JPH06142719A - Centering measuring instrument for piercing mill - Google Patents

Centering measuring instrument for piercing mill

Info

Publication number
JPH06142719A
JPH06142719A JP32480592A JP32480592A JPH06142719A JP H06142719 A JPH06142719 A JP H06142719A JP 32480592 A JP32480592 A JP 32480592A JP 32480592 A JP32480592 A JP 32480592A JP H06142719 A JPH06142719 A JP H06142719A
Authority
JP
Japan
Prior art keywords
mill
roll
piercing
core
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32480592A
Other languages
Japanese (ja)
Inventor
Takumi Nakamura
工 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP32480592A priority Critical patent/JPH06142719A/en
Publication of JPH06142719A publication Critical patent/JPH06142719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure at which position a roll shaft center is to a mill center as reference. CONSTITUTION:In a centering measuring instrument of a piercing mill to measure the position to the mill center of the roll 1 of the piercing mill, a three dimensional measuring instrument 6 consisting of a laser beam emitting device 5 agreeing nearly to the mill center provided on the inlet side or the outlet side of the piercing mill, a sensor head to receive laser beam, a non-contact displacement gage which can measure a roll gap in non-contact and a linear encoder to measure a moving amount of the non-contact displacement gage moving in the mill center direction and in the vertical direction is provided. Further, this device contains an arithmetic display device to operate and display a deviation between the mill center and the roll center in the horizontal direction, an angular deviation of a crossed axes angle and a deviation between a mill center and a roll center in the vertical direction and an angular deviation of an inclined angle in accordance with the central coordinate of laser beam measured by a three dimensional measuring instrument, a distance as far as the roll measured by the non-contact displacement gage and a moving amount in the mill center direction and the vertical direction of the non-contact displacement gage measured by a linear encoder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、マンネスマン製管法
における穿孔圧延機のロールのミル芯に対する位置を主
ロール断面により計測判定する芯出し測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a centering measuring device for measuring and determining the position of a roll of a piercing and rolling machine with respect to a mill core in the Mannesmann tube manufacturing method by means of a cross section of a main roll.

【0002】[0002]

【従来の技術】マンネスマン製管法における穿孔圧延機
は、図12(a)図に示すとおり、ロール軸芯51、5
2が垂直面内で互いにミル芯Oaに対し反対方向に所定
の角度(θ)で傾斜しており、また、(b)図に示すと
おり、水平面内でも左右に一定の角度(φ)で交差して
いる。ロール間隔および交差角αの調整は、クレードル
53内に支持されたロールチョック54をロール開閉調
整用スクリュー55で駆動して行う。傾斜角θの調整
は、クレードル53を下部より回転して行う。従来、水
平面内のミル芯Oaとロール軸芯51、52との位置関
係は、ロール開閉調整用スクリュー55先端からミル芯
Oaまでの距離(La〜Ld)を測定し、ミル芯Oaから
ロール56、57表面までの距離は、図面通りであると
いう仮定の元に測定し調整してきた。また、垂直面内に
おいては、クレードル53の頂点とミル芯Oaとの距離
(Le)を光学式レベル計を用いて測定し、同様に図面
寸法と比較して調整してきた。
2. Description of the Related Art As shown in FIG. 12 (a), a piercing / rolling machine in the Mannesmann pipe manufacturing method uses roll shaft cores 51, 5 as shown in FIG.
2 are inclined in opposite directions to each other in the vertical plane with respect to the mill core Oa at a predetermined angle (θ), and as shown in FIG. is doing. The roll interval and the crossing angle α are adjusted by driving the roll chock 54 supported in the cradle 53 with the roll opening / closing adjusting screw 55. The inclination angle θ is adjusted by rotating the cradle 53 from below. Conventionally, the positional relationship between the mill core Oa in the horizontal plane and the roll shaft cores 51 and 52 is measured by measuring the distance (L a to L d ) from the tip of the roll opening / closing adjusting screw 55 to the mill core Oa. The distances to the surfaces of the rolls 56 and 57 have been measured and adjusted under the assumption that they are as shown in the drawing. In the vertical plane, the distance (L e ) between the apex of the cradle 53 and the mill core Oa was measured using an optical level meter, and similarly adjusted by comparing with the drawing size.

【0003】したがって、ロールがミル芯に対してどの
ような位置にあるかは、間接的にしか測定できず、被穿
孔材が実際に接触する部位とプラグの位置関係は実際ど
の位置にあるのか確認できない。このため、上記従来方
法では、ロールとプラグとの相対位置のずれによる偏芯
に起因する偏肉の発生があっても、必要修正量を測定で
きず、間接的に計算するしか方法がなかった。このよう
な穿孔圧延機におけるロール軸芯の調整は、通常3ケ月
毎に実施され、要求芯出し精度は±1mm程度であっ
た。
Therefore, the position of the roll relative to the core of the mill can be measured only indirectly, and the position of the actual contact of the material to be punched with the plug is actually determined. I can't confirm. For this reason, in the above-mentioned conventional method, even if there is an eccentricity due to the eccentricity due to the displacement of the relative position between the roll and the plug, the necessary correction amount cannot be measured, and there is only a method to indirectly calculate. . The adjustment of the roll axis in such a piercing and rolling machine is usually carried out every three months, and the required centering accuracy is about ± 1 mm.

【0004】上記圧延機における芯出し方法としては、
第一スタンドの入側に近接してレーザ照射部を、また最
終スタンドの出側に近接して前記レーザ照射部の発射ビ
ームを受信するビーム検出器を設け、各一対のロールの
カリバーによって形成されたほぼ円形の空間にそれぞれ
該空間の中心と一致する中心部を有する治具を着脱自在
に取付け、前記レーザ照射部から第一スタンドの側壁と
垂直にレーザビームを発射し、各治具の中心部がレーザ
ビームのセンターと一致するように各一対のロールを軸
方向に修正する方法(特公昭60−7563号公報)、
レーザビームの通る孔を備え、圧延ロールに装着可能な
テンプレートを包含し、前記孔の軸線が前記ロールによ
って形成されるパスの軸線に一致し、パスの軸線に対す
るレーザビームの片寄りを決定する装置を備え、テンプ
レートが管を備えさらに弾性材料で載頭円錐形またはピ
ラミッド状に作った2個のエレメントを備え、かつ該エ
レメントがそれらの小面積端部を互いに対面させて前記
管に沿って軸線方向に移動できるように該管に取付けら
れている装置(特開昭64−5614号公報)、中心に
基準ターゲットを有し、マンドレルミルの各スタンドの
圧延ロール間に挟持された鼓型状の治具ロールと、前記
基準ターゲットの中心位置を測定する光学式読取装置か
らなる装置(実開平3−68901号公報)、多段鋼管
圧延機の圧延ロールの鋼管搬送方向入側から出側に向け
て平行光線を照射する光源と、該平行光源を前記圧延ロ
ールの鋼管搬送方向出側で受光する受光器と、該受光器
の受光結果に基づき得られた前記圧延ロールの位置によ
り芯出し位置を求めて表示する演算表示装置とを備えた
装置(実開平4−33401号公報)等の提案が行われ
ている。
As a centering method in the rolling mill,
A laser irradiator is provided near the entrance side of the first stand, and a beam detector is provided near the exit side of the final stand to receive the emitted beam of the laser irradiator. A jig having a central portion that coincides with the center of the space is detachably attached to the substantially circular space, and a laser beam is emitted from the laser irradiation unit perpendicularly to the side wall of the first stand, and the center of each jig A method of axially correcting each pair of rolls so that the portion coincides with the center of the laser beam (Japanese Patent Publication No. 60-7563).
An apparatus having a hole through which a laser beam passes and including a template mountable to a rolling roll, wherein the axis of the hole coincides with the axis of a path formed by the roll, and the deviation of the laser beam with respect to the axis of the path is determined. The template comprises a tube and further comprises two elements made of elastic material in a frusto-conical or pyramidal shape, said elements having their small area ends facing each other and an axis along said tube. A device (Japanese Patent Laid-Open No. 64-5614) attached to the tube so as to be movable in a direction, having a reference target in the center, and having a drum shape sandwiched between rolling rolls of each stand of the mandrel mill. A device comprising a jig roll and an optical reading device for measuring the center position of the reference target (Japanese Utility Model Laid-Open No. 3-68901), a rolling roll of a multi-stage steel pipe rolling machine. A light source for irradiating parallel light rays from the entrance side to the exit side of the steel pipe transport direction, a light receiver for receiving the parallel light source on the exit side of the rolling roll in the steel pipe transport direction, and a light receiving result of the light receiver. There has been proposed a device (Japanese Utility Model Laid-Open No. 4-33401) provided with a calculation display device for obtaining and displaying a centering position based on the position of the rolling roll.

【0005】[0005]

【発明が解決しようとする課題】上記特公昭60−75
63号公報、特開昭64−5614号公報および実開平
3−68901号公報に開示の技術は、いずれもロール
間に治具を装入するもので、ロールに接触させた治具の
中心と、通過するレーザビームの位置関係からロール軸
芯測定を行うものである。しかし、穿孔圧延機において
は、ロール軸が水平面内で所定角度で交差しており、垂
直面内で互いに反対方向に傾斜している。しかも、穿孔
圧延機では、コーン型またはバレル型のロールが使用さ
れており、ロール間に治具を正確に挟持させることは極
めて困難で、芯出しの精度を確保することは不可能であ
る。また、実開平4−33401号公報に開示の装置
は、ロールの投影によりロール間の芯を測定するもの
で、ロールの最凸部の位置関係しか判定できないため、
穿孔圧延機のロール軸の傾斜を測定することができな
い。
[Problems to be Solved by the Invention] Japanese Patent Publication No. 60-75
The techniques disclosed in Japanese Patent Laid-Open No. 63-63, JP-A-64-5614, and Japanese Utility Model Laid-Open No. 3-68901 each insert a jig between rolls, and the jig is placed in contact with the center of the jig. The roll axis center is measured from the positional relationship of the passing laser beam. However, in the piercing and rolling mill, the roll axes intersect at a predetermined angle in the horizontal plane and are inclined in opposite directions in the vertical plane. Moreover, in the piercing and rolling mill, cone-type or barrel-type rolls are used, and it is extremely difficult to accurately pinch the jig between the rolls, and it is impossible to secure the centering accuracy. Further, the device disclosed in Japanese Utility Model Laid-Open No. 4-33401 measures the core between the rolls by projecting the rolls and can only determine the positional relationship of the most convex portions of the rolls.
It is not possible to measure the roll axis tilt of a piercing and rolling mill.

【0006】この発明の目的は、ロール軸が互いに交差
および傾斜している穿孔圧延機のロール形状を三次元で
測定することによって、ロール軸芯がミル芯を基準にし
てどの位置にあるかを測定できる芯出し測定装置を提供
することにある。
An object of the present invention is to measure in three dimensions the roll shape of a piercing and rolling mill in which the roll axes intersect and incline with each other, so that the position of the roll axis relative to the mill core can be determined. An object is to provide a centering measurement device that can perform measurement.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく種々試験検討を重ねた。その結果、ミル芯
となるレーザ発光装置を穿孔圧延機の入側または出側に
設置し、ロール間にレーザ受光装置と非接触変位計と2
方向のリニアエンコーダからなる三次元測定装置を配置
し、ロール形状を三次元で測定することによって、ロー
ル軸がミル芯を基準にしてどの位置にあるかを演算によ
り求められるとの結論に至り、この発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted various tests and examinations in order to achieve the above object. As a result, a laser light emitting device serving as a mill core is installed at the entrance side or the exit side of the piercing and rolling mill, and the laser light receiving device and the non-contact displacement meter are provided between the rolls.
By arranging a three-dimensional measuring device consisting of a linear encoder of the direction, and by measuring the roll shape in three dimensions, it is concluded that the position of the roll axis relative to the mill core can be calculated. This invention was reached.

【0008】すなわちこの発明は、穿孔圧延機のロール
のミル芯に対する位置を計測する穿孔圧延機の芯出し計
測装置であって、穿孔圧延機の入側または出側に設置し
たミル芯にほぼ一致するレーザ発光装置と、穿孔圧延機
のロール間に設置したレーザ光線を受光するセンサーヘ
ッド、ロール間距離を非接触で測定できる非接触変位
計、ミル芯方向および鉛直方向に移動する非接触変位計
の移動量を測定するリニアエンコーダとからなる三次元
測定装置と、該三次元測定装置で測定されたレーザ光線
の中心座標、非接触変位計で計測したロールまでの距
離、リニアエンコーダで測定した非接触変位計のミル芯
方向および鉛直方向への移動量に基づき、水平方向のミ
ル芯とロールの芯ずれ量および交差角の角度ずれ量、垂
直方向のミル芯とロールの芯ずれ量および傾斜角の角度
ずれ量を演算表示する演算表示装置とからなる。
That is, the present invention is a centering measuring device for a piercing / rolling machine for measuring the position of a roll of the piercing / rolling machine with respect to the mill core, and is substantially the same as the mill core installed on the inlet side or the outlet side of the piercing and rolling mill. Laser emitting device, sensor head for receiving laser beam installed between rolls of piercing and rolling mill, non-contact displacement meter that can measure the distance between rolls in a non-contact manner, non-contact displacement meter that moves in the mill core direction and vertical direction A three-dimensional measuring device consisting of a linear encoder for measuring the amount of movement of the laser beam, the center coordinates of the laser beam measured by the three-dimensional measuring device, the distance to the roll measured by the non-contact displacement meter, the non-linearity measured by the linear encoder. Based on the amount of movement of the contact displacement meter in the mill core direction and the vertical direction, the amount of misalignment between the horizontal mill core and roll and the angular deviation of the crossing angle, and the vertical direction between the mill core and the roll. It becomes the angle deviation amount of the misalignment amount and the inclination angle from the operation and display device for calculation display.

【0009】[0009]

【作用】この発明は、穿孔圧延機の入側または出側にミ
ル芯にほぼ一致するレーザ発光装置を設置し、穿孔圧延
機のロール間に前記レーザ光線を受光するセンサーヘッ
ド、ロールとの距離を非接触で測定できる非接触変位
計、ミル芯方向および鉛直方向に移動する非接触変位計
の移動量を測定するリニアエンコーダとからなる三次元
測定装置を設置したから、三次元測定装置の芯とレーザ
ビームのパス芯とのずれを測定することによって、三次
元測定装置芯のレーザビームのパス芯に対するずれ量が
測定できる。
According to the present invention, a laser light emitting device is installed on the inlet side or the outlet side of the piercing and rolling machine so as to substantially coincide with the mill core, and the sensor head for receiving the laser beam between the rolls of the piercing and rolling machine and the distance from the rolls. Since the non-contact displacement meter that can measure the non-contact, and the linear encoder that measures the movement amount of the non-contact displacement meter that moves in the mill core direction and the vertical direction are installed, the core of the three-dimensional measurement device is installed. By measuring the deviation between the path core of the laser beam and the path core of the laser beam, the deviation amount of the core of the three-dimensional measuring device with respect to the path core of the laser beam can be measured.

【0010】この発明におけるレーザ発光装置は、ミル
芯の基準とするべく、ミル芯にほぼ一致するようにミル
の入側あるいは出側に設置する。また、レーザ発光装置
は、ミル芯と同一方向をZ軸、ミル芯に直角な水平方向
をX軸、ミル芯に直角な鉛直方向をY軸とすれば、X
軸、Y軸方向に移動可能で、また、X軸、Y軸各々の軸
まわりに回転可能となっており、ミル芯とほぼ一致させ
るよう照射方向を調節可能に設ける。しかしながら、レ
ーザビームとミル芯とは、一致させることは困難である
ので、予めミル芯との相対位置のわかっているレーザビ
ーム受光装置を、レーザ発光装置がミル入側にあるとす
れば出側に設置し、レーザビームとミル芯との誤差を計
測することにより、Z軸(パス方向)任意位置でのミル
芯とレーザビームの誤差を判定することができる。
The laser light emitting device according to the present invention is installed on the inlet side or the outlet side of the mill so as to be substantially coincident with the core of the mill so as to serve as a reference for the core of the mill. Further, in the laser emitting device, if the Z axis is in the same direction as the mill core, the X axis is the horizontal direction perpendicular to the mill core, and the Y axis is the vertical direction perpendicular to the mill core,
It is movable in the directions of the axis and the Y-axis, and is rotatable around the axes of the X-axis and the Y-axis. However, it is difficult to match the laser beam and the mill core. Therefore, if the laser emitting device is on the mill entrance side, the laser beam receiver whose relative position to the mill core is known in advance is the exit side. It is possible to determine the error between the mill core and the laser beam at an arbitrary position on the Z axis (pass direction) by installing the laser beam at the position and measuring the error between the laser beam and the mill core.

【0011】例えば、図11に示すとおり、Z方向任意
位置αでのミル芯OaとレーザビームLbとの誤差量
は、図11(a)図、(b)図に示すとおり、予めレー
ザ発光装置41との相対位置の判明している受光装置4
2、43を用いて、次のように計算できる。誤差値(X
α、Yα)は、 Xα=(X2−X1)/(L2−L1)×(α−L1)+X1 Yα=(Y2−Y1)/(L2−L1)×(α−L1)+Y1
For example, as shown in FIG. 11, the Z direction is arbitrary.
Error amount between mill core Oa and laser beam Lb at position α
Is set in advance as shown in Figs. 11 (a) and 11 (b).
The light receiving device 4 whose relative position to the light emitting device 41 is known.
Using 2, 43, the following calculation can be performed. Error value (X
α, Yα) is Xα = (X2-X1) / (L2-L1) × (α-L1) + X1  Yα = (Y2-Y1) / (L2-L1) × (α-L1) + Y1

【0012】この発明における三次元測定装置は、穿孔
ロール断面を測定すると共に、ミル芯との位置関係を測
定するもので、通常は穿孔ロール間の下部ガイドシュー
が設置される架台上に、三次元測定装置の持つ座標を
X’軸、Y’軸、Z’軸とすれば、前記ミル芯の座標X
軸、Y軸、Z軸とX’軸、Y’軸、Z’軸が概ね一致す
るように取付けられる。ただし、三次元測定装置は、
Z’軸回りの回転を固定するため、X’軸方向が水平に
なるよう水準器をX’軸方向に取付けて配置する。そし
てロールのZ’軸方向複数位置で、Y’軸方向に非接触
変位計を走査させて連続したロール断面曲線を得る。し
たがって、ロール表面までのX’軸方向の距離を測定す
る非接触変位計は、Y’軸方向、Z’軸方向にスライド
可能で、その移動した距離は、それぞれリニアエンコー
ダにより測定される。また、ミル芯の基準となるレーザ
光線を受光する受光装置は、拡散板とCCDカメラまた
は半導体位置検出装置(Position Sensi
tive Device 以下PSDという)から構成
される。レーザビームは、拡散板とCCDカメラ使用の
場合、拡散板に当たって拡散板上にレーザビームによる
スポットを形成し、PSD使用の場合は、PSDの受光
面にレーザビームによるスポットを形成する。このスポ
ットは、本装置では数mm程度の円形となるが、CCD
カメラまたはPSDで捉えた影像から画像処理装置を用
いてレーザスポットの中心座標を求めることができる。
The three-dimensional measuring apparatus according to the present invention measures the cross section of the piercing rolls and the positional relationship with the mill core. Normally, the three-dimensional measuring device is installed on the pedestal on which the lower guide shoe between the piercing rolls is installed. If the coordinates of the original measuring device are X ′ axis, Y ′ axis, and Z ′ axis, the coordinate X of the mill core is
The axes are attached so that the X-axis, the Y-axis, and the Z-axis and the X′-axis, the Y′-axis, and the Z′-axis substantially coincide with each other. However, the three-dimensional measuring device
In order to fix the rotation around the Z'axis, a spirit level is attached and arranged in the X'axis direction so that the X'axis direction is horizontal. Then, the non-contact displacement gauge is scanned in the Y′-axis direction at a plurality of positions in the Z′-axis direction of the roll to obtain a continuous roll sectional curve. Therefore, the non-contact displacement gauge that measures the distance to the roll surface in the X′-axis direction is slidable in the Y′-axis direction and the Z′-axis direction, and the moved distance is measured by the linear encoder. The light receiving device that receives the laser beam that serves as a reference for the mill core is a diffuser plate and a CCD camera or a semiconductor position detecting device (Position Sensi).
(hereinafter referred to as PSD). The laser beam hits the diffuser plate and forms a spot by the laser beam on the diffuser plate when the diffuser plate and the CCD camera are used, and forms a spot by the laser beam on the light receiving surface of the PSD when the PSD is used. This spot has a circular shape of about several millimeters in this device, but the CCD
The center coordinates of the laser spot can be obtained from the image captured by the camera or PSD using an image processing device.

【0013】演算表示装置は、非接触変位計により測定
された複数位置でのロール断面と各断面位置のレーザ光
線の座標からミル芯の位置を演算する。ただし、X’−
Y’面の座標原点を三次元測定装置芯とし、ミル芯の座
標を求める。この時ロール断面に垂線をおろし、ロール
最先端との接点の座標を求める。次に演算表示装置は、
三次元測定装置芯とミル芯との軸ずれの補正を行う。三
次元測定装置芯とミル芯との軸ずれの補正は、X’−
Z’平面投影図とY’−Z’平面投影図からZ’の原点
を三次元測定装置を設置する時の基準点におく。そして
各点の座標(X’、Y’、Z’)をミル芯の座標系
(X、Y、Z)に補正する。次に補正された座標からX
−Z面投影図、Y−Z面投影図を描き、X−Z投影面内
のそれぞれの点を通る直線を引いて作図し、ミル芯Oa
と比較することにより、ロールのX軸、すなわち水平方
向の芯ずれ量、交差角の角度ずれ量が表示され、ロール
開閉調整用スクリューによりロールチョックを調整する
ことによって芯出しを行う。また、Y−Z投影面内で
は、それぞれの点を通る直線を引き、ミル芯と比較する
ことにより、ロールの垂直方向の芯ずれ量、傾斜角のず
れ量が表示され、ライナー等の調整により芯出しを行
う。
The calculation display device calculates the position of the mill core from the roll cross sections at a plurality of positions measured by the non-contact displacement meter and the coordinates of the laser beam at each cross section position. However, X'-
The coordinate origin of the Y ′ plane is used as the core of the three-dimensional measuring device, and the coordinates of the mill core are obtained. At this time, draw a perpendicular on the roll cross section and find the coordinates of the contact point with the roll tip. Next, the arithmetic display device
The axis deviation between the core of the three-dimensional measuring device and the mill core is corrected. The correction of the axis deviation between the core of the three-dimensional measuring device and the mill core is performed by X'-
From the Z ′ plane projection view and the Y′-Z ′ plane projection view, the origin of Z ′ is set at the reference point when the three-dimensional measuring device is installed. Then, the coordinates (X ′, Y ′, Z ′) of each point are corrected to the coordinate system (X, Y, Z) of the mill core. X from the corrected coordinates
-Draw a Z-plane projection view and a YZ-plane projection view, draw a straight line that passes through each point in the X-Z projection plane, and draw it. Mill core Oa
By comparing with, the X axis of the roll, that is, the horizontal misalignment amount and the crossing angle misalignment amount are displayed, and the roll chock is adjusted by the roll opening / closing adjusting screw to perform the centering. In the YZ projection plane, a straight line that passes through each point is drawn and compared with the mill core to display the vertical misalignment amount of the roll and the deviation amount of the inclination angle. By adjusting the liner, etc. Perform centering.

【0014】[0014]

【実施例】以下にこの発明の詳細を実施の一例を示す図
1ないし図10に基づいて説明する。図1はレーザ発光
装置の設置位置を示す平面図、図2は三次元測定装置の
切欠き斜視図、図3は三次元測定装置の取付け状態を示
すもので、(a)図は平面図、(b)図は側面図、図4
は三次元測定装置の取付け部の拡大側面、図5は三次元
測定装置と演算表示装置との接続状況を示す概念図であ
る。図1ないし5において、1は穿孔圧延機のロール、
2はロール1をスピンドル3を介して駆動する減速機
で、図示しない電動機と接続されている。4はロール1
の出側テーブルに設けられたバーステディアで、3個の
ロールがリンク機構で開閉するバーステディアが複数、
たとえばNo.1〜No.8まで設けられている。5は
減速機2の中心に設置した出力1mWのHe−Neレー
ザ発光装置で、レーザスポット中心がミル芯Oaとほぼ
一致するよう、X軸方向、Y軸方向に角度調整して固定
されている。6はロール1、1間に設置した三次元測定
装置で、下部ガイドシューを取り外した下部架台7上に
X軸方向水平の水準器8により水平に配置する。三次元
測定装置6は、受光装置としてレーザ光線の拡散板9と
CCDカメラ10を使用する。拡散板9は、非接触変位
計11の測定部と同一X−Y面内になるように設置さ
れ、レーザ光線の軌跡をCCDカメラ10で撮影し、レ
ーザスポットの中心を座標値として読み取る座標読み取
り装置12を介して座標値が演算表示装置13に読み込
み記憶される。上記三次元測定装置6のCCDカメラ1
0は、三次元測定装置6の基準軸回りに回転できるよ
う、管14内に回転自在に設置され、CCDカメラ10
の回転角度は、角度検出器15で検出され、演算表示装
置13に入力される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to FIGS. 1 is a plan view showing the installation position of the laser emitting device, FIG. 2 is a cutaway perspective view of the three-dimensional measuring device, FIG. 3 shows a mounting state of the three-dimensional measuring device, and FIG. (B) The figure is a side view, FIG.
5 is an enlarged side view of a mounting portion of the three-dimensional measuring device, and FIG. 5 is a conceptual diagram showing a connection state between the three-dimensional measuring device and the arithmetic display device. 1 to 5, 1 is a roll of a piercing and rolling mill,
A speed reducer 2 drives the roll 1 via a spindle 3 and is connected to an electric motor (not shown). 4 is roll 1
With the burst steadier provided on the delivery side table, there are multiple burst steadies that three rolls open and close with a link mechanism.
For example, No. 1-No. Up to 8 are provided. Reference numeral 5 denotes a He-Ne laser light emitting device having an output of 1 mW installed at the center of the speed reducer 2, and is fixed by adjusting the angles in the X-axis direction and the Y-axis direction so that the laser spot center substantially coincides with the mill core Oa. . Reference numeral 6 denotes a three-dimensional measuring device installed between the rolls 1 and 1, which is arranged horizontally on a lower mount 7 from which a lower guide shoe is removed by a horizontal level 8 in the X-axis direction. The three-dimensional measuring device 6 uses a laser beam diffusing plate 9 and a CCD camera 10 as a light receiving device. The diffusing plate 9 is installed so as to be in the same XY plane as the measuring part of the non-contact displacement meter 11, the trajectory of the laser beam is photographed by the CCD camera 10, and the center of the laser spot is read as coordinate values. The coordinate values are read and stored in the calculation display device 13 via the device 12. CCD camera 1 of the three-dimensional measuring device 6
0 is rotatably installed in the tube 14 so that it can rotate around the reference axis of the three-dimensional measuring device 6, and the CCD camera 10
The rotation angle of is detected by the angle detector 15 and input to the calculation display device 13.

【0015】また、三次元測定装置6の非接触変位計1
1は、三次元測定装置6の基準軸と平行なZ’軸方向
に、基準軸に対して垂直なY’軸方向にスライド可能
で、Z’軸方向、Y’軸方向の基準位置に対する移動距
離は、リニアエンコーダ16、17によりそれぞれ測定
され、演算表示装置13に入力される。さらに非接触変
位計11は、三次元測定装置6の基準軸と水平なX’軸
方向のロール1、1表面との距離を測定し、演算表示装
置13に入力するよう構成されている。したがって、ロ
ール1、1表面のY’軸方向任意位置の基準軸との距離
を計測できる。演算表示装置13は、座標読み取り装置
12から入力されるレーザスポットの座標値と、非接触
変位計11から入力されるZ’軸方向複数位置での三次
元測定装置6の基準軸とロール1、1表面の距離と、リ
ニアエンコーダ16、17から入力されるZ’軸方向、
Y’軸方向の基準位置に対する移動距離に基づき、ロー
ル1、1のX’−Z’投影面およびY’−Z’投影面を
求め、ミル芯と比較してロール1、1のX軸方向の芯ず
れ量および交差角の角度ずれ量を演算表示すると共に、
ロール1、1のY軸方向の芯ずれ量および傾斜角の角度
ずれ量を演算表示するよう構成する。
Further, the non-contact displacement gauge 1 of the three-dimensional measuring device 6
1 is slidable in the Z′-axis direction parallel to the reference axis of the three-dimensional measuring device 6 and in the Y′-axis direction perpendicular to the reference axis, and moves relative to the reference position in the Z′-axis direction and the Y′-axis direction. The distance is measured by each of the linear encoders 16 and 17, and is input to the calculation display device 13. Further, the non-contact displacement meter 11 is configured to measure the distance between the reference axis of the three-dimensional measuring device 6 and the surface of the roll 1 or 1 in the horizontal X′-axis direction, and input it to the calculation display device 13. Therefore, it is possible to measure the distance from the reference axis at an arbitrary position on the surface of the rolls 1 and 1 in the Y ′ axis direction. The calculation display device 13 includes the coordinate value of the laser spot input from the coordinate reading device 12, the reference axis of the three-dimensional measuring device 6 at the plural positions in the Z′-axis direction input from the non-contact displacement meter 11, and the roll 1. 1 surface distance and Z'axis direction input from the linear encoders 16 and 17,
The X'-Z 'projection surface and the Y'-Z' projection surface of the rolls 1 and 1 are obtained based on the moving distance with respect to the reference position in the Y'-axis direction, and compared with the mill core, the X-axis directions of the rolls 1 and 1 are compared. While calculating and displaying the misalignment amount of the
It is configured to calculate and display the amount of misalignment of the rolls 1 and 1 in the Y-axis direction and the amount of angular misalignment of the tilt angle.

【0016】上記のとおり構成したことにより、ロール
1、1の芯とミル芯Oaとのずれを測定する場合は、ロ
ール1、1間の下部ガイドシューを取り外した下部架台
7上に三次元測定装置6を設置し、レーザ発光装置5か
らレーザ光線を穿孔圧延機の出側に向けて照射する。そ
して三次元測定装置6の拡散板9に写るレーザスポット
をCCDカメラ10で撮影し、レーザスポットの中心位
置を座標読み取り装置12により読み取り、演算表示装
置13に記憶させる。ついでCCDカメラ10を角度検
出器15で角度検出しながら回転させる。するとレーザ
スポットの座標位置は、図6に示すとおり、三次元測定
装置6の軸芯、すなわちZ’軸を中心に円を描くから、
Z’軸の座標を読み取れば、レーザスポットとZ’軸と
の位置関係が明らかになる。したがって、予めZ座標が
明らかなにされているから、レーザスポットとミル芯の
関係からミル芯とZ’軸との位置関係を演算することが
できる。
With the above configuration, when measuring the deviation between the cores of the rolls 1 and 1 and the mill core Oa, three-dimensional measurement is performed on the lower mount 7 from which the lower guide shoes between the rolls 1 and 1 are removed. The device 6 is installed and a laser beam is emitted from the laser emitting device 5 toward the exit side of the piercing and rolling mill. Then, the laser spot imaged on the diffusion plate 9 of the three-dimensional measuring device 6 is photographed by the CCD camera 10, the central position of the laser spot is read by the coordinate reading device 12, and is stored in the calculation display device 13. Then, the CCD camera 10 is rotated while the angle is detected by the angle detector 15. Then, as shown in FIG. 6, the coordinate position of the laser spot draws a circle around the axis of the three-dimensional measuring device 6, that is, the Z ′ axis.
By reading the coordinates of the Z ′ axis, the positional relationship between the laser spot and the Z ′ axis becomes clear. Therefore, since the Z coordinate is made clear in advance, the positional relationship between the mill core and the Z ′ axis can be calculated from the relationship between the laser spot and the mill core.

【0017】穿孔圧延機のロール1、1は、図7に示す
とおり、二つの円錐を重ねたようなコーン型、または二
つの円錐を重ねた形であるが図7のように末広でなく、
ビア樽のように真中が膨らんでいるバレル型が使用され
ている。ロール間隔は、X軸−Y軸面内で被穿孔材入側
からゴージ18位置まで広がって狭まっていき、ゴージ
位置から逆に出側に向かって広がっている。そこでゴー
ジ18より入側では、図7に示すとおり、A−A、B−
Bの2断面、ゴージ18より出側では、C−C、D−D
の2断面の計4断面を非接触変位計11で計測すると共
に、A位置を基準にして非接触変位計11のB〜D位置
のY’軸、Z’軸方向への移動距離をリニアエンコーダ
16、17で測定し、演算表示装置13に入力する。
Rolls 1 and 1 of the piercing and rolling mill are, as shown in FIG. 7, a cone type in which two cones are piled up, or a shape in which two cones are piled up.
The barrel type that the center swells like a beer barrel is used. The roll interval widens and narrows from the perforated material entry side to the position of the gorge 18 in the X-axis-Y-axis plane, and conversely widens from the gorge position toward the exit side. Therefore, on the entry side from the gorge 18, as shown in FIG. 7, AA, B-
2 cross section of B, C-C, DD on the output side from the gorge 18.
The non-contact displacement gauge 11 measures the total of 4 cross-sections, and the linear encoder measures the movement distances of the non-contact displacement gauge 11 from positions B to D in the Y'axis and Z'axis directions. Measurements are made at 16 and 17 and input to the calculation display device 13.

【0018】演算表示装置13は、図8(a)図に示す
とおり、A−A断面でのレーザスポットの座標からミル
芯Oaの位置を演算し、X’−Y’面の座標原点を三次
元測定装置6の芯Oとしてミル芯Oaの座標を求める。
このとき計測したロール断面に垂線をおろし、先端との
接点a1、a2の座標を求める。同様に図8(b)図〜
(d)図に示すとおり、演算表示装置13は、Ob、b
1、b2、Oc、c1、c2、Od、d1、d2の各座
標を求める。つぎに演算表示装置13は、三次元測定装
置6芯Oとミル芯Oaの芯ずれの補正を行う。三次元測
定装置芯Oとミル芯Oaとの軸ずれの補正は、図9
(a)図に示すX’−Z’平面投影図と、(b)図に示
すY’−Z’平面投影図を図に示し、Z’の原点を三次
元測定装置6を設置する時の基準点Pにおく。そして各
点の座標(X’、Y’、Z’)を下記式により新しいミ
ル芯の座標系(X、Y、Z)に補正する。 X=cosθX’+sinθZ’+α Y=cosψY’+sinψZ’+β Z=−sinθX’−sinψY’+cosθ・cos
ψZ’
As shown in FIG. 8 (a), the calculation display device 13 calculates the position of the mill core Oa from the coordinates of the laser spot on the AA cross section, and the coordinate origin of the X'-Y 'plane is the tertiary. As the core O of the original measuring device 6, the coordinates of the mill core Oa are obtained.
A perpendicular is drawn on the roll cross section measured at this time, and the coordinates of the contact points a1 and a2 with the tip are obtained. Similarly, FIG.
As shown in the diagram (d), the arithmetic and display unit 13 displays Ob, b.
The respective coordinates of 1, b2, Oc, c1, c2, Od, d1 and d2 are obtained. Next, the calculation display device 13 corrects the misalignment between the three-dimensional measuring device 6 core O and the mill core Oa. The correction of the axis deviation between the three-dimensional measuring device core O and the mill core Oa is shown in FIG.
The X'-Z 'plane projection view shown in (a) figure and the Y'-Z' plane projection view shown in (b) figure are shown in a figure, and the origin of Z'is when the three-dimensional measuring device 6 is installed. It is set at the reference point P. Then, the coordinates (X ′, Y ′, Z ′) of each point are corrected to the new mill core coordinate system (X, Y, Z) by the following formula. X = cos θX ′ + sin θZ ′ + α Y = cos φY ′ + sin φZ ′ + β Z = −sin θX′−sin φY ′ + cos θ · cos
ψZ '

【0019】次に演算表示装置13は、補正された座標
からX−Z面投影図、Y−Z面投影図を描き、図10
(a)図に示すX−Z投影面内のa1−b1−c1−d1
2−b2−c2−d2を通る直線を引いて作図する。そし
てミル芯Oaと比較することにより、ロール1、1のX
軸、すなわち水平方向の芯ずれ量、交差角θの角度ずれ
量が表示され、ロール開閉調整用スクリューによりロー
ルチョックを調整することによって芯出しを行う。ま
た、図10(b)図に示すY−Z投影面内では、a1
1−c1−d1、a2−b2−c2−d2を通る直線を引
き、ミル芯Oaと比較することにより、ロール1、1の
Y軸すなわち垂直方向の芯ずれ量、傾斜角ψのずれ量が
表示され、ライナー等の調整により芯出しを行う。
Next, the arithmetic and display unit 13 draws an XZ plane projection view and a YZ plane projection view from the corrected coordinates, and FIG.
A 1 -b 1 -c 1 -d 1 in the XZ projection plane shown in FIG.
Pull the straight line passing through a 2 -b 2 -c 2 -d 2 plotting. Then, by comparing with the mill core Oa, X of the rolls 1 and 1
The axis, that is, the horizontal misalignment amount and the angle misalignment amount of the crossing angle θ are displayed, and the roll chock is adjusted by the roll opening / closing adjusting screw to perform the centering. Further, in the Y-Z projection plane shown in FIG. 10 (b) Fig., A 1 -
By drawing a straight line passing through b 1 -c 1 -d 1 and a 2 -b 2 -c 2 -d 2 and comparing it with the mill core Oa, the misalignment amount of the rolls 1 and 1 in the Y axis, that is, the vertical direction, The deviation amount of the inclination angle ψ is displayed, and the liner is adjusted to perform centering.

【0020】[0020]

【発明の効果】以上述べたとおり、この発明装置によれ
ば、穿孔圧延機のロールのミル芯に対する水平方向の芯
ずれ量、交差角の角度ずれ量ならびに垂直方向の芯ずれ
量、傾斜角のずれ量を正確に測定するこどができ、これ
に基づいてロール位置を修正すれば、製品の肉厚寸法精
度を向上することができる。
As described above, according to the apparatus of the present invention, the amount of misalignment in the horizontal direction with respect to the mill core of the roll of the piercing and rolling mill, the amount of angular misalignment of the crossing angle, the amount of misalignment in the vertical direction, and the inclination angle are set. The deviation amount can be accurately measured, and if the roll position is corrected based on this, the thickness accuracy of the product can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】レーザ発光装置の設置位置を示す平面図であ
る。
FIG. 1 is a plan view showing an installation position of a laser emitting device.

【図2】三次元測定装置の切欠き斜視図である。FIG. 2 is a cutaway perspective view of the coordinate measuring apparatus.

【図3】三次元測定装置の取付け状態を示すもので、
(a)図は平面図、(b)図は側面図である。
FIG. 3 is a view showing a mounting state of the three-dimensional measuring device,
FIG. 3A is a plan view and FIG. 1B is a side view.

【図4】三次元測定装置の取付け部の拡大側面である。FIG. 4 is an enlarged side view of a mounting portion of the coordinate measuring apparatus.

【図5】三次元測定装置と演算表示装置との接続状況を
示す概念図である。
FIG. 5 is a conceptual diagram showing a connection state between a three-dimensional measuring device and a calculation display device.

【図6】CCDカメラを回転させた場合のレーザビーム
のスポットの軌跡を示す説明図である。
FIG. 6 is an explanatory diagram showing a locus of a spot of a laser beam when a CCD camera is rotated.

【図7】Z軸方向の複数位置でのロール表面間の距離の
測定位置を示すもので、(a)図はX軸方向、(b)図
はY軸方向の説明図である。
7A and 7B show measurement positions of distances between roll surfaces at a plurality of positions in the Z-axis direction. FIG. 7A is an X-axis direction, and FIG. 7B is an Y-axis direction.

【図8】Z軸方向の複数位置でのロール表面間の距離の
測定結果に基づくロール断面図で、(a)図はA−A断
面図、(b)図はB−B断面、(c)図はC−C断面、
(d)図はD−D断面を示す。
8A and 8B are roll cross-sectional views based on measurement results of distances between roll surfaces at a plurality of positions in the Z-axis direction. FIG. 8A is a cross-sectional view taken along line AA, FIG. 8B is a cross-sectional view taken along line BB, and FIG. ) The figure shows C-C cross section,
(D) The figure shows a DD cross section.

【図9】三次元測定装置芯とミル芯との軸ずれの補正を
行うための説明図で、(a)図はX’Z’平面投影図、
(b)図はY’Z’平面投影図である。
FIG. 9 is an explanatory diagram for correcting the axis deviation between the core of the three-dimensional measuring device and the mill core, and FIG. 9A is an X′Z ′ plane projection diagram,
(B) The figure is a Y'Z 'plane projection view.

【図10】補正された座標によるロールの投影図を示す
もので、(a)図はX−Z面投影図、(b)図はY−Z
面投影図である。
10A and 10B are projection views of a roll based on corrected coordinates, where FIG. 10A is a projection view on the XZ plane and FIG. 10B is a view on the YZ plane.
FIG.

【図11】ミル芯とレーザビームの任意位置での誤差量
の算出説明図で、(a)図は水平(X軸)方向、(b)
図は垂直(Y軸)方向を示す。
FIG. 11 is an explanatory diagram of calculation of an error amount at an arbitrary position between the mill core and the laser beam, FIG. 11A is a horizontal (X axis) direction, and FIG.
The figure shows the vertical (Y-axis) direction.

【図12】穿孔圧延機のロール配置を示すもので、
(a)図は側面図、(b)図は平面図である。
FIG. 12 shows a roll arrangement of a piercing and rolling mill,
The figure (a) is a side view, and the figure (b) is a top view.

【符号の説明】[Explanation of symbols]

1 ロール 2 スピンドル 3 減速機 4 バーステディア 5、41 レーザ発光装置 6 三次元測定装置 7 下部架台 8 水準器 9 拡散板 10 CCDカメラ 11 非接触変位計 12 座標読み取り装置 13 演算表示装置 14 管 15 角度検出器 16、17 リニアエンコーダ 42、43 受光装置 51、52 ロール軸芯 53 クレードル 54 ロールチョック 55 ロール開閉調整用スクリュー Oa ミル芯 1 Roll 2 Spindle 3 Reducer 4 Burstedia 5, 41 Laser Light Emitting Device 6 Three-dimensional Measuring Device 7 Lower Frame 8 Level Level 9 Diffuser Plate 10 CCD Camera 11 Non-contact Displacement Meter 12 Coordinate Reading Device 13 Calculation Display Device 14 Tube 15 Angle Detector 16, 17 Linear encoder 42, 43 Light receiving device 51, 52 Roll shaft core 53 Cradle 54 Roll chock 55 Roll open / close adjusting screw Oa Mill core

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 穿孔圧延機のロールのミル芯に対する位
置を計測する穿孔圧延機の芯出し計測装置において、穿
孔圧延機の入側または出側に設置したミル芯にほぼ一致
するレーザ発光装置と、該レーザ光線を受光するセンサ
ーヘッド、ロール間距離を非接触で測定できる非接触変
位計、ミル芯方向および鉛直方向に移動する非接触変位
計の移動量を測定するリニアエンコーダとからなる三次
元測定装置と、該三次元測定装置で測定されたレーザ光
線の中心座標、非接触変位計で計測したロールまでの距
離、リニアエンコーダで測定した非接触変位計のミル芯
方向および鉛直方向への移動量に基づき、水平方向のミ
ル芯とロールの芯ずれ量および交差角の角度ずれ量、垂
直方向のミル芯とロールの芯ずれ量および傾斜角の角度
ずれ量を演算表示する演算表示装置とからなる穿孔圧延
機の芯出し測定装置。
1. A centering measuring device of a piercing and rolling machine for measuring the position of a roll of the piercing and rolling machine with respect to a mill core, and a laser light emitting device which is substantially aligned with a mill core installed on an inlet side or an outlet side of the piercing and rolling machine. A three-dimensional structure comprising a sensor head for receiving the laser beam, a non-contact displacement meter capable of measuring the distance between the rolls in a non-contact manner, and a linear encoder measuring the movement amount of the non-contact displacement meter moving in the mill core direction and the vertical direction. Measuring device and center coordinates of laser beam measured by the three-dimensional measuring device, distance to roll measured by non-contact displacement meter, movement of non-contact displacement meter measured by linear encoder in mill core direction and vertical direction Based on the amount, the horizontal misalignment amount of the mill core and roll and the angular misalignment amount of the crossing angle, the vertical misalignment amount of the mill core and roll, and the angular misalignment amount of the tilt angle are calculated and displayed. A centering measuring device for a piercing and rolling mill, which comprises a calculation display device.
JP32480592A 1992-11-09 1992-11-09 Centering measuring instrument for piercing mill Pending JPH06142719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32480592A JPH06142719A (en) 1992-11-09 1992-11-09 Centering measuring instrument for piercing mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32480592A JPH06142719A (en) 1992-11-09 1992-11-09 Centering measuring instrument for piercing mill

Publications (1)

Publication Number Publication Date
JPH06142719A true JPH06142719A (en) 1994-05-24

Family

ID=18169879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32480592A Pending JPH06142719A (en) 1992-11-09 1992-11-09 Centering measuring instrument for piercing mill

Country Status (1)

Country Link
JP (1) JPH06142719A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149129B1 (en) * 2009-06-26 2012-05-25 현대제철 주식회사 Apparatus for controlling pair cross of finishing mill and method thereof
CN103658176A (en) * 2013-10-28 2014-03-26 兴化市迈达机械有限公司 Four-roller finishing mill
JP2017024038A (en) * 2015-07-21 2017-02-02 Jfeプラントエンジ株式会社 Liner dimensional accuracy measuring method of chock part of mandrel mill
WO2018012500A1 (en) * 2016-07-12 2018-01-18 日本精工株式会社 Rotary forge device testing device, testing tool, testing method, bearing unit manufacturing device, and bearing unit manufacturing method
CN113654468A (en) * 2021-08-30 2021-11-16 华侨大学 Laser measuring device for monitoring horizontal displacement of comprehensive pipe gallery and using method
CN113714296A (en) * 2021-08-17 2021-11-30 山东磐金钢管制造有限公司 Perforating machine center line calibration method based on laser tracker
CN114290046A (en) * 2021-11-25 2022-04-08 上海电气风电集团股份有限公司 Adjusting device for adjusting a retarder and adjusting method thereof
CN114459388A (en) * 2022-01-18 2022-05-10 重庆理工大学 Single-laser double-PSD deep hole straightness detection device and method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149129B1 (en) * 2009-06-26 2012-05-25 현대제철 주식회사 Apparatus for controlling pair cross of finishing mill and method thereof
CN103658176A (en) * 2013-10-28 2014-03-26 兴化市迈达机械有限公司 Four-roller finishing mill
CN103658176B (en) * 2013-10-28 2017-01-11 兴化市迈达机械有限公司 Method for manufacturing gold foil through four-roller finishing mill
JP2017024038A (en) * 2015-07-21 2017-02-02 Jfeプラントエンジ株式会社 Liner dimensional accuracy measuring method of chock part of mandrel mill
US10399141B2 (en) 2016-07-12 2019-09-03 Nsk Ltd. Rotary forge device testing device, testing tool, testing method, bearing unit manufacturing device, bearing unit manufacturing method, and vehicle manufacturing method
CN109416241A (en) * 2016-07-12 2019-03-01 日本精工株式会社 It swings the check device of rolling device, check the manufacturing method with tool, inspection method, the manufacturing device of bearing unit and bearing unit
WO2018012500A1 (en) * 2016-07-12 2018-01-18 日本精工株式会社 Rotary forge device testing device, testing tool, testing method, bearing unit manufacturing device, and bearing unit manufacturing method
US11077485B2 (en) 2016-07-12 2021-08-03 Nsk Ltd. Rotary forge device testing device, testing tool, testing method, bearing unit manufacturing device, bearing unit manufacturing method, and vehicle manufacturing method
CN113714296A (en) * 2021-08-17 2021-11-30 山东磐金钢管制造有限公司 Perforating machine center line calibration method based on laser tracker
CN113714296B (en) * 2021-08-17 2023-10-20 山东磐金钢管制造有限公司 Perforating machine center line calibration method based on laser tracker
CN113654468A (en) * 2021-08-30 2021-11-16 华侨大学 Laser measuring device for monitoring horizontal displacement of comprehensive pipe gallery and using method
CN113654468B (en) * 2021-08-30 2023-06-23 华侨大学 Laser measuring device for monitoring horizontal displacement of comprehensive pipe rack and use method
CN114290046A (en) * 2021-11-25 2022-04-08 上海电气风电集团股份有限公司 Adjusting device for adjusting a retarder and adjusting method thereof
CN114459388A (en) * 2022-01-18 2022-05-10 重庆理工大学 Single-laser double-PSD deep hole straightness detection device and method
CN114459388B (en) * 2022-01-18 2023-05-30 重庆理工大学 Single-laser double-PSD deep hole straightness detection device and method

Similar Documents

Publication Publication Date Title
RU2389574C2 (en) Device and method to position loaders and calibers at rolling mill stand
JPH06142719A (en) Centering measuring instrument for piercing mill
CN111272111A (en) Eccentricity detection method and eccentricity detection device for lens
JP2007263818A (en) Adjusting method for thickness measuring instrument, and device therefor
US3826576A (en) Laser measuring or monitoring system
US11192158B2 (en) Apparatus for detecting relative positioning information between rolls, and method for measurement roll alignment state by using same
JP2009031120A (en) Method and device for adjusting thickness measuring instrument
JP2000136923A (en) Contact-type pipe-inside-diameter measuring apparatus
US20240093986A1 (en) Apparatus and method for coaxially aligning two rotatable shafts
CN110207595B (en) Device and method for measuring length of retro-reflective ball length standard rod
JP2605560B2 (en) Burstedia centering device
KR101930878B1 (en) Apparatus and method for measuring alignment state of the roll
JP2000146564A (en) Precision confirmation device for contact system measuring instrument of tube inner diameter
JPH0465610A (en) Shape measuring instrument for tube body
JP2000237808A (en) Method for adjusting roll position of rolling roll for bar steel and guidance device for adjusting roll position
JP3028058B2 (en) Pipe roundness measuring device
JPH06153200A (en) Measuring equipment for center of mill for drilling mill
JPH07120226A (en) Measuring instrument for shape steel dimension
JP2605561B2 (en) Bar Stedia core measuring device
JPH06142722A (en) Device for measuring center of bar steadyer
JPH1194700A (en) Measuring device and method for lens
CN114136221B (en) Laser ranging device for non-vertical detection of outer diameter of ring and measuring method thereof
US11740072B2 (en) Inner surface shape measurement device, and alignment method and magnification calibration method for inner surface shape measurement device
CN219572974U (en) Parallelism detecting device
JP2556945B2 (en) Thickness measuring device