定対象(鋼板S)間の距離は小さいほうが望ましい。したがって、鋼板形状計測装置5は、鋼板Sの測定範囲の長手方向の中央付近に設置するほうが望ましい。   As the distance between the steel plate shape measuring device 5 and the steel plate S to be measured increases, the point cloud density decreases and the distance accuracy also deteriorates. Therefore, it is desirable that the distance between the steel plate shape measuring device 5 and the measurement target (steel plate S) is small. . Therefore, it is desirable to install the steel plate shape measuring device 5 near the center in the longitudinal direction of the measurement range of the steel plate S.

図4は、死角領域および部分影領域を説明するための図である。本実施形態の鋼板形状矯正装置では、上記の死角領域および部分影領域の位置調整について鋭意検討されており、入側ベッド3の側方の鋼板形状計測装置5については、死角領域および影率が25%以上の部分影領域に入側ベッド3が位置しないように、鋼板形状計測装置5が設置されている。また、出側ベッド4の側方の鋼板形状計測装置5については、死角領域および影率が25%以上の部分影領域にプレス機1および出側ベッド4が位置しないように、プレス機1と鋼板形状計測装置5が設置されている。   FIG. 4 is a diagram for explaining a blind spot area and a partial shadow area. In the steel plate shape correction device of the present embodiment, the position adjustment of the blind spot region and the partial shadow region has been intensively studied. For the steel plate shape measuring device 5 on the side of the entrance bed 3, the blind spot region and the shadow rate are The steel plate shape measuring device 5 is installed so that the entrance bed 3 is not located in the partial shadow region of 25% or more. Moreover, about the steel plate shape measuring apparatus 5 on the side of the exit side bed 4, the press machine 1 and the exit side bed 4 are arranged so that the blind spot region and the partial shadow region where the shadow rate is 25% or more are not located. A steel plate shape measuring device 5 is installed.

図4中では、上記の第1の方向とは、X´軸正負方向のことを指し、第二の回転軸である回転軸12を回転させなくてもレーザ光を照射位置を走査可能な方向を指す。また、図4中、上記の第2の方向とは、Y´軸正負方向のことを指す。回転台12は、X´軸を中心にして回転する。なお、X´軸、Y´軸とは、それぞれ、Z軸を中心にして、X軸、Y軸を同じ角度分回転させた軸であり、回転台12の回転軸の鋼板S表面に平行な平面への正射影は、X´軸と平行である。   In FIG. 4, the first direction refers to the positive / negative direction of the X ′ axis, and the laser beam irradiation position can be scanned without rotating the rotary shaft 12 that is the second rotary shaft. Point to. In FIG. 4, the second direction refers to the positive and negative direction of the Y ′ axis. The turntable 12 rotates around the X ′ axis. The X ′ axis and the Y ′ axis are axes obtained by rotating the X axis and the Y axis by the same angle around the Z axis, respectively, and are parallel to the surface of the steel sheet S of the rotation axis of the turntable 12. The orthogonal projection to the plane is parallel to the X ′ axis.

また、本実施形態の鋼板形状矯正装置では、上記の死角領域および部分影領域を考慮し、回転台12の上記の回転軸(第二の回転軸)が鋼板S表面に垂直ではなく、鋼板S表面に平行な平面への第二の回転軸の正射影が、鋼板Sの長手方向となす角度をA度(図4中の符号A参照)としたとき、死角領域+部分影領域の一部(影率が25%以上の領域)が、出側ベッド4やプレス機1と干渉しないように、A度が設定されている。例えば、A度が0度である場合、死角領域+部分影領域の一部(影率が25%以上の領域)が、鋼板形状計測装置5を通るライン方向線よりも出側ベッド4の側にも存在するようになる。A度を大きくしていくと、死角領域+部分影領域の一部の、鋼板形状計測装置5を通るライン方向線よりも出側ベッド4の側への重なり度合が小さくなっていく。出側ベッド4側への死角領域+部分影領域の一部の存在をなくすためには、A度が10度以上であることが好ましい。これにより、鋼板Sの測定可能範囲を大きくできる。   Moreover, in the steel plate shape correction apparatus of the present embodiment, the above-described rotation axis (second rotation axis) of the turntable 12 is not perpendicular to the surface of the steel sheet S in consideration of the blind spot area and the partial shadow area, and the steel sheet S. When the angle formed by the orthogonal projection of the second rotation axis to the plane parallel to the surface with the longitudinal direction of the steel sheet S is A degrees (see symbol A in FIG. 4), the blind spot region + part of the partial shadow region A degree is set so that (the area where the shadow rate is 25% or more) does not interfere with the exit bed 4 or the press 1. For example, when the A degree is 0 degree, a part of the blind spot area + partial shadow area (area where the shadow rate is 25% or more) is closer to the exit bed 4 than the line direction line passing through the steel plate shape measuring device 5. Will also exist. When the degree A is increased, the degree of overlap of the part of the blind spot area + partial shadow area to the exit bed 4 side with respect to the line direction line passing through the steel plate shape measuring device 5 becomes smaller. In order to eliminate the presence of a part of the blind spot area + partial shadow area on the exit bed 4 side, the A degree is preferably 10 degrees or more. Thereby, the measurable range of the steel sheet S can be increased.

さらに、鋼板表面に平行な平面への前記第二の回転軸の正射影について、影率が25%以上となる領域の端部の2本の直線で形成される角度をB度(図4中の符号B参照。Bは0超え180未満である。)としたとき、回転軸の死角領域側の直線と、鋼板の長手方向(ライン方向)とにより形成される角度(すなわち、上記のA度)が、(B/2)度以上90度以下である。A度が(B/2)度以上90度以下であることで、鋼板Sの形状の測定精度がより高まる。   Further, regarding the orthogonal projection of the second rotation axis onto the plane parallel to the steel plate surface, the angle formed by two straight lines at the end of the region where the shadow ratio is 25% or more is B degrees (in FIG. 4). The angle formed by the straight line on the blind spot region side of the rotating shaft and the longitudinal direction (line direction) of the steel sheet (that is, the above-mentioned A degree). ) Is (B / 2) degrees or more and 90 degrees or less. When A degree is (B / 2) degree or more and 90 degrees or less, the measurement precision of the shape of the steel plate S increases more.

図5は、鋼板形状計測装置5による鋼板の形状の測定範囲の一例を説明するための図である。図5の最上図は、測定対象領域と、鋼板形状測定装置との位置関係を上面図として示すものである。図の左右方向が鋼板の搬送方向であり、鋼板の長手方向でもある。「プレス機下」と記された領域は、プレス機1の下方であり、そのほかの部分は、出側ベッド4の一部である。測定対象領域は、プレス機1の下方(プレス機中央部から鋼板搬送方向に対して前後各2m)、および、出側ベッド4のうちプレス機1の中央部直下から鋼板搬送方向に対して28m離れた位置までである。鋼板形状測定装置5の回転台12の中心軸(回転軸)は、プレス機1の中央部から鋼板搬送方向に対して14m、出側ベッド4の鋼板形状測定装置5側の端部から0.7mの位置にある。図中では、内部に多数に点が描かれた円として表示されている。   FIG. 5 is a diagram for explaining an example of the measurement range of the shape of the steel sheet by the steel sheet shape measuring apparatus 5. The top view of FIG. 5 shows the positional relationship between the measurement target region and the steel plate shape measuring apparatus as a top view. The left-right direction in the figure is the conveying direction of the steel plate, and is also the longitudinal direction of the steel plate. The area marked “under the press” is below the press 1, and the other part is a part of the exit bed 4. The measurement target area is 28 m below the press machine 1 (2 m before and after the center of the press machine with respect to the steel plate conveyance direction) and just below the center part of the press machine 1 of the exit bed 4 with respect to the steel plate conveyance direction. Up to a distance. The central axis (rotary axis) of the turntable 12 of the steel plate shape measuring device 5 is 14 m from the central portion of the press 1 with respect to the steel plate conveyance direction, and is 0. 0 from the end of the exit bed 4 on the steel plate shape measuring device 5 side. Located at 7m. In the figure, it is displayed as a circle with many dots drawn inside.

以下、全長平坦度測定モード、プレス機下測定モード、半長平坦度測定モードについて説明する。図5の上から2〜4番目の図において太線で囲まれた領域が、それぞれの測定モードにおける測定対象領域を示す。図5に示すように、全長平坦度測定モードは、板長最大28mの平坦度を測定可能なモードである。プレス機下平坦度測定モード(ラム下平坦度測定モード)は、加圧ラム直下の板の平坦度を測定するモードである。半長平坦度測定モードは、プレス機直下を含む鋼板全長の約半分強の領域として板長最大16mの平坦度を測定可能なモードである。どの測定モードを使用するかについては、鋼板Sの性質に応じて適宜設定することができる。   Hereinafter, the full length flatness measurement mode, the press machine down measurement mode, and the half length flatness measurement mode will be described. In the second to fourth figures from the top of FIG. 5, the area surrounded by the thick line indicates the measurement target area in each measurement mode. As shown in FIG. 5, the full length flatness measurement mode is a mode capable of measuring the flatness of a maximum plate length of 28 m. The flatness measurement mode under the press machine (the flatness measurement mode under the ram) is a mode for measuring the flatness of the plate directly under the pressure ram. The semi-long flatness measurement mode is a mode in which the flatness of a maximum plate length of 16 m can be measured as an area that is slightly over half the total length of the steel plate including directly under the press. Which measurement mode is used can be appropriately set according to the properties of the steel sheet S.

ここで、ある鋼板Sを対象として形状を計測する例を説明する。鋼板形状計測装置5の回転台12の回転軸を鉛直軸と平行に設置した場合、全長平坦度測定モードの鋼板Sを全長にわたって走査するための回転角(図5中、角α)は174度、プレス機下平坦度測定モードの加圧ラム2下の鋼板Sを走査するための回転角(図5中、角β)は35度(以下、「°」とも記す)、半長平坦度測定モードの搬送装置上の鋼板Sを走査するための回転角(図5中、角γ)は158度となる。   Here, the example which measures a shape for a certain steel plate S is demonstrated. When the rotation axis of the turntable 12 of the steel plate shape measuring apparatus 5 is installed parallel to the vertical axis, the rotation angle (angle α in FIG. 5) for scanning the steel plate S in the full length flatness measurement mode over the entire length is 174 degrees. The rotation angle for scanning the steel sheet S under the pressing ram 2 in the press machine flatness measurement mode (angle β in FIG. 5) is 35 degrees (hereinafter also referred to as “°”), and the semi-long flatness measurement. The rotation angle (angle γ in FIG. 5) for scanning the steel sheet S on the mode conveying device is 158 degrees.

なお、ガルバノミラー13は高速に回転するが、回転台12の回転速度は比較的低速であるため、回転台12の回転角度の変化範囲が測定時間の長短を決定する。作業効率上からも測定時間は可能な限り短いほうがよい。したがって、測定のための回転台12の回転角度の変化範囲はできるだけ小さいほうがよい。   Although the galvano mirror 13 rotates at a high speed, the rotation speed of the turntable 12 is relatively low, so the range of change in the rotation angle of the turntable 12 determines the length of the measurement time. From the viewpoint of work efficiency, the measurement time should be as short as possible. Therefore, the range of change of the rotation angle of the turntable 12 for measurement should be as small as possible.

鋼板形状計測装置5の回転台12の回転軸を鉛直軸と垂直に設置した場合の、所定範囲の全長を測定するために必要な第二の回転軸まわりの回転角度(以下、旋回角度と称する)と、第二の回転軸と鋼板搬送方向とがなす角(A度)の補角である設置角度と、の関係を、全長平坦度測定モード、プレス機下平坦度測定モード、および、半長平坦度測定モードのそれぞれについて図6に示す。ここで、設置角度とは、図4に示した図において、180度から上記のA度を引いた角度である。旋回角度が大きい程、第2の回転軸回りの回転に要する時間が長くなり、測定が長時間化するため、測定効率は悪くなる。死角は55度であり、鋼板形状計測装置5の位置よりも出側ベッド4側に死角領域を発生させないための設置角度は23〜157度となる。また、影率25%以上の領域(図4における死角領域+部分影領域の一部)の角度(=B×2)は、90度であり、鋼板形状計測装置5の位置よりも出側ベッド4側に影率25%以上の領域を発生させないための設置角度は45度超135度未満となる。   When the rotation axis of the turntable 12 of the steel plate shape measuring apparatus 5 is installed perpendicularly to the vertical axis, the rotation angle around the second rotation axis necessary for measuring the total length of the predetermined range (hereinafter referred to as the turning angle). ) And the installation angle, which is a complementary angle to the angle (A degree) formed by the second rotation axis and the steel plate conveyance direction, is expressed by the full length flatness measurement mode, the press machine flatness measurement mode, and the half FIG. 6 shows each of the long flatness measurement modes. Here, the installation angle is an angle obtained by subtracting the A degree from 180 degrees in the diagram shown in FIG. The larger the turning angle, the longer the time required for rotation around the second rotation axis, and the longer the measurement takes, the worse the measurement efficiency. The blind spot is 55 degrees, and the installation angle for preventing the blind spot area from being generated on the exit bed 4 side from the position of the steel plate shape measuring device 5 is 23 to 157 degrees. In addition, the angle (= B × 2) of the region having a shadow rate of 25% or more (the blind spot region + part of the partial shadow region in FIG. 4) is 90 degrees, which is the exit bed from the position of the steel plate shape measuring device 5. The installation angle for preventing an area having a shadow ratio of 25% or more on the 4 side from being more than 45 degrees and less than 135 degrees.

図6から、設置角度30度のときプレス機下平坦度測定モードの旋回角度は約90度と、比較的大きくなり、プレス機下平坦度測定モードの測定効率は悪くなる。設置角度90度のときプレス機下平坦度測定モードの旋回角度は約5度で極小となるが、一方、全長平坦度測定モードの旋回角度は約155度で極大となる。設置角度150度のときプレス機下平坦度測定モードの旋回角度は約15度で比較的小さく、また全長平坦度測定モードの旋回角度は約140度である。これらの結果を総合すると、設置角度は90〜157度(上記A度として、23〜90度)が好ましい。なお、形状測定装置の特性や性能にも依存するが、旋回角度30度以下では旋回角度の大小にかかわらず測定に必要な時間がほぼ同じになること、また、設置角度が90度以上の場合には半長平坦度測定モードにおける旋回角度が単調に減少して効率が向上すること、なども考えると、設置角度157度の場合が最も効率的となる。   From FIG. 6, when the installation angle is 30 degrees, the turning angle in the press machine flatness measurement mode is relatively large at about 90 degrees, and the measurement efficiency in the press machine flatness measurement mode is deteriorated. When the installation angle is 90 degrees, the turning angle in the flatness measurement mode under the press machine is a minimum at about 5 degrees, while the turning angle in the full length flatness measurement mode is a maximum at about 155 degrees. When the installation angle is 150 degrees, the turning angle in the press machine flatness measurement mode is about 15 degrees, which is relatively small, and the full length flatness measurement mode turning angle is about 140 degrees. When these results are put together, the installation angle is preferably 90 to 157 degrees (23 to 90 degrees as the A degree). Although it depends on the characteristics and performance of the shape measuring device, when the turning angle is 30 degrees or less, the time required for measurement is almost the same regardless of the turning angle, and when the installation angle is 90 degrees or more. Considering that the turning angle in the half-long flatness measurement mode is monotonously decreased and the efficiency is improved, the case where the installation angle is 157 degrees is the most efficient.

一方で、設置角度が135度以上であると、影率25%以上の領域が、ライン方向と直交する水平方向で、鋼板形状計測装置5よりも出側ベッド4側へと存在するようになるため、測定精度の観点からは好ましくない。したがって、測定精度および測定効率を両立する観点からは、設置角度は135度より若干小さい値となるように、具体的には90〜135度の範囲とするのがよい。言い換えると、A度は、45度〜90度の範囲とするのがよい。   On the other hand, when the installation angle is 135 degrees or more, an area having a shadow rate of 25% or more is present on the exit bed 4 side of the steel plate shape measuring device 5 in the horizontal direction orthogonal to the line direction. Therefore, it is not preferable from the viewpoint of measurement accuracy. Therefore, from the viewpoint of achieving both measurement accuracy and measurement efficiency, specifically, the installation angle is preferably in the range of 90 to 135 degrees so as to be slightly smaller than 135 degrees. In other words, the A degree is preferably in the range of 45 to 90 degrees.

さらに、鋼板形状計測装置には、ミラー13の第一の回転軸回りの回転角の誤差dφ(以下、単にミラー回転角誤差dφと云う)(rad)、回転台12の第二の回転軸回りの旋回角の誤差dθ(以下単に旋回角誤差dθと云う)(rad)、および、距離の誤差dr(m)の3成分の装置誤差がある。これら3成分の誤差の合計である装置誤差を最少限とするためには、前記A度は50°〜70°であることが好ましい。以下、その理由について説明する。   Further, the steel plate shape measuring apparatus includes a rotation angle error dφ around the first rotation axis of the mirror 13 (hereinafter simply referred to as a mirror rotation angle error dφ) (rad), a rotation around the second rotation axis of the turntable 12. There is a three-component device error of a turning angle error dθ (hereinafter simply referred to as a turning angle error dθ) (rad) and a distance error dr (m). In order to minimize the apparatus error, which is the sum of these three component errors, the A degree is preferably 50 ° to 70 °. The reason will be described below.

図7に示すように、回転台12の回転軸(第二の回転軸)を出側ベッド3、入側ベッド4の搬送面、すなわち、形状測定領域における鋼板Sの載置面と平行(鋼板S表面とは略平行)とし、この回転台12の回転軸(第2の回転軸)の方向をx’軸、上記載置面と平行な面内のx’軸と直交する方向をy’軸、高さ方向(鋼板Sの板面の法線方向)をz軸とすると、この場合の高さ方向の測定誤差は、以下の式(1)で表される。   As shown in FIG. 7, the rotation axis (second rotation axis) of the turntable 12 is parallel to the conveying surface of the exit side bed 3 and the entry side bed 4, that is, parallel to the placement surface of the steel sheet S in the shape measurement region. The direction of the rotation axis (second rotation axis) of the turntable 12 is the x ′ axis, and the direction orthogonal to the x ′ axis in the plane parallel to the placement surface is y ′. If the axis and the height direction (normal direction of the plate surface of the steel sheet S) are the z-axis, the measurement error in the height direction in this case is expressed by the following equation (1).

ここで、x’は第2の回転軸方向座標(鋼板形状計測装置5から測定点までのx’軸方向の距離)(m)、y’は鋼板形状計測装置5から測定点までのy’軸方向の距離(m)、Zは鋼板形状計測装置5の設置高さ(鋼板形状計測装置5から測定点までのz軸方向の距離)(m)である。 Here, x ′ is the second rotation axis direction coordinate (distance in the x′-axis direction from the steel plate shape measuring device 5 to the measurement point) (m), y ′ is y ′ from the steel plate shape measuring device 5 to the measurement point. A distance (m) in the axial direction, Z is an installation height of the steel plate shape measuring device 5 (a distance in the z-axis direction from the steel plate shape measuring device 5 to the measurement point) (m).

距離誤差drの係数は、鋼板形状計測装置5と測定点までの距離が大きいほど小さくなる。このことは、高さ方向誤差dzに対する距離誤差drの影響が相対的に小さいことを意味しており、距離誤差drは無視してよい。旋回角誤差dθは、回転台12の旋回速度がミラー13の回転速度よりも比較的小さく、回転台12の旋回制御能力が高いため、装置誤差としては無視することができる。ミラー13は高速で回転させることができ、測定に要する時間を短くしようとして高速で回転させる場合には、ミラー回転角誤差dφが、距離誤差drや旋回角誤差dθに比べて非常に大きくなる。よって、ミラー回転角誤差dφのみを装置誤差の原因とみなすと、式(1)からミラー回転角による誤差の影響係数は、以下の(2)式で表すことができる。   The coefficient of the distance error dr decreases as the distance from the steel plate shape measuring device 5 to the measurement point increases. This means that the influence of the distance error dr on the height direction error dz is relatively small, and the distance error dr may be ignored. The turning angle error dθ can be ignored as an apparatus error because the turning speed of the turntable 12 is relatively smaller than the rotation speed of the mirror 13 and the turn control ability of the turntable 12 is high. The mirror 13 can be rotated at a high speed. When the mirror 13 is rotated at a high speed in order to shorten the time required for measurement, the mirror rotation angle error dφ is much larger than the distance error dr and the turning angle error dθ. Therefore, if only the mirror rotation angle error dφ is regarded as the cause of the apparatus error, the influence coefficient of the error due to the mirror rotation angle can be expressed by the following equation (2) from equation (1).

回転台12の旋回軸(第二の回転軸)が鋼板Sの載置面と平行となる場合について、(2)式に基づき、A度を0°(x軸(ライン方向軸)とx’軸とが一致している)〜90°まで変化させた場合の、鋼板S表面上の(x、y)座標上の各領域における影響計数dz/dφの値をマップ化した例を図8に示す。ここでZの値(回転台12の旋回軸とミラー13の回転軸との交点の、鋼板Sの表面からの高さ)は、3mとした。また、(x,y)座標上の原点は、回転台12の旋回軸とミラー13の回転軸との交点とした。マップ化は、鋼板形状計測装置のある位置(x,y座標上の原点)のライン方向前後12m(計24m)、幅方向(ライン方向と直交する水平方向)6mの領域について行った。この領域は、実操業で形状を測定しなければならない鋼板Sの長さ、幅の最大値を勘案して設定した領域である。   In the case where the turning axis (second rotation axis) of the turntable 12 is parallel to the mounting surface of the steel sheet S, A degree is set to 0 ° (x axis (line direction axis) and x ′) based on the equation (2). FIG. 8 shows an example in which the value of the influence coefficient dz / dφ in each region on the (x, y) coordinates on the surface of the steel sheet S when changing from 90 ° to 90 ° (which coincides with the axis) is mapped to FIG. Show. Here, the value of Z (the height from the surface of the steel sheet S at the intersection of the pivot axis of the turntable 12 and the rotation axis of the mirror 13) was 3 m. The origin on the (x, y) coordinates is the intersection of the turning axis of the turntable 12 and the rotation axis of the mirror 13. Mapping was performed for an area of 12 m before and after the line direction (24 m in total) and 6 m in the width direction (horizontal direction orthogonal to the line direction) at a certain position (the origin on the x, y coordinates) of the steel plate shape measuring apparatus. This area is an area set in consideration of the maximum length and width of the steel sheet S whose shape must be measured in actual operation.

(2)式に基づき、A度を0°とした場合の影響係数dz/φをマップ化した例を図8(a)に示す。この場合、鋼板形状計測装置5のミラー回転角誤差dφは19秒(9.2×10−5rad)であり、最も影響係数が大きくなる位置での高さ方向測定誤差dzは、
dz=dz/dφ×dφ=12m/rad×9.2×10−5rad=0.0011m=1.1mmとなる。誤差の許容範囲は0.8mm以下であり、高さ誤差が大きすぎる。
FIG. 8A shows an example of mapping the influence coefficient dz / φ when the A degree is set to 0 ° based on the equation (2). In this case, the mirror rotation angle error dφ of the steel plate shape measuring apparatus 5 is 19 seconds (9.2 × 10 −5 rad), and the height direction measurement error dz at the position where the influence coefficient becomes the largest is
dz = dz / dφ × dφ = 12 m / rad × 9.2 × 10 −5 rad = 0.0011 m = 1.1 mm. The allowable range of error is 0.8 mm or less, and the height error is too large.

(2)式に基づき、A度が30°とした場合の、影響係数dz/dφをマップ化した例を図8(b)に示す。この場合、最も影響係数が大きくなる位置での高さ方向測定誤差は、
dz=dz/dφ×dφ=12.9m/rad×9.2×10−5rad=0.0012m=1.2mmとなる。誤差の許容範囲は0.8mm以下であり、半長モードでは高さ誤差が許容範囲内であるが、全長モードでは高さ誤差が大きすぎる。
FIG. 8B shows an example in which the influence coefficient dz / dφ is mapped based on the equation (2) when the A degree is 30 °. In this case, the height direction measurement error at the position where the influence coefficient is the largest is
dz = dz / dφ × dφ = 12.9 m / rad × 9.2 × 10 −5 rad = 0.0012 m = 1.2 mm. The allowable error range is 0.8 mm or less, and the height error is within the allowable range in the half length mode, but the height error is too large in the full length mode.

(2)式に基づき、A度が60°とした場合の、影響係数dz/dφをマップ化した例を図8(c)に示す。最も影響係数が大きくなる位置での高さ方向測定誤差は、dz=dz/dφ×dφ=7.1m/rad×9.2×10−5rad=0.00065m=0.65mmとなる。誤差の許容範囲は0.8mm以下であり、全長モードでも高さ誤差が許容範囲内となる。 FIG. 8C shows an example in which the influence coefficient dz / dφ is mapped based on the equation (2) when the A degree is 60 °. The height direction measurement error at the position where the influence coefficient is the largest is dz = dz / dφ × dφ = 7.1 m / rad × 9.2 × 10 −5 rad = 0.00065 m = 0.65 mm. The allowable range of error is 0.8 mm or less, and the height error is within the allowable range even in the full length mode.

(2)式に基づき、A度が90°とした場合の、影響係数dz/dφをマップ化した例を図8(d)に示す。最も影響係数が大きくなる位置での高さ方向測定誤差は、dz=dz/dφ×dφ=6m/rad×9.2×10−5rad=0.00055m=0.55mmとなる。誤差の許容範囲は0.8mm以下であり、全長モードでも高さ誤差が許容範囲内となる。 FIG. 8D shows an example in which the influence coefficient dz / dφ is mapped based on the equation (2) when the A degree is 90 °. The height direction measurement error at the position where the influence coefficient is the largest is dz = dz / dφ × dφ = 6 m / rad × 9.2 × 10 −5 rad = 0.00055 m = 0.55 mm. The allowable range of error is 0.8 mm or less, and the height error is within the allowable range even in the full length mode.

以上のようにして、誤差の許容範囲を満足できる角度A度の範囲を検討したところ、50°〜130°であれば、装置誤差に伴う高さの測定誤差は許容範囲内となる。   As described above, when the range of the angle A that can satisfy the allowable error range is studied, if the angle is 50 ° to 130 °, the height measurement error accompanying the device error is within the allowable range.

一方で、鋼板Sの形状測定精度の向上のためには、鋼板S表面上の検出点群の密度も重要となる。すなわち、鋼板Sの長手方向(ライン方向)、幅方向ともに単位長さあたりの検出点の数が多ければ、より緻密に形状測定を行うことができる。鋼板Sの長手方向では、幅方向に比べて、表面の高さ位置の変化のピッチ(うねりのピッチ)が小さいという特徴がある。このことを踏まえると、検出点群のピッチは、鋼板Sの長手方向により小さくすることが好ましく、すなわち、長手方向の単位長さあたりの検出点数が多い方が好ましい。   On the other hand, in order to improve the shape measurement accuracy of the steel sheet S, the density of detection points on the surface of the steel sheet S is also important. That is, if the number of detection points per unit length is large in both the longitudinal direction (line direction) and the width direction of the steel sheet S, the shape can be measured more precisely. The longitudinal direction of the steel sheet S is characterized in that the pitch of the change in the height position of the surface (swell pitch) is smaller than that in the width direction. In consideration of this, it is preferable that the pitch of the detection point group is smaller in the longitudinal direction of the steel sheet S, that is, it is preferable that the number of detection points per unit length in the longitudinal direction is larger.

図9(a)には、図8(d)の場合と同様に鋼板形状計測装置5を設置した場合、すなわち、角度A度を90°とした場合の、鋼板形状測定装置5からライン方向に最も遠い部位について検出点分布を示す。ここでは、ライン方向に最も遠い部位として、x=10〜12m、y=0〜2mの範囲を示している。   In FIG. 9A, when the steel plate shape measuring device 5 is installed as in FIG. 8D, that is, when the angle A degree is 90 °, the steel plate shape measuring device 5 is moved in the line direction. The detection point distribution is shown for the farthest part. Here, the range of x = 10-12 m and y = 0-2 m is shown as the farthest part in the line direction.

図9(a)から明らかなように、検出点の幅方向(y軸方向)の単位長さあたりの数は大きいが、長手方向(x軸方向)の単位長さあたりの数が小さい。つまり、長手方向の検出点のピッチは、幅方向の検出点のピッチより大きくなっており、具体的には62.5mmである。このような場合、鋼板Sの表面のうねりのピッチが、上述のとおり長手方向に沿った場合の方が幅方向に沿った場合よりも小さいにも関わらず、検出点のピッチは長手方向に沿った場合の方が幅方向に沿った場合よりも大きいのであるから、鋼板Sの形状の測定に対しては好ましくない。   As is clear from FIG. 9A, the number of detection points per unit length in the width direction (y-axis direction) is large, but the number per unit length in the longitudinal direction (x-axis direction) is small. That is, the pitch of the detection points in the longitudinal direction is larger than the pitch of the detection points in the width direction, specifically 62.5 mm. In such a case, although the pitch of the undulations on the surface of the steel sheet S is smaller in the case of being along the longitudinal direction as described above than in the case of being along the width direction, the pitch of the detection points is along the longitudinal direction. This is not preferable for the measurement of the shape of the steel sheet S because it is larger than the case along the width direction.

さらに、位置検出装置7として鋼板形状計測装置5と同様の装置を用いる場合、長手方向の最上流側または最下流側の鋼板S上の検出点にもとづき、鋼板Sのライン方向位置の特定を行うこととなるが、図9(a)のように、長手方向の検出点のピッチが長いと、鋼板Sの端部位置の特定精度が悪くなる。図9の場合には、62.5mm間隔でしか鋼板Sの長手方向位置を特定できない。   Further, when the same device as the steel plate shape measuring device 5 is used as the position detecting device 7, the position in the line direction of the steel plate S is specified based on the detection point on the steel plate S on the most upstream side or the most downstream side in the longitudinal direction. However, as shown in FIG. 9A, when the pitch of the detection points in the longitudinal direction is long, the accuracy of specifying the end position of the steel sheet S is deteriorated. In the case of FIG. 9, the longitudinal position of the steel sheet S can be specified only at intervals of 62.5 mm.

図9(b)には、図8(c)の場合と同様に、鋼板形状計測装置5を設置した場合、すなわち、角度A度を60°とした場合の、鋼板形状測定装置5からライン方向に最も遠い部位について検出点分布を示す。ここでも、最も遠い部位とは、x=10〜12m、y=0〜2mの範囲である。   FIG. 9B shows the line direction from the steel plate shape measuring device 5 when the steel plate shape measuring device 5 is installed, that is, when the angle A is 60 °, as in FIG. 8C. Shows the detection point distribution for the farthest part. Here too, the farthest part is the range of x = 10-12 m and y = 0-2 m.

図9(b)に示すとおり、角度A度が60°の場合、検出点が最も密に並ぶ方向(単位長さあたりの検出点の数が最も大きい方向)は、長手方向(x軸)に対して60°傾いたの方向となる。この場合は、検出点群の最も密な方向がうねりのピッチが最も狭い方向に近づくため、A度が90°の場合(図9(a)の場合)に比べて、形状測定の精度は向上する。   As shown in FIG. 9B, when the angle A is 60 °, the direction in which the detection points are arranged most densely (the direction in which the number of detection points per unit length is the largest) is in the longitudinal direction (x-axis). The direction is inclined by 60 °. In this case, since the densest direction of the detection point group approaches the direction in which the waviness pitch is the narrowest, the accuracy of the shape measurement is improved as compared with the case where the A degree is 90 ° (in the case of FIG. 9A). To do.

また、位置検出装置7として鋼板形状計測装置5と同様の装置を用いる場合であっても、図9(b)の場合は、鋼板Sの端部位置の特定精度が図9(a)の場合よりも向上し、鋼板Sのライン方向位置の検出精度が良好となる。   Moreover, even if it is a case where the apparatus similar to the steel plate shape measuring apparatus 5 is used as the position detection apparatus 7, in the case of FIG.9 (b), the specific precision of the edge part position of the steel plate S is a case of FIG.9 (a). The detection accuracy of the position in the line direction of the steel sheet S is improved.

以上説明した、鋼板Sの長手方向に小さいピッチの高さ変化に対応した形状測定を行う観点、および、鋼板Sの板端のライン方向位置の特定精度の観点からは、A度は50°〜70°とすることが好ましい。   From the viewpoint of performing the shape measurement corresponding to the height change of a small pitch in the longitudinal direction of the steel sheet S described above, and from the viewpoint of the specific accuracy of the line direction position of the plate end of the steel sheet S, the A degree is 50 ° to 50 °. The angle is preferably 70 °.

以上の角度Aの好適範囲についての説明は、x’軸が鋼板Sの載置面に平行である場合についての検討結果である。x’軸を鋼板Sの載置面に平行として検討した理由は、その鋼板形状計測装置5をこのように設置することが、ミラー回転角の誤差影響が最も小さくなるからである。すなわち、鋼板形状計測装置5の回転台12の旋回軸が鋼板測定領域における鋼板Sの載置面と平行(鋼板S表面と略平行)となる鋼板形状計測装置5の設置方法は、ミラー回転角の誤差影響を小さくする。逆に、鋼板形状計測装置5の回転台12の旋回軸が鋼板Sの載置面と垂直(鋼板S表面と略垂直)となる場合、ミラー回転角の誤差影響が大きくなり、高速測定が不可能となるためである。   The above description of the preferable range of the angle A is a result of examination in the case where the x ′ axis is parallel to the mounting surface of the steel sheet S. The reason why the x′-axis is considered to be parallel to the mounting surface of the steel sheet S is that the installation of the steel sheet shape measuring device 5 in this way has the smallest error effect on the mirror rotation angle. That is, the installation method of the steel plate shape measuring device 5 in which the turning axis of the turntable 12 of the steel plate shape measuring device 5 is parallel to the mounting surface of the steel plate S in the steel plate measurement region (substantially parallel to the surface of the steel plate S) is the mirror rotation angle. Reduce the error effect of. On the contrary, when the turning axis of the turntable 12 of the steel plate shape measuring apparatus 5 is perpendicular to the surface of the steel plate S (substantially perpendicular to the surface of the steel plate S), the error effect of the mirror rotation angle becomes large and high-speed measurement is not possible. This is because it becomes possible.

図10には、鋼板形状計測装置5の回転台12の旋回軸(x’軸)が載置面と垂直(鋼板表面と略垂直)となる場合の、鋼板S表面上の(x、y)座標上の各領域における影響計数dz/dφの値をマップ化した例を示す。鋼板形状計測装置5の設置位置は、図8の場合と同様であり、図10上の原点の上方3m(Z=3m)の位置に、回転台12の回転軸とミラー13の回転軸との交点があり、回転台12の旋回軸(x’軸)は、図10の紙面と直交する方向である。回転駆動部14が、z軸方向で鋼板Sの載置面と逆側となるように設置して、死角領域および部分影領域がz軸方向の搬送面側に存在しないようにすることを仮定している。図10を図8と比較すると明らかなように、回転台12の回転軸(x’軸)が鋼板Sの載置面(x−y平面)と垂直である場合には、ミラー回転角の誤差影響が大きい領域の面積が大きくなることがわかる。   FIG. 10 shows (x, y) on the surface of the steel sheet S when the pivot axis (x ′ axis) of the turntable 12 of the steel sheet shape measuring apparatus 5 is perpendicular to the placement surface (substantially perpendicular to the steel sheet surface). The example which mapped the value of influence count dz / dphi in each area | region on a coordinate is shown. The installation position of the steel plate shape measuring device 5 is the same as in the case of FIG. 8, and the rotation axis of the turntable 12 and the rotation axis of the mirror 13 are located at a position 3 m (Z = 3 m) above the origin on FIG. There is an intersection, and the turning axis (x ′ axis) of the turntable 12 is a direction orthogonal to the paper surface of FIG. It is assumed that the rotation drive unit 14 is installed so as to be opposite to the mounting surface of the steel sheet S in the z-axis direction so that the blind spot region and the partial shadow region do not exist on the transport surface side in the z-axis direction. doing. As is apparent from a comparison of FIG. 10 with FIG. 8, when the rotation axis (x ′ axis) of the turntable 12 is perpendicular to the mounting surface (xy plane) of the steel sheet S, an error in the mirror rotation angle. It can be seen that the area of the region having a large influence increases.

したがって、鋼板形状計測装置5は、回転台12の回転軸(x’軸)が載置面と平行ことなるように設定されることがよいが、多少、平行から傾斜するように回転台12の回転軸(x’軸)が設定されていてもよい。なお、回転台12の回転軸が、鋼板Sの載置面に対して傾斜していたとしても、x’軸の載置面に対する傾斜角が鋭角側で10°以内であれば、図8、図9に示した検討結果と同様の結果が得られることが確認できている。   Therefore, the steel plate shape measuring device 5 is preferably set so that the rotation axis (x ′ axis) of the turntable 12 is parallel to the placement surface, but the turntable 12 is slightly inclined from parallel. A rotation axis (x ′ axis) may be set. Even if the rotation axis of the turntable 12 is inclined with respect to the mounting surface of the steel plate S, if the inclination angle of the x ′ axis with respect to the mounting surface is within 10 ° on the acute angle side, FIG. It has been confirmed that the same result as the examination result shown in FIG. 9 is obtained.

このように、本実施形態の鋼板形状矯正装置では、鋼板形状計測装置5に回転駆動部14が設けられることにより発生する影率が25%以上となる領域の位置を調整することで、鋼板形状計測装置5のレーザ光を照射させて、形状矯正前後の搬送装置上の鋼板形状および形状矯正中のプレス機1の下方、特に加圧ラム下の鋼板形状を精度良く測定することができる。すなわち、本実施形態の鋼板形状矯正装置では、プレス機1が、鋼板形状計測装置5のレーザ光における予め設定された影率が25%以上となる領域に位置しないように、プレス機1と鋼板形状計測装置5とを設置することで、形状矯正前後の搬送装置上の鋼板形状および形状矯正中のプレス機1の下方、特に加圧ラム2下の鋼板形状を精度良く測定することができる。   Thus, in the steel plate shape correction device of the present embodiment, the steel plate shape is adjusted by adjusting the position of the region where the shadow ratio generated by providing the rotational drive unit 14 in the steel plate shape measuring device 5 is 25% or more. The laser beam of the measuring device 5 can be irradiated to accurately measure the steel plate shape on the conveying device before and after the shape correction and the steel plate shape below the press machine 1 during the shape correction, particularly under the pressure ram. That is, in the steel plate shape correction apparatus of the present embodiment, the press machine 1 and the steel plate are arranged so that the press machine 1 is not located in a region where the preset shadow ratio in the laser beam of the steel plate shape measuring device 5 is 25% or more. By installing the shape measuring device 5, it is possible to accurately measure the steel plate shape on the conveying device before and after the shape correction and the steel plate shape below the press machine 1 during the shape correction, particularly the pressure ram 2.

以下、図1に係る本発明の鋼板形状矯正装置を用いて、鋼板Sの形状を矯正する方法の例を説明する。先ず、入側ベッド3の形状測定領域A1内に鋼板Sを搬送し、この領域A1内に鋼板Sを載置した状態で、入側ベッド3の側方の鋼板形状計測装置5により鋼板形状の測定を行う。この際、影率が25%以上となる領域B1は、形状測定領域A1と重複しないので、領域A1内において精度よく鋼板の形状測定が実施できる。入側ベッド3の側方の鋼板形状計測装置5による形状測定の結果は、制御装置6に記録される。制御装置6は、記録された形状測定結果にもとづき、加圧ラム2により加圧すべき鋼板Sの位置(加圧位置)や、この位置(加圧位置)における必要加圧力を決定する。測定された形状に対する、この形状を矯正するために必要加圧力は、鋼板Sの鋼種や板厚毎に予め決められている。   Hereinafter, an example of a method for correcting the shape of the steel sheet S using the steel sheet shape correcting apparatus of the present invention according to FIG. 1 will be described. First, the steel plate S is transported into the shape measurement region A1 of the entrance bed 3, and the steel plate shape is measured by the steel plate shape measuring device 5 on the side of the entrance bed 3 in a state where the steel plate S is placed in the region A1. Measure. At this time, since the region B1 in which the shadow rate is 25% or more does not overlap with the shape measurement region A1, the shape measurement of the steel sheet can be performed with high accuracy in the region A1. The result of the shape measurement by the steel plate shape measuring device 5 on the side of the entrance bed 3 is recorded in the control device 6. Based on the recorded shape measurement result, the control device 6 determines the position (pressing position) of the steel sheet S to be pressed by the pressing ram 2 and the necessary pressing force at this position (pressing position). The pressurizing force required to correct this shape with respect to the measured shape is determined in advance for each steel type and thickness of the steel plate S.

次に、制御装置6は、加圧位置を加圧ラム2の位置に合わせるように鋼板Sを搬送し、必要加圧力にて加圧ラム2を鋼板Sに押し付けて形状矯正を行う。鋼板Sのある加圧位置に対して加圧ラム2による形状矯正を行った直後に、制御装置6は、出側ベッド4の側方の鋼板形状計測装置5を用いて加圧ラム2による形状矯正を行った部位の形状測定を行う。この際、形状矯正を行った部位の測定は、プレス機1内に当該部位がある状態で行う。出側ベッド4の側方の鋼板形状計測装置5の形状測定領域A2はプレス機1内を含み、かつ、形状測定領域A2内には、影率が25%以上となる部分影領域や死角領域が存在しないため、当該部位がプレス機1内にある状態で、加圧ラム2による形状矯正後の鋼板Sの形状矯正部位の形状測定を精度良く行うことができる。そして、形状矯正後の形状矯正部位の形状測定を行った結果にもとづき、形状矯正が十分である場合には、その他の形状矯正必要部位が加圧ラム2下の位置に来るように鋼板Sを搬送させ、その他の部位の形状矯正を進めて行く。矯正後の形状矯正部位の形状測定結果が、形状矯正不十分であった場合には、当該部位について再度加圧ラム2を押し付け、形状矯正を行う。この際、1回目の形状矯正後の鋼板形状の測定を、1回目の形状矯正を行った状態から鋼板を搬送することなく行うことができるので、形状矯正に要する時間を短時間化できる。なお、この場合、出側ベッド4の側方の鋼板形状計測装置5の測定モードは、上述した旋回角度を小さく設定したプレス機下平坦度測定モードとすることがよい。このようにすることで、プレス機1内の鋼板Sの形状測定を必要最小限の時間で行うことができ、測定効率が向上する。   Next, the control device 6 conveys the steel plate S so that the pressurization position matches the position of the pressurization ram 2, and presses the pressurization ram 2 against the steel plate S with the necessary pressure to correct the shape. Immediately after performing the shape correction by the pressurization ram 2 on the pressurization position of the steel plate S, the control device 6 uses the steel plate shape measuring device 5 on the side of the exit bed 4 to shape the pressurization ram 2. The shape of the corrected part is measured. At this time, the measurement of the portion subjected to the shape correction is performed in a state where the portion is in the press machine 1. The shape measurement region A2 of the steel plate shape measuring device 5 on the side of the exit bed 4 includes the inside of the press 1, and the shape measurement region A2 includes a partial shadow region and a blind spot region in which the shadow rate is 25% or more. Therefore, it is possible to accurately measure the shape correction portion of the shape correction portion of the steel sheet S after the shape correction by the pressure ram 2 in a state where the portion is in the press 1. Then, based on the result of the shape measurement of the shape correction portion after shape correction, when the shape correction is sufficient, the steel sheet S is placed so that the other shape correction required portions are positioned under the pressure ram 2. Carry it forward and proceed with shape correction of other parts. When the shape measurement result of the shape correction site after correction is insufficient, the pressure ram 2 is pressed again on the site to perform shape correction. At this time, since the shape of the steel plate after the first shape correction can be measured without conveying the steel plate from the state where the first shape correction is performed, the time required for the shape correction can be shortened. In this case, the measurement mode of the steel plate shape measuring device 5 on the side of the exit bed 4 is preferably the press machine flatness measurement mode in which the turning angle is set to be small. By doing in this way, the shape measurement of the steel plate S in the press 1 can be performed in the minimum necessary time, and the measurement efficiency is improved.

以上のようにして、形状矯正必要部位の全部について加圧ラム2による形状矯正が終了した後に、制御装置6は、出側ベッド4に鋼板Sを搬送し、出側ベッド4に鋼板S載置した状態で、出側ベッド4の側方の形状計測装置5により、鋼板Sの全長について形状測定を行い、形状矯正後の鋼板Sの形状に関して最終的な良否判定を行う。この際は、上述した全長平坦度測定モードにより測定が行われる。鋼板Sの全長が短い場合には、半長平坦度測定モードとしてもよい。   As described above, after the shape correction by the pressurization ram 2 is completed for all of the portions requiring shape correction, the control device 6 conveys the steel plate S to the exit bed 4 and places the steel plate S on the exit bed 4. In this state, the shape measurement device 5 on the side of the exit bed 4 performs shape measurement on the entire length of the steel sheet S, and finally determines the quality of the steel sheet S after shape correction. At this time, measurement is performed in the above-described full length flatness measurement mode. When the total length of the steel sheet S is short, the semi-long flatness measurement mode may be used.

なお、図1に示した実施形態では、入側ベッド3の側方の鋼板形状計測装置5の形状測定領域A1は、入側ベッド3上の領域とし、出側ベッド4の側方の鋼板形状計測装置5の形状測定領域A2は、出側ベッド4上の領域およびプレス機1内の領域としているが、本発明はこれに限定されない。入側ベッド3の側方の鋼板形状計測装置5の形状測定領域A1として、入側ベッド3上の領域およびプレス機1内の領域として、入側ベッド3の側方の鋼板形状計測装置5によって、プレス機1内にある鋼板Sの形状を測定できるようにしてもよい。このようにすることで、上記の最終的な形状の良否判定のための形状測定を出側ベッド4の側方の鋼板形状計測装置5が行っている間に、プレス機1内にある次材について、形状測定を入側ベッド3の側方の鋼板形状計測装置5にて形状測定を行いつつ、プレス機1で形状矯正を行うこともできる。   In addition, in embodiment shown in FIG. 1, the shape measurement area | region A1 of the steel plate shape measuring apparatus 5 of the side of the entrance bed 3 is made into the area | region on the entrance bed 3, and the steel plate shape of the side of the exit bed 4 is used. Although the shape measurement region A2 of the measuring device 5 is a region on the exit bed 4 and a region in the press 1, the present invention is not limited to this. As the shape measurement region A1 of the steel plate shape measuring device 5 on the side of the entrance bed 3, the steel plate shape measuring device 5 on the side of the entrance bed 3 as the region on the entrance bed 3 and the region in the press 1 is used. The shape of the steel sheet S in the press 1 may be measured. By doing in this way, while the steel plate shape measuring apparatus 5 of the side of the outgoing bed 4 is performing the shape measurement for the above-mentioned final shape quality determination, the next material in the press 1 The shape correction can be performed by the press machine 1 while the shape measurement is performed by the steel plate shape measuring device 5 on the side of the entrance bed 3.

つまり、入側ベッド3の側方の鋼板形状計測装置5と出側ベッド4の側方の鋼板形状計測装置5との両方について、プレス機1内を形状測定領域とすることで、入側ベッド3上にある鋼板S全長の形状測定、出側ベッド4上にある鋼板S全長の形状測定が行われていない方の鋼板形状計測装置5を用いてプレス機1内の鋼板Sの形状測定が実施できるようになるため、複数の鋼板Sの鋼板形状矯正を連続して行う際に、処理ピッチを短くすることができる。   That is, for both the steel plate shape measuring device 5 on the side of the entrance bed 3 and the steel plate shape measuring device 5 on the side of the exit bed 4, the inside of the press 1 is used as a shape measurement region, so that the entrance bed The shape measurement of the steel plate S in the press 1 is performed using the steel plate shape measuring device 5 on which the shape measurement of the total length of the steel plate S on 3 and the shape measurement of the total length of the steel plate S on the exit bed 4 are not performed. Since it becomes feasible, the processing pitch can be shortened when the steel plate shape correction of the plurality of steel plates S is continuously performed.

ただし、処理ピッチを考慮しない場合は、プレス機1内を形状測定領域とする鋼板系ぞ用計測装置5は、入側ベッド3の側方あるいは出側ベッド4の側方のいずれかであってもよい。   However, when the processing pitch is not taken into account, the measuring device 5 for the steel plate system in which the inside of the press machine 1 is the shape measurement region is either the side of the entrance bed 3 or the side of the exit bed 4. Also good.

また、上記実施形態では、入側ベッド3の側方、出側ベッド4の側方の両方に鋼板形状計測装置5を設置しているが、処理ピッチを考慮しなければ、入側ベッド3の側方、出側ベッド4の側方のいずれか一方のみに設置するようにしてもよい。   Moreover, in the said embodiment, although the steel plate shape measuring apparatus 5 is installed in both the side of the entrance bed 3 and the side of the exit bed 4, if the processing pitch is not taken into consideration, the entrance bed 3 You may make it install only in either one of the side and the side of the exit side bed 4.

1 プレス機
2 加圧ラム
3 入側ベッド(搬送装置)
4 出側ベッド(搬送装置)
5 鋼板形状計測装置
6 制御装置
7 位置検出装置
11 送受光ユニット
12 回転台
13 ガルバノミラー
14 回転駆動部
1 Press machine 2 Pressure ram 3 Entrance bed (conveyor)
4 Delivery bed (conveying device)
DESCRIPTION OF SYMBOLS 5 Steel plate shape measuring apparatus 6 Control apparatus 7 Position detection apparatus 11 Light transmission / reception unit 12 Turntable 13 Galvano mirror 14 Rotation drive part

Claims (7)

鋼板を載置可能な形状測定領域が設定され、該形状測定領域上に載置された鋼板表面をレーザ光で走査して、前記鋼板表面上の所定の検出点群を測距し、得られた測距データから前記鋼板の形状を測定する鋼板形状計測装置であって、
送受光ユニットと、前記送受光ユニットから出射されたレーザ光を転向して鋼板表面へと反射させ、また、鋼板表面から再帰反射光を前記送受光ユニットへと反射させるミラーと、を有し、
前記形状測定領域が、前記ミラーが受光する前記レーザ光の前記鋼板からの再帰反射光の光量の低下率を表す影率が25%未満となる領域内にあることを特徴とする鋼板形状計測装置。
A shape measurement region where a steel plate can be placed is set, and the surface of the steel plate placed on the shape measurement region is scanned with a laser beam to measure a predetermined group of detection points on the steel plate surface. A steel plate shape measuring device for measuring the shape of the steel plate from the distance measurement data,
A light transmission / reception unit, a laser beam emitted from the light transmission / reception unit is reflected and reflected to the steel sheet surface, and a mirror that reflects retroreflected light from the steel sheet surface to the light transmission / reception unit,
The steel plate shape measuring apparatus, wherein the shape measuring region is in a region where a shadow rate indicating a reduction rate of the amount of retroreflected light from the steel plate of the laser beam received by the mirror is less than 25%. .
前記ミラーは、前記送受光ユニットから出射された前記レーザ光の光軸に一致した第一の回転軸のまわりに回転可能であり、
該ミラーの回転により前記送受光ユニットから出射されたレーザ光の反射方向を変えることで、鋼板表面内の所定の第1の方向に沿って、レーザ光の照射位置を自在に調整可能であることを特徴とする請求項1に記載の鋼板形状計測装置。
The mirror is rotatable around a first rotation axis coinciding with the optical axis of the laser light emitted from the light transmitting / receiving unit,
By changing the reflection direction of the laser light emitted from the light transmitting / receiving unit by the rotation of the mirror, the irradiation position of the laser light can be freely adjusted along a predetermined first direction in the steel plate surface. The steel plate shape measuring apparatus according to claim 1.
前記送受光ユニットと前記ミラーとを保持する、前記第一の回転軸に直交する第二の回転軸のまわりに回転可能な回転台と、
前記第二の回転軸を中心に回転台を回転させる回転駆動部と、
を有し、
前記回転台の回転により、前記鋼板表面内の前記第1の方向に直交する第2の方向に沿って、レーザ光の照射位置を自在に調整可能であることを特徴とする請求項2に記載の鋼板形状計測装置。
A turntable that holds the light transmission / reception unit and the mirror and is rotatable about a second rotation axis orthogonal to the first rotation axis;
A rotation drive unit that rotates a turntable around the second rotation axis;
Have
The laser beam irradiation position can be freely adjusted along a second direction orthogonal to the first direction in the steel plate surface by the rotation of the turntable. Steel plate shape measuring device.
前記第二の回転軸は、
前記鋼板表面に垂直ではなく、
前記鋼板表面に平行な平面への前記第二の回転軸の正射影が、前記鋼板の長手方向となす角度をA度としたとき、A度が10度以上であることを特徴とする請求項3に記載の鋼板形状計測装置。
The second rotation axis is
Not perpendicular to the steel sheet surface,
The A degree is 10 degrees or more, when an angle formed by the orthogonal projection of the second rotation axis to the plane parallel to the steel sheet surface with respect to the longitudinal direction of the steel sheet is A degree. 3. The steel sheet shape measuring apparatus according to 3.
前記鋼板表面に平行な平面への前記第二の回転軸の正射影について、
前記影率が25%以上となる領域の端部の2本の直線で形成される角度をB度としたとき、
前記A度が、(B/2)度以上90度以下であることを特徴とする請求項4に記載の鋼板形状計測装置。ただし、Bは0超え180未満である。
About orthographic projection of the second rotation axis onto a plane parallel to the steel plate surface,
When the angle formed by two straight lines at the end of the region where the shadow ratio is 25% or more is B degrees,
The steel sheet shape measuring apparatus according to claim 4, wherein the A degree is (B / 2) degree or more and 90 degree or less. However, B is greater than 0 and less than 180.
前記A度が50度〜70度であることを特徴とする請求項4または5に記載の鋼板形状計測装置。 The steel sheet shape measuring apparatus according to claim 4 or 5, wherein the A degree is 50 degrees to 70 degrees. 加圧ラムを備えたプレス機と、前記プレス機の入側及び出側に設けられ且つ鋼材を搬送する搬送装置とを有する鋼板形状矯正装置において、
前記プレス機の入側及び/又は出側に請求項1〜6のいずれかに記載の鋼板形状計測装置を備え、
前記形状測定領域は前記入側あるいは出側の少なくとも一方の搬送装置上を含むように設定されているとともに、
前記入側あるいは出側に配置された鋼板形状計測装置のうちの少なくとも一方の鋼板形状計測装置の前記形状測定領域の一部が前記プレス機内にあることを特徴とする、鋼板形状矯正装置。
In a steel plate shape correcting apparatus having a press machine provided with a pressure ram, and a transport device that is provided on the entry side and the exit side of the press machine and transports a steel material,
The steel plate shape measuring device according to any one of claims 1 to 6 is provided on the entry side and / or exit side of the press machine,
The shape measurement region is set to include at least one of the entrance side or the exit side conveying device,
A steel plate shape correction device, wherein a part of the shape measurement region of at least one of the steel plate shape measurement devices arranged on the entry side or the exit side is in the press machine.
JP2018031510A 2017-02-24 2018-02-26 Steel plate shape measuring device and steel plate shape correcting device Active JP6645526B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017032846 2017-02-24
JP2017032846 2017-02-24

Publications (2)

Publication Number Publication Date
JP2018141784A true JP2018141784A (en) 2018-09-13
JP6645526B2 JP6645526B2 (en) 2020-02-14

Family

ID=63526678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018031510A Active JP6645526B2 (en) 2017-02-24 2018-02-26 Steel plate shape measuring device and steel plate shape correcting device

Country Status (1)

Country Link
JP (1) JP6645526B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018160A (en) * 2019-07-22 2021-02-15 Jfeスチール株式会社 Shape measurement device, shape measurement method, steel sheet shape correction device, steel sheet shape correction method, steel sheet manufacturing device, and steel sheet manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050157302A1 (en) * 2002-02-07 2005-07-21 Hagen Krambeer Method and device for pptically measuring the surface shape and for the optical surface inspection of moving strips in rolling and processing installations
WO2006019070A1 (en) * 2004-08-20 2006-02-23 Bridgestone Corporation Method of measuring length of band-form member and device therefor
JP2010155272A (en) * 2008-12-27 2010-07-15 Jfe Steel Corp Device for straightening shape of steel sheet
JP2014087813A (en) * 2012-10-29 2014-05-15 Jfe Steel Corp Steel plate shape correction method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050157302A1 (en) * 2002-02-07 2005-07-21 Hagen Krambeer Method and device for pptically measuring the surface shape and for the optical surface inspection of moving strips in rolling and processing installations
WO2006019070A1 (en) * 2004-08-20 2006-02-23 Bridgestone Corporation Method of measuring length of band-form member and device therefor
JP2010155272A (en) * 2008-12-27 2010-07-15 Jfe Steel Corp Device for straightening shape of steel sheet
JP2014087813A (en) * 2012-10-29 2014-05-15 Jfe Steel Corp Steel plate shape correction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018160A (en) * 2019-07-22 2021-02-15 Jfeスチール株式会社 Shape measurement device, shape measurement method, steel sheet shape correction device, steel sheet shape correction method, steel sheet manufacturing device, and steel sheet manufacturing method
JP7036093B2 (en) 2019-07-22 2022-03-15 Jfeスチール株式会社 Shape measuring device, shape measuring method, steel plate shape straightening device, steel sheet shape straightening method, steel sheet manufacturing device, and steel sheet manufacturing method

Also Published As

Publication number Publication date
JP6645526B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
JP6687134B2 (en) Steel shape measuring device and steel shape correcting device
US8805052B2 (en) Apparatus and method for measuring three-dimensional shape of wood block
JP4322380B2 (en) Sheet thickness or waviness measuring method and apparatus
JP6003583B2 (en) Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method
CN104520055A (en) Method for cutting sheet metal blank
JP6624121B2 (en) Steel plate shape straightening device
JP5470885B2 (en) Film flatness inspection apparatus and flatness inspection method
JP6645526B2 (en) Steel plate shape measuring device and steel plate shape correcting device
JP2013134198A (en) End shape detection method, end shape inspection method, end shape detection device, and end shape inspection device for angle steel
JP6597696B2 (en) Steel plate shape measuring device and steel plate shape correcting device
JP2020041844A (en) Gravity compensation jig and steel-plate shape correction device
JP7207443B2 (en) Surface defect detection device, surface defect detection method, steel plate manufacturing method, steel plate quality control method, and steel plate manufacturing equipment
JPH06142719A (en) Centering measuring instrument for piercing mill
JP7092102B2 (en) Pipe end shape measuring device, pipe end shape measuring method, and steel pipe manufacturing method
KR100509915B1 (en) Multi correction for hot steel shape measurement
KR20140003797A (en) Laser welding apparatus
JP7036093B2 (en) Shape measuring device, shape measuring method, steel plate shape straightening device, steel sheet shape straightening method, steel sheet manufacturing device, and steel sheet manufacturing method
JP6730683B2 (en) Edge-width measuring method and edge-width measuring device for angle steel
CN221425613U (en) Non-contact type plate and strip flatness detection device
JP7528965B2 (en) Method for adjusting the layout of a surface defect detection device, method for detecting surface defects, method for manufacturing a product, and method for controlling product quality
KR20100130493A (en) Calibration device
JP5539822B2 (en) Circular flange strain amount measuring method and circular flange strain amount measuring apparatus
JPH0749953B2 (en) U-tube size measuring method and device
JP2014139535A (en) Centering device
JP2007256154A (en) Radiographic apparatus for measuring wall thickness of tubular material

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R150 Certificate of patent or registration of utility model

Ref document number: 6645526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250