JP2868382B2 - Outer diameter measuring device - Google Patents
Outer diameter measuring deviceInfo
- Publication number
- JP2868382B2 JP2868382B2 JP4357383A JP35738392A JP2868382B2 JP 2868382 B2 JP2868382 B2 JP 2868382B2 JP 4357383 A JP4357383 A JP 4357383A JP 35738392 A JP35738392 A JP 35738392A JP 2868382 B2 JP2868382 B2 JP 2868382B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- measured
- outer diameter
- steel pipe
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】この発明は、例えば鋼管や線材等
のように円形断面を備えた被測定物の外径測定装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the outside diameter of an object to be measured having a circular cross section, such as a steel pipe or a wire.
【0002】[0002]
【従来の技術】鋼管の製造ラインにおいては、製品たる
鋼管の外径を所定値に納めることが、品質保証上極めて
重要である。従来、鋼管の外径を測定するには、作業者
が大型ノギスや巻尺等を鋼管に直接当てて実施してい
た。2. Description of the Related Art In a steel pipe manufacturing line, it is extremely important for quality assurance that the outer diameter of a steel pipe as a product is set to a predetermined value. Conventionally, in order to measure the outer diameter of a steel pipe, an operator has directly applied a large caliper, a tape measure, or the like to the steel pipe.
【0003】また、特開昭 58-108406号公報に記載の外
径測定装置が提案されている。この外径測定装置は、投
光器及び光検出器間に被測定鋼管を配置し、ボールスク
リュー機構によって、被測定鋼管の外径に応じ光検出器
を移動させるようにして、被測定鋼管の外径を測定する
ものである。An outer diameter measuring device described in Japanese Patent Application Laid-Open No. 58-108406 has been proposed. In this outer diameter measuring device, a steel pipe to be measured is arranged between a projector and a light detector, and the ball screw mechanism moves the light detector in accordance with the outer diameter of the steel pipe to be measured. Is measured.
【0004】[0004]
【発明が解決しようとする課題】ところが、ノギスや巻
尺を用いて、鋼管の外径を直接測定する場合には、測定
状態や作業者の個人差によって測定値にばらつきが生
じ、測定精度が低い。また、鋼管の製造工程において
は、鋼管はその軸方向に移動しているが、鋼管の外径を
作業者が直接測定するためには、鋼管の移動を停止させ
る必要がある。このため、鋼管の生産性が低下する虞れ
がある。However, when the outside diameter of the steel pipe is directly measured by using a caliper or a tape measure, the measurement value varies depending on the measurement state and individual differences of workers, and the measurement accuracy is low. . Further, in the steel pipe manufacturing process, the steel pipe moves in the axial direction, but the movement of the steel pipe needs to be stopped in order for an operator to directly measure the outer diameter of the steel pipe. For this reason, the productivity of the steel pipe may be reduced.
【0005】また、上記公報記載の外径測定装置では、
光検出器がボールスクリュー機構によって支持されてい
るため、このボールスクリュー機構にがたつきがある
と、光検出器が不安定になり、外径の検出精度が低下し
てしまう。In the outside diameter measuring device described in the above publication,
Since the photodetector is supported by the ball screw mechanism, if the ball screw mechanism rattles, the photodetector becomes unstable and the accuracy of detecting the outer diameter decreases.
【0006】この発明は、上述の事情を考慮してなされ
たものであり、連続的に製造される被測定物たる製品の
製造工程に影響を与えることなく、被測定物の外径を高
精度に測定できる外径測定装置を提供することを目的と
する。The present invention has been made in view of the above-described circumstances, and has a high accuracy in measuring the outer diameter of the object to be measured without affecting the manufacturing process of a product to be continuously manufactured. It is an object of the present invention to provide an outer diameter measuring device capable of measuring the diameter.
【0007】[0007]
【課題を解決するための手段】この発明は、円形断面を
備えた被測定物へ向けて光を投光する投光器と、上記被
測定物に関し上記投光器と反対位置に設置され上記投光
器からの光を受光する受光器と、上記被測定物及び上記
受光器間の距離を計測する距離計と、上記投光器から投
光され上記被測定物の外周面に接して上記受光器に受光
された光の位置と上記距離計にて測定された距離とから
上記被測定物の外径を算出する演算器と、を有する外径
測定装置であって、前記投光器が、レーザ発振器からの
レーザ光を回転ミラーに照射し、この回転ミラーの回転
により、レーザ光を被測定物へ向けて反射し、且つ被測
定物の中心軸に直交する水平方向に走査させるものであ
り、前記受光器が、多数の受光素子を一定ピッチで被測
定物の中心軸と直交する水平方向に配列した受光面を、
前記回転ミラーによるレーザ光の反射点と被測定物の中
心軸とを結ぶ直線に対し直交するように配置してなり、
回転ミラーの反射点と被測定物の中心軸を結ぶ直線と受
光器の受光面との交点をX−Y座標の原点O(0,0)
とするとき、上記回転ミラーの反射点の位置(0,
Y 0 )、上記受光器による受光位置(X 0 ,0)、上記
距離計による測定距離Y 1 得て、 Y=Y 0 −Y 1 X=(Y/Y 0 )X 0 の計算式により、被測定物の外径Dを算出するようにし
たものである。 SUMMARY OF THE INVENTION According to the present invention, there is provided a light projector for projecting light toward a device having a circular cross section, and a light from the light projector which is provided at a position opposite to the light projector with respect to the device to be measured. And a distance meter that measures the distance between the object to be measured and the light receiver, and the light received by the light receiver that is projected from the light emitter and is in contact with the outer peripheral surface of the object to be measured. A calculator for calculating the outer diameter of the object to be measured from the position and the distance measured by the distance meter, and an outer diameter measuring device ,
The rotating mirror is irradiated with laser light, and the rotating mirror is rotated.
Reflect the laser light toward the object to be measured, and
Scan in the horizontal direction perpendicular to the center axis of the product
The light receiver measures a large number of light receiving elements at a constant pitch.
The light receiving surface arranged in the horizontal direction orthogonal to the center axis of the fixed product,
The reflection point of the laser beam by the rotating mirror and the object to be measured
It is arranged so as to be orthogonal to the straight line connecting the center axis,
A straight line connecting the reflection point of the rotating mirror and the central axis of
The intersection with the light receiving surface of the optical device is defined as the origin O (0, 0) of the XY coordinates.
, The position of the reflection point of the rotating mirror (0, 0,
Y 0 ), the light receiving position (X 0 , 0) by the photodetector ,
Distance measuring distance Y 1 obtained by meter, Y = Y 0 -Y 1 X = (Y / Y 0) X 0 The outer diameter D of the object to be measured is calculated by the following formula.
It is a thing.
【0008】[0008]
【作用】被測定物を投光器及び受光器間に配置し、投
光器から投光された光によって被測定物の外径を非接触
に測定するので、被測定物の製造中に被測定物が移動中
であっても、この被測定物の外径を測定できる。このよ
うに、外径の測定中に被測定物の移動を止める必要がな
いので、連続的に製造される被測定物の製造工程に悪影
響を及ぼすことがない。The object to be measured is placed between the light emitter and the light receiver, and the outer diameter of the object to be measured is measured in a non-contact manner by the light emitted from the light emitter, so that the object to be measured moves during the manufacture of the object to be measured. Even in the middle, the outer diameter of the measured object can be measured. As described above, since it is not necessary to stop the movement of the object to be measured during the measurement of the outer diameter, the production process of the object to be continuously manufactured is not adversely affected.
【0009】外径測定装置は、受光器の受光素子が、
回転ミラーから投光されて被測定物の外周面に接したレ
ーザー光の受光位置を検出し、距離計が受光器の受光面
と被測定物との距離を計測し、これらの計測値に基づき
演算器が被測定物の外径Dを測定するものであり、複雑
な機械的機構が存在しない。このため、機械的機構のが
たつきに伴い測定精度が低下することがなく、被測定物
の外径を高精度に測定できる。 投光器が、レーザ発振
器からのレーザ光を回転ミラーに照射し、この回転ミラ
ーの回転により、レーザ光を被測定物へ向けて反射し、
且つ被測定物の中心軸に直交する水平方向に走査させる
ものであるから、コンパクトな構成の投光器により、外
径の多様に異なる各種被測定物によく対応できる。 回
転ミラーの反射点の位置(0,Y 0 )、受光器による受
光位置(X 0 ,0)、距離計による測定距離Y 1 を用い
て、前記計算式により、被測定物の外径Dを算出するの
で、被測定物の外径Dを高精度に測定できる。 In the outer diameter measuring device, the light receiving element of the light receiver is
The laser projected from the rotating mirror and in contact with the outer peripheral surface of the DUT
The position of the receiver light is detected, and the distance meter
Measure the distance between the
The arithmetic unit measures the outer diameter D of the object to be measured, which is complicated.
No mechanical mechanism exists. For this reason, the mechanical mechanism
Measurement accuracy does not decrease with rattling
Can be measured with high accuracy. Emitter emits laser light
The rotating mirror is irradiated with laser light from the
The laser beam is reflected toward the DUT by the rotation of the
And scan in the horizontal direction perpendicular to the center axis of the DUT
, A compact configuration of the projector allows
It can cope well with various objects to be measured having various diameters. Times
Position of the reflection point of the mirror (0, Y 0 )
Light position (X 0, 0), using the measured distance Y 1 by rangefinder
Then, the outer diameter D of the object to be measured is calculated by the above formula.
Thus, the outer diameter D of the measured object can be measured with high accuracy.
【0010】[0010]
【実施例】以下、この発明の実施例を図面に基づいて説
明する。図1はこの発明に係る外径測定装置の一実施例
を示す斜視図であり、図2は、図1の II-II線に沿う断
面図である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the outer diameter measuring apparatus according to the present invention, and FIG. 2 is a sectional view taken along the line II-II in FIG.
【0011】図1に示すように、この実施例では、円形
断面を備えた被測定物は例えばスパイラル鋼管10であ
る。このスパイラル鋼管10は、コイル状に巻かれた帯
鋼11を素材とし、この巻き戻された帯鋼11を、図示
しない成形ロールによってスパイラル状に成形し、継目
を溶接することによって製造される。このスパイラル鋼
管10の製造工程において、スパイラル鋼管10は、中
心軸F回りに回転しながら矢印S方向へ移動している。As shown in FIG. 1, in this embodiment, an object to be measured having a circular cross section is, for example, a spiral steel pipe 10. The spiral steel pipe 10 is manufactured by using a steel strip 11 wound in a coil shape as a raw material, forming the unwound steel strip 11 into a spiral shape by a forming roll (not shown), and welding a joint. In the manufacturing process of the spiral steel pipe 10, the spiral steel pipe 10 moves in the direction of the arrow S while rotating around the central axis F.
【0012】このスパイラル鋼管10の外径を測定する
外径測定装置12は、図2に示すよに、投光器13、受
光器14、距離計(例えばレーザ距離計)15及び演算
器16を有して構成される。As shown in FIG. 2, the outer diameter measuring device 12 for measuring the outer diameter of the spiral steel pipe 10 has a projector 13, a light receiver 14, a distance meter (for example, a laser distance meter) 15, and a calculator 16. It is composed.
【0013】投光器13は、レーザ発振器17からのレ
ーザ光18を回転ミラー19に照射し、この回転ミラー
19の回転により、レーザ光18をスパイラル鋼管10
へ向け、且つこのスパイラル鋼10の中心軸Fに直交す
る水平方向に走査させるものである。レーザ光18は、
例えばヘリウムネオンレーザ光である。回転ミラー19
は、レーザ光18が回転ミラー19にて反射される反射
点をAとすると、この反射点Aがスパイラル鋼管10の
中心軸Fの真上に位置するよう設置される。The projector 13 irradiates a laser beam 18 from a laser oscillator 17 to a rotating mirror 19, and rotates the rotating mirror 19 to emit the laser beam 18 to the spiral steel tube 10.
The scanning is performed in the horizontal direction orthogonal to the central axis F of the spiral steel 10. The laser light 18 is
An example is helium neon laser light. Rotating mirror 19
Is set so that the reflection point A at which the laser beam 18 is reflected by the rotating mirror 19 is located directly above the central axis F of the spiral steel pipe 10.
【0014】受光器14は、スパイラル鋼管10に関し
投光器13の回転ミラー19と反対位置に設置されて、
回転ミラー19から投光されたレーザ光18を受光す
る。この受光器14は、多数の受光素子(CCD;char
ge couple device)20を約0.1 〜 0.125mmのピッチで
配列して受光面21を構成したアレイ式光学的検出器で
ある。The light receiver 14 is installed at a position opposite to the rotating mirror 19 of the light projector 13 with respect to the spiral steel pipe 10,
The laser beam 18 emitted from the rotating mirror 19 is received. The light receiver 14 includes a large number of light receiving elements (CCD; char)
This is an array type optical detector in which a light receiving surface 21 is configured by arranging a couple of devices 20 at a pitch of about 0.1 to 0.125 mm.
【0015】この受光器14は、受光素子20の配列方
向がスパイラル鋼管10の中心軸Fと直交する水平方
向、つまり回転ミラー19にて反射され投光されたレー
ザ光18が走査する方向と一致するように設置される。
この受光器14の長さは、例えば2500mmである。更に、
受光器14は、受光面21が回転ミラー19の反射点A
及びスパイラル鋼管10の中心軸Fを結ぶ直線22に対
し直交するよう配置される。In the light receiver 14, the arrangement direction of the light receiving elements 20 coincides with the horizontal direction orthogonal to the central axis F of the spiral steel pipe 10, that is, the scanning direction of the laser beam 18 reflected and projected by the rotating mirror 19. It is set up to do.
The length of the light receiver 14 is, for example, 2500 mm. Furthermore,
The light receiving unit 21 is configured such that the light receiving surface 21 is a reflection point A of the rotating mirror 19.
And it is arrange | positioned orthogonally with respect to the straight line 22 which connects the center axis F of the spiral steel pipe 10. FIG.
【0016】また、受光器14の受光面21と投光器1
3の反射ミラー19との距離Lは、この外径測定装置1
2が測定対象とする外径の異なる数種類のスパイラル鋼
管のうち、最大の外径を有するスパイラル鋼管10の外
径の 1.5倍以上となるよう設定されている。測定対象の
スパイラル鋼管10の外径が 150mmから1500mmである場
合には、受光器14の受光面21と投光器13の回転ミ
ラー19との距離Lは、この1500mmの 1.5倍以上、この
実施例では3500mmに設定されている。The light receiving surface 21 of the light receiver 14 and the light projector 1
3 is equal to the distance L between the outer diameter measuring device 1 and the reflecting mirror 19.
2 is set to be 1.5 times or more the outer diameter of the spiral steel pipe 10 having the largest outer diameter among several types of spiral steel pipes having different outer diameters to be measured. When the outer diameter of the spiral steel pipe 10 to be measured is 150 mm to 1500 mm, the distance L between the light receiving surface 21 of the light receiver 14 and the rotating mirror 19 of the light projector 13 is 1.5 times or more of this 1500 mm, and in this embodiment, It is set to 3500mm.
【0017】レーザ距離計15は、回転ミラー19の反
射点Aとスパイラル鋼管10の中心軸Fとを結ぶ直線2
2上に配置され、この直線22上においてレーザ光23
を照射し、スパイラル鋼管10の最下点Eと受光器14
の受光面21との距離Mを計測する。The laser distance meter 15 is a straight line 2 connecting the reflection point A of the rotating mirror 19 and the central axis F of the spiral steel pipe 10.
2 and a laser beam 23 on this straight line 22.
And the lowermost point E of the spiral steel pipe 10 and the light receiver 14
Of the light receiving surface 21 is measured.
【0018】演算器16は、受光器14及びレーザ距離
計15に電気的に接続され、回転ミラー19にて反射さ
れ、スパイラル鋼管10へ向かって投光されたレーザ光
18のうち、スパイラル鋼管10の外周面に接し(接点
C)、受光器14にて受光されたレーザ光18Aの受光
位置Bと、レーザ距離計15にて計測されたスパイラル
鋼管10の最下点E及び受光器14の受光面21間の距
離Mとから、スパイラル鋼管10の外径を算出する。The arithmetic unit 16 is electrically connected to the photodetector 14 and the laser range finder 15, and of the laser beam 18 reflected by the rotating mirror 19 and projected toward the spiral steel tube 10, (Contact point C), the light receiving position B of the laser beam 18A received by the light receiver 14, the lowest point E of the spiral steel pipe 10 measured by the laser distance meter 15, and the light reception of the light receiver 14. The outer diameter of the spiral steel pipe 10 is calculated from the distance M between the surfaces 21.
【0019】つまり、図3に示すように、回転ミラー1
9の反射点A及びスパイラル鋼管10の中心軸Fを結ぶ
直線22と受光器14の受光面21との交点をX−Y座
標の原点O(0,0) とすると、回転ミラー19の反射点A
は(0,Y0)となり、スパイラル鋼管10の最下点Eは(0,Y
1)となり、更にレーザ光18Aの受光位置Bは(X0,0)と
なる。ここで、反射点A及びスパイラル鋼管10の最下
点E間距離をThat is, as shown in FIG.
Assuming that the intersection of the straight line 22 connecting the reflection point A of No. 9 and the central axis F of the spiral steel pipe 10 with the light receiving surface 21 of the light receiver 14 is the origin O (0,0) of the XY coordinate, the reflection point of the rotating mirror 19 is A
Is (0, Y 0 ), and the lowest point E of the spiral steel pipe 10 is (0, Y 0 ).
1), and further the light receiving position B of the laser beam 18A becomes (X 0, 0). Here, the distance between the reflection point A and the lowest point E of the spiral steel pipe 10 is
【0020】[0020]
【数1】 となる。また、スパイラル鋼管10の最下点EからX軸
に平行な平行線を引き、レーザ光18Aとの交点をB’
とし、(Equation 1) Becomes Further, a parallel line parallel to the X axis is drawn from the lowest point E of the spiral steel pipe 10, and the intersection with the laser beam 18A is defined as B '.
age,
【0021】[0021]
【数2】 となる。また、レーザ光18Aとスパイラル鋼管10と
の接点Cと回転ミラー19の反射点Aとの距離(Equation 2) Becomes Also, the distance between the contact point C between the laser beam 18A and the spiral steel pipe 10 and the reflection point A of the rotating mirror 19
【0022】[0022]
【数3】 は、スパイラル鋼管10の半径をRとすると、(Equation 3) Is, if the radius of the spiral steel pipe 10 is R,
【0023】[0023]
【数4】 となる。(Equation 4) Becomes
【0024】さて、スパイラル鋼管10の直径(外径)
をD(D=2R)とすると、△AEB’と△ACFとが
相似三角形であるため、Now, the diameter (outer diameter) of the spiral steel pipe 10
Is D (D = 2R), since △ AEB ′ and △ ACF are similar triangles,
【数5】 となる。(Equation 5) Becomes
【0025】上記式、式及び式から、X0 及びY
1 を受光器14及びレーザ距離計15にてそれぞれ測定
することにより、スパイラル鋼管10の外径Dを算出で
きる。From the above formulas, formulas and formulas, X 0 and Y
The outer diameter D of the spiral steel pipe 10 can be calculated by measuring 1 with the light receiver 14 and the laser distance meter 15, respectively.
【0026】上記実施例によれば、スパイラル鋼管10
を投光器13及び受光器14間に配置し、投光器13の
回転ミラー19から投光されたレーザ光18によってス
パイラル鋼管10の外径Dを非接触にて測定するので、
スパイラル鋼管10の製造中にスパイラル鋼管10が中
心軸Fに沿って移動中であっても、このスパイラル鋼管
10の外径Dを測定できる。このように、外径の測定中
にスパイラル鋼管10の移動を止める必要がないので、
連続的に製造されるスパイラル鋼管10の製造工程に悪
影響を及ぼすことがない。According to the above embodiment, the spiral steel pipe 10
Is arranged between the light projector 13 and the light receiver 14, and the outer diameter D of the spiral steel pipe 10 is measured in a non-contact manner by the laser light 18 projected from the rotating mirror 19 of the light projector 13.
The outer diameter D of the spiral steel pipe 10 can be measured even while the spiral steel pipe 10 is moving along the central axis F during the manufacture of the spiral steel pipe 10. As described above, since it is not necessary to stop the movement of the spiral steel pipe 10 during the measurement of the outer diameter,
There is no adverse effect on the manufacturing process of the spiral steel pipe 10 manufactured continuously.
【0027】また、外径測定装置12は、受光器14の
受光素子20が、回転ミラー19から投光されてスパイ
ラル鋼管10の外周面に接したレーザー光18Aの受光
位置Bを検出し、レーザー距離計15が受光器14の受
光面21とスパイラル鋼管10の最下点Eとの距離Mを
計測し、これらの計測値に基づき演算器16がスパイラ
ル鋼管10の外径Dを測定するものであり、複雑な機械
的機構が存在しない。このため、機械的機構のがたつき
に伴い測定精度が低下することがなく、スパイラル鋼管
10の外径Dを高精度にて測定できる。この実施例の外
径測定装置12を用いた実際の測定結果を図4に示す。
外径の実測値が1500mmのスパイラル鋼管10を多
数回測定したとき、これらの測定値と上記実測値との誤
差は±1mmの範囲にあり、外径測定装置12が高精度
にてスパイラル鋼管10の外径を測定していることがわ
かる。また、投光器13が、レーザ発振器17からのレ
ーザ光18を回転ミラー19に照射し、この回転ミラー
19の回転により、レーザ光18をスパイラル鋼管10
へ向けて反射し、且つスパイラル鋼管10の中心軸に直
交する水平方向に走査させるものであるから、コンパク
トな構成の投光器13により、外径の多様に異なる各種
スパイラル鋼管10によく対応できる。 また、回転ミラ
ー19の反射点の位置(0,Y 0 )、受光器14による
受光位置(X 0 ,0)、距離計15による測定距離Y 1
を用いて、前記計算式により、スパイラル鋼管10の外
径Dを算出するので、スパイラル鋼管10の外径Dを高
精度に測定できる。 In the outer diameter measuring device 12, the light receiving element 20 of the light receiver 14 detects the light receiving position B of the laser light 18A projected from the rotating mirror 19 and in contact with the outer peripheral surface of the spiral steel tube 10, and The distance meter 15 measures the distance M between the light receiving surface 21 of the light receiver 14 and the lowest point E of the spiral steel pipe 10, and the calculator 16 measures the outer diameter D of the spiral steel pipe 10 based on these measured values. There is no complicated mechanical mechanism. Therefore, the measurement accuracy does not decrease with the backlash of the mechanical mechanism, and the outer diameter D of the spiral steel pipe 10 can be measured with high accuracy. FIG. 4 shows actual measurement results using the outer diameter measuring device 12 of this embodiment.
When the spiral steel pipe 10 having the measured outer diameter of 1500 mm is measured a number of times, the error between these measured values and the measured value is within a range of ± 1 mm, and the outer diameter measuring device 12 can accurately measure the spiral steel pipe 10. It can be seen that the outer diameter was measured. In addition, the light projector 13 receives the laser beam from the laser oscillator 17.
Laser light 18 is applied to a rotating mirror 19,
Rotation of the laser beam 18 causes the laser beam 18 to flow through the spiral steel pipe 10.
To the central axis of the spiral steel pipe 10
Because it scans in the intersecting horizontal direction,
The projector 13 has a simple configuration, so that various
It can cope well with the spiral steel pipe 10. Also, a rotating mirror
Position (0, Y 0 ) of the reflection point of −19 , due to the photodetector 14
Light receiving position (X 0 , 0), distance Y 1 measured by distance meter 15
And the outside of the spiral steel pipe 10 is calculated according to the above formula.
Since the diameter D is calculated, the outer diameter D of the spiral steel pipe 10 is increased.
Can be measured with high accuracy.
【0028】更に、受光器14の受光面21と投光器1
3の回転ミラー19との距離Lが、測定対象となる多種
類のスパイラル鋼管10のうち最大径のスパイラル鋼管
10における外径の 1.5倍以上に設定されたので、小径
のスパイラル鋼管24であっても、大径のスパイラル鋼
管10であっても、投光器13及び受光器14の一部を
変更することなく、外径の異なった多種類のスパイラル
鋼管10、23に対し、その外径を好適に測定できる。Further, the light receiving surface 21 of the light receiver 14 and the light emitter 1
Since the distance L to the rotating mirror 19 is set to be at least 1.5 times the outer diameter of the largest spiral steel pipe 10 among the various kinds of spiral steel pipes 10 to be measured, the spiral steel pipe 24 having a small diameter is required. Also, even if the spiral steel pipe 10 has a large diameter, the outer diameter of the spiral steel pipe 10 and 23 having different outer diameters can be suitably adjusted without changing a part of the light projector 13 and the light receiver 14. Can be measured.
【0029】[0029]
【0030】また、上記実施例では、被測定物がスパイ
ラル鋼管10、24の場合を述べたが、シームレス鋼管
等の他の鋼管であってもよく、円柱形状の線材であって
もよい。Further, in the above-described embodiment, the case where the object to be measured is the spiral steel pipes 10 and 24 has been described. However, another steel pipe such as a seamless steel pipe may be used, or a cylindrical wire rod may be used.
【0031】[0031]
【発明の効果】以上のように、この発明に係る外径測定
装置によれば、連続的に製造される被測定物たる製品の
製造工程に影響を与えることなく、被測定物の外径を高
精度にて測定できる。As described above, according to the outer diameter measuring apparatus of the present invention, the outer diameter of the object to be measured can be measured without affecting the manufacturing process of the continuously manufactured object. It can measure with high accuracy.
【図1】この発明に係る外径測定装置の一実施例を示す
斜視図。FIG. 1 is a perspective view showing an embodiment of an outer diameter measuring device according to the present invention.
【図2】図1のII−II線に沿う断面図。FIG. 2 is a sectional view taken along the line II-II in FIG.
【図3】スパイラル鋼管の外径を算出するための説明
図。FIG. 3 is an explanatory diagram for calculating the outer diameter of a spiral steel pipe.
【図4】図2の外径測定装置を用いた測定結果を示す棒
グラフ。FIG. 4 is a bar graph showing measurement results using the outer diameter measuring device of FIG. 2;
10 スパイラル鋼管 12 外径測定装置 13 投光器 14 受光器 15 レーザー距離計 16 演算器 18、18A レーザー光 B 受光位置 D スパイラル鋼管の外径 M スパイラル鋼管の最下点と受光器の受光面との距離 DESCRIPTION OF SYMBOLS 10 Spiral steel pipe 12 Outer diameter measuring device 13 Emitter 14 Light receiver 15 Laser distance meter 16 Computing device 18, 18A Laser light B Light receiving position D Outside diameter of spiral steel pipe M Distance between the lowest point of spiral steel pipe and light receiving surface of light receiver
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01B 11/00-11/30
Claims (1)
投光する投光器と、上記被測定物に関し上記投光器と反
対位置に設置され上記投光器からの光を受光する受光器
と、上記被測定物及び上記受光器間の距離を計測する距
離計と、上記投光器から投光され上記被測定物の外周面
に接して上記受光器に受光された光の位置と上記距離計
にて測定された距離とから上記被測定物の外径を算出す
る演算器と、を有する外径測定装置であって、 前記投光器が、レーザ発振器からのレーザ光を回転ミラ
ーに照射し、この回転ミラーの回転により、レーザ光を
被測定物へ向けて反射し、且つ被測定物の中心軸に直交
する水平方向に走査させるものであり、 前記受光器が、多数の受光素子を一定ピッチで被測定物
の中心軸と直交する水平方向に配列した受光面を、前記
回転ミラーによるレーザ光の反射点と被測定物の中心軸
とを結ぶ直線に対し直交するように配置してなり、 回転ミラーの反射点と被測定物の中心軸を結ぶ直線と受
光器の受光面との交点をX−Y座槓の原点O(0,0)
とするとき、上記回転ミラーの反射点の位置(0,
Y 0 )、上記受光器による受光位置(X 0 ,0)、上記
距離計による測定距離Y 1 を得て、 Y=Y 0 −Y 1 X=(Y/Y 0 )X 0 の計算式により、被測定物の外径Dを算出することを特
徴とする外径測定装置。 A light projector for projecting light toward an object having a circular cross section; a light receiver installed at a position opposite to the light projector with respect to the object to receive light from the light projector; A distance meter that measures the distance between the object to be measured and the light receiver, and a position of light emitted from the light emitter and received by the light receiver in contact with the outer peripheral surface of the object to be measured and measured by the distance meter And a calculator for calculating the outer diameter of the object to be measured from the measured distance , wherein the projector emits a laser beam from a laser oscillator to a rotary mirror.
Laser light by the rotation of this rotating mirror.
Reflects toward the DUT and is orthogonal to the central axis of the DUT
The light receiver is configured to scan a large number of light receiving elements at a constant pitch.
Light-receiving surface arranged in a horizontal direction perpendicular to the central axis of the
Reflection point of laser beam by rotating mirror and central axis of DUT
And a straight line connecting the reflection point of the rotating mirror and the central axis of the DUT.
The point of intersection with the light receiving surface of the optical device is defined as the origin O (0,0) of the XY sitting Kong.
, The position of the reflection point of the rotating mirror (0, 0,
Y 0 ), the light receiving position (X 0 , 0) by the photodetector ,
Distance to obtain a measured distance Y 1 by meter, Y = Y 0 -Y 1 X = (Y / Y 0) X 0 Calculation of the outer diameter D of the object to be measured by the formula
Outer diameter measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4357383A JP2868382B2 (en) | 1992-12-24 | 1992-12-24 | Outer diameter measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4357383A JP2868382B2 (en) | 1992-12-24 | 1992-12-24 | Outer diameter measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06194128A JPH06194128A (en) | 1994-07-15 |
JP2868382B2 true JP2868382B2 (en) | 1999-03-10 |
Family
ID=18453851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4357383A Expired - Lifetime JP2868382B2 (en) | 1992-12-24 | 1992-12-24 | Outer diameter measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2868382B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10331000B3 (en) * | 2003-07-03 | 2004-10-14 | Mannesmannröhren-Werke Ag | Production of welded large pipes in the form of screw-threaded pipes made from hot rolled steel comprises decoiling the hot strip, joining the beginning of the strip with the beginning of a precursor strip and further processing |
DE102007017747B4 (en) * | 2007-04-12 | 2009-05-07 | V & M Deutschland Gmbh | Method and device for the optical measurement of external threads |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63122907A (en) * | 1986-11-13 | 1988-05-26 | Mitsubishi Heavy Ind Ltd | Outer diameter measuring device |
JPH03296605A (en) * | 1990-04-17 | 1991-12-27 | Mitsubishi Heavy Ind Ltd | Measuring apparatus of width of band-shaped object |
-
1992
- 1992-12-24 JP JP4357383A patent/JP2868382B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06194128A (en) | 1994-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3511450B2 (en) | Position calibration method for optical measuring device | |
JP5754833B2 (en) | Inner diameter measuring device | |
JPH02302603A (en) | Optical type probe and measurement therefor | |
JPS60185108A (en) | Method and device for measuring body in noncontacting manner | |
US3994599A (en) | Method and apparatus for measuring wall thickness and concentricity of tubular glass articles | |
JP2868382B2 (en) | Outer diameter measuring device | |
JP2771546B2 (en) | Hole inner surface measuring device | |
JP4762851B2 (en) | Cross-sectional shape detection method and apparatus | |
US5402239A (en) | Method of measuring orientation flat width of single crystal ingot | |
CN215865093U (en) | High-precision triangular imaging displacement sensor | |
US4595288A (en) | Method and apparatus for measuring deep mirrors | |
JPH0743119A (en) | Size measurement device for tubular body | |
JPH0271107A (en) | Apparatus for measuring profile and wall thickness of end part of steel pipe | |
JP3192461B2 (en) | Optical measuring device | |
JPH1062117A (en) | Laser type probe of 3-dimension measuring device | |
JP2754128B2 (en) | Cylindricity measuring device and measuring method | |
JP2784481B2 (en) | 2D position and direction measurement device for moving objects | |
JPH11257933A (en) | Method and apparatus for measuring curvature of pipe rod and so on which run | |
JPS6358134A (en) | Pipe inner surface shape measuring apparatus | |
JP2002122419A (en) | Flatness measuring device | |
JPS59154308A (en) | Automatic measuring method of object shape | |
JP2661001B2 (en) | Method and apparatus for measuring refractive index distribution | |
JPH07103736A (en) | Method for measuring winding shape of coil | |
JPS6197506A (en) | Section measuring apparatus for tunnel | |
JPH10111107A (en) | Method and device for measuring distance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19981208 |