JP2018135220A - Silicon carbide ceramic joined body - Google Patents

Silicon carbide ceramic joined body Download PDF

Info

Publication number
JP2018135220A
JP2018135220A JP2015111323A JP2015111323A JP2018135220A JP 2018135220 A JP2018135220 A JP 2018135220A JP 2015111323 A JP2015111323 A JP 2015111323A JP 2015111323 A JP2015111323 A JP 2015111323A JP 2018135220 A JP2018135220 A JP 2018135220A
Authority
JP
Japan
Prior art keywords
silicon carbide
bonding
carbide ceramic
joined body
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015111323A
Other languages
Japanese (ja)
Inventor
良幸 高森
Yoshiyuki Takamori
良幸 高森
旭東 張
Xudong Zhang
旭東 張
宮田 素之
Motoyuki Miyata
素之 宮田
川中 啓嗣
Keiji Kawanaka
啓嗣 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015111323A priority Critical patent/JP2018135220A/en
Priority to PCT/JP2016/059261 priority patent/WO2016194444A1/en
Publication of JP2018135220A publication Critical patent/JP2018135220A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Products (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a large and long size silicon carbide ceramic joined body that can be used at a high temperature of over 1000°C.SOLUTION: The silicon carbide ceramic joined body formed by joining a plurality of base materials including a silicon carbide ceramic base material, with the plurality of base materials each being a ceramic base material comprising silicon carbide, or being a ceramic base material comprising silicon carbide and a metallic base material, employs silicon as a joining material, with the thickness a of the joint part of the base material and the width b of the joining material satisfying the following formula: 0.1≤b/a≤0.5.SELECTED DRAWING: Figure 1

Description

本発明は、炭化珪素セラミックス材の接合体に関する。   The present invention relates to a bonded body of silicon carbide ceramic material.

短時間の処理で被接合物であるセラミックス本来の物性を損なうことなく、十分な接合強度を有し、半導体製造工程に何ら支障のきたすことのないセラミックス接合方法の一例として、特許文献1では、遊離Siを含有するセラミックス材料同士の接合部に、Si粉末またはSi薄膜を介在させ、この接合部にレーザー光を照射することにより接合部を局所加熱し、介在せたSi及びセラミックス材料中の接合部近辺に存在するSiを溶融・流動化させて接合部に充填するとともに、Siの相互移動により接合部を得るようにした技術が記載されている。   As an example of a ceramic bonding method that has sufficient bonding strength and does not interfere with the semiconductor manufacturing process without impairing the original physical properties of the ceramic to be bonded in a short time treatment, The Si powder or Si thin film is interposed in the joint between the ceramic materials containing free Si, and the joint is locally heated by irradiating the joint with laser light. A technique is described in which Si present in the vicinity of the part is melted and fluidized to fill the joint, and the joint is obtained by mutual movement of Si.

特開平7−187836号公報Japanese Patent Laid-Open No. 7-187836

炭化珪素セラミックスは、耐熱性、耐食性などに優れているとともに非常に高い強度を有する。このため、高温構造部材や耐摩耗部材へ適用されている。さらに近年では、半導体や原子力などの高信頼性が要求される部材への適用が検討されている。   Silicon carbide ceramics are excellent in heat resistance, corrosion resistance and the like and have very high strength. For this reason, it is applied to high temperature structural members and wear resistant members. Further, in recent years, application to members requiring high reliability such as semiconductors and nuclear power has been studied.

炭化珪素をはじめとしたセラミックス部材は、一般に粉末焼結法で作製されているが、大型部材、長尺部材、複雑形状部材などを粉末焼結法で作製することは、技術的、コスト的にハードルが高い。そのため、単純形状品を作製し、これを接合することで大型部材、長尺部材、複雑形状部材などへの適用を図ることが検討されている。   Ceramic members such as silicon carbide are generally manufactured by a powder sintering method. However, it is technically and costly to manufacture large-sized members, long members, and complex-shaped members by a powder sintering method. The hurdle is high. For this reason, it has been studied to produce a simple-shaped product and to apply it to a large member, a long member, a complicated-shaped member, etc. by joining them.

炭化珪素セラミックス材の接合方法としては、ホットプレスを用いた固相接合法や、銅、チタンなどの活性金属を接合材として用いたろう付け接合などが報告されている。   As a bonding method of the silicon carbide ceramic material, a solid phase bonding method using a hot press, brazing bonding using an active metal such as copper or titanium as a bonding material, and the like have been reported.

ホットプレスを用いた固相接合法の場合、高温下で加圧しながら接合するため、接合可能なセラミックス材の形状や寸法が制限される。これに対して、活性金属を接合材として用いたろう付け接合の場合、濡れ性に優れた接合材を用いることで、800℃程度の比較的低温で接合することが可能であり、セラミックス材の接合方法として多用されている。しかし、この場合、部材の耐熱温度は融点の低い活性金属接合材の耐熱温度により決定されるため、炭化珪素セラミックスの持つ高耐熱性(2000℃以上)が発揮されない、との問題が生じる。   In the case of a solid phase bonding method using a hot press, bonding is performed while pressing at a high temperature, so that the shape and size of the ceramic material that can be bonded are limited. On the other hand, in the case of brazing joining using an active metal as a joining material, it is possible to join at a relatively low temperature of about 800 ° C. by using a joining material having excellent wettability. Widely used as a method. However, in this case, since the heat resistance temperature of the member is determined by the heat resistance temperature of the active metal bonding material having a low melting point, there arises a problem that the high heat resistance (2000 ° C. or higher) of silicon carbide ceramics is not exhibited.

また、接合により大型部材や長尺部材を作製する際、加熱炉を用いて接合する場合には、部材を入れるための大型の加熱炉が必要となることから、加熱炉による接合については大型化には限界がある。   In addition, when a large member or a long member is produced by joining, when joining using a heating furnace, a large heating furnace is required to insert the member. Has its limits.

以上のような理由から、1000℃以上の高温で適用することを目的とした大型、長尺部材を接合方法で作製する場合、高融点の接合材の適用、及び接合する部位のみを局所的に加熱して接合することが望まれる。   For the above reasons, when a large, long member intended to be applied at a high temperature of 1000 ° C. or higher is produced by a joining method, only the application of a high melting point joining material and the part to be joined are locally applied. It is desired to join by heating.

このような技術の一例として、上述した特許文献1に記載のような技術がある。しかし、この方法では、セラミックス基材が遊離Siを含んでいる必要があり、適用可能なセラミックスが限定される。また、一般的に遊離Siを含むセラミックスは遊離Siを含まないセラミックスと比較して、耐熱温度が低いことが知られており、1000℃を超える高温での使用を目的とした接合体に対しては不利である。   As an example of such a technique, there is a technique as described in Patent Document 1 described above. However, in this method, the ceramic base material needs to contain free Si, and applicable ceramics are limited. In general, ceramics containing free Si are known to have a lower heat-resistant temperature compared to ceramics containing no free Si, and for bonded bodies intended for use at high temperatures exceeding 1000 ° C. Is disadvantageous.

さらに、特許文献1に記載の方法では、レーザーによる加熱方法が大型・長尺の部材を考慮した加熱方法になっていない等、改善の余地があることが本発明者らの検討により明らかとなった。   Furthermore, in the method described in Patent Document 1, it is clarified by examinations by the present inventors that there is room for improvement, for example, the heating method using a laser is not a heating method considering large and long members. It was.

本発明は、1000℃を超える高温での使用が可能な、大型・長尺の炭化珪素セラミックス接合体を提供する。   The present invention provides a large and long silicon carbide ceramic joined body that can be used at a high temperature exceeding 1000 ° C.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、炭化珪素セラミックス基材を含む複数の基材を接合して形成された炭化珪素セラミックス接合体であって、前記複数の基材は、炭化珪素を含むセラミックス基材同士、または炭化珪素を含むセラミックス基材と金属基材であり、前記複数の基材を接合する接合材は、珪素であり、前記複数の基材の接合部の厚さをa、前記接合材の幅をbとした際に、0.1≦b/a≦0.5の関係が成立することを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present invention includes a plurality of means for solving the above-described problems. For example, a silicon carbide ceramic joined body formed by joining a plurality of base materials including a silicon carbide ceramic base material. The plurality of base materials are ceramic base materials containing silicon carbide, or a ceramic base material containing silicon carbide and a metal base material, and a bonding material for joining the plurality of base materials is silicon, The relationship of 0.1 ≦ b / a ≦ 0.5 is established when the thickness of the bonding portion of the base material is a and the width of the bonding material is b.

本発明によれば、1000℃を超える高温で適用することを目的とした大型、長尺部材を局所的に加熱して接合した炭化珪素セラミックスの接合体が得られる。   According to the present invention, a bonded body of silicon carbide ceramics obtained by locally heating and joining a large, long member intended to be applied at a high temperature exceeding 1000 ° C. is obtained.

本発明の実施形態における基材の厚さと接合材の幅の関係を示した模式図である。It is the schematic diagram which showed the relationship between the thickness of the base material in the embodiment of this invention, and the width | variety of a joining material. 本発明の実施形態における基材の厚さと接合材の幅の関係の他の一例の模式図である。It is a schematic diagram of another example of the relationship between the thickness of the base material and the width of the bonding material in the embodiment of the present invention. 本発明の実施形態における接合構造の模式図である。It is a schematic diagram of the junction structure in the embodiment of the present invention. 本発明の実施形態におけるレーザーの照射方法の模式図である。It is a schematic diagram of the laser irradiation method in the embodiment of the present invention. 本発明の実施例1−5および比較例1−5における曲げ強度試験の結果を示すグラフである。It is a graph which shows the result of the bending strength test in Example 1-5 and Comparative Example 1-5 of this invention. 本発明の実施例2における炭化珪素セラミックス接合体の外観の様子を示す図である。It is a figure which shows the mode of the external appearance of the silicon carbide ceramic joined body in Example 2 of this invention.

本発明の炭化珪素セラミックス接合体の実施形態を、図1乃至図6を用いて説明する。   An embodiment of the silicon carbide ceramic joined body of the present invention will be described with reference to FIGS. 1 to 6.

本発明者らは、分解温度が2700℃以上と耐熱性が非常に高く、高耐食性、高剛性などの特徴を有する炭化珪素セラミックスについて、レーザーを用いた局所加熱による接合技術を使い、1000℃を超える高温環境中での使用が可能な大型、長尺部材の開発について検討した。その結果、以下の発明に至った。   The inventors have a very high heat resistance with a decomposition temperature of 2700 ° C. or higher, and silicon carbide ceramics having characteristics such as high corrosion resistance and high rigidity, using a bonding technique by local heating using a laser, and reducing the temperature to 1000 ° C. We investigated the development of large and long members that can be used in high temperature environments. As a result, the following invention has been achieved.

具体的には、本発明の炭化珪素セラミックス接合体は、接合する炭化珪素セラミックスの基材と基材の間に接合材を介在させて接合体を得るものである。本発明の炭化珪素セラミックス接合体では、接合材に珪素を用いることを特徴とするものである。   Specifically, the silicon carbide ceramic joined body of the present invention is obtained by interposing a joining material between base materials of silicon carbide ceramics to be joined. In the silicon carbide ceramic joined body of the present invention, silicon is used as a joining material.

用いる接合材としては、炭化珪素との反応性の観点から、炭化珪素との間に機械的、熱的に脆弱な反応相を形成しない接合材を用いることが好ましい。また、1000℃以上の高温での使用を想定すると、接合材の融点としては1200℃以上であることが好ましい。さらに、本発明の炭化珪素セラミックス接合体は、好適には大型・長尺部材の接合体にかかわるものであり、炭化珪素セラミックス接合体を得るにあたり、局所的に1200℃以上に加熱することが望まれる。そのため、接合材には基材との熱膨張係数が近いことが求められる。   As a bonding material to be used, it is preferable to use a bonding material that does not form a mechanically and thermally fragile reaction phase with silicon carbide from the viewpoint of reactivity with silicon carbide. Further, assuming use at a high temperature of 1000 ° C. or higher, the melting point of the bonding material is preferably 1200 ° C. or higher. Furthermore, the silicon carbide ceramic joined body of the present invention is preferably related to a joined body of a large and long member, and it is desirable that the silicon carbide ceramic joined body is locally heated to 1200 ° C. or higher in order to obtain the silicon carbide ceramic joined body. It is. Therefore, the bonding material is required to have a thermal expansion coefficient close to that of the base material.

以上のような観点から、本発明の炭化珪素セラミックス接合体では、接合材に珪素を用いることを特徴とする。珪素は、基材の炭化珪素セラミックスと反応層を作らず、融点も1414℃と高い。このため、珪素を接合材に用いた炭化珪素セラミックス接合体については、1200℃以上の高温でも使用することが可能となる。また、熱膨張係数についても、炭化珪素セラミックスが3.1×10−6/Kであるのに対して、珪素の熱膨張係数は3.3×10−6/Kと比較的近い値であり、接合時の温度変化により発生する残留応力も小さくなる、との利点が見込まれる。 From the above viewpoint, the silicon carbide ceramic joined body of the present invention is characterized in that silicon is used as the joining material. Silicon does not form a reaction layer with the silicon carbide ceramics of the base material, and its melting point is as high as 1414 ° C. For this reason, the silicon carbide ceramic joined body using silicon as the joining material can be used even at a high temperature of 1200 ° C. or higher. Also, the thermal expansion coefficient of silicon carbide ceramics is 3.1 × 10 −6 / K, whereas the thermal expansion coefficient of silicon is relatively close to 3.3 × 10 −6 / K. The advantage that the residual stress generated by the temperature change at the time of joining is also reduced is expected.

図1は本発明の炭化珪素セラミックスの基材の厚さと接合材の幅の範囲について示した模式図である。本発明の炭化珪素セラミックス接合体は、接合材120に珪素を用いることに加えて、基材110の接合部の厚さをa、接合材120の幅をbとした際に、0.1≦b/a≦0.5の関係が成立することを特徴とするものである。   FIG. 1 is a schematic diagram showing the range of the thickness of the base material and the width of the bonding material of the silicon carbide ceramic of the present invention. In the silicon carbide ceramic joined body of the present invention, in addition to using silicon for the joining material 120, when the thickness of the joining portion of the substrate 110 is a and the width of the joining material 120 is b, 0.1 ≦ The relationship of b / a ≦ 0.5 is established.

加熱炉を用いた接合体の製造については、加熱炉の制約上、部材の大型化・長尺化には限界があることは上述のとおりである。このため、大型・長尺の接合体を得るには、局所加熱による接合が好適であることも上述した通りである。ここで、接合材120として珪素を挟んだ炭化珪素セラミックス基材110同士の接合部を、レーザーを用いて局所加熱することが好ましい。ここで、接合部を例えばレーザーを用いて局所加熱する場合に、基材110の接合部の厚さをa、接合材120の幅をbとした際に、b/aが0.1より小さい条件については、接合材120である珪素の一部あるいは全部が蒸発してしまい、十分な接合体を得ることができないことが明らかとなった。これは以下のような理由による。   As described above, the manufacture of a joined body using a heating furnace has limitations in increasing the size and length of the member due to restrictions on the heating furnace. For this reason, as mentioned above, joining by local heating is suitable for obtaining a large and long joined body. Here, it is preferable to locally heat a bonding portion between silicon carbide ceramic base materials 110 sandwiching silicon as bonding material 120 using a laser. Here, in the case where the bonding portion is locally heated using, for example, a laser, when the thickness of the bonding portion of the base material 110 is a and the width of the bonding material 120 is b, b / a is smaller than 0.1. Regarding the conditions, it became clear that a part or all of silicon as the bonding material 120 evaporates and a sufficient bonded body cannot be obtained. This is due to the following reasons.

レーザー光を炭化珪素セラミックス接合体の接合部に照射した場合に、(1)炭化珪素セラミックスの方が、珪素と比較して比熱が大幅に小さい(炭化珪素セラミックス:0.2J/K・g、珪素:0.73J/K・g)、(2)炭化珪素セラミックスの方がレーザー光の吸収率が高い、等の理由により、接合材である珪素よりも接合材周辺の炭化珪素セラミックス基材の温度が大幅に高くなってしまう。そのため、b/aが0.1より小さい条件では、接合材である珪素の全量が融点まで加熱される前に、周辺部の炭化珪素セラミックスの温度が珪素の融点よりも大幅に高くなってしまい、珪素の一部あるいは全部が消失してしまい、接合不良が生じてしまったものと推定される。   When laser light is irradiated to the joint portion of the silicon carbide ceramic joined body, (1) the specific heat of silicon carbide ceramics is significantly smaller than that of silicon (silicon carbide ceramics: 0.2 J / K · g, Silicon: 0.73 J / K · g), (2) silicon carbide ceramics have a higher absorption rate of laser light, etc., so that the silicon carbide ceramic base material around the bonding material is larger than the bonding material silicon. The temperature will be significantly higher. Therefore, under the condition that b / a is smaller than 0.1, the temperature of the silicon carbide ceramics in the peripheral portion is significantly higher than the melting point of silicon before the entire amount of silicon as the bonding material is heated to the melting point. It is presumed that a part or all of silicon has disappeared and bonding failure has occurred.

一方で、接合材の蒸発が生じないようレーザーの出力を調整した場合であっても、局所加熱に起因する非加熱部分への熱伝導や放熱により、レーザー照射面の裏側などに接合材の溶け残りが確認され、接合材を完全に溶解できる条件は見いだせなかった。   On the other hand, even when the laser output is adjusted so that the bonding material does not evaporate, the bonding material melts on the back side of the laser irradiation surface due to heat conduction and heat dissipation to the non-heated part due to local heating. The remainder was confirmed, and the conditions under which the bonding material could be completely dissolved could not be found.

次に、基材の接合部の厚さをa、接合材の幅をbとした際に、b/aが0.5を超える場合については、炭化珪素セラミックス接合体の強度が低下しており、接合体として用いるには不安が残る結果となった。これは、現時点では明確な理由を示すまでには至っていないが、一般的に接合材を用いた接合については、接合材の幅が狭い方が強度が強いことや、珪素のヤング率が炭化珪素セラミックスと比較して小さい点(炭化珪素セラミックス:430Gpa、珪素:160GPa)などが影響しているものと推定される。   Next, when the thickness of the bonded portion of the base material is a and the width of the bonding material is b, the strength of the silicon carbide ceramic bonded body is reduced when b / a exceeds 0.5. As a result, it was uneasy to use as a conjugate. This has not yet been shown for a clear reason, but generally for bonding using a bonding material, the narrower the bonding material, the stronger the strength, and the Young's modulus of silicon is silicon carbide. It is presumed that small points (silicon carbide ceramics: 430 Gpa, silicon: 160 GPa) and the like have an influence as compared with ceramics.

なお、本発明における基材110の接合部の厚さaとは、基材110の接合材120との接触する面のうち短手方向のことを意味する。また、接合材120の幅bとは、基材110の接合面同士の間隔を意味する。   In addition, the thickness a of the joint portion of the base material 110 in the present invention means the short direction of the surface of the base material 110 that contacts the joint material 120. In addition, the width b of the bonding material 120 means the interval between the bonding surfaces of the base material 110.

また、接合材120の厚さは、基材110の接合部の厚さaと同程度の厚さとすることが望ましいが、これに限定されない。   In addition, the thickness of the bonding material 120 is desirably the same as the thickness a of the bonding portion of the base 110, but is not limited thereto.

また、本発明の基材110として用いられる炭化珪素セラミックス基材としては、炭化珪素を主成分としたセラミックス、および炭化珪素を主成分とした母相から構成される複合セラミックス、炭化珪素を主成分とする繊維を複合化した複合セラミックスなどが挙げられる。また、基材110として用いられる金属基材としては、ジルコニウム合金やジルコニウム合金と炭化珪素の複合材料などが挙げられるが、これらに限定されるものではない。   In addition, the silicon carbide ceramic base material used as the base material 110 of the present invention includes ceramics mainly composed of silicon carbide, composite ceramics composed of a mother phase mainly composed of silicon carbide, and silicon carbide as the main component. And composite ceramics in which the fibers are combined. Further, examples of the metal substrate used as the substrate 110 include, but are not limited to, a zirconium alloy or a composite material of a zirconium alloy and silicon carbide.

炭化珪素を主成分とするセラミックスは、一般に反応焼結法、常圧焼結法、ホットプレス法などの方法で作製される。このうち、ホットプレス法は焼結時に加圧する必要があるため、複雑形状の部材を作製するのにはあまり適していない。また、反応焼結法の場合、1600℃程度と比較的低温で焼結することができ、焼結時の寸法変化を抑制することができる。しかし、焼結体中に遊離Siや気孔を含有しており、他の2つの方法に比べて、機械的特性に劣る。また、常圧焼結体の場合、焼結助剤の種類にもよるが、焼結温度は2000℃程度と高温であり、更に焼結時に寸法変化するため、成形体作成時に焼結時の寸法変化を考慮する必要がある。炭化珪素を主成分とするセラミックスの作製方法や焼結助剤に関しては、適用する部材の形状や適用する環境条件に応じて、適宜選定することができる。   Ceramics containing silicon carbide as a main component are generally produced by a reaction sintering method, a normal pressure sintering method, a hot press method, or the like. Among these, the hot press method needs to be pressurized at the time of sintering, and thus is not very suitable for producing a member having a complicated shape. In the case of the reactive sintering method, sintering can be performed at a relatively low temperature of about 1600 ° C., and dimensional changes during sintering can be suppressed. However, the sintered body contains free Si and pores and is inferior in mechanical properties as compared with the other two methods. In the case of a normal pressure sintered body, although depending on the type of sintering aid, the sintering temperature is as high as about 2000 ° C. and further changes in dimensions during sintering. It is necessary to consider dimensional changes. The method for producing ceramics mainly composed of silicon carbide and the sintering aid can be appropriately selected depending on the shape of the member to be applied and the environmental conditions to be applied.

炭化珪素を主成分とする繊維としては、カーボン芯線に化学気相成長法(CVD)で炭化珪素を蒸着させて製造する繊維や、ポリカルボシラン等の有機珪素ポリマーを前駆体として、紡糸、無機化して得られる繊維(ニカロン(登録商標))、ポリカルボシラン等の有機珪素ポリマーにチタンアルコキシド、またはジルコニウムアルコキシドを加えて紡糸、無機化して得られるチタンやジルコニウムを含んだ繊維(チラノ繊維(登録商標))、ポリカルボシラン等の有機珪素ポリマーにアルミニウムアルコキシドを加えて紡糸、無機化して得られる繊維(SA繊維(宇部興産株式会社製))などが挙げられる。これらのうち、チタンを含んだチラノ繊維の使用限界温度は1300℃、ジルコニウムを含んだチラノ繊維の使用限界温度は1500℃と高い耐熱性を示しており、1000℃以上での高温環境下での適用を目的とした本発明の用途に対して好ましい。なお、ニカロンは製造時の不融化段階で酸素を取り込み、1300℃以上で強度低下を起こすことが報告されている。そのため、電子線照射法等により不融化を行い、酸素量を低減して耐熱性を向上させた炭化珪素繊維(ハイニカロン(登録商標))を用いることがより好ましい。なお、Arガス中で熱処理を行ったのちの室温強度を比較すると、ニカロン、ハイニカロン、チラノ繊維などは、1000℃以上での熱処理を行うことにより強度低下を示すが、SA繊維は2000℃でも強度低下を示さないため、より好ましい。   As a fiber mainly composed of silicon carbide, a fiber produced by depositing silicon carbide on a carbon core wire by chemical vapor deposition (CVD), or an organic silicon polymer such as polycarbosilane as a precursor, spinning, inorganic Fiber (Nicalon (registered trademark)) obtained by crystallization, and fiber containing titanium or zirconium obtained by adding titanium alkoxide or zirconium alkoxide to an organosilicon polymer such as polycarbosilane and making it mineral (Tyranno fiber (registered) Trademark)), fibers obtained by adding aluminum alkoxide to an organosilicon polymer such as polycarbosilane, and spinning and mineralizing (SA fibers (manufactured by Ube Industries, Ltd.)). Of these, the use limit temperature of Tyranno fiber containing titanium is 1300 ° C, and the use limit temperature of Tyranno fiber containing zirconium is 1500 ° C, indicating high heat resistance. Preferred for use of the present invention for application purposes. Nicalon has been reported to take up oxygen in the infusibilization stage during production and cause a decrease in strength at 1300 ° C. or higher. Therefore, it is more preferable to use a silicon carbide fiber (Hinicalon (registered trademark)) that has been infusibilized by an electron beam irradiation method or the like, and has improved heat resistance by reducing the amount of oxygen. When comparing room temperature strength after heat treatment in Ar gas, Nicalon, hynicalon, Tyranno fiber, etc. show a decrease in strength by heat treatment at 1000 ° C. or higher, while SA fiber has strength even at 2000 ° C. It is more preferable because it does not show a decrease.

炭化珪素繊維を複合化した炭化珪素複合材の作製方法としては、炭化珪素繊維プリフォームの空隙にCVDガスを流し、繊維表面に炭化珪素マトリックスを析出させる化学気相浸漬法(CVI法)や、炭化珪素繊維織物を有機珪素ポリマーと炭化珪素粉末を混合したスラリーに含浸・焼成を繰り返して緻密化するポリマー含浸焼成(PIP法)法、炭化珪素繊維に炭化珪素ナノ粒子や有機珪素化合物をスラリーとして塗布し、加圧焼成するナノインフィルトレーション遷移共晶相プロセス法(NITE法)などが報告されている。このうち、CVI法やNITE法などでは円管形状や、棒形状の大型部材、長尺部材などを作製することができるため好ましい。   As a method for producing a silicon carbide composite material in which silicon carbide fibers are combined, a chemical vapor immersion method (CVI method) in which a CVD gas is allowed to flow in the voids of a silicon carbide fiber preform to deposit a silicon carbide matrix on the fiber surface, A polymer impregnation firing (PIP method) method in which silicon carbide fiber fabric is densified and sintered repeatedly in a mixture of organosilicon polymer and silicon carbide powder, and silicon carbide nanoparticles and organosilicon compounds are slurried in silicon carbide fibers A nano-infiltration transition eutectic phase process method (NITE method) in which coating and firing are performed has been reported. Among these, the CVI method, the NITE method, and the like are preferable because a circular tube shape, a rod-shaped large member, a long member, and the like can be manufactured.

また、基材の形状としては、板材、角材、円盤、円筒管、丸棒などが挙げられるが、これらに限るものではない。また、接合構造としては、重ね継ぎ手、突合せ継ぎ手、すみ肉継ぎ手などが挙げられるが、これらに限られるものではない。これら基材の形状や接合構造は適用する部材の用途、形状に応じて適宜選定することができる。   Examples of the shape of the substrate include, but are not limited to, a plate material, a square material, a disk, a cylindrical tube, and a round bar. Examples of the joining structure include a lap joint, a butt joint, and a fillet joint, but are not limited thereto. The shape and joining structure of these base materials can be appropriately selected according to the application and shape of the member to be applied.

更には、接合する基材の方向は、図1に示すような方向に限られず、例えば図2に示すような向きであってもよいし、更には別の方向であってもよい。なお、図2は本発明の炭化珪素セラミックスの基材の厚さと接合材の幅の範囲の他の一例について示した模式図である。   Furthermore, the direction of the base materials to be joined is not limited to the direction as shown in FIG. 1, but may be the direction as shown in FIG. 2, for example, or may be in another direction. FIG. 2 is a schematic view showing another example of the range of the thickness of the base material and the width of the bonding material of the silicon carbide ceramic of the present invention.

接合に好適に使用される局所加熱に用いるレーザーとしては、COレーザー、YAGレーザー、エキシマレーザー、ファイバーレーザー、デイスクレーザー、半導体レーザー、ピコ秒レーザー、ナノ秒レーザー、フェムト秒レーザーなどが挙げられ、波長としては、遠赤外から可視、紫外領域の波長のレーザー光を用いることができる。これらは適用する部材や接合材の材質、形状などに応じて適宜選定することができる。 Examples of the laser used for local heating suitably used for bonding include CO 2 laser, YAG laser, excimer laser, fiber laser, disk laser, semiconductor laser, picosecond laser, nanosecond laser, femtosecond laser, and the like. As the wavelength, laser light having wavelengths in the far infrared, visible, and ultraviolet regions can be used. These can be appropriately selected according to the material to be applied and the material and shape of the bonding material.

レーザービームのビーム形状としては、円形ビーム、楕円ビーム、線状ビームなどを用いることができる。このビーム形状に関しては、接合部の形状、寸法などに応じて最適な形状を選定することができる。   As the beam shape of the laser beam, a circular beam, an elliptical beam, a linear beam, or the like can be used. As for the beam shape, an optimum shape can be selected according to the shape and size of the joint.

以下、具体的な実施例に関して説明する。   Hereinafter, specific examples will be described.

<実施例1>
図3に接合構造の模式図を示す。接合構造として突合せ継手構造に関して検討を行った。基材110には、日本ファインセラミックス社製の炭化珪素セラミックス(型式SCP01)を用いた。試験片のサイズは10mm×20mm×厚さa=2mmとし、試験片2枚を図3の様につき合わせた状態で接合を行った。
<Example 1>
FIG. 3 shows a schematic diagram of the joining structure. A butt joint structure was studied as a joint structure. As the substrate 110, silicon carbide ceramics (model SCP01) manufactured by Nippon Fine Ceramics Co., Ltd. was used. The size of the test piece was 10 mm × 20 mm × thickness a = 2 mm, and the two test pieces were joined together as shown in FIG.

接合材120には、大気プラズマ溶射法を用いて、2枚の試験片の接合部の1枚に、0.2mmの幅で珪素を予め溶射しておいた(接合材の幅b=0.2mm、b/a=0.1)ものを用いた。   The bonding material 120 was pre-sprayed with silicon having a width of 0.2 mm on one of the bonded portions of the two test pieces using an atmospheric plasma spraying method (the width of the bonding material b = 0.0). 2 mm, b / a = 0.1) was used.

図3で示した突合せ継手材に対して、レーザーによる接合を行った。用いたレーザー発振器はIPG Photonics製のファイバーレーザー発振器(型式YLR−2000、最大出力2kW、波長1070nm)を用いた。真空チャンバー内にサンプルを設置し、チャンバー内の雰囲気を10Pa以下まで減圧したのち、レーザーを照射した。   The butt joint material shown in FIG. 3 was joined by laser. The laser oscillator used was a fiber laser oscillator (model YLR-2000, maximum output 2 kW, wavelength 1070 nm) manufactured by IPG Photonics. A sample was placed in a vacuum chamber, the atmosphere in the chamber was reduced to 10 Pa or less, and then irradiated with a laser.

図4にレーザー照射の模式図を示す。図1に示した突合せ接合材の接合部310にレーザービーム320を照射した。レーザービーム320の形状は線形(10mm×0.5mm)とした。   FIG. 4 shows a schematic diagram of laser irradiation. The laser beam 320 was irradiated to the joint part 310 of the butt joint material shown in FIG. The shape of the laser beam 320 was linear (10 mm × 0.5 mm).

<実施例2>
試験片の接合部に予め付与した接合材である珪素の幅を、2枚とも0.2mmとした(接合材の幅b=0.4mm、b/a=0.2)こと以外は、実施例1と同様の条件で接合材を作製した。
<Example 2>
Except that the width of silicon, which is a bonding material previously applied to the bonding portion of the test piece, is 0.2 mm (the bonding material width b = 0.4 mm, b / a = 0.2). A bonding material was produced under the same conditions as in Example 1.

<実施例3>
試験片の接合部に予め付与した接合材である珪素の幅を、それぞれ0.2mmと0.4mmとした(接合材の幅b=0.6mm、b/a=0.3)こと以外は、実施例1と同様の条件で接合材を作製した。
<Example 3>
The width of silicon, which is a bonding material previously applied to the bonding portion of the test piece, was set to 0.2 mm and 0.4 mm, respectively (bonding material width b = 0.6 mm, b / a = 0.3). A joining material was produced under the same conditions as in Example 1.

<実施例4>
試験片の接合部に予め付与した接合材である珪素の幅を、2枚とも0.4mmとした(接合材の幅b=0.8mm、b/a=0.4)こと以外は、実施例1と同様の条件で接合材を作製した。
<Example 4>
Except that the width of silicon, which is a bonding material previously applied to the bonding portion of the test piece, is set to 0.4 mm (bonding material width b = 0.8 mm, b / a = 0.4). A bonding material was produced under the same conditions as in Example 1.

<実施例5>
試験片の接合部に予め付与した接合材である珪素の幅を、2枚とも0.5mmとした(接合材の幅b=1.0mm、b/a=0.5)以外は、実施例1と同様の条件で接合材を作製した。
<Example 5>
Except that the width of silicon, which is a bonding material previously applied to the bonding portion of the test piece, is 0.5 mm (both bonding material width b = 1.0 mm, b / a = 0.5). 1 was prepared under the same conditions as in 1.

<実施例6>
試験片のサイズを10mm×20mm×厚さa=1mmとし、試験片の接合部に予め付与した接合材である珪素の幅を、それぞれ0mm(無付与)と0.2mmとした(接合材の幅b=0.2mm、b/a=0.2)以外は、実施例1と同様の条件で接合材を作製した。
<Example 6>
The size of the test piece is 10 mm × 20 mm × thickness a = 1 mm, and the width of silicon, which is a bonding material previously applied to the bonding portion of the test piece, is set to 0 mm (no application) and 0.2 mm, respectively. Except for the width b = 0.2 mm and b / a = 0.2), a bonding material was produced under the same conditions as in Example 1.

<実施例7>
試験片のサイズを10mm×20mm×厚さ1mmとし、試験片の接合部に予め付与した接合材である珪素の幅を、2枚とも0.2mmとした(接合材の幅b=0.4mm、b/a=0.4)以外は、実施例1と同様の条件で接合材を作製した。
<Example 7>
The size of the test piece is 10 mm × 20 mm × thickness 1 mm, and the width of silicon, which is a bonding material previously applied to the bonding portion of the test piece, is 0.2 mm (the bonding material width b = 0.4 mm). , B / a = 0.4) A bonding material was produced under the same conditions as in Example 1.

<比較例1>
試験片の接合部に予め付与した接合材である珪素の幅を、それぞれ0mm(無付与)と0.05mmとした(接合材の幅b=0.05mm、b/a=0.025)以外は、実施例1と同様の条件で接合材を作製した。
<Comparative Example 1>
The width of silicon, which is a bonding material previously applied to the joint portion of the test piece, was set to 0 mm (no application) and 0.05 mm (the bonding material width b = 0.05 mm, b / a = 0.025), respectively. Produced a bonding material under the same conditions as in Example 1.

<比較例2>
試験片の接合部に予め付与した接合材である珪素の幅を、2枚とも0.05mmとした(接合材の幅b=0.1mm、b/a=0.05)以外は、実施例1と同様の条件で接合材を作製した。
<Comparative example 2>
Except that the width of silicon, which is a bonding material previously applied to the bonding portion of the test piece, was 0.05 mm (bonding material width b = 0.1 mm, b / a = 0.05). 1 was prepared under the same conditions as in 1.

<比較例3>
試験片の接合部に予め付与した接合材である珪素の幅を、2枚とも0.6mmとした(接合材の幅b=1.2mm、b/a=0.6)以外は、実施例1と同様の条件で接合材を作製した。
<Comparative Example 3>
Except that the width of silicon, which is a bonding material previously applied to the bonding portion of the test piece, was 0.6 mm (both bonding material width b = 1.2 mm, b / a = 0.6). 1 was prepared under the same conditions as in 1.

<比較例4>
試験片の接合部に予め付与した接合材である珪素の幅を、それぞれ1.0mmと0.5mmとした(接合材の幅b=1.5mm、b/a=0.75)以外は、実施例1と同様の条件で接合材を作製した。
<Comparative Example 4>
Except for the width of silicon, which is a bonding material previously applied to the bonding portion of the test piece, was 1.0 mm and 0.5 mm, respectively (bonding material width b = 1.5 mm, b / a = 0.75), A bonding material was produced under the same conditions as in Example 1.

<比較例5>
試験片の接合部に予め付与した接合材である珪素の幅を、2枚とも1.0mmとした(接合材の幅b=2.0mm、b/a=1.0)以外は、実施例1と同様の条件で接合材を作製した。
<Comparative Example 5>
Except that the width of silicon, which is a bonding material previously applied to the bonding portion of the test piece, was 1.0 mm (bonding material width b = 2.0 mm, b / a = 1.0). 1 was prepared under the same conditions as in 1.

表1に、上記各実施例、比較例における接合材の幅をパラメータとした際の、接合試験結果の状況と、試験片サイズ10mm×20mm×厚さ2mmのサンプルについて実施した、接合体の4点曲げ強度試験結果を示す。また、図5に4点曲げの強度試験結果を示す。なお、4点曲げの強度については、最も高い強度が得られた接合材幅:0.4mmの実施例2で得られた接合体の強度を1として規格化した値とした。   Table 1 shows the status of the joining test results when the width of the joining material in each of the above examples and comparative examples was used as a parameter, and 4 of the joined bodies, which were carried out on a sample having a specimen size of 10 mm × 20 mm × thickness 2 mm. A point bending strength test result is shown. Further, FIG. 5 shows the strength test results of the four-point bending. In addition, about the strength of 4 point | piece bending, it was set as the value normalized by setting the intensity | strength of the joined body obtained in Example 2 of the joining material width | variety: 0.4 mm in which the highest intensity | strength was obtained to 1 as 1.

Figure 2018135220
Figure 2018135220

まず、接合性への接合材幅の影響については、基材の接合部の厚さをa、接合材の幅をbとした際に、b/aが0.1より小さい条件(比較例1,2)については、接合材の消失により接合しなかったり、かろうじて接合していたものの接合材の減少により、簡単に接合部が割れてしまったり、と、健全な接合体を得ることはできなかった。   First, regarding the influence of the bonding material width on the bonding property, when the thickness of the bonding portion of the base material is a and the width of the bonding material is b, b / a is smaller than 0.1 (Comparative Example 1). For 2), it cannot be joined due to the loss of the joining material, or it is barely joined, but the joining part is easily cracked due to the decrease in joining material, and a sound joined body cannot be obtained. It was.

これに対し、基材の接合部の厚さをa、接合材の幅をbとした際に、b/aが0.1以上の条件(実施例1−7、比較例3−5)については、いずれも外観上問題がない、接合状態が良好な接合体を得ることができた。接合体の一例として、接合材の幅が0.4mmの場合である実施例2の接合体の写真を図6に示す。   On the other hand, when the thickness of the bonding portion of the base material is a and the width of the bonding material is b, b / a is 0.1 or more (Example 1-7, Comparative Example 3-5). In either case, there was no problem in appearance, and it was possible to obtain a joined body having a good joined state. As an example of the joined body, a photograph of the joined body of Example 2 in which the width of the joining material is 0.4 mm is shown in FIG.

次に、4点曲げの試験結果について説明する。表1および図5に示したように、今回接合に成功した条件のうち、最も曲げ強度の高かった条件は接合材の幅が0.4mmの実施例2の接合体であった。また、基材の接合部の厚さをa、接合材の幅をbとした際に、0.1≦b/a≦0.5となる本発明の範囲内の条件(実施例1−7)については、接合材幅0.4mmの結果に対して90%以上の高い強度を示した。   Next, the test result of four-point bending will be described. As shown in Table 1 and FIG. 5, the condition with the highest bending strength among the conditions that were successfully joined this time was the joined body of Example 2 in which the width of the joining material was 0.4 mm. In addition, when the thickness of the bonding portion of the base material is a and the width of the bonding material is b, the condition within the range of the present invention is 0.1 ≦ b / a ≦ 0.5 (Example 1-7 ) Showed a high strength of 90% or more with respect to the result of the bonding material width of 0.4 mm.

一方、b/aが0.5を超える条件(比較例3−5)については、接合材幅が0.4mmに対して曲げ強度が80%以下と、強度が低下する結果となった。   On the other hand, regarding the condition where b / a exceeds 0.5 (Comparative Example 3-5), the bending strength was 80% or less with respect to the bonding material width of 0.4 mm, which resulted in a decrease in strength.

以上述べてきたように、炭化珪素セラミックス基材を含む複数の基材を接合して形成された炭化珪素セラミックス接合体において、複数の基材が炭化珪素を含むセラミックス基材同士、または炭化珪素を含むセラミックス基材と金属基材であり、接合材に珪素を用いるとともに、基材の接合部の厚さをa、接合材の幅をbとした際に、0.1≦b/a≦0.5の関係が成立することで、1000℃を超える高温での使用が可能な、大型・長尺の炭化珪素セラミックス接合体を提供することが可能となる。   As described above, in a silicon carbide ceramic joined body formed by joining a plurality of base materials including a silicon carbide ceramic base material, the plurality of base materials include ceramic base materials containing silicon carbide or silicon carbide. A ceramic base material and a metal base material, and silicon is used for the bonding material, and when the thickness of the bonding portion of the base material is a and the width of the bonding material is b, 0.1 ≦ b / a ≦ 0 When the relationship of .5 is established, it is possible to provide a large and long silicon carbide ceramic joined body that can be used at a high temperature exceeding 1000 ° C.

また、炭化珪素セラミックス基材110は、炭化珪素を主成分とする繊維で強化した炭化珪素複合材であるため、高温での特性に優れており、1000℃を超える高温での使用が可能な、大型・長尺の炭化珪素セラミックス接合体としてより好適な接合体が得られる。   Moreover, since the silicon carbide ceramic base material 110 is a silicon carbide composite material reinforced with fibers containing silicon carbide as a main component, it has excellent properties at high temperatures, and can be used at high temperatures exceeding 1000 ° C. A joined body more suitable as a large and long silicon carbide ceramic joined body is obtained.

更に、炭化珪素セラミックス接合体は、レーザービーム320による局所加熱により接合されたものであることで、接合材とその周囲のみを接合に必要な温度に加熱することが容易であり、良好な接合状態が得られる。   Furthermore, since the silicon carbide ceramic joined body is joined by local heating with the laser beam 320, it is easy to heat only the joining material and its surroundings to a temperature necessary for joining, and a good joined state. Is obtained.

また、炭化珪素セラミックス接合体を構成する接合前の炭化珪素セラミックス基材110は、接合材120である珪素が、炭化珪素セラミックス基材110の厚さの1/10〜1/2の範囲であらかじめ付与されていることにより、接合材120と基材110との接合状態をより良好なものとすることができる。   In addition, silicon carbide ceramic base material 110 before bonding constituting the silicon carbide ceramic bonded body has silicon as bonding material 120 in advance in a range of 1/10 to 1/2 of the thickness of silicon carbide ceramic base material 110. By being provided, the bonding state between the bonding material 120 and the base material 110 can be improved.

更に、炭化珪素セラミックス基材110への珪素の付与方法が大気プラズマ溶射法によるものであることで、高融点材料である珪素を接合材120として予め付与することができ、より良好な接合状態が得られることができる。   Furthermore, since silicon is applied to the silicon carbide ceramic substrate 110 by the atmospheric plasma spraying method, silicon, which is a high melting point material, can be applied in advance as the bonding material 120, and a better bonding state can be obtained. Can be obtained.

なお、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されず、要旨を変更しない範囲で適宜組み合わせや改良が可能である。   The above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to those having all the configurations described, and can be appropriately combined and improved without departing from the scope of the invention. It is.

110…基材、
120…接合材、
310…接合部、
320…レーザービーム、
a…基材の接合部の厚さ、
b…接合材の幅。
110 ... base material,
120 ... bonding material,
310 ... Junction part,
320 ... Laser beam,
a: the thickness of the joint portion of the substrate,
b: The width of the bonding material.

Claims (5)

炭化珪素セラミックス基材を含む複数の基材を接合して形成された炭化珪素セラミックス接合体であって、
前記複数の基材は、炭化珪素を含むセラミックス基材同士、または炭化珪素を含むセラミックス基材と金属基材であり、
前記複数の基材を接合する接合材は、珪素であり、
前記複数の基材の接合部の厚さをa、前記接合材の幅をbとした際に、0.1≦b/a≦0.5の関係が成立する
ことを特徴とする炭化珪素セラミックス接合体。
A silicon carbide ceramic joined body formed by joining a plurality of base materials including a silicon carbide ceramic base material,
The plurality of base materials are ceramic base materials containing silicon carbide, or a ceramic base material containing silicon carbide and a metal base material,
The bonding material for bonding the plurality of base materials is silicon,
The relationship of 0.1 ≦ b / a ≦ 0.5 is established when the thickness of the bonding portion of the plurality of base materials is a and the width of the bonding material is b. Joined body.
請求項1に記載の炭化珪素セラミックス接合体において、
前記炭化珪素セラミックス基材は、炭化珪素を主成分とする繊維で強化した炭化珪素複合材である
ことを特徴とする炭化珪素セラミックス接合体。
In the silicon carbide ceramic joined body according to claim 1,
The silicon carbide ceramic base material is a silicon carbide composite material reinforced with fibers mainly composed of silicon carbide.
請求項1に記載の炭化珪素セラミックス接合体において、
前記炭化珪素セラミックス接合体は、レーザーによる局所加熱により接合されたものである
ことを特徴とする炭化珪素セラミックス接合体。
In the silicon carbide ceramic joined body according to claim 1,
The silicon carbide ceramic joined body is joined by local heating with a laser.
請求項1に記載の炭化珪素セラミックス接合体において、
前記炭化珪素セラミックス接合体を構成する接合前の炭化珪素セラミックス基材は、前記接合材である珪素が、前記炭化珪素セラミックス基材の厚さの1/10〜1/2の範囲であらかじめ付与されている
ことを特徴とする炭化珪素セラミックス接合体。
In the silicon carbide ceramic joined body according to claim 1,
The silicon carbide ceramic base material before bonding constituting the silicon carbide ceramic bonded body is preliminarily provided with silicon as the bonding material in a range of 1/10 to 1/2 of the thickness of the silicon carbide ceramic base material. A silicon carbide ceramic joined body characterized by comprising:
請求項4に記載の炭化珪素セラミックス接合体において、
前記炭化珪素セラミックス基材への珪素の付与方法が大気プラズマ溶射法によるものである
ことを特徴とする炭化珪素セラミックス接合体。
In the silicon carbide ceramic joined body according to claim 4,
The silicon carbide ceramic joined body, wherein the silicon is applied to the silicon carbide ceramic substrate by an atmospheric plasma spraying method.
JP2015111323A 2015-06-01 2015-06-01 Silicon carbide ceramic joined body Pending JP2018135220A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015111323A JP2018135220A (en) 2015-06-01 2015-06-01 Silicon carbide ceramic joined body
PCT/JP2016/059261 WO2016194444A1 (en) 2015-06-01 2016-03-23 Silicon carbide ceramic assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111323A JP2018135220A (en) 2015-06-01 2015-06-01 Silicon carbide ceramic joined body

Publications (1)

Publication Number Publication Date
JP2018135220A true JP2018135220A (en) 2018-08-30

Family

ID=57440583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111323A Pending JP2018135220A (en) 2015-06-01 2015-06-01 Silicon carbide ceramic joined body

Country Status (2)

Country Link
JP (1) JP2018135220A (en)
WO (1) WO2016194444A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974574B (en) * 2022-12-28 2024-01-09 广东工业大学 Connecting piece of silicon carbide composite material and high-temperature alloy, connecting method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161384A (en) * 1984-01-31 1985-08-23 工業技術院長 Metallization of carbide ceramic surface
JPH07187836A (en) * 1993-12-24 1995-07-25 Toshiba Ceramics Co Ltd Method for joining si-containing ceramics with laser light
JP2001261459A (en) * 2000-03-23 2001-09-26 Toshiba Ceramics Co Ltd Silicon carbide ceramic joined body and method for producing the same
JP2002145677A (en) * 2000-11-09 2002-05-22 Toshiba Ceramics Co Ltd Jointed body of silicon carbide sintered compact, member for producing semiconductor using the same and method of producing the same
JP2007302500A (en) * 2006-05-10 2007-11-22 Covalent Materials Corp Method of joining silicon carbide sintered compacts
JP5198171B2 (en) * 2008-07-24 2013-05-15 太平洋セメント株式会社 Method for manufacturing silicon carbide joined body

Also Published As

Publication number Publication date
WO2016194444A1 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP5978105B2 (en) Silicon carbide ceramic joined body and method for producing silicon carbide ceramic joined body
CN102699558A (en) Flexible composite middle layer brazing alloy and method of utilizing brazing ceramic and metal
KR101200578B1 (en) Material composite
Casalegno et al. Surface modification of carbon/carbon composites to improve their wettability by copper
CN101061082A (en) Method for producing by laser gastight and high-temperature resistant connections of shaped parts made of a non-oxidic ceramic
JP5773331B2 (en) Manufacturing method of ceramic joined body
CN212451221U (en) System for connecting silicon carbide materials, multilayer composite film structure and connecting structure
CN103341675B (en) Method for braze welding of Cf/SiC composite material and metal Nb by using Ti-Co-Nb brazing filler metal
CN105585326A (en) Technology for diffusion connection of SiC ceramic matrix composite through nano foil
CN107488043B (en) Multilayer composite film, preparation method thereof and application of multilayer composite film as silicon carbide and composite material connecting material thereof
CN107488046B (en) Connecting material for connecting silicon carbide ceramics and method for connecting silicon carbide ceramics
CN106007773B (en) A kind of vacuum brazing method of porous silicon nitride ceramic and TiAl-base alloy
WO2016194444A1 (en) Silicon carbide ceramic assembly
KR101411954B1 (en) Heterostructure for heating and method of fabricating the same
Jimenez et al. Joining of C f/SiC ceramics to nimonic alloys
JP2012082095A (en) Method of joining two or more ceramic members mutually
Anas et al. Rapid Synthesis of Patterned Silicon Carbide Coatings Using Laser‐Induced Pyrolysis and Crystallization of Polycarbosilane
JP5798429B2 (en) B4C / Si composite body bonding method
KR101039361B1 (en) Low temperature joining method between Ti/Ti-based alloys having a bonding strength higher than those of base metals
JP2016078041A (en) Joining method
CN205836169U (en) A kind of multilayer complex films and attachment structure
Kulik et al. High-temperature permanent joints of carbon fiber-reinforced ceramic-matrix composites with similar and other carbonaceous materials
CN107488047B (en) Connection method of silicon carbide ceramic material
JPH04139084A (en) Production of surface-coated carbon material
CN112299869B (en) Laser welding method for silicon carbide and composite material thereof