JP2016078041A - Joining method - Google Patents

Joining method Download PDF

Info

Publication number
JP2016078041A
JP2016078041A JP2014209613A JP2014209613A JP2016078041A JP 2016078041 A JP2016078041 A JP 2016078041A JP 2014209613 A JP2014209613 A JP 2014209613A JP 2014209613 A JP2014209613 A JP 2014209613A JP 2016078041 A JP2016078041 A JP 2016078041A
Authority
JP
Japan
Prior art keywords
laser
silicon carbide
bonding
joining
brazing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014209613A
Other languages
Japanese (ja)
Inventor
宮田 素之
Motoyuki Miyata
素之 宮田
青田 欣也
Kinya Aota
欣也 青田
川中 啓嗣
Keiji Kawanaka
啓嗣 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014209613A priority Critical patent/JP2016078041A/en
Publication of JP2016078041A publication Critical patent/JP2016078041A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve joining quality of large sized silicon carbide ceramic.SOLUTION: In a method for irradiating a joining portion 210 of a plurality of substrates 110 with a laser 220 to join the substrates 110, at least one of the substrates 110 is a ceramic substrate containing silicon carbide, irradiation width of the laser 220 for irradiating the joining portion 210 is not more than 1 mm, and output of the laser 220 is 100 W/mm2 or more and less than 180 W/mm2.SELECTED DRAWING: Figure 4

Description

本発明は、炭化珪素セラミックス材の接合方法に関する。   The present invention relates to a method for joining silicon carbide ceramic materials.

炭化珪素セラミックスは、耐熱性、耐食性などに優れており、高温構造部材や耐摩耗部材へ適用されている。さらに近年では、半導体や原子力などの部材への適用が検討されている。   Silicon carbide ceramics are excellent in heat resistance and corrosion resistance, and are applied to high-temperature structural members and wear-resistant members. Furthermore, in recent years, application to members such as semiconductors and nuclear power has been studied.

炭化珪素をはじめとしたセラミックス部材は、一般に粉末焼結法で作製されており、大型部材、長尺部材、複雑形状部材などを粉末焼結法で作製することは、技術的、コスト的にハードルが高い。そのため、単純形状品を作製し、これを接合することで大型部材、長尺部材、複雑形状部材などへの適用を図ることが検討されている。   Ceramic members such as silicon carbide are generally produced by a powder sintering method, and it is technically and costly difficult to produce large-sized members, long members, complicated shape members, etc. by a powder sintering method. Is expensive. For this reason, it has been studied to produce a simple-shaped product and to apply it to a large member, a long member, a complicated-shaped member, etc. by joining them.

炭化珪素セラミックス材の接合方法としては、ホットプレスを用いた固相接合法や、銅、チタンなどの活性金属をろう材として用いたろう付け接合などが報告されている。   As a bonding method of the silicon carbide ceramic material, a solid phase bonding method using a hot press or a brazing bonding using an active metal such as copper or titanium as a brazing material has been reported.

ホットプレスを用いた固相接合法の場合、高温化で加圧しながら接合するため、接合可能なセラミックス材の形状や寸法が制限される。これに対して、活性金属をろう材として用いたろう付け接合の場合、濡れ性に優れたろう材を用いることで、比較的低温で接合することが可能であり、セラミックス材の接合方法として多用されている。   In the case of a solid phase bonding method using a hot press, bonding is performed while pressurizing at a high temperature, so that the shape and size of the ceramic material that can be bonded are limited. On the other hand, in the case of brazing joining using an active metal as a brazing material, it is possible to join at a relatively low temperature by using a brazing material having excellent wettability, and it is often used as a joining method for ceramic materials. Yes.

ところで、接合により大型部材や長尺部材を作製する場合、部材を加熱炉にいれて接合を行うため、大型の加熱炉を必要とする。また、ろう材を用いた場合、接合材の耐熱温度はろう材の耐熱温度に左右される。   By the way, when producing a large member or a long member by joining, since a member is put in a heating furnace and joining is performed, a large heating furnace is required. Further, when a brazing material is used, the heat resistance temperature of the bonding material depends on the heat resistance temperature of the brazing material.

そこで、高温で適用することを目的とした大型、長尺部材を接合方法で作製する場合、高融点のろう材の適用、及び接合する部位のみを局所的に加熱して接合する方法が求められている。   Therefore, when a large, long member intended for application at high temperature is produced by a joining method, a high melting point brazing material is applied, and a method of locally heating only the part to be joined is required. ing.

特開平7−24177号公報Japanese Patent Laid-Open No. 7-24177

岡村久宣、セラミックスと金属のろう付け、溶接技術、1992年7月号、87Hisayoshi Okamura, Brazing ceramics and metal, welding technology, July 1992, 87

本発明が解決しようとしている課題は、大型の炭化珪素セラミックスの接合品質を向上することである。   The problem to be solved by the present invention is to improve the bonding quality of large silicon carbide ceramics.

上記課題を解決するために、例えば特許請求の範囲に記載された構成を採用する。   In order to solve the above problems, for example, the configuration described in the claims is adopted.

本発明によれば、大型の炭化珪素セラミックスの接合品質を向上することができる。   According to the present invention, the bonding quality of large silicon carbide ceramics can be improved.

接合構造の模式図Schematic diagram of junction structure レーザの照射方法の模式図Schematic diagram of laser irradiation method レーザ照射結果Laser irradiation result 接合試験結果Joining test results レーザ照射幅の模式図Schematic diagram of laser irradiation width 接合部のSEM−EDX分析結果Results of SEM-EDX analysis of joints

以下、本発明の実施形態について、図面を参照しながらより詳細に説明する。なお、本発明はここで取り上げた実施形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。   Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. In addition, this invention is not limited to embodiment taken up here, A combination and improvement are possible suitably in the range which does not change a summary.

セラミックス基材としては、炭化珪素を主成分としたセラミックス、および炭化珪素を主成分とした母相から構成される複合セラミックス、炭化珪素を主成分とする繊維を複合化した複合セラミックスなどが挙げられる。また、ジルコニウム合金やジルコニウム合金と炭化珪素の複合材料などが挙げられるが、炭化珪素を含む基材であればこれらに限定されるものではない。また接合する基材の少なくとも1つが炭化珪素を含む基材であればよく、他の基材が金属基材であってもよい。   Examples of the ceramic substrate include ceramics mainly composed of silicon carbide, composite ceramics composed of a matrix phase mainly composed of silicon carbide, and composite ceramics composed of fibers composed mainly of silicon carbide. . Moreover, although a zirconium alloy and the composite material of a zirconium alloy and silicon carbide are mentioned, if it is a base material containing silicon carbide, it will not be limited to these. Further, at least one of the base materials to be joined may be a base material containing silicon carbide, and the other base material may be a metal base material.

炭化珪素を主成分とするセラミックスは、一般に反応焼結法、常圧焼結法、ホットプレス法などの方法で作製される。このうち、ホットプレス法は焼結時に加圧する必要があるため、複雑形状の部材を作製するのには適していない。反応焼結法の場合、1600℃程度と比較的低温で焼結することができ、また焼結時の寸法変化を抑制することができるが、焼結体中に遊離Siや気孔を含有しており、他の2つの方法に比べて、機械的特性に劣る。常圧焼結体の場合、焼結助剤の種類にもよるが、焼結温度は2000℃程度と高温であり、また焼結時に寸法変化するため、成形体作成時に焼結時の寸法変化を考慮する必要がある。炭化珪素を主成分とするセラミックスの作製方法や焼結助剤に関しては、適用する部材の形状や適用する環境条件に応じて、適宜選定することができる。   Ceramics containing silicon carbide as a main component are generally produced by a reaction sintering method, a normal pressure sintering method, a hot press method, or the like. Among these, the hot press method needs to be pressurized at the time of sintering, and is not suitable for producing a member having a complicated shape. In the case of the reactive sintering method, sintering can be performed at a relatively low temperature of about 1600 ° C., and the dimensional change during sintering can be suppressed. However, the sintered body contains free Si and pores. In comparison with the other two methods, the mechanical properties are inferior. In the case of a normal pressure sintered body, although depending on the type of sintering aid, the sintering temperature is as high as about 2000 ° C, and the dimensions change during sintering. Need to be considered. The method for producing ceramics mainly composed of silicon carbide and the sintering aid can be appropriately selected depending on the shape of the member to be applied and the environmental conditions to be applied.

炭化珪素を主成分とする繊維としては、カーボン芯線に化学気相成長法(CVD)で炭化珪素を蒸着させて製造する繊維や、ポリカルボシラン等の有機ケイ素ポリマを前駆体として、紡糸、無機化して得られる繊維(ニカロン(登録商標))、ポリカルボシラン等の有機ケイ素ポリマにチタンアルコキシド、またはジルコニウムアルコキシドを加えて紡糸、無機化して得られるチタンやジルコニウムを含んだ繊維(チラノ繊維)、ポリカルボシラン等の有機ケイ素ポリマにアルミニウムアルコキシドを加えて紡糸、無機化して得られる繊維(SA繊維)などが挙げられる。これらのうち、チタンを含んだチラノ繊維の使用限界温度は1300℃、ジルコニウムを含んだチラノ繊維の使用限界温度は1500℃と高い耐熱性を示しており、1000℃以上での高温環境下での適用を目的とした本発明の用途に対して好ましい。なお、ニカロンは製造時の不融化段階で酸素を取り込み、1300℃以上で強度低下を起こすことが報告されている。そのため、電子線照射法等により不融化を行い、酸素量を低減して耐熱性を向上させた炭化珪素繊維(ハイニカロン(登録商標))がより好ましい。なお、Arガス中で熱処理を行ったのちの室温強度を比較すると、ニカロン、ハイニカロン、チラノ繊維などは、1000℃以上での熱処理をおこなうことにより強度低下を示すが、SA繊維は2000℃でも強度低下を示さないため、より好ましい。   Fibers mainly composed of silicon carbide include fibers produced by depositing silicon carbide on a carbon core wire by chemical vapor deposition (CVD), and organic silicon polymers such as polycarbosilane as precursors. Fiber (Nicaron (registered trademark)) obtained by crystallization, spinning by adding titanium alkoxide or zirconium alkoxide to an organosilicon polymer such as polycarbosilane, fiber containing titanium or zirconium obtained by mineralization (tyranno fiber), Examples thereof include fibers (SA fibers) obtained by adding aluminum alkoxide to an organosilicon polymer such as polycarbosilane and spinning and mineralizing. Of these, the use limit temperature of Tyranno fiber containing titanium is 1300 ° C, and the use limit temperature of Tyranno fiber containing zirconium is 1500 ° C, indicating high heat resistance. Preferred for use in the present invention for application purposes. Nicalon has been reported to take up oxygen in the infusibilization stage during production and cause a decrease in strength at 1300 ° C. or higher. For this reason, silicon carbide fibers (Hinicalon (registered trademark)) in which infusibilization is performed by an electron beam irradiation method or the like and the heat resistance is improved by reducing the amount of oxygen are more preferable. In addition, comparing the room temperature strength after heat treatment in Ar gas, Nicalon, hynicalon, Tyranno fiber, etc. show a decrease in strength by heat treatment at 1000 ° C. or higher, but SA fiber has strength even at 2000 ° C. It is more preferable because it does not show a decrease.

炭化珪素繊維を複合化した炭化珪素複合材の作製方法としては、炭化珪素繊維プリフォームの空隙にCVDガスを流し、繊維表面に炭化珪素マトリックスを析出させる化学気相浸漬法(CVI法)や、炭化珪素繊維織物を有機ケイ素ポリマと炭化珪素粉末を混合したスラリーに含浸・焼成を繰り返して緻密化するポリマー含浸焼成(PIP法)法、炭化珪素繊維に炭化珪素ナノ粒子や有機珪素化合物をスラリーとして塗布し、加圧焼成するナノインフィルトレーション遷移共晶相プロセス法(NITE法)などが報告されている。このうち、CVI法やNITE法などでは円管形状や、棒形状の大型部材、長尺部材などを作製することができるため好ましい。   As a method for producing a silicon carbide composite material in which silicon carbide fibers are combined, a chemical vapor immersion method (CVI method) in which a CVD gas is allowed to flow in the voids of a silicon carbide fiber preform to deposit a silicon carbide matrix on the fiber surface, Polymer impregnation firing (PIP method) method in which silicon carbide fiber fabric is densified and fired repeatedly into a slurry in which organosilicon polymer and silicon carbide powder are mixed, and silicon carbide nanoparticles and organosilicon compounds are slurried as silicon carbide fibers A nano-infiltration transition eutectic phase process method (NITE method) in which coating and firing are performed has been reported. Among these, the CVI method, the NITE method, and the like are preferable because a circular tube shape, a rod-shaped large member, a long member, and the like can be manufactured.

接合材は、基材の間にろう材を介在させて接合を行う。用いるろう材としては、炭化珪素との反応性の観点から、シリコンやシリコン合金、シリコン化合物など炭化珪素との間に機械的、熱的に脆弱な反応相を形成しないろう材が好ましい。また、1000℃以上の高温での使用を想定した場合、ろう材の融点としては1200℃以上であることが好ましい。   The bonding material is bonded with a brazing material interposed between the base materials. As the brazing material to be used, a brazing material that does not form a mechanically and thermally fragile reaction phase with silicon carbide such as silicon, a silicon alloy, or a silicon compound is preferable from the viewpoint of reactivity with silicon carbide. Moreover, when assuming use at a high temperature of 1000 ° C. or higher, the melting point of the brazing material is preferably 1200 ° C. or higher.

基材の形状としては、板材、角材、円盤、円筒管、丸棒などが挙げられるが、これらに限るものではない。また、接合構造としては、重ね継ぎ手、突合せ継ぎ手、すみ肉継ぎ手、などが挙げられるが、これらに限るものではない。これら基材の形状や接合構造は適用する部材の用途、形状に応じて適宜選定することができる。   Examples of the shape of the base material include, but are not limited to, a plate material, a square material, a disk, a cylindrical tube, and a round bar. In addition, examples of the joint structure include a lap joint, a butt joint, and a fillet joint, but are not limited thereto. The shape and joining structure of these base materials can be appropriately selected according to the application and shape of the member to be applied.

レーザとしては、CO2レーザ、YAGレーザ、エキシマレーザ、ファイバーレーザ、デイスクレーザ、半導体レーザ、ピコ秒レーザ、ナノ秒レーザ、フェムト秒レーザなどが挙げられ、波長としては、遠赤外から可視、紫外領域の波長のレーザ光を用いることができる。これらは適用する部材やろう材の材質、形状などに応じて適宜選定することができる。   Examples of lasers include CO2 laser, YAG laser, excimer laser, fiber laser, disk laser, semiconductor laser, picosecond laser, nanosecond laser, and femtosecond laser. A laser beam having a wavelength of can be used. These can be appropriately selected according to the material and shape of the member to be applied and the brazing material.

レーザビームのビーム形状としては、円形ビーム、楕円ビーム、線状ビームなどを用いることができる。このビーム形状に関しては、接合部の形状、寸法などに応じて最適な形状を選定することができる。   As the beam shape of the laser beam, a circular beam, an elliptical beam, a linear beam, or the like can be used. As for the beam shape, an optimum shape can be selected according to the shape and size of the joint.

以下、具体的な実施例に関して説明する。   Hereinafter, specific examples will be described.

図1に接合構造の模式図を示す。接合構造として突合せ継手構造に関して検討を行った。基材110には、コバレント製のSiC(型式CERASIC−B)を用い、ろう材120には、ニラコ製のケイ素(Si)ウエハ(型式500452、φ100×厚さ0.5mm)を用いた。接合に用いたSiC材のサイズは15mm×15mm×厚さ2mmである。   FIG. 1 shows a schematic diagram of a joining structure. A butt joint structure was studied as a joint structure. Cobalt SiC (model CERASIC-B) was used for the base material 110, and a silicon (Si) wafer made by Niraco (model 5000045, φ100 × 0.5 mm thickness) was used for the brazing material 120. The size of the SiC material used for joining is 15 mm × 15 mm × thickness 2 mm.

図1で示した突合せ継手材に対して、レーザによる接合を行った。用いたレーザ発振器はIPG Photonics製のファイバレーザー発振器(型式YLR−2000、最大出力2kW、波長1070nm)である。真空チャンバー内にサンプルを設置し、雰囲気を10Pa以下まで減圧したのち、レーザを照射した。   The butt joint material shown in FIG. 1 was joined by laser. The laser oscillator used is a fiber laser oscillator (model YLR-2000, maximum output 2 kW, wavelength 1070 nm) manufactured by IPG Photonics. A sample was placed in a vacuum chamber, and after reducing the atmosphere to 10 Pa or less, laser irradiation was performed.

図2にレーザ照射の模式図を示す。図1に示した突合せ接合材の接合部210にレーザビーム220を照射した。レーザ照射条件は、レーザ出力:200〜1200W、レーザ照射時間:5〜180秒、レーザビーム210の形状は円形(φ0.5mm〜φ15mm)、又は線形(13mm×0.2mm)、レーザビーム210の移動速度は0〜20mm/sである。   FIG. 2 shows a schematic diagram of laser irradiation. The laser beam 220 was irradiated to the joint portion 210 of the butt joint material shown in FIG. The laser irradiation conditions are: laser output: 200 to 1200 W, laser irradiation time: 5 to 180 seconds, and the shape of the laser beam 210 is circular (φ0.5 mm to φ15 mm) or linear (13 mm × 0.2 mm). The moving speed is 0 to 20 mm / s.

図3にレーザによる接合結果の一例を示す。レーザ照射条件により、(a)接合、(b)基材割れ、(c)ろう材消失などの結果が得られた。   FIG. 3 shows an example of the result of laser bonding. Depending on the laser irradiation conditions, results such as (a) bonding, (b) cracking of the base material, and (c) disappearance of the brazing material were obtained.

図4はレーザ出力と基材上の照射幅を変化させた場合の接合結果を示す。図4にて、レーザ照射幅とは、図5に示すように、接合界面(基材の突き合わせ部)から基材上でレーザが照射されている領域510までの長さ520である。丸印は接合できた場合、三角印は基材が割れた場合、四角印はろう材が溶融しなかった場合、バツ印はろう材が消失してしまった場合を示す。   FIG. 4 shows the bonding results when the laser output and the irradiation width on the substrate are changed. In FIG. 4, the laser irradiation width is a length 520 from the bonding interface (butting portion of the base material) to a region 510 where the laser is irradiated on the base material, as shown in FIG. 5. A circle mark indicates a case where bonding is possible, a triangle mark indicates a case where the base material is cracked, a square mark indicates a case where the brazing material has not melted, and a cross mark indicates a case where the brazing material has disappeared.

図4に示すように、基材上のレーザの照射幅が大きくなるに伴い、単位面積当たりのレーザ出力が小さい条件でも基材に割れが発生している。これは、照射幅が大きいほど、基材に加えられるエネルギーが大きくなるとともに、基材内に発生する熱応力の不均一性が大きくなったため、破壊に至ったと考えられる。一方、照射幅が小さくなるに伴い、基材の割れは抑制されているが、これは、基材への照射が減少することで、熱応力の不均一性が低減されたためと考えられる。照射幅1mm以下では基材の割れは回避されているが、レーザ出力が100W/mm2未満ではろう材が溶融せず接合しなかった。また、180W/mm2ではろう材が消失したため接合できなかった。このため、レーザ出力として100W/mm2以上、180W/mm2未満が好ましい。   As shown in FIG. 4, as the laser irradiation width on the substrate increases, cracks occur in the substrate even under conditions where the laser output per unit area is small. This is probably because the larger the irradiation width, the greater the energy applied to the base material and the greater the non-uniformity of the thermal stress generated in the base material, leading to destruction. On the other hand, as the irradiation width becomes smaller, cracking of the base material is suppressed. This is considered to be because the nonuniformity of the thermal stress is reduced by reducing the irradiation to the base material. When the irradiation width was 1 mm or less, cracking of the substrate was avoided, but when the laser output was less than 100 W / mm2, the brazing material did not melt and was not joined. Further, at 180 W / mm 2, the brazing material disappeared, so that joining was not possible. For this reason, the laser output is preferably 100 W / mm 2 or more and less than 180 W / mm 2.

図6にレーザ加熱により作製した突き合わせ継手材(800W)により作製した接合体の接合部のSEM―EDX分析結果を示す。(a)のSEM像に示すように、ろう材のSiとSiC材との接合界面にてクラックや剥離などは見られず接合している。また、(b)のSiの分布及び、(c)のCの分布に示すように接合界面にてSi、SiC以外の界面相は検出されなかった。   FIG. 6 shows the SEM-EDX analysis result of the joined portion of the joined body produced by the butt joint material (800 W) produced by laser heating. As shown in the SEM image of (a), cracks and peeling are not seen at the bonding interface between the brazing material Si and the SiC material. Further, as shown in the distribution of Si in (b) and the distribution of C in (c), no interface phase other than Si and SiC was detected at the bonding interface.

110 基材
120 ろう材
210 接合部
220 レーザビーム
310 割れ
510 レーザ照射領域
520 レーザ照射幅
110 Base material
120 Brazing material
210 joints
220 Laser beam
310 crack
510 Laser irradiation area
520 Laser irradiation width

Claims (3)

複数の基材の接合部にレーザを照射して接合する方法において、前記複数の基材の少なくとも一つが炭化珪素を含むセラミックス基材であり、前記接合部に照射する前記レーザの照射幅が1mm以下であり、前記レーザの出力が100W/mm2以上、180W/mm2未満であることを特徴とする接合方法。   In the method of joining a plurality of base materials by irradiating a laser, at least one of the plurality of base materials is a ceramic base material containing silicon carbide, and an irradiation width of the laser irradiating the joint portions is 1 mm. The joining method is characterized in that the laser output is 100 W / mm 2 or more and less than 180 W / mm 2. 請求項1において、前記複数の基材の間に接合材料を挟み、前記接合材料を含む前記接合部に前記レーザを照射することを接合方法。   The bonding method according to claim 1, wherein a bonding material is sandwiched between the plurality of base materials, and the laser is irradiated to the bonding portion including the bonding material. 請求項1において、前記複数の基材の少なくとも一つが炭化珪素を含む繊維を含む炭化珪素複合材であることを特徴とする接合方法。   The bonding method according to claim 1, wherein at least one of the plurality of base materials is a silicon carbide composite material including a fiber containing silicon carbide.
JP2014209613A 2014-10-14 2014-10-14 Joining method Pending JP2016078041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014209613A JP2016078041A (en) 2014-10-14 2014-10-14 Joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014209613A JP2016078041A (en) 2014-10-14 2014-10-14 Joining method

Publications (1)

Publication Number Publication Date
JP2016078041A true JP2016078041A (en) 2016-05-16

Family

ID=55955568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014209613A Pending JP2016078041A (en) 2014-10-14 2014-10-14 Joining method

Country Status (1)

Country Link
JP (1) JP2016078041A (en)

Similar Documents

Publication Publication Date Title
JP5978105B2 (en) Silicon carbide ceramic joined body and method for producing silicon carbide ceramic joined body
KR102013391B1 (en) Roughening method of base material, surface treatment method of base material, manufacturing method of thermal spray coating member and thermal spray coating member
US9366140B2 (en) Ceramic matrix composite repair by reactive processing and mechanical interlocking
US10406640B2 (en) Method for repairing ceramic matrix composite (CMC) articles
JP4237059B2 (en) Reactive brazing of tungsten or molybdenum body to carbonaceous support
US9527170B2 (en) Method and apparatus for repairing gas turbine components made of ceramic composite materials
JP2008137830A (en) Ceramic composite member and method of manufacturing the same
JP6246666B2 (en) Manufacturing method of laminate
CN101061082A (en) Method for producing by laser gastight and high-temperature resistant connections of shaped parts made of a non-oxidic ceramic
JP2013095974A (en) Method of forming densified layer in thermal spray coating, and thermal spray coating covering member
US20160023957A1 (en) Braze for ceramic and ceramic matrix composite components
FR2979341A1 (en) STRAINABLE ULTRA-REFRACTORY MATERIAL IN WET ENVIRONMENT AND METHOD FOR MANUFACTURING THE SAME
KR20180111860A (en) METHOD FOR PRODUCING SEMICONDUCTOR SEMICONDUCTOR, AND METHOD AND APPARATUS FOR MANUFACTURING CERAMIC PRODUCTS
JP5773331B2 (en) Manufacturing method of ceramic joined body
CN106966753A (en) A kind of preparation method of C/Al Si X burn-out proof composites
KR100859672B1 (en) Splay coating method
CN103952695A (en) Method for preparing amorphous ceramic coating
JP2016078041A (en) Joining method
WO2021196004A1 (en) Method for strengthening joining performance of ceramic material by means of texturing
WO2015151573A1 (en) Ceramic thermal sprayed-film coated member, and member for semiconductor manufacturing device
WO2016194444A1 (en) Silicon carbide ceramic assembly
JP2012082095A (en) Method of joining two or more ceramic members mutually
Nagatsuka et al. Dissimilar joint characteristics of SiC and WC-Co alloy by laser brazing
Anas et al. Rapid Synthesis of Patterned Silicon Carbide Coatings Using Laser‐Induced Pyrolysis and Crystallization of Polycarbosilane
US8715803B2 (en) Ceramic welds, and a method for producing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112