KR100787928B1 - Method of joining of ti and dissimilar metal using ag diffusion control layer - Google Patents

Method of joining of ti and dissimilar metal using ag diffusion control layer Download PDF

Info

Publication number
KR100787928B1
KR100787928B1 KR1020070013849A KR20070013849A KR100787928B1 KR 100787928 B1 KR100787928 B1 KR 100787928B1 KR 1020070013849 A KR1020070013849 A KR 1020070013849A KR 20070013849 A KR20070013849 A KR 20070013849A KR 100787928 B1 KR100787928 B1 KR 100787928B1
Authority
KR
South Korea
Prior art keywords
control layer
diffusion control
titanium
dissimilar metal
joints
Prior art date
Application number
KR1020070013849A
Other languages
Korean (ko)
Inventor
이민구
이정구
이창규
이희민
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020070013849A priority Critical patent/KR100787928B1/en
Priority to JP2007202824A priority patent/JP2008194750A/en
Application granted granted Critical
Publication of KR100787928B1 publication Critical patent/KR100787928B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

A method for preventing embrittlement of joints of Ti and dissimilar metal and improving inherent strength of the joints by using an Ag diffusion control layer is provided, wherein the method is usefully used in brazing of the Ti and dissimilar metal by suppressing the generation of an intermetallic compound with high brittleness on the joints, thereby preventing embrittlement of the joints and improving toughness of the joints. A method for preventing embrittlement of joints of Ti and dissimilar metal and improving adhesion of the joints by using an Ag diffusion control layer(B) comprises the steps of: forming an Ag diffusion control layer on a Ti base metal(A1); positioning an insert material between the Ti base metal having the Ag diffusion control layer formed thereon and a dissimilar metal; and heating the Ti base metal and the dissimilar metal to at least a melting temperature of the positioned insert material to bond the Ti base metal and the dissimilar metal. The Ag diffusion control layer is formed by a method selected from the group consisting of coating, deposition and cladding. The insert material is positioned by positioning the dissimilar metal on the insert material after placing the insert material on the Ti base metal having the Ag diffusion control layer formed thereon. The insert material is positioned by coating the insert material on the Ti base metal having the Ag diffusion control layer formed thereon, or on the dissimilar metal.

Description

은 확산 제어층을 이용한 티타늄과 이종 금속 접합부의 취성 방지 및 접합력 향상 방법{Method of joining of Ti and dissimilar metal using Ag diffusion control layer}Method of joining of Ti and dissimilar metal using Ag diffusion control layer}

도 1은 은(Ag)-구리(Cu)간 상태도이고, 1 is a state diagram between silver (Ag) and copper (Cu),

도 2는 본 발명에 따른 확산 제어층을 이용한 티타늄 모재와 이종 금속의 접합방법의 모식도이고, 2 is a schematic diagram of a method of bonding a titanium base material and a dissimilar metal using a diffusion control layer according to the present invention;

도 3은 본 발명의 일실시예에 따른 티타늄에 은 확산 제어층을 증착하고 구리와 접합 후 접합부의 미세조직을 나타내는 사진이며, 3 is a photograph showing a microstructure of a junction after depositing a silver diffusion control layer on titanium and bonding with copper according to an embodiment of the present invention,

도 4는 본 발명의 일비교예에 따른 티타늄에 은 확산 제어층이 없이 구리와 접합 후 접합부의 미세조직을 나타내는 사진이다. Figure 4 is a photograph showing the microstructure of the junction after bonding with copper without a silver diffusion control layer in accordance with a comparative example of the present invention.

<주요 부호에 대한 간단한 설명><Short description of the major marks>

A1: 티타늄 모재A1: titanium base material

A1-1: 확산 제어층이 형성된 티타늄A1-1: Titanium with Diffusion Control Layer

A2: 구리A2: copper

B: 은 확산 제어층B: silver diffusion control layer

C: 삽입재C: Insert

D1: 가열 수단D1: heating means

D2: 가열 수단D2: heating means

a: Ti S.S. (Ti-rich)a: Ti S.S. (Ti-rich)

b: Ti2Cub: Ti 2 Cu

c: TiCuc: TiCu

d: Ti3Cu4d: Ti 3 Cu 4

e: TiCu2(또는 Ti2Cu3)e: TiCu 2 (or Ti 2 Cu 3 )

f: TiCu4 f: TiCu 4

g: Ag-richg: Ag-rich

f: Cu(Ti,Ag)f: Cu (Ti, Ag)

i: Cu-richi: Cu-rich

α: TiAgα: TiAg

β: Agβ: Ag

γ: Cu S.S.(Cu-rich)γ: Cu S.S. (Cu-rich)

δ: Ag S.S.(Ag-rich)δ: Ag S.S. (Ag-rich)

본 발명은 은 확산 제어층을 이용한 티타늄과 이종 금속 접합부의 취성 방지 및 접합력 향상 방법에 관한 것이다.The present invention relates to a method of preventing brittleness and bonding strength of titanium and dissimilar metal joints using a silver diffusion control layer.

현재 건축물; 자동차, 선박, 비행기, 열차 등의 수송기기를 포함하는 구조물; 각종 배관; 및 파이프류 등에는 금속 또는 합금 간의 접합이 필요한 기기부품이 많이 존재한다. 이러한 금속 및 합금 간의 접합에는 대부분 고온 용융 접합을 이용한 용접 방식이 사용되고 있다. Current architecture; Structures including transportation equipment such as automobiles, ships, airplanes, and trains; Various piping; And pipes, etc., there are many component parts that require joining between metals or alloys. Most of the welding between the metal and the alloy is a welding method using a high temperature melt bonding.

그러나 용융 접합 및 용접은 작업 온도가 높아 입자 조대화 등의 주위 모재의 조직을 변화시켜 기계적 물성을 저하시키는 문제점을 나타내고 있을 뿐 아니라 고온 처리에 의한 내부 응력 형성으로 인해 응력부식균열(SCC) 등의 문제를 발생시키고 있다. 이러한 점을 고려하여 최근에는 이러한 구조 부품의 금속 및 합금 간에 충분한 인장강도 및 접착강도, 그리고 우수한 누설 방지(leak tight) 특성을 부여하고 현장 적용이 가능한 비용융 방식을 이용한 저온 고상 접합 기술에 대한 연구가 활발히 진행되고 있다. 이러한 고상 접합 기술 중 하나인 브레이징 기술은 최근 세라믹이나 고온용 재료 등의 신소재에 적용하기 위한 연구가 활발히 이루어지고 있으며 브레이징 접합 방법은 용융 접합과 비교하여 모재의 기계적 물성에 영향을 주지 않으면서 내부 열응력 측면에서도 매우 바람직한 효과를 나타내고 있다.However, melt bonding and welding have a problem of deteriorating the mechanical properties by changing the structure of the surrounding base material such as grain coarsening due to the high working temperature, and stress corrosion cracking (SCC) due to internal stress formation by high temperature treatment. It is causing a problem. Considering this point, the research on low-temperature solid-state joining technology using a non-melting method that provides sufficient tensile strength and adhesive strength and excellent leak tight characteristics between metals and alloys of such structural parts and is applicable in the field Is actively underway. Brazing technology, one of these solid-state joining technologies, has been actively researched to be applied to new materials such as ceramics and high temperature materials. In terms of stress, a very desirable effect is shown.

하지만 브레이징 접합 방법으로 동종이 아닌 이종 금속 및 합금을 접합할 때에는 대부분 접합하려는 두 모재 성분간의 금속간 화합물(intermetallic phase)이 접합부에 생성되어 접합부의 인성을 낮추는 문제가 있다. 이는 브레이징 접합 시에 용융된 삽입재 안으로 접합하려는 두 이종 금속 혹은 합금 성분이 다량 용해(dissolution)되고 냉각 시 이 두 성분간의 금속간 화합물이 생성되기 때문이다. 예를 들어 티타늄 브레이징시 이용되는 은-구리-티타늄계 삽입재를 사용하여 티타늄-구리 간의 이종 브레이징 접합을 하게 되면 접합부에 Ti2Cu, TiCu, Cu3Cu4, Ti2Cu3, TiCu2, TiCu4 등의 티타늄-구리간 금속간 화합물이 접합부에 형성되기 때문에 접합부의 인성이 낮아져 티타늄-구리간 접합물의 강도 저하를 유발한다.However, when joining dissimilar metals and alloys which are not homogeneous by the brazing joining method, there is a problem in that an intermetallic phase between two base material components to be joined is generated at the joint, thereby lowering the toughness of the joint. This is because at the time of brazing bonding, two dissimilar metals or alloying components to be joined into the molten insert are dissolved in large quantities and an intermetallic compound between the two components is produced upon cooling. For example, when hetero-brazing bonding between titanium and copper using a silver-copper-titanium-based insert used for titanium brazing, Ti 2 Cu, TiCu, Cu 3 Cu 4 , Ti 2 Cu 3 , TiCu 2 , Since a titanium-copper intermetallic compound such as TiCu 4 is formed at the junction, the toughness of the junction is lowered, causing a decrease in strength of the titanium-copper junction.

이에, 본 발명자들은 티타늄 이종 금속 브레이징 접합시 금속간 화합물의 생성을 억제하기 위하여 연구하던 중, 티타늄 모재 위에 은(Ag) 확산 제어층을 형성시킴으로써 티타늄 이종 금속 브레이징 접합시 접합부에 취성(brittleness)이 큰 금속간 화합물의 생성을 억제되어 취성 방지 및 접합부의 인성이 향상됨을 확인하고 본 발명을 완성하였다.Accordingly, while the present inventors have studied to suppress the generation of intermetallic compounds during titanium dissimilar metal brazing bonding, the inventors have formed a silver (Ag) diffusion control layer on the titanium base metal to increase brittleness in the joints during titanium dissimilar metal brazing bonding. It was confirmed that the formation of a large intermetallic compound was suppressed to improve the brittleness and the toughness of the joint, and the present invention was completed.

본 발명의 목적은 은 확산 제어층을 이용한 티타늄과 이종 금속 접합부의 취성 방지 및 접합력 향상 방법을 제공하는 데 있다.An object of the present invention is to provide a method for preventing brittleness and improving bonding strength of titanium and dissimilar metal joints using a silver diffusion control layer.

상기 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object, the present invention

티타늄 모재에 은 확산 제어층을 형성시키는 단계(단계 1);Forming a silver diffusion control layer on the titanium base material (step 1);

상기 단계 1에서 은 확산 제어층이 형성된 티타늄 모재와 이종 금속 사이에 삽입재를 위치시키는 단계(단계 2); 및Placing the insert between the titanium base material and the dissimilar metal on which the silver diffusion control layer is formed in step 1 (step 2); And

단계 2에서 삽입된 삽입재의 용융온도 이상으로 가열하여 티타늄 모재와 이종 금속을 접합하는 단계(단계 3)를 포함하여 이루어지는 은 확산 제어층을 이용한 티타늄 이종 접합부의 취성 방지 및 접합력 향상 방법을 제공한다.It provides a method of preventing brittleness and bonding strength of a titanium heterojunction using a silver diffusion control layer comprising the step (step 3) of joining a titanium base material and a dissimilar metal by heating above the melting temperature of the insert inserted in step 2.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

Ag-Cu-Ti계를 이용하여 티타늄 이종 금속 브레이징 접합을 하게 되면 용융된 삽입재로 모재인 티타늄과 구리가 다량 용해되어 접합후 접합부에는 티타늄-구리간 금속간 화합물이 생성되게 된다. 이렇게 접합부에 금속간 화합물이 생성되게 되면 접합부의 인성이 낮아지게 되어 낮은 강도에서 파괴가 일어나게 된다. 따라서 이러한 금속간 화합물의 생성을 방지해야만 접합부의 접합력을 향상시켜 접합부의 취성을 방지할 수 있다. When the titanium dissimilar metal brazing is bonded using Ag-Cu-Ti, a large amount of titanium and copper, which are the base metals, are dissolved in the molten insert, thereby forming a titanium-copper intermetallic compound at the joint. Thus, when the intermetallic compound is formed at the junction, the toughness of the junction is lowered and fracture occurs at low strength. Therefore, the formation of such an intermetallic compound should be prevented to improve the bonding strength of the joint and prevent brittleness of the joint.

이렇게 접합부의 금속간 화합물의 생성을 방지하기 위해선 브레이징 접합시 접합하려는 두 모재 중 적어도 하나 이상의 모재가 용융된 삽입재로 용해되는 것을 방지해야만 한다. In order to prevent the formation of intermetallic compounds at the joints, at least one of the two base materials to be joined must be prevented from being melted into the molten insert during brazing bonding.

본 발명에서는 이러한 점을 고려하여 티타늄 모재 위에 은 확산 제어층을 형성시켜 티타늄이 용융된 삽입재로 용해되는 것을 방지하여 브레이징 접합시 접합부 의 인성을 향상시킬 수 있는 방법을 고안하였다. 이때, 은(Ag)을 확산 제어층으로 선택한 것은 티타늄과 은 사이에 생성되는 티타늄-은 상은 다른 금속간 화합물보다 인성이 우수하다는 연구 결과가 있으며, 은-구리간에는 은-구리 상태도(도 1)에 나타낸 바와 같이, 완전 공정반응을 통해 은 및 구리 고용상(solid solution)만이 생성되고 다른 금속간 화합물은 생성되지 않으므로 접합부의 인성 향상에 큰 효과를 줄 수 있기 때문이다In view of the above, the present invention has devised a method of forming a silver diffusion control layer on the titanium base material to prevent dissolution of titanium into a molten insert, thereby improving the toughness of the joint during brazing bonding. At this time, the silver (Ag) as a diffusion control layer has a research result that the titanium-silver phase generated between the titanium and silver is better than the other intermetallic compound, silver-copper state diagram ( Fig. 1 As shown in), since the complete process reaction generates only silver and copper solid solutions and no other intermetallic compounds, it can have a great effect on the toughness of the joint.

이하, 도 2를 참조하여 본 발명을 단계별로 상세하게 설명한다.Hereinafter will be described in detail the present invention with reference to a step-by-step.

먼저, 단계 1은 티타늄 모재(A1)에 은 확산 제어층(B)을 형성시키는 단계이다.First, step 1 is a step of forming a silver diffusion control layer (B) in the titanium base material (A1).

본 발명에 있어서, 상기 은 확산 제어층(B)은 다른 금속간 화합물보다 인성이 우수하며, 티타늄 모재(A1)에 상기 은 확산 제어층(B)이 형성될 경우 티타늄(A1)이 용융된 삽입재로 용해되는 것을 방지하여 다른 금속간 화합물이 형성되는 것을 막으므로 접합부의 인성 향상에 도움을 준다.In the present invention, the silver diffusion control layer (B) has better toughness than other intermetallic compounds, and when the silver diffusion control layer (B) is formed on the titanium base material (A1), the titanium (A1) is molten inserted. It prevents the melting of ashes and prevents the formation of other intermetallic compounds, which helps to improve the toughness of the joint.

본 발명에 있어서, 상기 은 확산 제어층(B)의 형성 방법은 코팅, 증착 및 클래딩 등의 다양한 방법을 사용할 수 있으며 특별히 한정되지 않는다. In the present invention, the method for forming the silver diffusion control layer (B) can be used a variety of methods, such as coating, deposition and cladding is not particularly limited.

다음으로, 단계 2는 상기 단계 1에서 은 확산 제어층이 형성된 티타늄 모재(A1-1)와 이종 금속(A2) 사이에 삽입재(C)를 위치시키는 단계이다.Next, step 2 is a step of placing the insert (C) between the titanium base material (A1-1) and the dissimilar metal (A2) on which the silver diffusion control layer is formed in step 1.

본 발명에 있어서, 사용되는 삽입재(C)는 일반적으로 Ag-Cu-Ti계를 사용할 수 있으며, 상기 삽입재(C)의 형태는 파우더, 리본, 판재 등의 형태가 가능하나, 이에 제한되지 않는다.In the present invention, the insert (C) to be used may be generally used Ag-Cu-Ti-based, the insert (C) may be in the form of powder, ribbon, plate, etc., but is not limited thereto. Do not.

본 발명에 있어서, 상기 삽입재(C)를 위치시키는 방법으로는 특별히 제한되지 않으며, 예를 들면 은 확산 제어층이 형성된 티타늄 모재(A1-1) 위에 삽입재(C)를 위치시킨 후, 이종 금속(A2)을 그 위에 위치시키는 방법, 은 확산 제어층이 형성된 티타늄 모재(A1-1) 또는 이종 금속(A2)에 삽입재(C)를 코팅하는 방법 등 여러가지 방법을 사용할 수 있다.In the present invention, the method of positioning the insert (C) is not particularly limited. For example, after the insert (C) is placed on the titanium base material (A1-1) on which the silver diffusion control layer is formed, the type of the insert (C) is different. Various methods can be used, such as a method of placing the metal A2 thereon, a method of coating the insert C on the titanium base material A1-1 or the dissimilar metal A2 on which the silver diffusion control layer is formed.

단계 3은 상기 단계 2에서 삽입된 삽입재(C)의 용융온도 이상으로 가열하여 티타늄 모재(A1)와 이종 금속(A2)을 접합하는 단계이다.Step 3 is a step of bonding the titanium base material (A1) and the dissimilar metal (A2) by heating above the melting temperature of the insert (C) inserted in the step 2.

이렇게 삽입재(C)를 은 확산 제어층이 형성된 티타늄 모재(A1-1) 및 구리(A2) 사이에 위치시킨 후, 가열 수단(D1, D2)을 이용하여 삽입재(C) 및 주위 온도를 삽입재(C)의 용융온도 이상으로 가열시키고 일정한 시간 동안 유지시키면 용융된 삽입재(C)와 티타늄(A1-1)에 형성된 은 확산 제어층(B) 및 이종 금속(A2) 사이에는 조성 성분 차이로 인한 합금원소의 확산이 일어나게 되며 이에 따라 삽입재(C)와 티타늄(A1-1) 및 이종 금속(A2) 사이에 강한 접합을 이룰 수 있다. 또한 티타늄 모재(A1)와 은 확산 제어층(B) 사이에도 같은 원리의 확산이 일어나게 되어 강한 접합이 이루어진다.After inserting the insert (C) between the titanium base material (A1-1) and the copper (A2) on which the silver diffusion control layer is formed, the insert (C) and the ambient temperature are adjusted using the heating means (D1, D2). When heated above the melting temperature of the insert (C) and maintained for a predetermined time, the composition component between the molten insert (C) and the silver diffusion control layer (B) and the dissimilar metal (A2) formed in the titanium (A1-1) Diffusion of alloying elements occurs due to the difference, and thus a strong bonding can be achieved between the insert (C) and titanium (A1-1) and the dissimilar metal (A2). In addition, diffusion of the same principle occurs between the titanium base material A1 and the silver diffusion control layer B, thereby forming a strong bond.

본 발명에 따른 방법에 있어서, 상기 접합 온도는 770~960 ℃인 것이 바람직한 바, 이는 삽입재(C)의 용융점이 770 ℃ 이하이고 확산 제어층(B)인 은의 용융점이 962 ℃이기 때문이다.In the method according to the present invention, the bonding temperature is preferably 770 to 960 ° C because the melting point of the insert C is 770 ° C or lower and the melting point of silver, the diffusion control layer B, is 962 ° C.

이러한 방법으로 접합을 하게 되면 티타늄 모재(A1)가 은 확산 제어층(B)으로 인하여 용융된 삽입재(C) 안으로 용해될 수 없기 때문에 접합부에는 티타늄-이종금속간 금속간 화합물이 생성되지 않으므로 접합부의 취성이 방지하고 인성을 향상시킬 수 있다.In this way, since the titanium base material (A1) cannot be dissolved into the molten insert (C) due to the silver diffusion control layer (B), the junction part does not form a titanium-heterometal intermetallic compound. It can prevent brittleness and improve toughness.

이하, 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 그러나 하기의 실시예는 본 발명의 예시일 뿐이므로, 본 발명의 범위가 하기의 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only examples of the present invention, and the scope of the present invention is not limited to the following examples.

<< 실시예Example > 확산 > Diffusion 제어층을Control layer 이용한 티타늄과 이종  Titanium and Heterogeneous 금속간의Intermetallic 접합 join

용융 온도가 1160 ℃인 티타늄 금속판에 스퍼터 코팅법을 이용하여 100 ㎛의 은 확산층을 형성하였다. 이후 상기 은 확산층이 형성된 티타늄과 용융 온도가 1083 ℃인 구리 금속판 사이에 삽입재로서 은 70 중량%, 구리 28 중량% 및 티타늄 2 중량%가 함유된 함급으로 이루어진 100 ㎛ 두께의 리본을 끼운 후, 아르곤 분위기에서 온도가 810 ℃가 될 때까지 100 ℃/분의 속도로 승온시키면서 적외선브레이징(Infrared brazing)을 하였다. 810 ℃에서 6분 동안 온도를 유지한 후 평균 50 ℃/분의 냉각속도로 냉각하여 티타늄과 구리를 접합시켰다.A 100 μm silver diffusion layer was formed on the titanium metal plate having a melting temperature of 1160 ° C. by the sputter coating method. Thereafter, a 100 μm-thick ribbon made of 70% by weight of silver, 28% by weight of copper, and 2% by weight of titanium was inserted between the titanium on which the silver diffusion layer was formed and the copper metal plate having a melting temperature of 1083 ° C., Infrared brazing was performed while heating up at a rate of 100 ° C./min until the temperature became 810 ° C. in an argon atmosphere. The temperature was maintained at 810 ° C. for 6 minutes and then cooled at an average cooling rate of 50 ° C./minute to bond titanium and copper.

<< 비교예Comparative example >> 확산 diffusion 제어층을Control layer 이용하지 않은 티타늄과 이종  Unused Titanium and Heterogeneous 금속간의Intermetallic 접합 join

상기 티타늄 금속판에 은 확산층을 형성하는 단계를 제외하고 실시예 1과 동일하게 수행하였다. 다만, 접합시 810 ℃에서 10분 동안 온도를 유지하였다.The same process as in Example 1 was performed except that the silver diffusion layer was formed on the titanium metal plate. However, the temperature was maintained for 10 minutes at 810 ℃ when bonding.

<< 실험예Experimental Example 1> 접합 표면 분석 1> Bonding surface analysis

본 발명에 따른 방법으로 접합된 티타늄-이종 금속 접합부의 접합부 상태를 확인하기 위하여 다음과 같은 실험을 수행하였다.In order to check the state of the junction of the titanium-dissimilar metal junction bonded by the method according to the present invention was carried out the following experiment.

실시예 및 비교예에 따라 접합된 티타늄-구리 접합부의 미세조직을 주사전자현미경으로 관찰한 후, 그 결과를 도 3도 4에 나타내었다.After microscopic observation of the microstructure of the titanium-copper junctions bonded according to Examples and Comparative Examples, the results are shown in FIGS . 3 and 4 .

도 3에 나타낸 바와 같이, 은 확산 제어층이 형성된 티타늄과 구리의 접합부는 티타늄 모재 위의 은 확산 제어층의 존재로 인하여 어떠한 티타늄-구리간 금속간 화합물이 생성되지 않은 것을 확인하였으며, 반면 4에 나타낸 바와 같이, 은 확산 제어층이 없는 경우에는 접합부에 Ti2Cu (b), TiCu (c), Ti3Cu4 (d), TiCu2 또는 Ti2Cu3 (e), TiCu4 (f) 등의 티타늄-구리간 금속간 화합물이 생성되는 것을 확인하였다. 3, the the joint portion of the titanium and copper formed in the diffusion control layer above the titanium base material is any of titanium, due to the presence of the diffusion control layer, it was confirmed that no metal-to-metal between the copper compound is not generated, while Figure 4 As shown in the figure, in the absence of a silver diffusion control layer, Ti 2 Cu (b), TiCu (c), Ti 3 Cu 4 (d), and TiCu 2 are joined to the junction. Or Ti 2 Cu 3 (e), TiCu 4 It was confirmed that a titanium-copper intermetallic compound such as (f) was produced.

따라서, 본 발명에 따른 방법은 티타늄-이종금속간 금속간 화합물의 생성을 억제하여 취성을 방지함을 알 수 있다.Accordingly, it can be seen that the method according to the present invention prevents brittleness by inhibiting the production of titanium-heterometal intermetallic compounds.

<< 실험예Experimental Example 2> 인장 실험 2> tensile test

본 발명에 따른 방법으로 접합된 티타늄-이종 금속 접합부의 강도를 알아보기 위하여 다음과 같은 실험을 수행하였다.In order to determine the strength of the titanium-dissimilar metal joint bonded by the method according to the present invention, the following experiment was performed.

실시예 및 비교예에 따라 접합된 티타늄-구리 접합부의 항복강도, 인장강도 및 연신율을 인장시험을 통하여 측정하고 그 결과를 표 1에 나타내었다.The yield strength, tensile strength and elongation of the titanium-copper joints bonded according to the examples and the comparative examples were measured by the tensile test and the results are shown in Table 1.

구분division 항복강도(MPa)Yield strength (MPa) 인장강도(MPa)Tensile Strength (MPa) 연신율(%)Elongation (%) 실시예Example 107107 200200 2727 비교예Comparative example -- 5454 00

표 1에 나타낸 바와 같이, 본 발명에 따른 은 확산 제어층이 형성된 티타늄과 구리의 접합부는 티타늄-구리간 금속간 화합물이 생성되지 않았기 때문에 은 확산 제어층을 사용하지 않을 때보다 인성이 향상되어 더 높은 강도와 연신율을 나타내는 것을 확인할 수 있다.As shown in Table 1, the titanium-copper junction where the silver diffusion control layer was formed according to the present invention had no toughness because the titanium-copper-intermetallic compound was not produced, so that the toughness was improved compared to that without using the silver diffusion control layer. It can be confirmed that it exhibits high strength and elongation.

이상에서 살펴본 바와 같이, 본 발명에 따른 방법은 티타늄 모재 위에 은 확산 제어층을 형성시킴으로써 티타늄과 이종 금속 브레이징 접합시 접합부에 취성이 큰 금속간 화합물의 생성을 억제시켜 취성 방지 및 접합부의 인성을 향상시킬 수 있으므로 티타늄과 이종 금속 브레이징 접합시 유용하게 사용될 수 있다.As described above, the method according to the present invention by forming a silver diffusion control layer on the titanium base material to suppress the formation of highly brittle intermetallic compound at the junction during the brazing of titanium and dissimilar metals to prevent brittleness and improve the toughness of the junction Since it can be used in the brazing of titanium and dissimilar metal can be useful.

Claims (6)

티타늄 모재에 은 확산 제어층을 형성시키는 단계(단계 1);Forming a silver diffusion control layer on the titanium base material (step 1); 상기 단계 1에서 은 확산 제어층이 형성된 티타늄 모재와 이종 금속 사이에 삽입재를 위치시키는 단계(단계 2); 및Placing the insert between the titanium base material and the dissimilar metal on which the silver diffusion control layer is formed in step 1 (step 2); And 단계 2에서 삽입된 삽입재의 용융온도 이상으로 가열하여 티타늄 모재와 이종 금속을 접합하는 단계(단계 3)를 포함하여 이루어지는 은 확산 제어층을 이용한 티타늄과 이종 금속 접합부의 취성 방지 및 접합력 향상 방법.Method for improving the brittleness and bonding strength of the titanium and dissimilar metal joint using a silver diffusion control layer comprising the step (step 3) of bonding the titanium base material and the dissimilar metal by heating above the melting temperature of the insert inserted in step 2. 제1항에 있어서, 상기 은 확산 제어층 형성 방법은 코팅, 증착 및 클래딩으로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 은 확산 제어층을 이용한 티타늄과 이종 금속 접합부의 취성 방지 및 접합력 향상 방법.The method of claim 1, wherein the method for forming the silver diffusion control layer is any one selected from the group consisting of coating, deposition, and cladding. . 제1항에 있어서, 상기 삽입재를 위치시키는 방법으로 은 확산 제어층이 형성된 티타늄 모재 위에 삽입재를 위치시킨 후, 이종 금속을 그 위에 위치시는 것을 특징으로 하는 은 확산 제어층을 이용한 티타늄과 이종 금속 접합부의 취성 방지 및 접합력 향상 방법.The method of claim 1, wherein the insertion material is placed on the titanium base material on which the silver diffusion control layer is formed, and then the dissimilar metal is placed thereon. Method for preventing brittleness and improving bonding strength of dissimilar metal joints. 제1항에 있어서, 상기 삽입재를 위치시키는 방법으로 은 확산 제어층이 형성된 티타늄 모재 또는 이종 금속에 삽입재를 코팅하는 것을 특징으로 하는 은 확산 제어층을 이용한 티타늄과 이종 금속 접합부의 취성 방지 및 접합력 향상 방법.The method of claim 1, wherein the insertion material is coated on the titanium base material or the dissimilar metal on which the silver diffusion control layer is formed by placing the insert. How to improve bonding. 제1항에 있어서, 상기 삽입재의 형태는 파우더, 리본 및 판재로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 은 확산 제어층을 이용한 티타늄과 이종 금속 접합부의 취성 방지 및 접합력 향상 방법.The method of claim 1, wherein the insert is formed of any one selected from the group consisting of a powder, a ribbon, and a sheet. The method for preventing brittleness and bonding strength of titanium and dissimilar metal joints using a silver diffusion control layer. 제1항에 있어서, 접합 온도는 770~960 ℃인 것을 특징으로 하는 은 확산 제어층을 이용한 티타늄과 이종 금속 접합부의 취성 방지 및 접합력 향상 방법.The method of claim 1, wherein the bonding temperature is 770 ° C. to 960 ° C. The method for preventing brittleness and bonding strength of a titanium and dissimilar metal junction using a silver diffusion control layer.
KR1020070013849A 2007-02-09 2007-02-09 Method of joining of ti and dissimilar metal using ag diffusion control layer KR100787928B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070013849A KR100787928B1 (en) 2007-02-09 2007-02-09 Method of joining of ti and dissimilar metal using ag diffusion control layer
JP2007202824A JP2008194750A (en) 2007-02-09 2007-08-03 Method for preventing embrittlement and enhancing bonding force of interface between titanium using silver diffusion-controlled layer and dissimilar metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070013849A KR100787928B1 (en) 2007-02-09 2007-02-09 Method of joining of ti and dissimilar metal using ag diffusion control layer

Publications (1)

Publication Number Publication Date
KR100787928B1 true KR100787928B1 (en) 2007-12-24

Family

ID=39147766

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070013849A KR100787928B1 (en) 2007-02-09 2007-02-09 Method of joining of ti and dissimilar metal using ag diffusion control layer

Country Status (2)

Country Link
JP (1) JP2008194750A (en)
KR (1) KR100787928B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954097B1 (en) 2008-04-16 2010-04-23 한국원자력연구원 Method of joining of pure Ti/Ti-base alloy and Fe-base steel alloy using Ag-based inserted material and Ag diffusion control layer
KR101070375B1 (en) * 2009-10-08 2011-10-05 한국수력원자력 주식회사 Method for enhancing corrosion resistance of joint between pure Ti/Ti-base alloy and Fe-base steel alloy using Ag-Cu-Pd inserted material and Ag diffusion control layer
KR20150074298A (en) * 2013-12-23 2015-07-02 재단법인 포항산업과학연구원 Method for joining titanum alloy
KR20230067934A (en) 2021-11-10 2023-05-17 공주대학교 산학협력단 Bonding material for diffusion bonding of dissimilar metal with hierarchical structure and diffusion bonding methode using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10926347B2 (en) 2019-03-25 2021-02-23 Packless Industries Autogenous submerged liquid diffusion welding of titanium
CN115106639A (en) * 2022-06-27 2022-09-27 西安理工大学 Method for connecting multi-bronze/two-phase titanium alloy bimetal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132556A (en) * 2002-10-08 2004-04-30 Toshiba Corp Water-cooled conductor and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954097B1 (en) 2008-04-16 2010-04-23 한국원자력연구원 Method of joining of pure Ti/Ti-base alloy and Fe-base steel alloy using Ag-based inserted material and Ag diffusion control layer
KR101070375B1 (en) * 2009-10-08 2011-10-05 한국수력원자력 주식회사 Method for enhancing corrosion resistance of joint between pure Ti/Ti-base alloy and Fe-base steel alloy using Ag-Cu-Pd inserted material and Ag diffusion control layer
KR20150074298A (en) * 2013-12-23 2015-07-02 재단법인 포항산업과학연구원 Method for joining titanum alloy
KR102066858B1 (en) 2013-12-23 2020-01-16 재단법인 포항산업과학연구원 Method for joining titanum alloy
KR20230067934A (en) 2021-11-10 2023-05-17 공주대학교 산학협력단 Bonding material for diffusion bonding of dissimilar metal with hierarchical structure and diffusion bonding methode using the same

Also Published As

Publication number Publication date
JP2008194750A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
KR101054462B1 (en) High strength dissimilar metal joining method between a steel-based alloy using an intermediate layer and a titanium or titanium-based alloy having a joint strength exceeding the strength of the base metal
KR100787928B1 (en) Method of joining of ti and dissimilar metal using ag diffusion control layer
US4562121A (en) Soldering foil for stress-free joining of ceramic bodies to metal
CN102489813B (en) Vacuum active brazing process of molybdenum-copper alloys and stainless steel
JP2010179336A (en) Joint product, semiconductor module, and method for manufacturing the joint product
US8557383B2 (en) Method of producing a material composite
JP6451866B2 (en) Junction structure and manufacturing method thereof
KR20100091178A (en) Joining and material application method for a workpiece having a workpiece region comprising a titanium aluminide alloy
Chen et al. Interfacial microstructure and strength of partial transient liquid-phase bonding of silicon nitride with Ti/Ni multi-interlayer
JPS60131874A (en) Method of bonding ceramic and metal
CN105149769B (en) The design of lamination composite interlayer, which introduces, makes the method that magnesium alloy is connected with aluminium alloy
JPH04228480A (en) Composite being stable at high temperature and preparation thereof
KR100787929B1 (en) Method of low temperature joining between ti-cu dissimilar metals using amorphous filler material
KR940008937B1 (en) Fabricating method of composite material
JP2017009273A (en) Heat exchanger plate for transition liquid phase bonding
KR20190131029A (en) Manufacturing method of cylindrical sputtering target, and cylindrical sputtering target
KR100954097B1 (en) Method of joining of pure Ti/Ti-base alloy and Fe-base steel alloy using Ag-based inserted material and Ag diffusion control layer
KR101039361B1 (en) Low temperature joining method between Ti/Ti-based alloys having a bonding strength higher than those of base metals
KR101070375B1 (en) Method for enhancing corrosion resistance of joint between pure Ti/Ti-base alloy and Fe-base steel alloy using Ag-Cu-Pd inserted material and Ag diffusion control layer
Islam et al. Transient liquid phase bonding
KR101576505B1 (en) Brazing method of attaching titanium-based alloy to base steel using wet plating
JPH0226880A (en) Method for brazing graphite to metal
JP2004276072A (en) Different-metal composite
TWI697373B (en) Aluminum-based metal bonding method
RU2486995C2 (en) Method of making composite cathode

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130923

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141008

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20191007

Year of fee payment: 13