JP5198171B2 - Method for manufacturing silicon carbide joined body - Google Patents

Method for manufacturing silicon carbide joined body Download PDF

Info

Publication number
JP5198171B2
JP5198171B2 JP2008191039A JP2008191039A JP5198171B2 JP 5198171 B2 JP5198171 B2 JP 5198171B2 JP 2008191039 A JP2008191039 A JP 2008191039A JP 2008191039 A JP2008191039 A JP 2008191039A JP 5198171 B2 JP5198171 B2 JP 5198171B2
Authority
JP
Japan
Prior art keywords
silicon carbide
bonding
metal silicon
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008191039A
Other languages
Japanese (ja)
Other versions
JP2010024122A (en
Inventor
基宏 梅津
昇 宮田
達也 塩貝
良太 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2008191039A priority Critical patent/JP5198171B2/en
Publication of JP2010024122A publication Critical patent/JP2010024122A/en
Application granted granted Critical
Publication of JP5198171B2 publication Critical patent/JP5198171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭化珪素接合体及びその製造方法に関する。特に、接合部の気密性、高い密着性を要する部材に適した接合体に関する。例えば、液浸露光装置における液体回収部や、CVD装置等のガス供給部であるシャワープレートに適用可能である。 The present invention relates to a silicon carbide bonded body and a method for manufacturing the same. In particular, the present invention relates to a joined body suitable for a member that requires airtightness and high adhesion at a joint. For example, the present invention can be applied to a liquid recovery unit in an immersion exposure apparatus and a shower plate that is a gas supply unit such as a CVD apparatus.

炭化珪素は耐熱性、耐食性に優れており、半導体製造装置用の部材に多く用いられているが、炭化珪素は焼結温度が高く、雰囲気も不活性ガス下で行うことから製法上、一体で形成するには大きさに制限がある。そこで、種々の接合技術が提案されている。 Silicon carbide is excellent in heat resistance and corrosion resistance, and is often used as a member for semiconductor manufacturing equipment, but silicon carbide has a high sintering temperature and the atmosphere is also under an inert gas. There is a limit in size to form. Therefore, various joining techniques have been proposed.

例えば、特許文献1には、嵩密度2.8g/cm3以上の常圧焼結SiC焼結体同士がSiからなる接合部及び常圧焼結SiC焼結体の接合面に開口する開気孔に充填されて接合部と一体のSiからなる充填部を介して接合する技術が開示され、粒径0.05mmの顆粒状のSiをエタノールと混合してペースト状としたものや、厚み0.02mmの板状のSiをSiC焼結体同士の間に介在させて、接合する例が示されている。 For example, Patent Document 1 discloses that an air-pressure-sintered SiC sintered body having a bulk density of 2.8 g / cm 3 or more is joined to Si, and open pores that open to the joint surface of the normal-pressure sintered SiC sintered body. And a technique for joining via a filling part made of Si integral with the joint part, in which granular Si having a particle size of 0.05 mm is mixed with ethanol to form a paste, An example in which 02 mm plate-like Si is interposed between SiC sintered bodies and joined is shown.

また、特許文献2には、炭化物セラミックスの表面に金属をコーティングし金属化すること、及び炭化物セラミックス同士を接合する技術が開示され、実施例として、炭化珪素焼結体の間に、厚さ500μm、10×10mm角のSiウエハーをはさみ、1600℃、4×10torr、20分加熱し、接着したことが示されている。 Further, Patent Document 2 discloses a technique of coating a metal on the surface of carbide ceramics and metalizing, and joining the carbide ceramics to each other. As an example, a thickness of 500 μm is provided between silicon carbide sintered bodies. It is shown that a 10 × 10 mm square Si wafer was sandwiched and heated at 1600 ° C. and 4 × 10 torr for 20 minutes to be bonded.

特開2002−145677号公報JP 2002-145679 A 特開昭60−161384号公報JP-A-60-161384

しかしながら、これらの文献に開示されたように、金属珪素粉末を充填して接合する方法では、金属珪素粉末の充填率を一定にすることが難しく、接合後の位置ズレを制御することは困難であった。また、金属珪素粉末の溶融時に接合層に空隙が生じやすく、これにより接合強度や気密性が低下する問題があった。また、空隙を防止するため、接合材を大量に用いると接合部からの染み出しが多くなり、例えば中空部を有する接合体の場合には、中空部の形状精度が得られず、閉塞してしまう問題があった。 However, as disclosed in these documents, it is difficult to make the filling rate of the metal silicon powder constant, and it is difficult to control the positional deviation after the bonding in the method of filling and bonding the metal silicon powder. there were. In addition, there is a problem that voids are likely to be generated in the bonding layer when the metal silicon powder is melted, thereby reducing the bonding strength and airtightness. In addition, in order to prevent voids, when a large amount of bonding material is used, the amount of seepage from the bonded portion increases. For example, in the case of a bonded body having a hollow portion, the shape accuracy of the hollow portion cannot be obtained and is blocked. There was a problem.

板材の金属珪素を接合材として用いた例もあげられているが、板材を挟み込む場合は、板材の厚さや平行度等の形状精度が厳しく要求される。さらに、板材の形状を接合部の形状と一致させることはできないので、溶融前の状態では、必然的に部材間に隙間が生じるため、粉末を充填する方法と同様に接合強度や、気密性が得られないおそれがあった。 Although an example in which metal silicon of a plate material is used as a bonding material is given, shape accuracy such as thickness and parallelism of the plate material is strictly required when sandwiching the plate material. Furthermore, since the shape of the plate cannot match the shape of the joint, there is inevitably a gap between the members in the state before melting, so that the joint strength and airtightness are the same as in the powder filling method. There was a possibility that it could not be obtained.

また、溶融して染み出る金属珪素の量を制御できないことから、微細で複雑な形状を有した部材の接合では、染み出しにより形状精度が得られなかったり、溝や穴が埋まったりといった問題が生じていた。特に液浸露光装置やCVD装置等では、液体や気体を供給したり回収したりする微細な溝や穴が形成され、中空部を有するような一体形成が困難な形状の部材がある。このような微細構造を形成するには、接合する部材同士の位置関係を精密に調整しなければならないので、接合後の形状不良は大きな問題であった。 In addition, since the amount of metallic silicon that melts and oozes out cannot be controlled, there is a problem that in joining of members having fine and complicated shapes, shape accuracy cannot be obtained due to oozing, and grooves and holes are buried. It was happening. In particular, in an immersion exposure apparatus, a CVD apparatus, or the like, there are members having a shape that is difficult to be integrally formed such that a fine groove or hole for supplying or recovering liquid or gas is formed and a hollow portion is formed. In order to form such a fine structure, the positional relationship between the members to be joined must be precisely adjusted, so that the shape defect after joining has been a big problem.

本発明は、これらの問題に鑑みてなされたものであり、接合後の位置ズレが小さく、また、接合強度及び気密性が高く、中空部を有する場合でも中空部の形状精度に優れた接合体が得られる炭化珪素接合体の製造方法を提供する。 The present invention has been made in view of these problems, and has a small positional deviation after joining, a high joining strength and airtightness, and a joined body excellent in shape accuracy of the hollow part even when it has a hollow part. The manufacturing method of the silicon carbide joined body from which is obtained is provided.

本発明は、これらの問題を解決するため、第一の炭化珪素焼結体と第二の炭化珪素焼結体とが金属珪素からなる接合層を介して接合された炭化珪素接合体であって、前記第一の炭化珪素焼結体は、金属珪素層が形成される接合面を有し、前記第二の炭化珪素焼結体は、前記金属珪素層と当接する接合面を有し、前記第一及び第二の炭化珪素焼結体の各接合面は、いずれも表面粗さRa0.6μm以下であって、前記金属珪素層が熱処理されてなる接合層を介して接合されたことを特徴とする炭化珪素接合体を提供する。 In order to solve these problems, the present invention is a silicon carbide joined body in which a first silicon carbide sintered body and a second silicon carbide sintered body are joined via a joining layer made of metallic silicon. The first silicon carbide sintered body has a bonding surface on which a metal silicon layer is formed, and the second silicon carbide sintered body has a bonding surface in contact with the metal silicon layer, Each bonding surface of the first and second silicon carbide sintered bodies has a surface roughness Ra of 0.6 μm or less, and is bonded through a bonding layer formed by heat-treating the metal silicon layer. A silicon carbide joined body is provided.

本発明では、炭化珪素焼結体の接合面を表面粗さRa0.6μm以下に加工している。通常、炭化珪素焼結体の表面には、酸化被膜が形成されており、そのままでは、金属珪素との濡れ性が不十分であることからカーボン等により還元処理が成される。しかしながら、本発明ではこのような還元処理をしなくとも接合が可能となる。Raを上記範囲とすることにより、十分な接合強度が得られる程度に濡れ性が発現し接合される。 In the present invention, the bonding surface of the silicon carbide sintered body is processed to have a surface roughness Ra of 0.6 μm or less. Usually, an oxide film is formed on the surface of the silicon carbide sintered body, and as it is, the wettability with metal silicon is insufficient, so that reduction treatment is performed with carbon or the like. However, in the present invention, joining is possible without such reduction treatment. By setting Ra within the above range, wettability is exhibited to the extent that sufficient bonding strength is obtained, and bonding is achieved.

また、このような焼結体の接合においては、接合面をブラスト等により粗面化する処理がなされるのが一般的である。これは、接合面と接合材との間にアンカー効果を生じさせることにより、接合強度を高めるためである。しかしながら、本発明では、逆に表面粗さを小さくしている。この理由は、炭化珪素焼結体の表面には、酸化により保護膜が形成され、金属珪素との濡れ性を低下させる要因となるが、本発明の表面粗さの範囲内では、炭化珪素焼結体の表面に形成される保護酸化膜の影響を極めて小さくできるためである。 Moreover, in joining such sintered bodies, it is common to perform a process of roughening the joining surface by blasting or the like. This is to increase the bonding strength by causing an anchor effect between the bonding surface and the bonding material. However, in the present invention, the surface roughness is reduced. The reason for this is that a protective film is formed on the surface of the silicon carbide sintered body by oxidation to reduce the wettability with metallic silicon. This is because the influence of the protective oxide film formed on the surface of the bonded body can be extremely reduced.

特許文献1や2においても接合材として金属珪素が用いられているが、本発明はこれらの技術と異なり、焼結体同士を接合する前に、一方の炭化珪素焼結体の接合面に金属珪素層を形成している。特許文献1や2に記載されたように金属珪素粉末や金属珪素板の溶融と同時に炭化珪素焼結体同士の接合を行おうとすると、金属珪素粉末等が溶融したときの位置ズレが著しく、接合後の形状に狂いが生じやすい。一方、本発明では予め金属珪素層を形成しているので、再溶融させても位置ズレを少なく抑えられるので接合後の形状が狂い難い。 In Patent Documents 1 and 2, metal silicon is used as a bonding material, but the present invention differs from these techniques in that a metal is bonded to the bonding surface of one silicon carbide sintered body before the sintered bodies are bonded to each other. A silicon layer is formed. As described in Patent Documents 1 and 2, if the silicon carbide sintered bodies are to be joined simultaneously with the melting of the metal silicon powder or the metal silicon plate, the positional deviation when the metal silicon powder or the like is melted is significant. Later shape is likely to be out of order. On the other hand, in the present invention, since the metal silicon layer is formed in advance, the misalignment can be suppressed to a small extent even after remelting.

しかも、上記範囲にRaを調整し、予め金属珪素層を形成することで、接合時の染み出しも最小限に抑えることができるので、位置ズレを防止できるとともに、接合層の付近に中空部がある場合であっても、閉塞等の不具合を防止することができる。 In addition, by adjusting Ra within the above range and forming the metal silicon layer in advance, it is possible to minimize seepage during bonding, so that positional displacement can be prevented and there is a hollow portion near the bonding layer. Even in some cases, problems such as blockage can be prevented.

このように、染み出しや位置ズレを抑えることができるのは、表面粗さを小さくし金属珪素層と炭化珪素焼結体との接触を増やすことにより、真空中の熱処理による金属珪素の揮発を抑制できるためと思われる。このような効果は金属珪素層を形成せずとも、金属珪素板を用いて接合しても得られるように思われるが、金属珪素板と炭化珪素焼結体との間の接触が少なく開放部分が大きいと、金属珪素の揮発が多くなり、染み出しや位置ズレが生じやすく、また空隙も発生し易い。本発明のように、一旦金属珪素層を形成することで揮発を抑えることが可能となる。 In this way, seepage and misalignment can be suppressed by reducing the surface roughness and increasing the contact between the metal silicon layer and the silicon carbide sintered body, thereby reducing the volatilization of metal silicon by heat treatment in vacuum. It seems that it can be suppressed. Such an effect seems to be obtained even if the metal silicon plate is used for bonding without forming the metal silicon layer, but there is little contact between the metal silicon plate and the silicon carbide sintered body and the open part. If it is large, the volatilization of the metal silicon increases, so that bleeding and positional deviation are likely to occur, and voids are also likely to occur. As in the present invention, volatilization can be suppressed by once forming a metal silicon layer.

金属珪素層の形成は、CVD、PVD、溶射等の通常の成膜方法を用いることができる。また、金属粉末や金属板を溶融させても良い。さらに、金属珪素層に研削加工を施して、その厚さを調整することが好ましい。研削加工により、金属珪素層の表面を研削して、酸化膜や炭化膜等の溶融を阻害するような層を除去することにより溶融がスムーズに起こる。さらに好ましくは、金属珪素層の表面粗さについても0.6μm以下とすることが望ましい。第二の炭化珪素焼結体の接合面との接触が増えるので、金属珪素の揮発が抑えられ、接合強度及び気密性を高めることができる。 The metal silicon layer can be formed by a normal film forming method such as CVD, PVD, or thermal spraying. Further, a metal powder or a metal plate may be melted. Furthermore, it is preferable to adjust the thickness by grinding the metal silicon layer. By grinding, the surface of the metal silicon layer is ground to remove the layer that hinders the melting of the oxide film, the carbide film, etc., so that melting occurs smoothly. More preferably, the surface roughness of the metal silicon layer is also set to 0.6 μm or less. Since contact with the joint surface of the second silicon carbide sintered body increases, volatilization of metal silicon can be suppressed, and joint strength and airtightness can be improved.

また、金属珪素層は、相対密度90%以上とすることが望ましい。これは、相対密度が小さいと、接合層に気泡を含み易くなり接合強度が低下するためである。相対密度が低い場合は、熱処理時に染み出しが多くなることが分かっている。これは、内部に気泡を含むことにより濡れ性が著しく変化するためと思われる。 Moreover, it is desirable that the metal silicon layer has a relative density of 90% or more. This is because if the relative density is small, the bonding layer tends to contain bubbles and the bonding strength is lowered. It has been found that when the relative density is low, there is a large amount of seepage during heat treatment. This seems to be because wettability changes remarkably by including bubbles inside.

炭化珪素接合体の接合層は、30〜150μmの厚さを有することが望ましい。上記の表面粗さ及び相対密度に加えて、接合層の厚さをこのような範囲に調整することにより、接合強度に優れた接合体を得ることができる。 The bonding layer of the silicon carbide bonded body preferably has a thickness of 30 to 150 μm. In addition to the above surface roughness and relative density, a bonded body having excellent bonding strength can be obtained by adjusting the thickness of the bonding layer to such a range.

さらに本発明の炭化珪素接合体は、JISR1624に準拠した4点曲げ強度が250MPa以上である。上記のように、金属珪素層の形成、接合面の表面粗さ、相対密度及び接合層厚さを調整することにより、このような炭化珪素接合体を得ることができる。 Further, the silicon carbide joined body of the present invention has a four-point bending strength of 250 MPa or more in accordance with JIS R1624. As described above, such a silicon carbide bonded body can be obtained by adjusting the formation of the metal silicon layer, the surface roughness of the bonding surface, the relative density, and the bonding layer thickness.

また、本発明は、第一及び第二の炭化珪素焼結体の各接合面を表面粗さRa0.6μm以下に加工する工程と、第一の炭化珪素焼結体の接合面に、相対密度90%以上且つ50〜200μmの厚さを有する金属珪素層を形成する工程と、第二の炭化珪素焼結体の接合面と前記金属珪素層とを当接し、真空中で1410〜1500℃の範囲の温度で熱処理する工程と、からなる、炭化珪素接合体の製造方法を提供する。 The present invention also includes a step of processing each bonding surface of the first and second silicon carbide sintered bodies to a surface roughness Ra of 0.6 μm or less, and a relative density on the bonding surface of the first silicon carbide sintered body. The step of forming a metal silicon layer having a thickness of 90% or more and a thickness of 50 to 200 μm , the bonding surface of the second silicon carbide sintered body and the metal silicon layer are brought into contact with each other , and are heated at 1410 to 1500 ° C. in vacuum. And a step of heat-treating at a temperature within a range .

上述のように、炭化珪素焼結体の各接合面の表面粗さを小さくすることにより、炭化珪素焼結体表面の酸化保護膜による金属珪素の濡れ性の悪化を抑え、また、金属珪素の雰囲気への開放部を少なくできるので熱処理時の揮発を防止でき、接合強度及び気密性の高い接合体を得ることができる。 As described above, by reducing the surface roughness of each joint surface of the silicon carbide sintered body, deterioration of the wettability of the metal silicon by the oxidation protective film on the surface of the silicon carbide sintered body is suppressed, Since the number of open portions to the atmosphere can be reduced, volatilization during heat treatment can be prevented, and a bonded body with high bonding strength and airtightness can be obtained.

金属珪素層は、50〜200μmの厚さを有する。このような範囲であれば、接合強度及び気密性の高い接合体を得ることができまた、空隙や染み出しの発生を少なくすることができる。 Metal silicon layer has a thickness of 50 to 200 [mu] m. With such a range, it is possible to obtain a bonding strength and airtight assembly, also, it is possible to reduce the occurrence of voids and exudation.

本発明では、熱処理後に炭化珪素焼結体の接合面間に形成された接合層の厚さが、前記金属珪素層の50〜80%である。焼結体の表面粗さ及び金属珪素層の相対密度を調整することにより接合層の空隙をなくし、染み出しを抑えることができることから、接合前後での寸法変化を小さくすることができる。また、中空構造を有する接合体であっても中空部への染み出しによる閉塞が生じないので、接合後の加工が困難な中空部であっても優れた形状精度を達成できる。 In the present invention, the thickness of the bonding layer formed between the bonding surfaces of the silicon carbide sintered body after the heat treatment is 50 to 80% of the metal silicon layer. By adjusting the surface roughness of the sintered body and the relative density of the metal silicon layer, voids in the bonding layer can be eliminated and bleeding can be suppressed, so that dimensional changes before and after bonding can be reduced. Moreover, even if it is a joined body which has a hollow structure, obstruction | occlusion by the oozing to a hollow part does not arise, Therefore Even if it is a hollow part which is difficult to process after joining, the outstanding shape precision can be achieved.

接合後の位置ズレが小さく、また、接合強度及び気密性が高く、中空部を有する場合でも中空部の形状精度に優れた接合体が得られる炭化珪素焼結体の接合方法を提供することができる。 Provided is a method for joining silicon carbide sintered bodies in which a positional deviation after joining is small, joining strength and airtightness are high, and a joined body having a hollow portion having excellent shape accuracy can be obtained even when the hollow portion is provided. it can.

以下、図面を参照して本発明の炭化珪素焼結体の接合方法について、より詳細に説明する。図1は、本発明の接合方法を示した概略図である。 Hereinafter, the silicon carbide sintered body joining method of the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic view showing a joining method of the present invention.

図1(A)は第一の炭化珪素焼結体11及び第二の炭化珪素焼結体12、並びにその接合面11a及び12aを示している。 FIG. 1 (A) shows the first silicon carbide sintered body 11 and the second silicon carbide sintered body 12 and their joint surfaces 11a and 12a.

炭化珪素焼結体11及び12は、プレス成形、CIP成形、鋳込み成形等の成形方法、及び常圧焼結、加圧焼結、反応焼結等の焼結方法により作製できる。接合面11a及び12aの表面粗さは、平面研削機、マシニングセンタ等により研削し、さらにラップ加工等により調整することができる。 Silicon carbide sintered bodies 11 and 12 can be produced by a molding method such as press molding, CIP molding, and cast molding, and a sintering method such as atmospheric pressure sintering, pressure sintering, and reaction sintering. The surface roughness of the joint surfaces 11a and 12a can be adjusted by grinding with a surface grinder, machining center or the like, and further by lapping or the like.

図1(B)は、第一の炭化珪素焼結体11の接合面11aに金属珪素層13を形成した様子を示している。金属珪素層の形成は、上述のように、スパッタリング、CVD、PVD、溶射等の通常の成膜の他、金属粉末や金属板を溶融させても良い。 FIG. 1B shows a state in which the metal silicon layer 13 is formed on the joint surface 11 a of the first silicon carbide sintered body 11. As described above, the metal silicon layer may be formed by melting metal powder or a metal plate in addition to normal film formation such as sputtering, CVD, PVD, and thermal spraying.

金属珪素層の相対密度の調整方法としては、スパッタリング法では、金属珪素をターゲットとし、希ガスのイオン化電圧と成膜する接合面のターゲット間距離を制御することで、相対密度90%以上の蒸着膜を形成できる。CVD法では、ターゲット基板となる接合面の温度制御、気相ガスの濃度および流量等を、接合面の大きさによって、適宜、調整する。溶融させる方法では、加熱時の真空度によって、調整できる。100kPa程度の真空度で、相対密度90%以上の金属珪素層を得ることができる。熱処理温度は金属珪素が溶融する1410〜1500℃とし、熱処理時間は10〜60分とすることが好ましい。 As a method for adjusting the relative density of the metal silicon layer, the sputtering method uses metal silicon as a target, and controls the ionization voltage of the rare gas and the distance between the targets on the bonding surface to form a film, thereby depositing a relative density of 90% or more. A film can be formed. In the CVD method, the temperature control of the bonding surface serving as the target substrate, the concentration and flow rate of the gas phase gas, and the like are appropriately adjusted according to the size of the bonding surface. The melting method can be adjusted by the degree of vacuum during heating. A metal silicon layer having a relative density of 90% or more can be obtained with a degree of vacuum of about 100 kPa. The heat treatment temperature is preferably 1410 to 1500 ° C. at which metal silicon melts, and the heat treatment time is preferably 10 to 60 minutes.

金属珪素層の厚さの調整方法としては、スッパッタリング法およびCVD法では、成膜レートから、時間により厚さを制御する。溶融させる方法では、金属珪素粉末を用いる時は、粉末充填率から溶融後の厚さを計算で求めることで、制御できる。 As a method for adjusting the thickness of the metal silicon layer, in the sputtering method and the CVD method, the thickness is controlled by time from the film formation rate. In the melting method, when metal silicon powder is used, it can be controlled by calculating the thickness after melting from the powder filling rate.

なお、金属珪素層に対して、必要に応じ加工して厚さ等の形状を調整しても良い。このように加工を施すことにより、他方の炭化珪素焼結体との十分な強度で気密な接合が可能となる。金属珪素層の厚さを50〜200μmとすることにより、位置ズレにより一部の箇所に隙間が生じることなく確実に接合することが可能となる。また、接合材の染み出しを抑えられるので、精度不良や微細穴の閉塞等の不具合が起きることを防ぐことができ中空部を有する場合でも中空部の形状精度に優れた接合体を得ることができる。 The metal silicon layer may be processed as necessary to adjust the shape such as thickness. By processing in this way, airtight bonding with sufficient strength with the other silicon carbide sintered body becomes possible. By setting the thickness of the metal silicon layer to 50 to 200 μm, it is possible to reliably bond without causing a gap in a part of the position due to the positional deviation. In addition, since the bleeding of the bonding material can be suppressed, it is possible to prevent inconveniences such as inaccuracy and blockage of fine holes, and it is possible to obtain a bonded body having excellent hollow portion shape accuracy even when it has a hollow portion. it can.

金属珪素の純度としては、97%以上、より好ましくは99%以上、さらに望ましくは、99.9%以上の高純度のものを使用することが望ましい。不純物が多いと溶融温度が低下し、染み出し等の不具合が生じるためである。 The purity of the metal silicon is preferably 97% or more, more preferably 99% or more, and still more preferably 99.9% or more. This is because when there are many impurities, the melting temperature is lowered, and problems such as seepage occur.

次に、第二の炭化珪素焼結体12の接合面12aを金属珪素層13に当接し、加熱して接合する。金属珪素層13は、第一の炭化珪素焼結体11に形成されているため、例えば、図2のような曲面で接合する場合であっても、不具合なく接合体を得ることができる。接合材として金属珪素粉末や金属珪素板を用いた場合は、溶融させると、金属珪素が曲面に沿って流れ出たり、液溜まりが生じたりして、空隙等の接合不良が生じるおそれがある。一方、本発明では、金属珪素が染み出し難く、また空隙無く接合することができる。 Next, the bonding surface 12a of the second silicon carbide sintered body 12 is brought into contact with the metal silicon layer 13 and is heated and bonded. Since the metal silicon layer 13 is formed on the first silicon carbide sintered body 11, for example, even when joining with a curved surface as shown in FIG. 2, a joined body can be obtained without any problems. When a metal silicon powder or a metal silicon plate is used as the bonding material, when melted, the metal silicon flows out along the curved surface or a liquid pool is generated, which may cause a bonding failure such as a gap. On the other hand, in the present invention, metallic silicon is difficult to bleed out and can be joined without voids.

接合工程の加熱も金属珪素層の形成工程と同様に、真空中が好ましく、熱処理温度は金属珪素が溶融する1410〜1500℃とし、熱処理時間は30〜60分とすることが好ましい。また、接合時には、4〜20g/cmの荷重をかけることが望ましい。これよりも大きな荷重をかけると接合部に炭化珪素が生じて接合強度が低下しやすいので好ましくない。 As in the metal silicon layer forming step, the heating in the bonding step is preferably in vacuum, the heat treatment temperature is preferably 1410 to 1500 ° C. at which the metal silicon melts, and the heat treatment time is preferably 30 to 60 minutes. Moreover, it is desirable to apply a load of 4 to 20 g / cm 2 at the time of joining. When a load larger than this is applied, silicon carbide is generated at the joint and the joint strength is likely to be lowered, which is not preferable.

図1(C)は本発明の接合方法により得られた接合体を示す。接合面間に形成された接合層14の厚さが、前記金属珪素層の50〜80%である。焼結体の表面粗さ及び金属珪素層の相対密度を調整することにより接合層の空隙をなくし、染み出しを抑えることができることから、接合前後での寸法変化を小さくすることができる。 FIG. 1C shows a joined body obtained by the joining method of the present invention. The thickness of the bonding layer 14 formed between the bonding surfaces is 50 to 80% of the metal silicon layer. By adjusting the surface roughness of the sintered body and the relative density of the metal silicon layer, voids in the bonding layer can be eliminated and bleeding can be suppressed, so that dimensional changes before and after bonding can be reduced.

以下、接合強度及び気密性についての試験例を示して、本発明を説明する。 Hereinafter, the present invention will be described with reference to test examples of bonding strength and airtightness.

炭化珪素焼結体は、市販の炭化珪素粉末(シュタルク社製UF−10)を用い、CIP法により成形、アルゴン中2100℃で焼成した。図3に示したような炭化珪素焼結体(炭化珪素焼結体31:φ50mm、厚さ25mm、ザグリ31b:φ5、深さ2mm、炭化珪素焼結体32:φ50mm、厚さ25mm)を作製した。これらの形状加工は、平面研削、マシニングセンタ等の公知の方法により行い、接合面の表面粗さを調整した。 The silicon carbide sintered body was formed by a CIP method using a commercially available silicon carbide powder (UF-10 manufactured by Stark) and fired at 2100 ° C. in argon. A silicon carbide sintered body (silicon carbide sintered body 31: φ50 mm, thickness 25 mm, counterbore 31b: φ5, depth 2 mm, silicon carbide sintered body 32: φ50 mm, thickness 25 mm) as shown in FIG. 3 is produced. did. These shape processings were performed by a known method such as surface grinding or a machining center to adjust the surface roughness of the joint surface.

次に、金属珪素層を形成する方法について説明する。CVD法としては、CVD成膜装置を用いて、原料ガスとしてはSiCl、キャリヤーガスとしては水素とし、原料ガス濃度を20%で、接合面となる基板温度を制御することで、金属珪素層を成膜し、その相対密度を調整した。成膜厚さは、50μmとした。溶融させて形成する方法としては、純度99.99%、厚さ0.5mmのシリコンウエハを、φ50mmに切断し、中心にφ5mmの貫通穴に設け、接合面に載置し、真空中、1450℃、10分間、熱処理を実施した。溶融した金属珪素層は、平面研削、マシニングセンタ等の公知の方法により行い、金属珪素層厚さを調整した。 Next, a method for forming the metal silicon layer will be described. As the CVD method, using a CVD film forming apparatus, SiCl 4 is used as the source gas, hydrogen is used as the carrier gas, the source gas concentration is 20%, and the substrate temperature serving as the bonding surface is controlled, whereby the metal silicon layer The relative density was adjusted. The film thickness was 50 μm. As a method of melting, a silicon wafer having a purity of 99.99% and a thickness of 0.5 mm is cut to φ50 mm, provided in a through hole of φ5 mm in the center, placed on the bonding surface, and 1450 in vacuum. Heat treatment was carried out at 10 ° C. for 10 minutes. The molten metal silicon layer was subjected to a known method such as surface grinding, machining center or the like to adjust the metal silicon layer thickness.

以上の方法により、炭化珪素焼結体の接合面の表面粗さ及び金属珪素層の相対密度を変化させて、接合体の作製を行った。また、比較のため、接合材として上記した金属珪素粉末と、金属珪素板(厚さ0.2mm)を用いて、金属珪素層を形成せずに接合体を作製した。 By the above method, the bonded body was manufactured by changing the surface roughness of the bonded surface of the silicon carbide sintered body and the relative density of the metal silicon layer. For comparison, a bonded body was prepared using the metal silicon powder described above as a bonding material and a metal silicon plate (thickness 0.2 mm) without forming a metal silicon layer.

接合層については、切断面を光学顕微鏡観察し、その厚さ及び中空部を調べた。接合強度は、接合体から試験片(3mm×4mm×40mm)を切り出して、下部スパン30mm、上部スパン10mmの4点曲げ試験(JISR1624準拠)を行い、接合強度を求めた。気密性の試験は、JISZ2331に準拠し、ボンビング法により行った。中空部の観察については、接合体を、φ5、深さ2mmの中空部を通過するように切断し、目視により、中空部の金属珪素による閉塞の有無を観察した。結果を表1に示す。 About the joining layer, the cut surface was observed with the optical microscope, and the thickness and hollow part were investigated. For the bonding strength, a test piece (3 mm × 4 mm × 40 mm) was cut out from the bonded body, and a four-point bending test (JISR1624 compliant) with a lower span of 30 mm and an upper span of 10 mm was performed to determine the bonding strength. The airtightness test was performed by a bombing method in accordance with JISZ2331. Regarding the observation of the hollow part, the joined body was cut so as to pass through the hollow part having a diameter of 5 mm and a depth of 2 mm, and the presence or absence of clogging of the hollow part with metallic silicon was visually observed. The results are shown in Table 1.

Figure 0005198171
Figure 0005198171

本発明の範囲内であるNo.1〜10、16〜19、及びNo.21〜23では、接合強度が253〜284MPaと、250MPa以上の高い値を示した。金属珪素層形成にCVDを用いたNo.1〜10では、253〜284MPaと、250MPa以上の値を示した。また、溶融法を用いたNo.16〜19、及びNo.21〜23では、274〜281MPaと270MPa以上の値を示した。なお、これらの接合層の厚さは32〜135μmであり、30〜150μmを満たしていた。 In No.1-10, 16-19, and No.21-23 which are in the scope of the present invention, the bonding strength was 253 to 284 MPa and a high value of 250 MPa or more. In No.1-10 which used CVD for metal silicon layer formation, the value of 253-284MPa and 250MPa or more was shown. In addition, No. 1 using a melting method. In 16-19 and No.21-23, the value of 274-281 MPa and 270 MPa or more was shown. In addition, the thickness of these joining layers was 32-135 micrometers, and satisfy | filled 30-150 micrometers.

一方、接合面の表面粗さの大きいNo.11〜13、No.20では、接合層に空隙が認められ、接合強度が200MPaに満たない低い値を示した。特に、表面粗さが1.20μmであるNo.13では、巨大な空隙が存在し、未接合部が認められた。接合面の表面粗さが悪いことにより、炭化珪素接合面の酸化膜の影響が顕著となり、金属珪素層の濡れ性が低下し、また金属珪素の揮発が多くなったため、空隙が発生したと考えられる。 On the other hand, in No.11-13 and No.20 with large surface roughness of a joining surface, a space | gap was recognized by the joining layer and the joining strength showed the low value which is less than 200 MPa. In particular, in No. 13 having a surface roughness of 1.20 μm, huge voids existed and unbonded portions were observed. Poor surface roughness of the bonding surface makes the influence of the oxide film on the silicon carbide bonding surface prominent, lowering the wettability of the metal silicon layer, and increasing the volatilization of the metal silicon. It is done.

また、金属珪素層の相対密度が小さいNo.14では、接合層に空隙が認められ、接合強度が100MPaと低い値を示した。これは、相対密度が小さいため、接合層に気泡を多く含んだためである。 In No. 14, where the relative density of the metal silicon layer was small, voids were observed in the bonding layer, and the bonding strength was as low as 100 MPa. This is because the bonding layer contains many bubbles because the relative density is small.

金属珪素層を形成せずに接合を行ったNo.25、26では、接合強度が100MPa以下と低い値を示した。 In No. 25 and 26 which joined without forming a metal silicon layer, joining strength showed the low value of 100 Mpa or less.

気密性及び中空部については、本発明の範囲内であるNo.1〜10、及び16〜19、及び21〜23では、等価基準リーク量が、1×10−6Pa・m/sより小さく、漏れは認められなかった。また、中空部に閉塞は認められなかった。 Regarding the airtightness and the hollow portion, in Nos. 1 to 10, and 16 to 19, and 21 to 23, which are within the scope of the present invention, the equivalent reference leak amount is from 1 × 10 −6 Pa · m 3 / s. Small and no leakage was observed. Further, no blockage was observed in the hollow part.

一方、本発明の範囲外であるNo.11〜15、20、25、26では、等価基準量が、1×10−6Pa・m/s以上であり、Heリークが認められた。
リークの原因は、No.11〜13、20では、接合面の表面粗さが、0.6μm以上であるため、金属珪素との濡れ性が悪く、接合層に空隙が形成されたためと思われる。No.14では、接合層の相対密度が低く、No.15では、金属珪素層が薄いために、接合面に隙間が生じたと考えられる。
On the other hand, in Nos. 11-15, 20, 25, and 26, which are outside the scope of the present invention, the equivalent reference amount is 1 × 10 −6 Pa · m 3 / s or more, and a He leak was observed.
The cause of the leak seems to be that in Nos. 11 to 13 and 20, since the surface roughness of the bonding surface is 0.6 μm or more, the wettability with the metal silicon is poor and voids are formed in the bonding layer. . In No. 14, the relative density of the bonding layer was low, and in No. 15, the metal silicon layer was thin.

さらに、No.24〜26では、接合体の切断面の中空部観察において、中空部の閉塞が認めれられた。No.24では、気密試験による漏れはなかったものの、金属珪素層が厚いために、余剰の金属珪素が中空部に染み出したものと思われる。金属珪素層を形成していないNo.25及び26では、金属珪素の揮発が多くなるため、染み出し、位置ズレ及び空隙が発生したためと考えられる。 Furthermore, in No. 24-26, obstruction | occlusion of the hollow part was recognized in the hollow part observation of the cut surface of a conjugate | zygote. In No. 24, although there was no leakage by the airtight test, it seems that excess metal silicon oozes out into the hollow portion because the metal silicon layer is thick. In Nos. 25 and 26 in which the metal silicon layer is not formed, the volatilization of the metal silicon is increased, which is considered to be due to seepage, positional deviation, and voids.

本発明の接合方法を示した概略図。Schematic which showed the joining method of this invention. 本発明の接合方法の適用例を示した概略図。Schematic which showed the example of application of the joining method of this invention. 実施例の炭化珪素接合体形状を示した概略図。Schematic which showed the silicon carbide joined body shape of the Example.

符号の説明Explanation of symbols

10;接合体
11、12;炭化珪素焼結体
11a、12a;接合面
13;金属珪素層
14;接合層
10; Bonded bodies 11 and 12; Silicon carbide sintered bodies 11a and 12a; Bonded surface 13; Metal silicon layer 14;

Claims (2)

第一及び第二の炭化珪素焼結体の各接合面を表面粗さRa0.6μm以下に加工する工程と、
第一の炭化珪素焼結体の接合面に、相対密度90%以上且つ50〜200μmの厚さを有する金属珪素層を形成する工程と、
第二の炭化珪素焼結体の接合面と前記金属珪素層とを当接し、真空中で1410〜1500℃の範囲の温度で熱処理する工程と、
からなる、炭化珪素接合体の製造方法。
A step of processing each bonding surface of the first and second silicon carbide sintered bodies to a surface roughness Ra of 0.6 μm or less;
Forming a metal silicon layer having a relative density of 90% or more and a thickness of 50 to 200 μm on the bonding surface of the first silicon carbide sintered body;
Contacting the joint surface of the second silicon carbide sintered body and the metal silicon layer, and heat-treating in vacuum at a temperature in the range of 1410 to 1500 ° C . ;
A method for producing a silicon carbide joined body comprising:
熱処理後に、炭化珪素焼結体の接合面間に形成された接合層の厚さが、前記金属珪素層の50〜80%である請求項1に記載の炭化珪素接合体の製造方法。 2. The method for manufacturing a silicon carbide bonded body according to claim 1 , wherein a thickness of a bonding layer formed between bonded surfaces of the silicon carbide sintered body after heat treatment is 50 to 80% of the metal silicon layer.
JP2008191039A 2008-07-24 2008-07-24 Method for manufacturing silicon carbide joined body Active JP5198171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008191039A JP5198171B2 (en) 2008-07-24 2008-07-24 Method for manufacturing silicon carbide joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008191039A JP5198171B2 (en) 2008-07-24 2008-07-24 Method for manufacturing silicon carbide joined body

Publications (2)

Publication Number Publication Date
JP2010024122A JP2010024122A (en) 2010-02-04
JP5198171B2 true JP5198171B2 (en) 2013-05-15

Family

ID=41730277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008191039A Active JP5198171B2 (en) 2008-07-24 2008-07-24 Method for manufacturing silicon carbide joined body

Country Status (1)

Country Link
JP (1) JP5198171B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9868276B2 (en) 2011-11-29 2018-01-16 Corning Incorporated Method of treating joint in ceramic assembly
JP6269259B2 (en) * 2014-03-31 2018-01-31 ブラザー工業株式会社 Method for manufacturing liquid ejecting apparatus, liquid ejecting apparatus, and liquid repellent layer forming method
JP2018135220A (en) * 2015-06-01 2018-08-30 株式会社日立製作所 Silicon carbide ceramic joined body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016877A (en) * 1998-04-28 2000-01-18 Bridgestone Corp Production of bonded silicon carbide
JP2002104884A (en) * 2000-09-28 2002-04-10 Ibiden Co Ltd Method of manufacturing ceramic member, method of manufacturing table for wafer polishing device

Also Published As

Publication number Publication date
JP2010024122A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
KR100900015B1 (en) Substrate supporting member
US9685356B2 (en) Substrate support assembly having metal bonded protective layer
JP5951791B2 (en) Method of joining materials, plate and shaft device, and multilayer plate formed using the same
US10471531B2 (en) High temperature resistant silicon joint for the joining of ceramics
JP6903262B2 (en) How to repair equipment parts used in semiconductor processing
US20220347799A1 (en) Bonding member, method for producing bonding member and method for producing bonding structure
JP2006225260A (en) Joined product and its manufacturing method
JP5198171B2 (en) Method for manufacturing silicon carbide joined body
US20190291199A1 (en) Semiconductor Processing Equipment With High Temperature Resistant Nickel Alloy Joints And Methods For Making Same
JP6284164B2 (en) Junction structure and manufacturing method of junction structure
JP4252231B2 (en) Manufacturing method of semiconductor wafer support member assembly and semiconductor wafer support member assembly
KR100787928B1 (en) Method of joining of ti and dissimilar metal using ag diffusion control layer
EP3968369A1 (en) Heat radiation member and method for producing same
US20190066980A1 (en) Ceramic Material Assembly For Use In Highly Corrosive Or Erosive Semiconductor Processing Applications
JP2013091603A (en) Method of manufacturing silicon carbide joined body
KR20130099792A (en) Heterostructure for cooling and method of fabricating the same
JP5324945B2 (en) Silicon carbide bonded body and method for manufacturing the same
US20140014710A1 (en) Method For Hermetically Joining Ceramic Materials Using Brazing Of Pre-Metallized Regions
JP2010173922A (en) Silicon carbide joined body and method for producing the same
JP2519578B2 (en) Method of joining metal member and ceramics or cermet member
JP2012082095A (en) Method of joining two or more ceramic members mutually
JP5209356B2 (en) Al alloy-ceramic composite material joining method and joined body using the same
JP2013075800A (en) METHOD FOR JOINING B4C/Si COMPOSITE MATERIAL BODY AND B4C/Si COMPOSITE MATERIAL JOINED BODY
JP2017105682A (en) Bonding method of metal member and ceramic member
WO2023243225A1 (en) Bonded material of crystalline graphite material and metallic material, and production method therefor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5198171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250