JP2018128146A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2018128146A
JP2018128146A JP2017019186A JP2017019186A JP2018128146A JP 2018128146 A JP2018128146 A JP 2018128146A JP 2017019186 A JP2017019186 A JP 2017019186A JP 2017019186 A JP2017019186 A JP 2017019186A JP 2018128146 A JP2018128146 A JP 2018128146A
Authority
JP
Japan
Prior art keywords
refrigerator
channel
refrigerant
radiator
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017019186A
Other languages
Japanese (ja)
Other versions
JP6689219B2 (en
Inventor
晴樹 額賀
Haruki Nukaga
晴樹 額賀
良二 河井
Ryoji Kawai
良二 河井
慎一郎 岡留
Shinichiro Okadome
慎一郎 岡留
浩和 中村
Hirokazu Nakamura
浩和 中村
暢志郎 小池
Nobushiro Koike
暢志郎 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2017019186A priority Critical patent/JP6689219B2/en
Publication of JP2018128146A publication Critical patent/JP2018128146A/en
Application granted granted Critical
Publication of JP6689219B2 publication Critical patent/JP6689219B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator capable of securely preventing dew condensation in a limited opening edge space, with loss of energy saving performance minimized.SOLUTION: A refrigerator includes: a heat insulation box including an opening edge at its front side; a door capable of opening/closing the opening edge; a storage chamber formed by the door and the heat insulation box; a compressor; heat radiation means; a dew condensation prevention pipe configured to heat the opening edge; decompression means; and an evaporator. The refrigerator further includes a refrigerant flow passage configured to flow refrigerant discharged from a discharge port of the compressor in order of the heat radiation means, the dew condensation prevention pipe, the decompression means, the evaporator and a suction port of the compressor. In the refrigerator, the refrigerant pipe is branched on an upstream side of the dew condensation prevention pipe, and is confluent on a downstream side of the dew condensation prevention pipe, and one of the branch flow passages and a confluent flow passage are proximate to each other.SELECTED DRAWING: Figure 7

Description

本発明は,冷蔵庫に関する。   The present invention relates to a refrigerator.

冷蔵庫は,複数の貯蔵室を仕切るために開口縁を設けた断熱箱体と,貯蔵室ごとに断熱扉を備え,圧縮機,放熱手段,減圧手段,蒸発器から構成される冷凍サイクルによって,貯蔵室内の空気を冷却する。   A refrigerator is provided with a heat insulating box with an opening edge for partitioning a plurality of storage rooms, and a heat insulation door for each storage room, and is stored by a refrigeration cycle consisting of a compressor, heat dissipation means, pressure reduction means, and an evaporator. Cool indoor air.

このような冷蔵庫では,貯蔵室と開閉扉との間から熱のリークが生じて,この付近にある開口縁の表面温度が外気温度より低下し,更に露点温度以下になると結露してしまう不具合があった。そのため,冷蔵庫の開口縁に高圧配管(以下,結露防止パイプという)を這わせ,温めることで結露の発生を防止していた。     In such a refrigerator, heat leaks from between the storage room and the open / close door, and the surface temperature of the opening edge in the vicinity of the refrigerator falls below the outside air temperature. there were. For this reason, high-pressure piping (hereinafter referred to as “condensation prevention pipe”) is attached to the opening edge of the refrigerator and heated to prevent the occurrence of condensation.

従来の結露防止の例として,たとえば特開2007−78282号公報には『開口縁に冷媒の往復経路を構成し,かつ冷媒を対向して流す』と記載されている。特許文献1に開示された冷蔵庫では,冷媒配管を往復経路で対向して流している。1方向の配管経路とすると,開口縁に這わせた配管の下流域では冷媒が2相状態から液状態となり,冷媒配管温度が低下することで,開口縁の温度が露点以下となり結露が生じてしまうため,特許文献1では,4つの流路を並列とすることで開口縁の温度分布の均一化を図り,確実に結露を防止している。   As an example of conventional condensation prevention, for example, Japanese Patent Application Laid-Open No. 2007-78282 describes that “a refrigerant reciprocating path is formed at the opening edge and the refrigerant flows oppositely”. In the refrigerator disclosed in Patent Document 1, the refrigerant pipes are caused to flow oppositely in a reciprocating path. In the case of a one-way piping route, the refrigerant changes from a two-phase state to a liquid state in the downstream area of the piping over the opening edge, and the temperature of the opening edge falls below the dew point due to a decrease in the refrigerant piping temperature. For this reason, in Patent Document 1, the temperature distribution of the opening edge is made uniform by arranging four flow paths in parallel, and condensation is reliably prevented.

特開2007−78282号公報JP 2007-78282 A

しかし,特許文献1記載の冷蔵庫では,複数の配管を並列して配置するために開口縁スペースを拡大する必要があり,貯蔵室容量が小さくなる課題があった。また,開口縁スペースを変えずに複数の配管を配置しようとすると,直径の小さいものを使用する必要があるため管摩擦による圧力損失が増大し,省エネルギ性の低下を招くという課題があった。     However, in the refrigerator described in Patent Document 1, it is necessary to enlarge the opening edge space in order to arrange a plurality of pipes in parallel, and there is a problem that the storage room capacity is reduced. In addition, when trying to arrange multiple pipes without changing the opening edge space, it is necessary to use pipes with a small diameter, which increases pressure loss due to pipe friction, leading to a reduction in energy savings. .

そこで本発明は,省エネルギ性を極力損なわず,限られた開口縁スペースで確実に結露を防止する冷蔵庫を提供することを課題とする。     Then, this invention makes it a subject to provide the refrigerator which prevents a dew condensation reliably by the limited opening edge space, without impairing energy saving as much as possible.

このような課題を解決するために,本発明に係る冷蔵庫は,前方に開口縁を備えた断熱箱体と,前記開口縁を開閉可能な扉と,該扉と前記断熱箱体によって形成された貯蔵室と,圧縮機と,放熱手段と,前記開口縁を加熱する結露防止配管と,減圧手段と,蒸発器とを備えた冷蔵庫において,前記圧縮機の吐出口から吐出される冷媒を,前記放熱手段,前記結露防止配管,前記減圧手段,前記蒸発器,前記圧縮機の吸込口の順に流す冷媒流路を備え,前記結露防止配管の上流側で前記冷媒配管を分岐し,かつ前記結露防止配管の下流側で合流し,分岐流路の一方と合流流路が近接して流れることを特徴とする。   In order to solve such problems, a refrigerator according to the present invention is formed by a heat insulating box having an opening edge in the front, a door capable of opening and closing the opening edge, and the door and the heat insulating box. In a refrigerator having a storage chamber, a compressor, a heat radiating means, a dew condensation preventing pipe for heating the opening edge, a pressure reducing means, and an evaporator, the refrigerant discharged from the discharge port of the compressor is A refrigerant passage that flows in the order of heat radiation means, the dew condensation prevention pipe, the decompression means, the evaporator, and the suction port of the compressor; the refrigerant pipe is branched upstream of the dew condensation prevention pipe; and the dew condensation prevention It merges on the downstream side of the pipe, and one of the branch flow paths and the merge flow path flow close to each other.

本発明によれば,省エネルギ性を極力損なわず,限られた開口縁スペースで確実に結露を防止することができる。     According to the present invention, it is possible to reliably prevent dew condensation in a limited opening edge space without impairing energy saving as much as possible.

実施例1に係る冷蔵庫の正面図である。1 is a front view of a refrigerator according to Example 1. FIG. 実施例1に係る冷蔵庫のA−A断面図である。3 is a cross-sectional view of the refrigerator according to the first embodiment, taken along the line AA. FIG. 実施例1に係る冷蔵庫の冷凍サイクルの構成図である。1 is a configuration diagram of a refrigeration cycle of a refrigerator according to Example 1. FIG. 実施例1に係る冷蔵庫の放熱器の実装配置図である。FIG. 3 is a mounting layout diagram of the radiator of the refrigerator according to the first embodiment. 実施例1に係る断熱仕切り壁11bの前面側における断面図である。It is sectional drawing in the front side of the heat insulation partition wall 11b which concerns on Example 1. FIG. 実施例1に係る配管内部における冷媒の状態を模式的に表した図である。3 is a diagram schematically illustrating a state of a refrigerant in a pipe according to Example 1. FIG. 実施例1に係る第四の放熱器26dを冷蔵庫正面から見た構成図である。It is the block diagram which looked at the 4th heat radiator 26d which concerns on Example 1 from the refrigerator front. 実施例1に係る第四の放熱器26dの冷媒温度分布を示す図である。It is a figure which shows the refrigerant | coolant temperature distribution of the 4th heat radiator 26d which concerns on Example 1. FIG. 図7のB−B断面図である。It is BB sectional drawing of FIG. 実施例1に係る冷蔵庫のモリエル線図である。3 is a Mollier diagram of the refrigerator according to Example 1. FIG. 実施例2に係る第四の放熱器26dを冷蔵庫正面から見た構成図である。It is the block diagram which looked at the 4th heat radiator 26d which concerns on Example 2 from the refrigerator front. 実施例3に係る冷蔵庫の冷凍サイクルの構成図である。6 is a configuration diagram of a refrigeration cycle of a refrigerator according to Example 3. FIG.

以下,本発明の実施例について,適宜図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

本発明に係る冷蔵庫の実施例1を,図1から図10を参照して説明する。
図1は実施例1に係る冷蔵庫の正面図である。図1に示すように,本実施例の冷蔵庫1は,上方から冷蔵室2,左右に併設された製氷室3と上段冷凍室4,下段冷凍室5,野菜室6の順番で構成されている。冷蔵室2は左右に分割され,観音開きする回転式の冷蔵室ドア2aを備え,製氷室3,上段冷凍室4,下段冷凍室5,野菜室6は,それぞれ引き出し式の製氷室ドア3a,上段冷凍室ドア4a,下段冷凍室ドア5a,野菜室ドア6aを備えている。 以下では,冷蔵室ドア2a,製氷室ドア3a,上段冷凍室ドア4a,下段冷凍室ドア5a,野菜室ドア6aを,単にドア2a,3a,4a,5a,6aと以下で呼ぶ。 また,製氷室3,上段冷凍室4,下段冷凍室5は,まとめて冷凍室7と呼ぶ。
Embodiment 1 of a refrigerator according to the present invention will be described with reference to FIGS.
FIG. 1 is a front view of the refrigerator according to the first embodiment. As shown in FIG. 1, the refrigerator 1 of the present embodiment is configured in the order of a refrigerator compartment 2, an ice making chamber 3 provided on the left and right, an upper freezer compartment 4, a lower freezer compartment 5, and a vegetable compartment 6 from above. . The refrigerator compartment 2 is divided into left and right parts and includes a rotary refrigerator compartment door 2a that opens in a double-split manner. The ice making chamber 3, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 have a drawer-type ice making door 3a and an upper compartment, respectively. A freezer compartment door 4a, a lower freezer compartment door 5a, and a vegetable compartment door 6a are provided. Hereinafter, the refrigerator compartment door 2a, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are simply referred to as doors 2a, 3a, 4a, 5a, and 6a. The ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are collectively referred to as a freezing chamber 7.

図2は,実施例1に係る冷蔵庫のA−A断面図である(図1参照)。冷蔵庫1の庫外と庫内は,外箱9aと内箱9bとの間に発泡断熱材を充填して形成される,断熱箱体9によって隔てられている。 断熱箱体9には発泡断熱材に加えて複数の真空断熱材10を,外箱9aと内箱9bとの間に実装し,高断熱化を図っている。各貯蔵室は断熱仕切壁11a,11b,11c,11dによって隔てられている。また,断熱仕切壁11a,11b,11c,11dの前方には仕切りカバー12が備わっている。 ドア2aの庫内側には複数のドアポケット13と,冷蔵室2には複数の棚14が上下方向に設けてあり,複数の貯蔵スペースに区画されている。
上段冷凍室4,下段冷凍室5及び野菜室6には,それぞれの前方に備えたドア4a,5a,6aと一体に移動する収納容器4b,5b,6bがそれぞれ設けられており,ドア4a,5a,6aを手前側に引き出すことにより,収納容器4b,5b,6bも引き出せるようになっている。製氷室3(図示なし)にもドア3aと一体に移動する収納容器が設けられ,ドア3aを手前側に引き出すことにより,収納容器3bも引き出せる。
FIG. 2 is an AA cross-sectional view of the refrigerator according to the first embodiment (see FIG. 1). The outside of the refrigerator 1 and the inside of the refrigerator are separated by a heat insulating box 9 formed by filling a foam heat insulating material between the outer box 9a and the inner box 9b. In addition to the foam heat insulating material, a plurality of vacuum heat insulating materials 10 are mounted on the heat insulating box 9 between the outer box 9a and the inner box 9b to achieve high heat insulation. Each storage room is separated by a heat insulating partition wall 11a, 11b, 11c, 11d. A partition cover 12 is provided in front of the heat insulating partition walls 11a, 11b, 11c, and 11d. A plurality of door pockets 13 are provided on the inner side of the door 2a, and a plurality of shelves 14 are provided in the refrigerator compartment 2 in the vertical direction, and are partitioned into a plurality of storage spaces.
The upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are provided with storage containers 4b, 5b, 6b that move integrally with the front doors 4a, 5a, 6a, respectively. The storage containers 4b, 5b, and 6b can also be pulled out by pulling out 5a and 6a to the near side. The ice making chamber 3 (not shown) is also provided with a storage container that moves integrally with the door 3a, and the storage container 3b can be pulled out by pulling the door 3a forward.

冷却器15は下段冷凍室5の後方に設けてあり,冷却器15の上方に設けた庫内プロペラファン16により,冷却器15と熱交換した冷気が冷蔵室冷気ダクト17,冷凍室冷気ダクト18,野菜室送風ダクト(図示なし)を介して冷蔵室2,製氷室3,上段冷凍室4,下段冷凍室5,野菜室6へ送られる。   The cooler 15 is provided at the rear of the lower freezer compartment 5, and the cold air heat-exchanged with the cooler 15 by the internal propeller fan 16 provided above the cooler 15 is stored in the refrigerator compartment cool air duct 17 and the freezer compartment cool air duct 18. , Are sent to the refrigerator compartment 2, the ice making chamber 3, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 through a vegetable room air duct (not shown).

各貯蔵室への冷気の送風は,ダンパ20の開閉により制御される。ダンパ20にはバッフルプレート21を備えており,バッフルプレート21はモータ駆動によって開閉角度が調整され,送風量を調整している。     The blowing of cool air to each storage room is controlled by opening and closing the damper 20. The damper 20 is provided with a baffle plate 21, and the baffle plate 21 is adjusted in opening / closing angle by a motor to adjust the air flow rate.

各貯蔵室に送られた空気は冷却器15の下方(流入口)に戻ることで連続的に冷却することができる。
冷却器15の下方にはラジアントヒータ22を設けている。冷却器15の表面に霜が成長し,風路が狭まった場合は,ラジアントヒータ22を動作させることで除霜している。
The air sent to each storage chamber can be continuously cooled by returning to the lower side (inlet) of the cooler 15.
A radiant heater 22 is provided below the cooler 15. When frost grows on the surface of the cooler 15 and the air path is narrowed, defrosting is performed by operating the radiant heater 22.

冷蔵庫1の上壁後方には制御基板23が配置されており,制御基板23に記憶された制御手段に従って圧縮機25,庫内プロペラファン16のON/OFFや回転数の制御,ダンパ20の開閉制御が実施される。
冷蔵庫1の下方に設けた機械室24内には,圧縮機25の他に第一の放熱器26a(図2中に図示なし)と庫外プロペラファン27(図2中に図示なし)が配置されている。
A control board 23 is disposed behind the upper wall of the refrigerator 1, and the compressor 25 and the internal propeller fan 16 are turned on / off and the number of revolutions is controlled and the damper 20 is opened and closed according to the control means stored in the control board 23. Control is implemented.
In addition to the compressor 25, a first radiator 26a (not shown in FIG. 2) and an outside propeller fan 27 (not shown in FIG. 2) are arranged in the machine room 24 provided below the refrigerator 1. Has been.

図3は,第1の実施例に係る冷蔵庫の冷凍サイクルの構成図である。庫内には,冷却器15と,庫内プロペラファン16を備えている。庫外または断熱壁9内部には,冷媒を圧縮するための圧縮機25と,庫外プロペラファン27を備えた第一の放熱器26a,第二の放熱器26b,第三の放熱器26c,第四の放熱器26d,および冷媒を膨張させる減圧手段であるキャピラリチューブ28を備えている。また,圧縮機24,第一の放熱器26a,第二の放熱器26b,第三の放熱器26c,第四の放熱器26d,キャピラリチューブ28,冷却器15は配管29で接続され,冷媒が循環できるようになっている。     FIG. 3 is a configuration diagram of the refrigeration cycle of the refrigerator according to the first embodiment. A refrigerator 15 and an internal propeller fan 16 are provided in the interior. A compressor 25 for compressing the refrigerant and a first radiator 26a, a second radiator 26b, a third radiator 26c, which are provided with a compressor 25 for compressing the refrigerant and an outside propeller fan 27, A fourth radiator 26d and a capillary tube 28 as decompression means for expanding the refrigerant are provided. The compressor 24, the first radiator 26a, the second radiator 26b, the third radiator 26c, the fourth radiator 26d, the capillary tube 28, and the cooler 15 are connected by a pipe 29, and the refrigerant is It can be circulated.

図3に示す冷凍サイクルでは,減圧手段としてはキャピラリチューブを一例にして挙げているが,膨張弁や,膨張弁とキャピラリチューブを組み合わせた場合でも良い。また,本実施例では送風手段として庫内プロペラファン16,庫外プロペラファン27を備えているが,後ろ向きファンや多翼ファンといった遠心ファンなどの他の形態でも良く,複数のファンを備えても良い。     In the refrigeration cycle shown in FIG. 3, a capillary tube is taken as an example of the pressure reducing means, but an expansion valve or a combination of an expansion valve and a capillary tube may be used. In the present embodiment, the internal propeller fan 16 and the external propeller fan 27 are provided as the air blowing means, but other forms such as a centrifugal fan such as a backward-facing fan and a multi-blade fan may be used, and a plurality of fans may be provided. good.

庫内空気は,庫内プロペラファン16によって吸引されて,冷却器15を通過することにより,冷媒と熱交換して冷却できるようになっている。庫外空気は,第一の放熱器26a,第二の放熱器26b,第三の放熱器26c,第四の放熱器26dを通過することにより冷媒と熱交換して放熱できるようになっている。第一の放熱器26aは,庫外プロペラファン27によって庫外空気を吸引するため,第二から第四の放熱器に比べて放熱しやすい構成となっている。     The internal air is sucked by the internal propeller fan 16 and passes through the cooler 15 so that it can be cooled by exchanging heat with the refrigerant. The outside air can pass through the first radiator 26a, the second radiator 26b, the third radiator 26c, and the fourth radiator 26d to exchange heat with the refrigerant and dissipate heat. . Since the first radiator 26a sucks outside air by the outside propeller fan 27, the first radiator 26a is configured to radiate heat more easily than the second to fourth radiators.

図4は,第1の実施例に係る冷蔵庫の放熱器の実装配置図である。第一の放熱器26a(図4中に図示なし)は,例えば機械室24に配置したフィンチューブ式の熱交換器で,第二の放熱器26b,第三の放熱器26c,第四の放熱器26dは,いずれも冷蔵庫1の外表面の内側に沿って配置した放熱パイプである。また,第二の放熱器26bと第三の放熱器26cは冷蔵庫1の外箱9aに熱を伝導させるように外箱9の内側に放熱パイプを設けている。第四の放熱器26dは各貯蔵室を分割する断熱仕切り壁11a,11b,11c,11d(図2参照)の前方の仕切りカバー12に熱を伝導させるように仕切りカバー12の内側に放熱パイプを設けている。また,第四の放熱器26dは,放熱をするだけでなく,仕切りカバー12の結露防止の役割もある。     FIG. 4 is a mounting layout diagram of the radiator of the refrigerator according to the first embodiment. The first radiator 26a (not shown in FIG. 4) is, for example, a fin tube type heat exchanger disposed in the machine room 24. The second radiator 26b, the third radiator 26c, and the fourth radiator. Each of the containers 26 d is a heat radiating pipe disposed along the inside of the outer surface of the refrigerator 1. The second radiator 26b and the third radiator 26c are provided with a heat radiating pipe inside the outer box 9 so as to conduct heat to the outer box 9a of the refrigerator 1. The fourth radiator 26d has a heat radiating pipe inside the partition cover 12 so as to conduct heat to the partition cover 12 in front of the heat insulating partition walls 11a, 11b, 11c, 11d (see FIG. 2) that divide each storage room. Provided. The fourth radiator 26d not only radiates heat, but also plays a role in preventing condensation of the partition cover 12.

図5は第1の実施例に係る断熱仕切り壁11bの前方の断面図である。断熱仕切り壁11bの前方には仕切りカバー12を設け,仕切りカバー12に接触するように,第四の放熱器26dを設けている。なお、放熱パイプと仕切りカバー12の接触状態を確保して熱を確実に伝えられるように、放熱パイプと仕切りカバーの間にゴム材やグリース材を介入させても良い。また,ドア4aと5aの間には隙間があり,庫外空気が仕切りカバー12まで侵入してくる。仕切りカバー12は庫内空気によって冷やされているため,仕切りカバー12表面では,庫外空気が冷やされて露点以下になり結露してしまう恐れがある。そのため,仕切りカバー12の表面温度は,仕切りカバー12の表面温度を露点以上とすることで,結露を防いでいる。     FIG. 5 is a front sectional view of the heat insulating partition wall 11b according to the first embodiment. A partition cover 12 is provided in front of the heat insulating partition wall 11b, and a fourth radiator 26d is provided so as to contact the partition cover 12. In addition, a rubber material or a grease material may be interposed between the heat radiating pipe and the partition cover so that the heat can be reliably transmitted while ensuring the contact state between the heat radiating pipe and the partition cover 12. Further, there is a gap between the doors 4a and 5a, and the outside air enters the partition cover 12. Since the partition cover 12 is cooled by the inside air, the outside air may be cooled on the surface of the partition cover 12 to be below the dew point to cause condensation. Therefore, the surface temperature of the partition cover 12 prevents condensation by making the surface temperature of the partition cover 12 equal to or higher than the dew point.

一方で,仕切りカバー12の表面温度を上げると庫内に入る熱(熱の流れ30)が増加し、省エネルギ性が低下する。そのため,露点以上に保ちつつ,省エネルギ性を極力損なわないように第四の放熱器26dを設けることが必要である。     On the other hand, when the surface temperature of the partition cover 12 is raised, the heat (heat flow 30) entering the interior increases, and the energy saving performance decreases. For this reason, it is necessary to provide the fourth radiator 26d so as not to impair energy saving as much as possible while maintaining the dew point or higher.

図6は,第1の実施例に係る配管内部における冷媒の状態を模式的に表した図である。図では,圧縮機25からキャピラリチューブ28の間の配管内部の冷媒状態を説明する。一般に圧縮機で圧縮されて高温高圧になったガス冷媒は,放熱器を通して庫外に熱を放出し,気相域,相変化中の気液二相域,液相域と冷媒の状態が変化する。 本実施例の冷蔵庫においては,最下流にある第四の放熱器26dでは,上流側が気液二相流となり,下流側が液域となる構成をしている。     FIG. 6 is a diagram schematically illustrating the state of the refrigerant in the pipe according to the first embodiment. In the figure, the refrigerant state inside the pipe between the compressor 25 and the capillary tube 28 will be described. In general, gas refrigerant compressed to high temperature and high pressure by a compressor releases heat to the outside through a radiator, and the state of the refrigerant changes in the gas phase, gas-liquid two-phase region during phase change, and liquid phase. To do. In the refrigerator of the present embodiment, the fourth radiator 26d located on the most downstream side has a gas-liquid two-phase flow on the upstream side and a liquid region on the downstream side.

一般的に,気液二相状態の冷媒は,庫外空気との交換熱量は状態変化に使われるため温度変化は小さい。一方で液単相状態の冷媒は,庫外空気と熱交換することで,冷媒温度が下がる。このため、第四の放熱器26dにより加熱される仕切りカバー12の温度も下がり,仕切りカバー12の表面で結露しやすくなる。 従って,冷媒が液単相状態である第四の放熱器26d下流周辺の仕切りカバー12の温度を,露点以上に保つことが課題となる。     Generally, a refrigerant in a gas-liquid two-phase state has a small temperature change because the heat exchanged with the outside air is used for the state change. On the other hand, the refrigerant temperature in the liquid single-phase state decreases by exchanging heat with the outside air. For this reason, the temperature of the partition cover 12 heated by the fourth radiator 26d is also lowered, and condensation is likely to occur on the surface of the partition cover 12. Therefore, it becomes a problem to keep the temperature of the partition cover 12 around the fourth radiator 26d downstream where the refrigerant is in a liquid single phase state at or above the dew point.

図7は,第1の実施例に係る第四の放熱器26dを冷蔵庫正面から見た構成図である。第四の放熱器26dは,ドア2aの下面,そして,ドア3a,4a,5a,6aの周囲に備えられている。これにより,ドアとドアの隙間に侵入してくる庫外空気が仕切りカバー12の表面で冷やされて結露することを防止している。   FIG. 7 is a configuration diagram of the fourth radiator 26d according to the first embodiment when viewed from the front of the refrigerator. The fourth radiator 26d is provided on the lower surface of the door 2a and around the doors 3a, 4a, 5a, and 6a. This prevents the outside air entering the gap between the doors from being cooled and condensed on the surface of the partition cover 12.

第四の放熱器26dの流入側(ガス側)には分配器31を備え,2つの流路に分岐し,分岐流路32aは左方へ,もう一方の分岐流路32b(点線で図示)は上方へ進むように構成している。さらに,右上方にある合流器33で合流し,合流流路34の流出側(液側)は,分岐流路32bと近接するように構成している。合流流路34の流出側と近接するように分岐流路32bを備えることで,合流流路34内の液単相冷媒による温度低下に伴う仕切りカバー12の温度低下を,分岐流路32b内の一定温度である気液二相冷媒により抑制することができる。ここで、近接とは流路同士の距離が近いだけでなく、加熱対象が同一であることを指している。本実施例では同一の仕切りカバー12を加熱していれば、流路の間に仕切り等があったとしても同一の効果が得られる。   A distributor 31 is provided on the inflow side (gas side) of the fourth radiator 26d, branching into two flow paths, the branch flow path 32a to the left, and the other branch flow path 32b (illustrated by dotted lines). Is configured to proceed upward. Furthermore, it merges with the merger 33 in the upper right, and the outflow side (liquid side) of the merge channel 34 is configured to be close to the branch channel 32b. By providing the branch flow path 32b so as to be close to the outflow side of the merge flow path 34, the temperature drop of the partition cover 12 due to the temperature drop due to the liquid single-phase refrigerant in the merge flow path 34 can be reduced. It can be suppressed by a gas-liquid two-phase refrigerant having a constant temperature. Here, the proximity means not only that the distance between the flow paths is short, but also that the heating target is the same. In the present embodiment, if the same partition cover 12 is heated, the same effect can be obtained even if there is a partition or the like between the flow paths.

図8は,第1の実施例に係る第四の放熱器26dの冷媒温度分布である。分配器31と合流器33を備えた効果を,図8(a) (b)にわけて詳細に説明する。     FIG. 8 is a refrigerant temperature distribution of the fourth radiator 26d according to the first embodiment. The effect provided with the distributor 31 and the merger 33 will be described in detail with reference to FIGS.

図8(a)は,分岐と合流のない冷媒流路構成での冷媒温度分布を表す比較例である。 第四の放熱器26dの流入側(ガス側)は気液二相状態のため,冷媒温度はほぼ一定である。 冷媒の状態が液単相状態になると,冷媒の温度は急激に下がり,第四の放熱器26dの流出側(液側)では,庫外空気の露点温度に近くなる。そのため,第四の放熱器26dの最低温度が露点温度に近い場合は,同様に仕切りカバー12の最低温度も露点温度に近く,結露する恐れがあった。     FIG. 8A is a comparative example showing the refrigerant temperature distribution in the refrigerant flow path configuration without branching and merging. Since the inflow side (gas side) of the fourth radiator 26d is in a gas-liquid two-phase state, the refrigerant temperature is substantially constant. When the state of the refrigerant becomes the liquid single phase state, the temperature of the refrigerant rapidly decreases, and on the outflow side (liquid side) of the fourth radiator 26d, it approaches the dew point temperature of the outside air. Therefore, when the minimum temperature of the fourth radiator 26d is close to the dew point temperature, the minimum temperature of the partition cover 12 is also close to the dew point temperature, and there is a risk of condensation.

図8(b)は,実施例1の冷媒温度分布である。分岐流路32aは,分岐により冷媒量は少ないため,従来に比べて短い距離で液単相状態となる。一方で,分岐流路32bは距離が短く,管内の圧力損失が小さいため気液二相状態を維持したまま合流器33に流入しやすい。分流流路32aあるいは32bどちらか一方が気液二相状態であれば,合流流路34の上流側では気液二相状態であり,庫外空気との熱交換が進むと,やがて液単相となり温度が低下する。   FIG. 8B shows the refrigerant temperature distribution of the first embodiment. Since the branch channel 32a has a small amount of refrigerant due to branching, the branch channel 32a is in a liquid single-phase state at a shorter distance than conventional. On the other hand, the branch flow path 32b has a short distance and a small pressure loss in the pipe, so that it easily flows into the merger 33 while maintaining the gas-liquid two-phase state. If either one of the flow diversion channels 32a or 32b is in a gas-liquid two-phase state, it is in a gas-liquid two-phase state on the upstream side of the confluence channel 34. And the temperature drops.

ここで,合流流路34の出口は液単相であり,庫外空気の露点温度に近くなるが,合流流路34に接触する仕切りカバー12には,気液二相状態の分岐流路32bも接触しているため,仕切りカバー12の最低温度は,分岐流路32bの流入側と合流流路34の流出側との間の温度となる。そのため,庫外空気の露点温度と仕切りカバーの最低温度との温度差は比較例の構成(図8(a))よりも大きくなり,確実に結露を防止することができる。また,第四の放熱器26dの温度を高める必要がないため,庫内への加熱量も最小限となり,省エネルギ性を極力損なわずに結露を確実に防止することができる。     Here, the outlet of the merging channel 34 is a liquid single phase, which is close to the dew point temperature of the outside air, but the partition cover 12 that contacts the merging channel 34 has a gas-liquid two-phase branch channel 32b. Therefore, the minimum temperature of the partition cover 12 is the temperature between the inflow side of the branch flow path 32b and the outflow side of the merge flow path 34. Therefore, the temperature difference between the dew point temperature of the outside air and the minimum temperature of the partition cover becomes larger than that of the configuration of the comparative example (FIG. 8 (a)), and condensation can be reliably prevented. In addition, since it is not necessary to increase the temperature of the fourth radiator 26d, the amount of heating to the interior is minimized, and condensation can be reliably prevented without losing energy saving as much as possible.

さらには,比較例に示す分流器と合流器のない構成に対して,仕切りカバー12のスペース(開口縁)内の最大配管本数は変わらず,かつ右方にある一部の領域のみ配管が増える構成のため,限られた仕切りカバー12のスペース内で構成可能である。     Furthermore, the maximum number of pipes in the space (opening edge) of the partition cover 12 does not change and the number of pipes increases only in a part of the right side compared to the configuration without the shunt and merger shown in the comparative example. Because of the configuration, it can be configured in a limited space of the partition cover 12.

図7において,分岐流路32bの管内径は,分岐流路32aのそれより細くしている。分岐流路32bは長さが短いため圧力損失が小さくガス冷媒が流れやすいため,分岐流路32bにガス冷媒が多量に流れることで,分岐流路32aは早い段階で液単相冷媒となり,合流器に到達する前に露点以下まで冷えて結露してしまう恐れがある。一方で,分岐流路32bに流れるガス冷媒が少ない場合は,分岐流路32bの下流で液単相冷媒となり温度低下する恐れがあるが,合流流路34の中間領域と近接しているため,仕切りカバー12の温度が露点以上に保たれやすい。そのため,分岐流路32aの圧力損失ΔPaが大きくなりすぎない,言い換えると分岐流路32bの圧力損失ΔPbが小さくなりすぎないようにΔPa≦ΔPbとすることが望ましい。本実施例では、分岐流路32aの管内径をDa,分岐流路32bの管内径をDbとした場合,Da≧DbとすることでΔPa≦ΔPbを満足するようにしている。   In FIG. 7, the inner diameter of the branch channel 32b is narrower than that of the branch channel 32a. Since the branch flow path 32b is short in length and has a small pressure loss and easily flows into the gas refrigerant, a large amount of gas refrigerant flows into the branch flow path 32b, so that the branch flow path 32a becomes a liquid single-phase refrigerant at an early stage. Before reaching the container, it may cool to below the dew point and cause condensation. On the other hand, when there is little gas refrigerant flowing into the branch flow path 32b, there is a possibility that the liquid single-phase refrigerant becomes a downstream of the branch flow path 32b and the temperature is lowered. The temperature of the partition cover 12 is easily kept above the dew point. Therefore, it is desirable that ΔPa ≦ ΔPb so that the pressure loss ΔPa of the branch flow path 32a does not become too large, in other words, the pressure loss ΔPb of the branch flow path 32b does not become too small. In the present embodiment, when the pipe inner diameter of the branch flow path 32a is Da and the pipe inner diameter of the branch flow path 32b is Db, ΔPa ≦ ΔPb is satisfied by satisfying Da ≧ Db.

本実施例では,配管形状を円管として構成しているが,例えば扁平管や四角形状の管でも同様な考え方が成り立つ。分岐流路32aの断面積をAa,分岐流路32bの断面積をAbとした場合,Aa≧Abとなっていれば同様な効果が得られる。   In the present embodiment, the pipe shape is configured as a circular pipe, but the same concept holds for a flat pipe or a square pipe, for example. If Aa is the cross-sectional area of the branch flow path 32a and Ab is the cross-sectional area of the branch flow path 32b, the same effect can be obtained if Aa ≧ Ab.

また,本実施例では,管内の圧力損失を管内径により調整し,冷媒の分配を調整する構成としたが,分配器形状により調整しても,あるいは,管内径あるいは断面積による調整と分配器による調整を組み合せても構わない。   Further, in this embodiment, the pressure loss in the pipe is adjusted by the pipe inner diameter and the refrigerant distribution is adjusted. However, adjustment by the distributor shape or adjustment by the pipe inner diameter or cross-sectional area and the distributor You may combine the adjustment by.

分配器31の構成により調整する場合は,例えば,分配器31内の分岐流路32aに接続する流路面積をBa,分配器31内の分岐流路32bに接続する流路面積をBbとした場合,Ba≧Bbとなることが望ましい。     When adjusting according to the configuration of the distributor 31, for example, the channel area connected to the branch channel 32a in the distributor 31 is Ba, and the channel area connected to the branch channel 32b in the distributor 31 is Bb. In this case, it is desirable that Ba ≧ Bb.

なお、ΔPa≦ΔPbの関係は、単相状態の液体を分岐流路32a及び分岐流路32bに流した際の圧力損失を比較することで確認できる。   The relationship of ΔPa ≦ ΔPb can be confirmed by comparing the pressure loss when a single-phase liquid is caused to flow through the branch channel 32a and the branch channel 32b.

図9は,第1の実施例に係る冷蔵庫のB−B断面図である(図7参照)。図において,庫内側に分配流路32bを,庫外側に合流流路34を配置している。仕切りカバー12は庫内によって冷やされるため,庫外側に対して庫内側の温度が低くなり,庫外空気が冷やされて結露しやすい。そのため,冷媒の状態が気液二相状態で,温度が露点以上に保たれやすい分配流路32bを庫内側に配置し,冷媒の状態が液単相状態となり,温度が露点以下になりやすい合流流路34を庫外側に配置することで,仕切りカバー12内の温度分布が均一化され,局所的に温度が低下することによる庫外空気の結露を防止することができる。   FIG. 9 is a cross-sectional view of the refrigerator according to the first embodiment, taken along the line BB (see FIG. 7). In the figure, a distribution channel 32b is arranged on the inner side, and a merging channel 34 is arranged on the outer side. Since the partition cover 12 is cooled by the inside of the compartment, the temperature inside the compartment becomes lower than the outside of the compartment, and the air outside the compartment is cooled and is likely to condense. For this reason, a distribution channel 32b in which the refrigerant is in a gas-liquid two-phase state and the temperature is easily maintained above the dew point is arranged inside the cabinet, the refrigerant is in a liquid single-phase state, and the temperature tends to be below the dew point. By disposing the flow path 34 on the outside of the warehouse, the temperature distribution in the partition cover 12 is made uniform, and condensation of outside air due to a local temperature drop can be prevented.

本実施例では、加熱対象として仕切りカバー12としたが、加熱対象は仕切りカバー12に限定されなく、例えばドア開閉の機構部品や金属の板など、冷蔵庫の構造によって変更でき、いずれの場合でも同様の効果が得られる。   In this embodiment, the partition cover 12 is used as the heating target. However, the heating target is not limited to the partition cover 12 and can be changed depending on the structure of the refrigerator such as a door opening / closing mechanism component or a metal plate. The effect is obtained.

また,図9において,分岐流路32bと合流流路34は近接しつつも,直接接触しないように構成している。直接接触させないことによる効果を図10より説明する。   In FIG. 9, the branch flow path 32b and the merge flow path 34 are close to each other but are not in direct contact with each other. The effect by not making it contact directly is demonstrated from FIG.

図10は,実施例1に係る冷蔵庫のモリエル線図を示している。図10の横軸は比エンタルピで,縦軸は圧力を示している。冷媒の状態は,圧縮機により圧縮され(a)から(b)の状態になり、放熱器により放熱されて(c)になり,キャピラリチューブにより減圧されて(d)となって冷却器に入る。     FIG. 10 shows a Mollier diagram of the refrigerator according to the first embodiment. In FIG. 10, the horizontal axis represents specific enthalpy and the vertical axis represents pressure. The state of the refrigerant is compressed by the compressor from (a) to (b), radiated by the radiator to (c), depressurized by the capillary tube (d), and enters the cooler. .

ここで,放熱器出口の温度が高い,言い換えると分岐流路32bと合流流路34が直接接触している場合は,放熱器の出口における比エンタルピ(c)が高くなり(c‘)となる。そのため,冷却器の入口の比エンタルピも(d)から(d’)になり,冷却器入口と出口の比エンタルピ差が小さくなるため,エンタルピ差(a)−(d)から(a)−(d’)に低下することによって、省エネルギ性が低下する恐れがある。分岐流路32bと合流流路34を非接触とすることで,このような省エネルギ性の低下を最小限に抑えることができる。   Here, when the temperature of the radiator outlet is high, in other words, when the branch channel 32b and the merge channel 34 are in direct contact, the specific enthalpy (c) at the radiator outlet becomes high (c ′). . For this reason, the specific enthalpy at the inlet of the cooler is also changed from (d) to (d ′), and the specific enthalpy difference between the inlet and the outlet of the cooler is reduced, so that the enthalpy difference (a) − (d) to (a) − ( By reducing to d ′), there is a risk that the energy saving performance is reduced. By making the branch flow path 32b and the merge flow path 34 non-contact, such a decrease in energy saving can be minimized.

次に本発明の実施例2に係る冷蔵庫について,図11を用いて説明する。実施例2に係る冷蔵庫においても,実施例1に係る冷蔵庫と同様に,第四の放熱器26dに分流器31と合流器33を備え,合流流路34が分岐流路32bの一方と近接するように構成されているが,実施例1とは分岐流路および合流流路の流路長さが異なっている。なお,その他の構成は同様であり,重複する説明は省略する。   Next, the refrigerator which concerns on Example 2 of this invention is demonstrated using FIG. Also in the refrigerator according to the second embodiment, as in the refrigerator according to the first embodiment, the fourth radiator 26d includes the flow divider 31 and the merger 33, and the merge channel 34 is close to one of the branch channels 32b. However, the flow path lengths of the branch flow path and the merge flow path are different from those of the first embodiment. Other configurations are the same, and redundant description is omitted.

図11は,第四の放熱器26dを冷蔵庫正面から見た構成図である。第四の放熱器26dの流入側(ガス側)には分配器31を備え,2つの流路に分岐し,分岐流路32aは左方へ,もう一方の分岐流路32bは上方に進むように構成している。さらに,右上方にある合流器33で合流し,合流流路34は,分岐流路32bと近接するように構成している。     FIG. 11 is a configuration diagram of the fourth radiator 26d as viewed from the front of the refrigerator. A distributor 31 is provided on the inflow side (gas side) of the fourth radiator 26d so as to branch into two flow paths, with the branch flow path 32a moving to the left and the other branch flow path 32b moving upward. It is configured. Furthermore, it merges with the merger 33 which exists in the upper right, and the merge flow path 34 is comprised so that it may adjoin with the branch flow path 32b.

第2の実施例では,第1の実施例に対して分岐流路32bの長さを伸ばしている。 分岐流路32bは分岐流路32aよりも長さが短いため,ガス冷媒が流れやすい。そのため,冷媒流路32bの長さを伸ばすことで,分岐後の圧力損失の差を縮めて,分岐流路32bにガス冷媒が流れすぎることを防止している。このように,分岐流路の長さを調節することで,冷媒の分配を最適化することができる。     In the second embodiment, the length of the branch flow path 32b is extended compared to the first embodiment. Since the branch channel 32b is shorter than the branch channel 32a, the gas refrigerant flows easily. Therefore, by extending the length of the refrigerant flow path 32b, the difference in pressure loss after branching is reduced to prevent the gas refrigerant from flowing too much into the branch flow path 32b. Thus, the distribution of the refrigerant can be optimized by adjusting the length of the branch flow path.

次に本発明の実施例3に係る冷蔵庫について,図12を用いて説明する。実施例3に係る冷蔵庫においても,実施例1に係る冷蔵庫と重複する説明は省略する。   Next, the refrigerator which concerns on Example 3 of this invention is demonstrated using FIG. Also in the refrigerator according to the third embodiment, the description overlapping with the refrigerator according to the first embodiment is omitted.

図12は,実施例3の冷蔵庫の冷凍サイクルの構成図である。第3の実施例では,第三の放熱器26cと第四の放熱器26dの間に弁35を設けている。弁35により、第四の放熱器26dを経由しない経路(a)と、第四の放熱器26dを経由する経路(b)を切り替えることができる。     FIG. 12 is a configuration diagram of the refrigeration cycle of the refrigerator of the third embodiment. In the third embodiment, a valve 35 is provided between the third radiator 26c and the fourth radiator 26d. By the valve 35, the path (a) that does not pass through the fourth radiator 26d and the path (b) that passes through the fourth radiator 26d can be switched.

これにより,冷蔵庫の仕切りカバー12の表面が庫外空気の露点温度より十分に高い場合は,第四の放熱器26dに冷媒を流さずに済むため,必要以上に庫内を加熱することがなく省エネ化を図ることができる。     Thereby, when the surface of the partition cover 12 of the refrigerator is sufficiently higher than the dew point temperature of the outside air, the refrigerant does not flow through the fourth radiator 26d, so that the inside of the refrigerator is not heated more than necessary. Energy saving can be achieved.

このような弁のある冷凍サイクルにおいても,実施例1の図7のように分流器および合流器を配置することで,第四の放熱器26dに冷媒を流して結露防止する時間と,同様に庫内を加熱してしまう時間が短くなり,省エネルギ性を損なうことなく結露防止できる。     Even in the refrigeration cycle having such a valve, by arranging the flow divider and the merger as shown in FIG. 7 of the first embodiment, similarly to the time for preventing the dew condensation by flowing the refrigerant through the fourth radiator 26d. The time to heat the inside of the cabinet is shortened, and condensation can be prevented without impairing energy saving.

実施例1〜3では分配器34を第四の放熱器26dの流入側に設けたが,第四の放熱器26dよりもさらに上流側である第三の放熱器26c,第二の放熱器26b,あるいは第一の放熱器26aに備えても同様な効果が得られる。   In the first to third embodiments, the distributor 34 is provided on the inflow side of the fourth radiator 26d. However, the third radiator 26c and the second radiator 26b which are further upstream than the fourth radiator 26d. Alternatively, the same effect can be obtained even if the first radiator 26a is provided.

1 ・・・ 冷蔵庫
2 ・・・ 冷蔵室
3 ・・・ 製氷室
4 ・・・ 上段冷凍室
5 ・・・ 下段冷凍室
6 ・・・ 野菜室
7 ・・・ 冷凍室
9 ・・・ 断熱箱体
11・・・ 断熱仕切壁
12・・・ 仕切りカバー
13・・・ ドアポケット
14・・・ 棚
15・・・ 冷却器
16・・・ 庫内プロペラファン
17・・・ 冷蔵室冷気ダクト
18・・・ 冷凍室送風ダクト
20・・・ ダンパ
21・・・ バッフルプレート
22・・・ ラジアントヒータ
23・・・ 制御基板
24・・・ 機械室
25・・・ 圧縮機
26・・・ 放熱器
27・・・ 庫外プロペラファン
28・・・ キャピラリチューブ
29・・・ 配管
30・・・ 熱の流れ
31・・・ 分流器
32・・・ 分流流路
33・・・ 合流器
34・・・ 合流流路
35・・・ 弁
DESCRIPTION OF SYMBOLS 1 ... Refrigerator 2 ... Refrigeration room 3 ... Ice making room 4 ... Upper stage freezer room 5 ... Lower stage freezer room 6 ... Vegetable room 7 ... Freezer room 9 ... Heat insulation box 11 ... Heat insulation partition wall 12 ... Partition cover 13 ... Door pocket 14 ... Shelf 15 ... Cooler 16 ... Internal propeller fan 17 ... Cold room cold air duct 18 ... Freezer compartment air duct 20 ... Damper 21 ... Baffle plate 22 ... Radiant heater 23 ... Control board 24 ... Machine room 25 ... Compressor 26 ... Radiator 27 ... Storage Outer propeller fan 28 ··· Capillary tube 29 ··· Pipe 30 · · · Heat flow 31 ··· Divider 32 ··· Divergent channel 33 · · · Merger 34 · · · Merge channel 35 ···・ Valve

Claims (5)

前方に開口縁を備えた断熱箱体と,前記開口縁を開閉可能な扉と,該扉と前記断熱箱体によって形成された貯蔵室と,圧縮機と,放熱手段と,前記開口縁を加熱する結露防止配管と,減圧手段と,蒸発器とを備えた冷蔵庫において,前記圧縮機の吐出口から吐出される冷媒を,前記放熱手段,前記結露防止配管,前記減圧手段,前記蒸発器,前記圧縮機の吸込口の順に流す冷媒流路を備え,前記結露防止配管の上流側で前記冷媒配管を分岐し,かつ前記結露防止配管の下流側で合流し,分岐流路の一方と合流流路が近接して流れることを特徴とする冷蔵庫。   A heat insulating box having an opening edge in the front, a door capable of opening and closing the opening edge, a storage chamber formed by the door and the heat insulating box, a compressor, a heat radiating means, and heating the opening edge In a refrigerator comprising a dew condensation prevention pipe, a decompression means, and an evaporator, the refrigerant discharged from the discharge port of the compressor is used as the heat radiation means, the condensation prevention pipe, the decompression means, the evaporator, A refrigerant flow path that flows in the order of the suction port of the compressor; the refrigerant pipe is branched upstream of the dew condensation prevention pipe; and the downstream side of the dew condensation prevention pipe is merged; A refrigerator characterized by flowing in close proximity. 請求項1記載の冷蔵庫において,前記分岐流路のうち、前記合流流路と近接しない分岐流路の圧力損失をΔPaとし,前記合流流路と近接して流れる分岐流路の断面積をΔPbとした場合,ΔPa≦ΔPbとなることを特徴とする冷蔵庫。   2. The refrigerator according to claim 1, wherein a pressure loss of a branch channel that is not close to the merged channel among the branch channels is ΔPa, and a cross-sectional area of the branch channel that flows close to the merged channel is ΔPb. In this case, the refrigerator is characterized in that ΔPa ≦ ΔPb. 請求項1ないし2記載の冷蔵庫において,前記分岐流路のうち、前記合流流路と近接しない分岐流路の断面積をAaとし,前記合流流路と近接して流れる分岐流路の断面積をAbとした場合,Aa≧Abとなることを特徴とする冷蔵庫。   3. The refrigerator according to claim 1, wherein, of the branch channels, a cross-sectional area of a branch channel that is not close to the merged channel is Aa, and a cross-sectional area of the branch channel that flows close to the merged channel is defined as Aa. A refrigerator characterized by Aa ≧ Ab when Ab is used. 請求項1ないし3記載の冷蔵庫において,前記合流流路に対して,前記合流流路と近接して流れる分岐流路を庫内側に備えることを特徴とする冷蔵庫。   The refrigerator according to any one of claims 1 to 3, further comprising a branch channel on the inner side of the merging channel that flows close to the merging channel. 請求項1ないし4記載の冷蔵庫において,前記合流流路と,前記合流流路と近接して流れる分岐流路は,直接接触していないことを特徴とする冷蔵庫。   5. The refrigerator according to claim 1, wherein the merging channel and the branch channel that flows close to the merging channel are not in direct contact with each other.
JP2017019186A 2017-02-06 2017-02-06 refrigerator Expired - Fee Related JP6689219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017019186A JP6689219B2 (en) 2017-02-06 2017-02-06 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017019186A JP6689219B2 (en) 2017-02-06 2017-02-06 refrigerator

Publications (2)

Publication Number Publication Date
JP2018128146A true JP2018128146A (en) 2018-08-16
JP6689219B2 JP6689219B2 (en) 2020-04-28

Family

ID=63177674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017019186A Expired - Fee Related JP6689219B2 (en) 2017-02-06 2017-02-06 refrigerator

Country Status (1)

Country Link
JP (1) JP6689219B2 (en)

Also Published As

Publication number Publication date
JP6689219B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP5903552B2 (en) refrigerator
EP2196753B1 (en) Refrigerator
EP2778577B1 (en) Refrigerator
JP6177605B2 (en) refrigerator
JP2008249292A (en) Refrigerator
KR101869165B1 (en) Refrigerator
TWI716636B (en) refrigerator
CN109708377A (en) Refrigerator
JP6469966B2 (en) refrigerator
JP2013155910A (en) Refrigerator
JP6803217B2 (en) refrigerator
JP2019117036A (en) refrigerator
JP4248491B2 (en) refrigerator
JP6539093B2 (en) refrigerator
CN104823010A (en) Refrigerator
JP2009036451A (en) Refrigerator
JP5895145B2 (en) refrigerator
JP2014077615A (en) Refrigerator
JP6689219B2 (en) refrigerator
CN110094920A (en) Refrigerator
JP6714382B2 (en) refrigerator
JP2017026210A (en) refrigerator
JP2017020753A (en) refrigerator
JP6543811B2 (en) refrigerator
JP2019132506A (en) refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200407

R150 Certificate of patent or registration of utility model

Ref document number: 6689219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees