JP4248491B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4248491B2
JP4248491B2 JP2004375271A JP2004375271A JP4248491B2 JP 4248491 B2 JP4248491 B2 JP 4248491B2 JP 2004375271 A JP2004375271 A JP 2004375271A JP 2004375271 A JP2004375271 A JP 2004375271A JP 4248491 B2 JP4248491 B2 JP 4248491B2
Authority
JP
Japan
Prior art keywords
cooler
dimension
refrigerator
freezer compartment
cooling chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004375271A
Other languages
Japanese (ja)
Other versions
JP2006183897A (en
Inventor
良二 河井
昭義 大平
浩和 中村
直己 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2004375271A priority Critical patent/JP4248491B2/en
Publication of JP2006183897A publication Critical patent/JP2006183897A/en
Application granted granted Critical
Publication of JP4248491B2 publication Critical patent/JP4248491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Description

本発明は冷蔵庫に関する。   The present invention relates to a refrigerator.

冷却器に着霜がない状態における高性能化と,冷却器に着霜が生じた状態においての性能維持を図る従来の技術としては,例えば,特許文献1に記載の技術がある。   As a conventional technique for improving the performance in a state where the cooler is not frosted and maintaining the performance in a state where the chiller is frosted, there is a technique described in Patent Document 1, for example.

この特許文献1に記載の技術は,冷却器の構造に関するもので,冷却器のフィン配列に関して,風上側のフィンエッジ部分が流れ方向に重ならないように配置すること,フィンに切り起こしを設けることで伝熱性能を向上させ,冷却器に着霜がない状態での熱交換性能の向上を図り,着霜時に関しては,フィンに設けた切り起こし部に着霜を集中させることで,熱交換性能を維持している。   The technology described in Patent Document 1 relates to the structure of a cooler. Regarding the fin arrangement of the cooler, the fin edge portion on the windward side is arranged so as not to overlap in the flow direction, and the fin is cut and raised. To improve heat transfer performance and improve heat exchange performance when there is no frost on the cooler. When frost is formed, heat is exchanged by concentrating frost on the cut and raised parts provided on the fins. Maintains performance.

特開2002−277183号公報JP 2002-277183 A

冷蔵庫用の冷却器の高性能化,小型化を図る際には,冷却器に着霜がない状態における高性能化と,冷却器に着霜が生じた状態においての性能低下の抑制の両立が課題となる。   When trying to improve the performance and downsizing of refrigerators for refrigerators, it is necessary to achieve both high performance without frost formation on the cooler and suppression of performance degradation when frost formation has occurred on the cooler. It becomes a problem.

しかしながら,特許文献1に記載の技術においては,着霜がない状態においては,通風抵抗が向上するということ,また,通常の冷蔵庫の運転状態で想定される程度の着霜がフィン表面あるいは冷媒管表面に生じた場合,その性能を維持することが困難となるということが実用上の問題となっていた。   However, in the technique described in Patent Document 1, ventilation resistance is improved in a state where there is no frost formation, and the degree of frost formation expected in an ordinary refrigerator operating state is generated on the fin surface or the refrigerant pipe. When it occurs on the surface, it has become a practical problem that it is difficult to maintain its performance.

本発明は,上記課題に鑑みてなされたものであり,着霜がない状態において,通風抵抗の向上を伴わずに熱交換性能を向上させ,着霜が生じた状態であっても実使用状態における熱交換性能を確保し得る冷却器及びその周辺構造を有する冷蔵庫を提供することを目的とする。   The present invention has been made in view of the above problems, and in a state where there is no frost formation, the heat exchange performance is improved without improving the ventilation resistance, and even in a state where frost formation occurs, the actual use state is achieved. It aims at providing the refrigerator which can ensure the heat exchange performance in and the refrigerator which has the periphery structure.

上記目的を達成するために,本願の請求項1に記載の発明は,断熱箱体内に配設される冷蔵温度帯の冷蔵室及び冷凍温度帯の冷凍室と,前記冷凍室の背面側に配設され前記冷蔵室と前記冷凍室とを冷却するための冷却器と,前記冷却器が収納される冷却室と,前記冷却室の前記冷却器よりも下方の前面部に前記冷凍室からの戻り冷気が通る開口部と,前記冷却器の下方に設けられる樋と,前記樋から除霜水を排水する排水手段と,前記冷却器と前記樋との間に配設された除霜ヒータと、を備えた冷蔵庫において,前記冷却器奥行寸法を,前記冷却器下面から前記樋に至る鉛直寸法以上とするとともに、前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器前面に至る寸法が,前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器背面に至る寸法よりも大きい寸法とし、前記冷却器の背面側に隙間が設けられ,前記隙間の高さ寸法が,前記冷却器の奥行寸法よりも小さい寸法としたことを要旨とする。 In order to achieve the above object, the invention according to claim 1 of the present application is arranged in the refrigerator compartment of the refrigeration temperature zone and the freezer compartment of the refrigeration compartment disposed in the heat insulation box, and on the back side of the freezer compartment. A cooler for cooling the refrigerating chamber and the freezing chamber, a cooling chamber in which the cooler is accommodated, and a return from the freezing chamber to a front portion of the cooling chamber below the cooler. An opening through which cold air passes, a tub provided below the cooler, a drainage means for draining defrost water from the jar, a defrost heater disposed between the cooler and the jar, In the refrigerator, the depth of the cooler is set to be equal to or greater than the vertical dimension from the cooler lower surface to the ridge, and the vertical upper extension surface of the center line of the defrost heater intersects the cooler lower surface. To the front of the cooler is the lead of the center line of the defrost heater. A dimension larger than the dimension from the line where the upper extension surface intersects the lower surface of the cooler to the rear surface of the cooler, a gap is provided on the rear side of the cooler, and the height dimension of the gap is determined by the cooler. The gist is that the dimension is smaller than the depth dimension .

本願の請求項2に記載の発明は,断熱箱体内に配設される冷蔵温度帯の冷蔵室及び冷凍温度帯の冷凍室と,前記冷凍室の背面側に配設され前記冷蔵室と前記冷凍室とを冷却するための冷却器と,前記冷却器が収納される冷却室と,前記冷却室の前記冷却器よりも下方の前面部に前記冷凍室からの戻り冷気が通る開口部と,前記冷却器の下方に設けられる樋と,前記樋から除霜水を排水する排水孔と,前記冷却器と前記樋との間に配設された除霜ヒータと、を備えた冷蔵庫において,前記冷却器奥行寸法を,前記冷却器下面から前記樋に至る鉛直寸法よりも大きくするとともに、前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器前面に至る寸法が,前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器背面に至る寸法よりも大きい寸法とし、前記冷却器の背面側に隙間が設けられ,前記隙間の高さ寸法が,前記冷却器の奥行寸法よりも小さい寸法としたことを要旨とする。 The invention according to claim 2 of the present application includes a refrigeration room having a refrigeration temperature zone and a freezing room having a refrigeration temperature zone disposed in a heat insulation box, and the refrigeration chamber and the freezer placed on the back side of the freezer compartment. A cooler for cooling the chamber, a cooling chamber in which the cooler is accommodated, an opening through which the return cold air from the freezer compartment passes through the front surface of the cooling chamber below the cooler, In the refrigerator comprising: a reed provided below the cooler; a drain hole for draining defrost water from the reed; and a defrost heater disposed between the cooler and the reed. The depth of the cooler is made larger than the vertical dimension from the lower surface of the cooler to the ridge, and the front surface of the cooler is separated from the line where the vertically upper extension surface of the center line of the defrost heater intersects the lower surface of the cooler. The vertical extension of the center line of the defrost heater and the cooling The dimension is larger than the dimension from the line where the lower surface intersects to the back of the cooler, a gap is provided on the back side of the cooler, and the height of the gap is smaller than the depth of the cooler. The summary is as follows.

本願の請求項3に記載の発明は,断熱箱体内に配設される冷蔵温度帯の冷蔵室及び前記冷蔵室の下方に位置する冷凍温度帯の冷凍室と,前記冷凍室の背面側に配設され前記冷蔵室と前記冷凍室とを冷却するための冷却器と,前記冷却器が収納される冷却室と,前記冷却室の前記冷却器よりも下方の前面部に前記冷凍室からの戻り冷気が通る開口部と,前記冷却室の側方に設けられ前記冷却器の下方位置まで延伸し前記冷蔵室からの戻り空気が通る通風路と,前記冷却器の下方に設けられる樋と,前記樋から除霜水を排水する排水孔と,前記冷却器と前記樋との間に配設された除霜ヒータと、を備えた冷蔵庫において,前記冷却器奥行寸法を前記冷却器下面から前記樋に至る鉛直寸法以上とするとともに、前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器前面に至る寸法が,前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器背面に至る寸法よりも大きい寸法とし、前記冷却器の背面側に隙間が設けられ,前記隙間の高さ寸法が,前記冷却器の奥行寸法よりも小さい寸法としたことを要旨とする。 The invention according to claim 3 of the present application is arranged in a refrigerating room having a refrigerating temperature zone disposed in a heat insulating box, a freezing room having a freezing temperature zone located below the refrigerating room, and a rear side of the freezing room. A cooler for cooling the refrigerating chamber and the freezing chamber, a cooling chamber in which the cooler is accommodated, and a return from the freezing chamber to a front portion of the cooling chamber below the cooler. An opening through which cool air passes, a ventilation path that is provided on the side of the cooling chamber and extends to a position below the cooler and through which return air from the refrigerating chamber passes, a trough that is provided below the cooler, and In a refrigerator comprising a drainage hole for draining defrost water from a reed and a defrost heater disposed between the cooler and the reed, the depth of the cooler is measured from the lower surface of the cooler to the reed with a vertical dimension or leading to, vertically upwardly extending centerline of the defrost heater The dimension from the line where the surface intersects the lower surface of the cooler to the front surface of the cooler reaches the rear surface of the cooler from the line where the vertically upper extension surface of the center line of the defrost heater intersects the lower surface of the cooler The gist is that the dimension is larger than the dimension, a gap is provided on the back side of the cooler, and the height dimension of the gap is smaller than the depth dimension of the cooler .

本願の請求項4に記載の発明は,請求項1から3のいずれかの冷蔵庫において、前記冷却器奥行寸法を,前記冷却器下面から前記排水孔上端に至る鉛直最長寸法以上としたことを要旨とする。   Invention of Claim 4 of this application WHEREIN: In the refrigerator in any one of Claim 1 to 3, the said cooler depth dimension was made more than the vertical longest dimension from the said cooler lower surface to the said drain hole upper end. And

本願の請求項5に記載の発明は,請求項1乃至4に記載の冷蔵庫において、前記冷却器の奥行方向中心を通過する鉛直縦断面より,前記除霜ヒータを後方に位置させたことを要旨とする。 Invention of Claim 5 of this application WHEREIN: In the refrigerator of Claims 1 thru | or 4 , the said defrost heater was located back from the vertical longitudinal cross-section which passes the depth direction center of the said cooler. And

本願の請求項6に記載の発明は,請求項5の冷蔵庫において、前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器前面に至る寸法が,前記冷却室の下方前面部の開口部の開口幅よりも大きい寸法としたことを要旨とする。 The invention according to claim 6 of the present application is the refrigerator according to claim 5 , wherein a dimension extending from a line intersecting a vertically upper extension surface of the center line of the defrost heater and the lower surface of the cooler to the front surface of the cooler is The gist is that the size is larger than the opening width of the opening of the lower front portion of the cooling chamber.

本願の請求項7に記載の発明は,請求項5又は6の冷蔵庫において、前記除霜ヒータから空間を介して熱可塑性周辺構造体に至る最短寸法が,前記除霜ヒータから冷却器に至る最短寸法よりも大きい寸法としたことを要旨とする。 The invention according to claim 7 of the present application is the refrigerator according to claim 5 or 6 , wherein the shortest dimension from the defrost heater to the thermoplastic peripheral structure through the space is the shortest from the defrost heater to the cooler. The gist is that the dimensions are larger than the dimensions.

本願の請求項8に記載の発明は,上記のいずれかの冷蔵庫において、前記冷却器の前面側に隙間が設けられ,前記隙間の高さ寸法が,前記冷却器の奥行寸法よりも小さい寸法としたことを要旨とする。 The invention according to claim 8 of the present application is the above-described refrigerator, wherein a gap is provided on the front side of the cooler, and the height dimension of the gap is smaller than the depth dimension of the cooler. The summary is as follows.

本願の請求項9に記載の発明は,請求項8に記載の冷蔵庫において、前記冷却器の前面側の隙間の高さ寸法が,前記冷却器の背面側の隙間の高さ寸法よりも小さい寸法としたことを要旨とする。 The invention according to claim 9 of the present application is the refrigerator according to claim 8 , wherein the height dimension of the gap on the front side of the cooler is smaller than the height dimension of the gap on the back side of the cooler. The summary is as follows.

本願の請求項10に記載の発明は,断熱箱体内に配設される冷蔵温度帯の冷蔵室及び前記冷蔵室の下方に位置する冷凍温度帯の冷凍室と、前記冷蔵室と前記冷凍室との間を仕切る断熱仕切体と、前記冷凍室の背面側に配設され前記冷蔵室と前記冷凍室とを冷却するための冷却器と、前記冷却器が収納される冷却室と、前記冷凍室から前記冷却室へと至る冷気の戻り路である冷気戻り通路と、前記冷却器の下方に設けられる樋と、前記冷却器の上方に配設され前記冷却器によって冷却された冷気を前記冷蔵室及び前記冷凍室へと送るための送風ファンと、前記冷却器と前記樋との間に配設された除霜ヒータと、を備えた冷蔵庫において、
前記冷却器奥行寸法を前記冷却器下面から前記樋に至る鉛直寸法以上とするとともに、
前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器前面に至る寸法が,前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器背面に至る寸法よりも大きい寸法とし、
前記冷却器の背面側に隙間が設けられ,前記隙間の高さ寸法が,前記冷却器の奥行寸法よりも小さい寸法とし、
前記冷気戻り通路は、前記冷気戻り通路と前記冷却室との境界をなし前記冷却室の前記冷却器よりも下方の前面部に開口した冷却室側開口部と、前記冷気戻り通路と前記冷凍室との境界をなし前記冷凍室側に開口した冷凍室側開口部とを有し、前記冷却室側開口部よりも前記冷凍室側開口部の方を低く位置させて、これらの両開口部の間を直線状又は曲線状に連通し、
前記冷気戻り通路を構成するために上下に対向して配設された通路面のうち、上側の通路面の傾斜角度の範囲内の角度で、前記送風ファンを傾斜させることによって、前記送風ファンを前記断熱仕切体の投影面よりも下方に位置させて庫内の有効収納容積を向上したことを要旨とする。
The invention according to claim 10 of the present application includes a refrigeration room having a refrigeration temperature zone disposed in a heat insulating box, a freezing room having a freezing temperature zone located below the refrigeration room, the refrigeration room, and the freezing room. A heat insulating partition that partitions the space between the refrigerator compartment, a cooler that is disposed on the back side of the freezer compartment and cools the refrigerator compartment and the freezer compartment, a cooling compartment that houses the cooler, and the freezer compartment A cool air return path which is a return path of cool air from the cooling chamber to the cooling chamber, a ridge provided below the cooler, and the cool air disposed above the cooler and cooled by the cooler. And in the refrigerator provided with the ventilation fan for sending to the freezer compartment, and the defrost heater arranged between the cooler and the basket ,
While making the said cooler depth dimension more than the vertical dimension from the said cooler lower surface to the said collar ,
The dimension extending from the line intersecting the vertically upper extension surface of the center line of the defrost heater and the lower surface of the cooler to the front surface of the cooler is the vertical upper extension surface of the center line of the defrost heater and the lower surface of the cooler. The dimension is larger than the dimension from the intersecting line to the back of the cooler,
A gap is provided on the back side of the cooler, and the height dimension of the gap is smaller than the depth dimension of the cooler ,
The cold air return passage forms a boundary between the cold air return passage and the cooling chamber, and opens in a front side of the cooling chamber below the cooler, the cooling chamber side opening, the cold air return passage, and the freezer compartment A freezer compartment side opening that opens to the freezer compartment side, and the freezer compartment side opening is positioned lower than the cooling compartment side opening, and Communicated in a straight line or curved line,
By tilting the blower fan at an angle within the range of the tilt angle of the upper passage surface among the passage surfaces arranged vertically opposite to constitute the cold air return passage, the blower fan is The gist is that the effective storage volume in the warehouse is improved by being positioned below the projection surface of the heat insulating partition.

以上のような本発明によると,着霜がない状態において,通風抵抗の向上を伴わずに熱交換性能を向上させ,着霜が生じた状態であっても実使用状態における熱交換性能を確保し得る冷却器及びその周辺構造を有する冷蔵庫を提供することができる。   According to the present invention as described above, heat exchange performance is improved without improving ventilation resistance in the absence of frost formation, and heat exchange performance in actual use is ensured even when frost formation occurs. It is possible to provide a refrigerator having such a cooler and a peripheral structure thereof.

本発明の実施の形態を,図1〜図10を参照しながら説明する。尚,以下の説明では,同一機能部品については同一符号を付して重複説明を省略する。   An embodiment of the present invention will be described with reference to FIGS. In the following description, the same functional parts are denoted by the same reference numerals, and redundant description is omitted.

図1は本実施例の冷蔵庫を正面から見た図である。図1に示すように,冷蔵庫1は、上方から、冷蔵室2、野菜室3、製氷室4、上段冷凍室5、下段冷凍室6から構成される。尚、本明細書中においては,冷蔵室2と野菜室3をまとめて冷蔵温度帯室群12、製氷室4、上段冷凍室5、下段冷凍室6をまとめて冷凍温度帯室群13と称する。   FIG. 1 is a front view of the refrigerator of this embodiment. As shown in FIG. 1, the refrigerator 1 includes a refrigerator room 2, a vegetable room 3, an ice making room 4, an upper freezer room 5, and a lower freezer room 6 from above. In the present specification, the refrigerator compartment 2 and the vegetable compartment 3 are collectively referred to as a refrigerated temperature zone room group 12, the ice making room 4, the upper freezer compartment 5, and the lower freezer compartment 6 are collectively referred to as a frozen temperature zone compartment group 13. .

図2は、図1中に示したA−A断面を矢印方向から見た縦断面図である。図2に示すように,冷蔵庫1の庫外と庫内は断熱箱体10により隔てられている。庫内は,仕切壁28及び断熱仕切壁36により,庫内上方から,5℃程度に保たれる冷蔵室2,2〜3℃程度に保たれる野菜室3,−18℃以下に保たれる上段冷凍室5及び下段冷凍室6に区画されている。また冷蔵室2の最下部は,0〜−1℃程度に保たれる氷温室11が備えられている。   FIG. 2 is a vertical cross-sectional view of the AA cross section shown in FIG. 1 as viewed from the direction of the arrow. As shown in FIG. 2, the outside of the refrigerator 1 and the inside of the refrigerator are separated by a heat insulating box 10. The inside of the refrigerator is kept at a temperature of about 5 ° C., a refrigerated room 2 kept at about 5 ° C., a vegetable room 3 kept at about 2-3 ° C., and below −18 ° C. by the partition wall 28 and the heat insulating partition wall 36. The upper freezer compartment 5 and the lower freezer compartment 6 are partitioned. Moreover, the lowest part of the refrigerator compartment 2 is equipped with the ice greenhouse 11 kept at about 0-1 degreeC.

冷蔵室2は回転式の扉2aにより開閉され,野菜室3,上段冷凍室5,及び下段冷凍室6は、それぞれの室の前方に設けられた引き出し式の扉3a,5a,6aにより開閉される。引き出し式の扉3a,5a,6aには,それぞれ収納容器3b,5b,6bが備えられ,引き出し式の扉3a,5a,6aの開閉に伴なってそれぞれの収納容器3b,5b,6bが引き出される。これらの収納容器3aには例えば野菜類を,収納容器5aには例えばアイスクリームを,収納容器6aには例えば冷凍食品を,それぞれの温度帯に応じて収納できるようになっている。図1に示す製氷室4は,図示しない引き出し式の扉と図示しない収納容器を備え,製氷室4の収納容器には,氷が貯蔵される。   The refrigerator compartment 2 is opened and closed by a rotary door 2a, and the vegetable compartment 3, the upper freezer compartment 5, and the lower freezer compartment 6 are opened and closed by drawer type doors 3a, 5a and 6a provided in front of the respective compartments. The The drawer-type doors 3a, 5a, 6a are provided with storage containers 3b, 5b, 6b, respectively, and the storage containers 3b, 5b, 6b are pulled out as the drawer-type doors 3a, 5a, 6a are opened and closed. It is. These storage containers 3a can store, for example, vegetables, the storage container 5a, for example, ice cream, and the storage container 6a, for example, frozen food, according to their temperature zones. The ice making chamber 4 shown in FIG. 1 includes a drawer-type door (not shown) and a storage container (not shown), and ice is stored in the storage container of the ice making chamber 4.

冷却器7は冷凍温度帯室群13の背部に設けられた冷却室8内に設けられており,冷却器7の上方に設けられた庫内送風ファン9により冷却器7で熱交換した空気(以下,本明細書中において,熱交換した低温空気を冷気,あるいは冷却風と称することがある)が各室へ送られる。庫内の各室への送風は冷気ダクト中に配設されるダンパ14の開閉によって制御される。   The cooler 7 is provided in a cooling chamber 8 provided at the back of the freezing temperature zone group 13, and air (in which heat is exchanged by the cooler 7 by an internal fan 9 provided above the cooler 7) Hereinafter, in this specification, the heat-exchanged low-temperature air may be referred to as cold air or cooling air). The air blowing to each chamber in the cabinet is controlled by opening / closing a damper 14 disposed in the cold air duct.

冷気は,ダンパ14が開状態時には,冷蔵温度帯室群12方面,冷凍温度帯室群13方面へ分配され,各室を冷却する。以下、ダンパ14が開状態時の運転モードをFR運転と称する。FR運転時,冷蔵温度帯室群12方面へ分配された冷気は,冷蔵温度帯室群12へと送られる冷気の通路となる冷蔵室送風ダクト15を介して、冷蔵室吐出口24a,24b,24cから冷蔵室2内に流入し,冷蔵室2を冷却した後に,仕切壁28に設けられた通風口29を介して野菜室3に流入する。野菜室3の冷却を終えた冷気は,野菜室3の背面に設けられた図示しない排気口から,冷却室8の側方に設けられた冷蔵室戻りダクト37を介して冷却室8に戻る(図4)。次に、冷凍温度帯室群13方面へ分配された冷気は、冷凍温度帯室群13へと送られる冷気の通路となる冷凍室送風ダクト16を介して、上段冷凍室吐出口25、下段冷凍室吐出口26、及び図示しない製氷室吐出口から、それぞれ上段冷凍室5、下段冷凍室6、及び製氷室4へ流入する。冷凍温度帯室群13を冷却し終えた冷気は、冷凍室戻りダクト17を介して冷却室8に戻る。   When the damper 14 is in the open state, the cold air is distributed to the refrigeration temperature zone group 12 direction and the refrigeration temperature zone chamber group 13 direction to cool each chamber. Hereinafter, the operation mode when the damper 14 is in the open state is referred to as FR operation. During the FR operation, the cold air distributed to the refrigeration temperature zone group 12 direction is supplied to the refrigeration chamber discharge ports 24a, 24b, via the refrigeration chamber air duct 15 serving as a passage for the cold air sent to the refrigeration temperature zone chamber group 12. After flowing into the refrigerating chamber 2 from 24 c and cooling the refrigerating chamber 2, it flows into the vegetable chamber 3 through the vent hole 29 provided in the partition wall 28. The cold air that has finished cooling the vegetable compartment 3 returns to the cooling compartment 8 from an exhaust port (not shown) provided on the back of the vegetable compartment 3 via a refrigeration compartment return duct 37 provided on the side of the cooling compartment 8 ( FIG. 4). Next, the cold air distributed to the freezing temperature zone room group 13 direction passes through the freezer air blow duct 16 serving as a passage for the cold air sent to the freezing temperature zone room group 13, and the upper freezer discharge port 25 and the lower freezing air. From the chamber discharge port 26 and the ice making chamber discharge port (not shown), the air flows into the upper freezing chamber 5, the lower freezing chamber 6, and the ice making chamber 4, respectively. The cool air that has finished cooling the freezing temperature zone group 13 returns to the cooling chamber 8 via the freezer return duct 17.

一方、ダンパ14が閉状態時には,冷気は冷凍温度帯室群13にのみ送られる。以下、ダンパ14が開状態時の運転モードをF運転と称する。   On the other hand, when the damper 14 is closed, the cold air is sent only to the freezing temperature zone group 13. Hereinafter, the operation mode when the damper 14 is in the open state is referred to as F operation.

また,断熱箱体10の下方背面側には,機械室19が設けられており,圧縮機20及び図示しない放熱器が収納されており,図示しない庫外送風ファンにより通風される。圧縮機20と冷却器7とは冷凍サイクルを構成しており、図示しない冷媒管によって接続され、冷却器7内で冷媒が蒸発することによって冷気を生成し、庫内を冷却している。尚,本実施例の冷蔵庫においては,イソブタンを冷媒とする。   In addition, a machine room 19 is provided on the lower back side of the heat insulating box 10, and a compressor 20 and a radiator (not shown) are accommodated and ventilated by a fan outside the box (not shown). The compressor 20 and the cooler 7 constitute a refrigeration cycle, and are connected by a refrigerant pipe (not shown). The refrigerant evaporates in the cooler 7 to generate cool air and cool the interior. In the refrigerator of this embodiment, isobutane is used as a refrigerant.

本明細書中においては,図1中のWを冷蔵庫1の幅,図2中のDを冷蔵庫1の奥行,図2中のHを冷蔵庫1の高さと称する。また,冷蔵庫1の奥行方向に関して,扉2a,3a,5a,6aが設けられている側を前面とし,前面と対向する側を背面とする。従って,冷蔵庫1の前面側に向かう方向を前方,冷蔵庫1の背面側に向かう方向を後方と称することがある。   In this specification, W in FIG. 1 is called the width of the refrigerator 1, D in FIG. 2 is called the depth of the refrigerator 1, and H in FIG. 2 is called the height of the refrigerator 1. In addition, regarding the depth direction of the refrigerator 1, the side on which the doors 2a, 3a, 5a, 6a are provided is the front surface, and the side facing the front surface is the back surface. Therefore, the direction toward the front side of the refrigerator 1 may be referred to as the front, and the direction toward the back side of the refrigerator 1 may be referred to as the rear.

図3は,図2における冷却器7の周辺の構造を示した縦断面図である。図3に示すように,冷却器7の下方には,除霜ヒータ22が設けられている。また,除霜ヒータ22の上方には,除霜ヒータ22を落下物(霜,除霜水)から保護するためのカバー体40が設けられ,除霜ヒータ22の下方には除霜水を受ける樋23が設けられている。除霜時に冷却器7から生じる除霜水は,カバー体40によって除霜ヒータ22本体部分に滴下することを避けながら樋23へと落下し,排水孔27を介して,図示しない蒸発皿に至り蒸発する。すなわち,排水孔27は冷却室8内と機械室19とを連通し,除霜水は機械室19内の蒸発皿へと導かれる構成となっている。また,冷却器7の背面側には,冷却器7と断熱箱体10との間に隙間30が,冷却器7の前面側には冷却器7と冷凍室送風ダクト16を仕切る仕切壁31との間に隙間32が設けられている。隙間30,隙間32は,所定の位置において,冷却器7側に隙間を段階的または連続的に縮小させる構造30a,32aを有する。   FIG. 3 is a longitudinal sectional view showing the structure around the cooler 7 in FIG. As shown in FIG. 3, a defrost heater 22 is provided below the cooler 7. Further, a cover body 40 for protecting the defrost heater 22 from falling objects (frost, defrost water) is provided above the defrost heater 22, and defrost water is received below the defrost heater 22. A collar 23 is provided. The defrost water generated from the cooler 7 at the time of defrosting falls to the eaves 23 while avoiding dripping onto the main body portion of the defrost heater 22 by the cover body 40, and reaches the evaporating dish (not shown) through the drain hole 27. Evaporate. That is, the drain hole 27 communicates the inside of the cooling chamber 8 and the machine room 19, and the defrost water is guided to the evaporating dish in the machine room 19. Further, a gap 30 is provided between the cooler 7 and the heat insulating box 10 on the back side of the cooler 7, and a partition wall 31 that partitions the cooler 7 and the freezer compartment air duct 16 on the front side of the cooler 7. A gap 32 is provided between the two. The gaps 30 and 32 have structures 30a and 32a that reduce the gap stepwise or continuously on the cooler 7 side at predetermined positions.

図4は,冷却器周辺の構造を示した横断面図を正面方向から見た図である。図4に示すように,冷却器7の側方には,冷蔵室戻りダクト37が配されている。冷蔵室戻りダクト37は,野菜室3の背面に設けられた図示しない排気口と連通する。また,冷却室に流入した空気が冷却器7の側方の冷媒管18の屈曲部18aに流入し,冷却器7のフィン21設置領域に流入する空気の量が減少することを防止するために,冷却室に流入した空気が冷却器7の側方の冷媒管屈曲部18aに流入し難くする構造としている。具体的には,冷蔵室戻りダクト37と冷却室8との間の仕切りを,冷却器7の最下部の冷媒管1よりも下方まで延伸させ,また,冷媒管屈曲部18aの上方位置に流れ規制部材を配設させて,戻り冷気を図中の矢印のように冷却室8内へと送られる構造とした。   FIG. 4 is a cross-sectional view showing the structure around the cooler as seen from the front. As shown in FIG. 4, a refrigerating room return duct 37 is disposed on the side of the cooler 7. The refrigerator compartment return duct 37 communicates with an exhaust port (not shown) provided on the back of the vegetable compartment 3. Further, in order to prevent the air flowing into the cooling chamber from flowing into the bent portion 18a of the refrigerant pipe 18 on the side of the cooler 7 and reducing the amount of air flowing into the fin 21 installation area of the cooler 7. The air that has flowed into the cooling chamber is made difficult to flow into the refrigerant pipe bent portion 18a on the side of the cooler 7. Specifically, the partition between the refrigeration chamber return duct 37 and the cooling chamber 8 extends below the lowermost refrigerant pipe 1 of the cooler 7 and flows to a position above the refrigerant pipe bending portion 18a. A restricting member is arranged so that the return cold air is sent into the cooling chamber 8 as indicated by the arrow in the figure.

図5は,本実施例の冷蔵庫に搭載される冷却器の斜視図である。図5に示すように,本実施例の冷蔵庫に搭載される冷却器7は,アルミ製の冷媒管18と,アルミ製の複数のフィン21とを有して構成される,いわゆるフィンチューブ型の熱交換器である(ただし,図5においては,フィン21はその全てが図示されてはいない)。尚,冷却器7の幅は,フィン21設置領域の最大幅方向寸法,奥行はフィン21設置領域の最大奥行方向寸法,高さはフィン21設置領域の最大高さ寸法として定義する。また,冷却器7の下面とは,フィン21の最下端と一致する水平面とする。   FIG. 5 is a perspective view of a cooler mounted on the refrigerator of the present embodiment. As shown in FIG. 5, the cooler 7 mounted in the refrigerator of the present embodiment is a so-called fin tube type that includes an aluminum refrigerant pipe 18 and a plurality of aluminum fins 21. It is a heat exchanger (however, not all of the fins 21 are shown in FIG. 5). The width of the cooler 7 is defined as the maximum width direction dimension of the fin 21 installation area, the depth is the maximum depth direction dimension of the fin 21 installation area, and the height is the maximum height dimension of the fin 21 installation area. The lower surface of the cooler 7 is a horizontal plane that coincides with the lowermost end of the fin 21.

図6は図3における,冷却器7と,その前後に設けられる隙間30,32と除霜ヒータ22,樋23の位置関係を表す図である。尚,本明細書中において,除霜ヒータとは,金属抵抗体からなるヒータ線とその周囲を覆うガラス管とを有する構造体を指す。図6中の記号S1は,冷却器7の奥行方向の中心を表す基準面。S2は,除霜ヒータ22の中心線を鉛直上方に延長することにより形成される基準面である。L1は,除霜ヒータ22から熱可塑性周辺構造体(例えば、樹脂製の内箱)に至る最短寸法であり,L2は,除霜ヒータ22から冷却器7の下面に至る最短寸法,L3は,冷却器7の下面の前面側の端部からS2に至る最長寸法,L4は,冷却器7の下面の背面側の端部からS2に至る最長寸法,L5は,樋23又は樋23と連続する部材の前面側の上端23aから冷凍室戻りダクト17を形成する仕切壁17aに至る寸法(すなわち,戻りダクト17の開口部の開口寸法),L6は,冷却器7の背面側に設けられた隙間30の冷却器7の下面からの高さ寸法,L7は,冷却器7の前面側に設けられた隙間32の冷却器7の下面からの高さ寸法,L8は冷却器下面から,排水孔27上端に至る寸法を表し,戻り冷気風路の基準となる寸法である。本実施例のように、排水孔27上端周囲に幅広部を有する場合には、図中の段部位置27aまでを風路の基準位置とする。この事情については後述する。尚,排水孔27はS1に略一致する位置に配されている。 FIG. 6 is a diagram illustrating the positional relationship between the cooler 7 and the gaps 30 and 32 provided before and after the cooler 7 and the defrost heater 22 and the eaves 23 in FIG. In addition, in this specification, a defrost heater refers to the structure which has the heater wire which consists of metal resistors, and the glass tube which covers the circumference | surroundings. Symbol S1 in FIG. 6 is a reference plane representing the center of the cooler 7 in the depth direction. S2 is a reference surface formed by extending the center line of the defrosting heater 22 vertically upward. L1 is the shortest dimension from the defrost heater 22 to the thermoplastic peripheral structure (for example, resin inner box), L2 is the shortest dimension from the defrost heater 22 to the lower surface of the cooler 7, and L3 is The longest dimension from the front end of the lower surface of the cooler 7 to S2 , L4 is the longest dimension from the rear end of the lower surface of the cooler 7 to S2 , and L5 is continuous with the flange 23 or 23. The dimension from the upper end 23a on the front side of the member to the partition wall 17a that forms the freezer return duct 17 (that is, the opening dimension of the opening of the return duct 17), L6 is a clearance provided on the rear side of the cooler 7 30 is a height dimension from the lower surface of the cooler 7, L7 is a height dimension from the lower surface of the cooler 7 of the gap 32 provided on the front side of the cooler 7, L8 is a lower surface of the cooler 7, and the drain hole 27 This is the dimension that reaches the upper end and is the standard for the return cold air path. . In the case of having a wide portion around the upper end of the drainage hole 27 as in the present embodiment, the step position 27a in the figure is set as the reference position of the air passage. This situation will be described later. The drain hole 27 is arranged at a position substantially coincident with S1.

本実施例の冷蔵庫においては,除霜ヒータ22はS1より背面側に位置する。また,図6に示す記号を用いて,L1>L2,L3>L4,L3>L5,(L3+L4)>L7,(L3+L4)>L6,L7>L6,(L3+L4)≧L8の各関係を満足するように各構成が配置される。   In the refrigerator of the present embodiment, the defrost heater 22 is located on the back side from S1. Further, using the symbols shown in FIG. 6, the following relationships are satisfied: L1> L2, L3> L4, L3> L5, (L3 + L4)> L7, (L3 + L4)> L6, L7> L6, (L3 + L4) ≧ L8. Each configuration is arranged as described above.

冷蔵庫用冷却器の高性能化,小型化を図る技術は,着霜が生じていない状態(以下,未着霜時と称する)における熱交換性能の向上と同時に,着霜時の熱交換性能の確保を併せることによって実現する。以下では,上述した構成を備えた本実施例の冷蔵庫に搭載される冷却器が,未着霜時において高い熱交換性能を有し,着霜時においても熱交換性能を維持し得ることを,図3,4,6〜10を参照しながら説明する。   The technology for improving the performance and miniaturization of refrigerator coolers improves the heat exchange performance when frost formation is not occurring (hereinafter referred to as “no frost formation”), as well as the heat exchange performance during frost formation. It is realized by securing. In the following, the cooler mounted on the refrigerator of the present embodiment having the above-described configuration has high heat exchange performance during non-frosting, and can maintain heat exchange performance even during frost formation. This will be described with reference to FIGS.

まず,未着霜時の熱交換性能に関して説明する。   First, the heat exchange performance during non-frosting will be described.

図3に示すように,冷凍室戻り空気は,冷却器7の下側前方から冷凍室戻りダクト17を通って冷却室8内へ流入し,冷却器7内を下側前方から,背面上方に向かって主に流れる。一方,図4に示すように,冷蔵室戻り空気は,冷却器7の下方の側方から流入する。冷却室に流入した冷蔵室戻り空気は,除霜ヒータ22の下方の領域付近を流れ,冷却器7の背面付近,あるいは,冷却器背面側の隙間30に向けて主に流れる。冷蔵室戻り空気が,冷却器7の背面付近を通過するのは,冷却器7の前面側から背面側に向かう運動量を持つ冷凍室戻り空気に因るものである。   As shown in FIG. 3, the freezer return air flows from the lower front of the cooler 7 through the freezer return duct 17 into the cooler 8, and passes through the cooler 7 from the lower front to the rear upper side. Mainly flows towards. On the other hand, as shown in FIG. 4, the return air from the refrigerator compartment flows from the side below the cooler 7. The refrigeration chamber return air that has flowed into the cooling chamber flows in the vicinity of the area below the defrosting heater 22, and mainly flows toward the rear surface of the cooler 7 or toward the gap 30 on the rear surface side of the cooler. The refrigerating room return air passes through the vicinity of the back surface of the cooler 7 due to the freezer room return air having a momentum from the front side to the back side of the cooler 7.

図7は,図6の流れ場の概略を表す説明図である。図7中の実線矢印33は,冷凍室戻り空気を主とする流れを,点線矢印34は,冷蔵室戻り空気を主とする流れを,破線矢印35は,冷凍室戻り空気と冷蔵室戻り空気が混合された流れの概略をそれぞれ表したものである。このような流れ場を考慮して,冷却器7における熱交換性能を高めるためには,矢印33〜35が冷却器7にスムーズに流入できるようにすることが効果的となる。   FIG. 7 is an explanatory diagram showing an outline of the flow field of FIG. In FIG. 7, a solid line arrow 33 indicates a flow mainly including freezer return air, a dotted line arrow 34 indicates a flow mainly including refrigerator compartment return air, and a broken arrow 35 indicates freezer return air and refrigerator compartment return air. The outlines of the flows in which are mixed are respectively shown. In order to enhance the heat exchange performance in the cooler 7 in consideration of such a flow field, it is effective to allow the arrows 33 to 35 to smoothly flow into the cooler 7.

矢印33〜35の冷却器7の下方における主な流れ方向,例えば,図7中のS1付近における流れ方向は,およそ前方から後方へ向かう。また冷却器に流入した後は,主として下方から上方へ向かう。従って,冷却器7の下方に流入した流れを冷却器7にスムーズに転向させて流入させるためには,冷却器7の下方における,流れが前方から後方へ向かう領域の代表高さ寸法L8(冷却器7の下面から樋23に至る鉛直方向最長寸法とする)に対して,冷却器7の流入部の奥行寸法を大きくとり,流れを減速させ,通風抵抗を増加させないようにすることが望ましい。   The main flow direction below the cooler 7 indicated by arrows 33 to 35, for example, the flow direction in the vicinity of S1 in FIG. Moreover, after flowing into the cooler, it mainly moves from below to above. Therefore, in order to smoothly turn the flow that flows in the lower part of the cooler 7 into the cooler 7, the representative height dimension L8 of the region where the flow is directed from the front to the rear under the cooler 7 (cooling). It is desirable to make the depth dimension of the inflow portion of the cooler 7 larger to reduce the flow and not increase the ventilation resistance.

すなわち,図6に示す記号を用いて,(L3+L4)≧L8とすることが効果的である。このように冷却器7の奥行寸法(L3+L4)を冷却器7下方の通路幅L8以上となる構成することによって,L8寸法部を流れる冷気が冷却器7内にスムーズに流れが流入する構造となり,通風抵抗を低く抑え,冷却器における熱交換効率を高くすることが可能となる。尚,樋23と排水孔27は,径が20mm以下となる領域を排水孔,それ以上を樋として識別する。ただし,図6に示すように明瞭に凹部が現れる場合は,その凹部の段位置27a以下を排水孔27,凹部以上を樋として識別する。なぜなら、径が20mm以下であれば,冷却器7の下方の空間において,冷凍室戻りダクト17からの戻り冷気に対して排水孔27が与える影響は小さいためである。   That is, it is effective to satisfy (L3 + L4) ≧ L8 using the symbols shown in FIG. In this way, by configuring the depth dimension (L3 + L4) of the cooler 7 to be equal to or larger than the passage width L8 below the cooler 7, the cool air flowing through the L8 dimension portion smoothly flows into the cooler 7. It is possible to keep the ventilation resistance low and increase the heat exchange efficiency in the cooler. Note that the ridge 23 and the drainage hole 27 are identified as a drainage hole in a region having a diameter of 20 mm or less and a ridge 23 and the drainage hole 27 as a ridge. However, when a recess appears clearly as shown in FIG. 6, the step position 27a or less of the recess is identified as a drain hole 27 and the recess or more is identified as a ridge. This is because if the diameter is 20 mm or less, the drain hole 27 has little influence on the return cold air from the freezer return duct 17 in the space below the cooler 7.

本実施例では、冷却器7へと流入する冷気は直線流路を流れる構成ではなく、図3に示すように冷却器7の前方端部を基準Sとして、この基準Sよりも前方より流入し、冷却器7内を上方へと抜ける構成としているため、冷却器7の奥行寸法(L3+L4)を冷却器7下方の通路幅L8よりも大きくとることが、より有効となる。すなわち、(L3+L4)>L8とすることによって、L8寸法部を流れる冷気が冷却器7内にスムーズに流れが流入する構造となり,通風抵抗を低く抑え,冷却器における熱交換効率を高くすることが可能となる。   In the present embodiment, the cool air flowing into the cooler 7 does not flow through the straight flow path, but flows from the front of the reference S with the front end of the cooler 7 as the reference S as shown in FIG. Since the cooling unit 7 is configured to pass upward, it is more effective to make the depth dimension (L3 + L4) of the cooling unit 7 larger than the passage width L8 below the cooling unit 7. That is, by setting (L3 + L4)> L8, a structure in which the cold air flowing through the L8 dimension portion smoothly flows into the cooler 7 can reduce the ventilation resistance and increase the heat exchange efficiency in the cooler. It becomes possible.

また,一般に,熱交換器においては,その流入部付近の熱交換効率が高いことが知られている。図7における領域a〜cは,それぞれ,特に冷凍室戻り空気が流入することにより熱交換効率が高い領域,特に隙間30に流入した冷蔵室戻り空気が冷却器に流入することにより熱交換効率が高い領域,及び冷凍室戻り空気と冷蔵室戻り空気が混合された流れが冷却器に流入することにより熱交換効率が高い領域を表す。S2を略境界として,S2より背面側においては,除霜ヒータ22及びカバー体40の上方の背面側に生じる後流の撹拌効果により,冷凍室戻り空気は,冷蔵室戻り空気と混合された流れとなる。   In general, heat exchangers are known to have high heat exchange efficiency near the inflow portion. Regions a to c in FIG. 7 are regions where heat exchange efficiency is high particularly when freezer return air flows in, particularly heat exchange efficiency when refrigerator return air flowing into the gap 30 flows into the cooler. It represents a high region and a region where the heat exchange efficiency is high when a flow in which the freezer return air and the refrigerating chamber return air are mixed flows into the cooler. With S2 as a substantially boundary, on the back side from S2, the freezing chamber return air is mixed with the refrigeration chamber return air due to the agitating effect of the wake generated on the back side above the defrosting heater 22 and the cover body 40. It becomes.

すなわち,領域aと領域cは,冷却器下面においては,冷気流れの抵抗部材となる除霜ヒータ22の位置であるS2によって境界を設定することが可能である。従って,冷却器7に対して,除霜ヒータ22aが相対的に前方に位置すれば領域aに対して,相対的に領域cが増加し,逆に,冷却器7に対して除霜ヒータ22が相対的に後方に位置すれば領域cに対して,相対的に領域aが増加することになる。また,領域bの位置は,隙間30の高さに依存する。冷蔵庫用の冷却器の高性能化,小型化を図る場合,この領域a〜cの大きさを大きく取ることが効果的である。   That is, the boundary between the region a and the region c can be set on the lower surface of the cooler by S2 which is the position of the defrost heater 22 serving as a resistance member for the cold air flow. Therefore, if the defrost heater 22a is positioned relatively forward with respect to the cooler 7, the area c is relatively increased with respect to the area a, and conversely, with respect to the cooler 7, the defrost heater 22 is increased. If is positioned relatively rearward, the area a is relatively increased with respect to the area c. Further, the position of the region b depends on the height of the gap 30. In order to improve the performance and size of the refrigerator cooler, it is effective to increase the size of the areas a to c.

既述した通り,冷蔵庫1の運転モードは,冷蔵温度帯室群12方面,冷凍温度帯室群13の双方を冷却するFR運転と,冷凍温度帯室群13のみを冷却するF運転からなる。通常,FR運転時においては,冷蔵温度帯室群12方面に対して,これらよりも低温を維持しなければならない冷凍温度帯室群13方面には多くの冷却風を循環させる(食品の乾燥を抑制するという観点からも,冷凍温度帯室群13方面に比して,冷蔵温度帯室群12方面への送風は抑え目にすることが望ましい)。本実施例における冷蔵庫1においては,FR運転時において,冷蔵温度帯室群12方面へ分配される冷気と冷凍温度帯室群13方面へ分配させる冷気の比は約1:4となっている。従って,FR運転時において,冷蔵室戻り空気に比して,冷凍室戻り空気は冷却室8への流入量が多い。また,F運転時には,冷凍室戻り空気のみが冷却室8に流入する。   As described above, the operation mode of the refrigerator 1 includes the FR operation for cooling both the refrigeration temperature zone group 12 and the freezing temperature zone group 13 and the F operation for cooling only the freezing temperature zone group 13. Normally, during the FR operation, a large amount of cooling air is circulated in the direction of the freezing temperature zone group 13 where the temperature must be kept lower than that in the direction of the refrigeration temperature zone group 12 (the drying of the food). From the viewpoint of suppression, it is desirable that the air flow toward the refrigeration temperature zone group 12 direction is suppressed as compared with the refrigeration temperature zone group 13 direction). In the refrigerator 1 according to the present embodiment, the ratio of cold air distributed to the refrigerated temperature zone group 12 direction and cold air distributed to the refrigeration temperature zone group 13 direction is about 1: 4 during the FR operation. Therefore, during the FR operation, the freezing room return air has a larger amount of inflow into the cooling room 8 than the refrigerating room return air. Further, during the F operation, only the freezer return air flows into the cooling chamber 8.

従って,冷却器の高効率化を図るためには,冷凍室戻り空気が流入する領域aを拡大する,即ち図6においてL3>L4とすることが効果的となる。   Therefore, in order to increase the efficiency of the cooler, it is effective to enlarge the region a into which the freezer return air flows, that is, L3> L4 in FIG.

また,冷凍室戻り空気の領域aへの流入時の通風抵抗を低減するために,L3>L5とすることが効果的となる。   In order to reduce the ventilation resistance when the freezer return air flows into the region a, it is effective to satisfy L3> L5.

また,領域bに関しては,熱交換効率が高い領域であるが,冷却器7に流入した後に冷却器を通過する距離が領域a及び領域cより短くなるため,領域a及び領域cに流入した流れに比して熱交換量は小さくなる。従って,主な熱交換を領域aと領域cで行わせるために,領域aと領域cの流入部を合わせた奥行方向寸法L3+L4に比して,隙間30の高さL6を小さくとる,すなわち,(L3+L4)>L6とすることが効果的となる。   Further, regarding the region b, although the heat exchange efficiency is high, the distance that passes through the cooler after flowing into the cooler 7 is shorter than the region a and the region c, so that the flow flowing into the region a and the region c The amount of heat exchange is smaller than that. Therefore, in order to perform the main heat exchange in the region a and the region c, the height L6 of the gap 30 is made smaller than the depth direction dimension L3 + L4 in which the inflow portions of the region a and the region c are combined. It is effective to satisfy (L3 + L4)> L6.

以上説明した構成により,未着霜時において,通風抵抗の向上を伴わずに冷却器の熱交換性能を向上さることが可能となる。   With the above-described configuration, it is possible to improve the heat exchange performance of the cooler without improving the ventilation resistance when the frost is not formed.

以下では,本実施例の冷蔵庫が,着霜時においても熱交換性能を維持し得る冷却器及びその周辺構造を有することを説明する。   Below, it demonstrates that the refrigerator of a present Example has the cooler which can maintain heat exchange performance also at the time of frost formation, and its peripheral structure.

図8〜10は,冷却器7と,その前後に設けられる隙間30,32と除霜ヒータ22の形状と位置関係,及び着霜の様子を表した簡略図である。   FIGS. 8 to 10 are simplified diagrams showing the shape and positional relationship of the cooler 7, the gaps 30 and 32 provided before and after the cooler 7, and the frost formation.

一般に,冷蔵温度帯室群12と冷凍温度帯室群13からなる冷蔵庫においては,冷蔵温度帯室群12からの戻り空気(冷蔵室戻り空気)が高湿となる。よって,冷蔵室戻り空気が冷却器への着霜の第一の要因となる。   In general, in a refrigerator including the refrigeration temperature zone chamber group 12 and the refrigeration temperature zone chamber group 13, the return air (refrigeration chamber return air) from the refrigeration temperature zone chamber group 12 is highly humid. Therefore, the return air from the refrigerator compartment is the first factor of frost formation on the cooler.

未着霜時においては,冷蔵室戻り空気は,図7に示したように後方側から冷却器7に流入する。従って,隙間30に流入した冷蔵室戻り空気が冷却器に流入する領域bと,冷凍室戻り空気と冷蔵室戻り空気が混合した流れが冷却器に流入する領域cから着霜が始まる。   When the frost is not formed, the return air from the refrigerator compartment flows into the cooler 7 from the rear side as shown in FIG. Therefore, frosting starts from a region b where the refrigerating room return air flowing into the gap 30 flows into the cooler and a region c where the flow of mixing the freezer return air and the refrigerating chamber return air flows into the cooler.

図8は,領域bと領域c付近に主要な霜39が付着した第一の段階の状態を表す(図8程度の着霜状態を状態Aとする)。状態Aにおいては,冷蔵室戻り空気を主とする流れは,点線矢印34Aで,冷凍室戻り空気と冷蔵室戻り空気が混合された流れは,主として破線矢印35Aにより表される。冷蔵室戻り空気34Aは未着霜時と同様に冷凍室戻り空気35Aに押されて冷却器7の後方部へと導かれ隙間30へと至るが,状態Aにおいては,領域bと領域cの霜39の間を通り,冷却器7の上方へ向かう通り路が確保される。しかし,さらに着霜が進むと,矢印34A,35Aで表される流れにより,前記通り路も霜39に覆われ図9のようになる。   FIG. 8 shows a first stage state in which the main frost 39 is attached in the vicinity of the region b and the region c (a frosting state of about FIG. 8 is referred to as state A). In the state A, the flow mainly including the refrigerating room return air is represented by a dotted arrow 34A, and the flow in which the freezing room return air and the refrigerating room return air are mixed is represented mainly by a broken line arrow 35A. The refrigerating room return air 34A is pushed by the freezing room return air 35A and led to the rear part of the cooler 7 and reaches the gap 30 in the same manner as in the case of no frost formation. A passage passing between the frosts 39 and going upward of the cooler 7 is secured. However, when frosting further proceeds, the passage is covered with frost 39 by the flow represented by arrows 34A and 35A, as shown in FIG.

図9に示す程度の着霜状態を状態Bとする。状態B程度の着霜時においては,冷蔵室戻り空気は,背面側の隙間30を通過する量が著しく減少し,冷蔵室戻り空気を主とする流れは,点線矢印34Bで,冷凍室戻り空気と冷蔵室戻り空気が混合された流れは,主として破線矢印35Bで表される。よって,矢印34B,35Bで表される流れにより,さらに着霜が進んだ状態は図10のようになる。   The frost formation state shown in FIG. At the time of frosting in the state B or so, the amount of the refrigerating room return air passing through the gap 30 on the back side is remarkably reduced, and the flow mainly of the refrigerating room return air is indicated by a dotted arrow 34B. The flow in which the refrigeration room return air is mixed is mainly represented by a broken-line arrow 35B. Therefore, the state in which frosting has further advanced by the flow represented by the arrows 34B and 35B is as shown in FIG.

図10程度の着霜状態を状態Cとする。通常の冷蔵庫の運転では状態C程度までの着霜が想定される。   The frosting state of FIG. In normal refrigerator operation, frost formation up to about state C is assumed.

本実施例の冷蔵庫では,前述のように(L3+L4)≧L8としているために,この状態Cにおける着霜状態でも性能を確保できる。L8は,通常,除霜時に,霜が落下した場合であっても除霜ヒータ22が埋没しないだけの除霜ヒータ22から樋23までの寸法と,除霜ヒータの高さ寸法と,除霜ヒータ22と冷却器7の下面との寸法の確保が必要であり,特に,除霜時に,霜が落下した場合であっても除霜ヒータ22が埋没しないだけの寸法を確保するために,十分大きい寸法として設計される。よって,冷却器7の下面の奥行寸法を十分に大きくとれば,着霜が背面側から前面側に到達し,冷却器7に流入する流路が閉塞に至り難くなるため,本実施例では,(L3+L4)≧L8として奥行寸法を十分に大きくとることによって,状態C程度の着霜時においても熱交換性能の維持を可能としている。   In the refrigerator of this embodiment, since (L3 + L4) ≧ L8 is satisfied as described above, the performance can be ensured even in the frosting state in this state C. L8 is a dimension from the defrost heater 22 to the ridge 23 that does not bury the defrost heater 22 even when the frost is dropped at the time of defrost, the height of the defrost heater, and the defrost. It is necessary to ensure the dimensions of the heater 22 and the lower surface of the cooler 7, and in particular, it is sufficient to ensure that the defrost heater 22 is not buried even if frost falls during defrosting. Designed as a large dimension. Therefore, if the depth dimension of the lower surface of the cooler 7 is sufficiently large, frost will reach the front side from the back side, and the flow path flowing into the cooler 7 will not easily be blocked. By making the depth dimension sufficiently large as (L3 + L4) ≧ L8, it is possible to maintain the heat exchange performance even during frost formation in the state C.

また,冷却器7の背面側に隙間30が設けられているため,冷蔵室戻り冷気を背面側へと導き,冷却器7の背面側で十分な着霜を生じさせているため,冷却器7下面における霜の成長を緩和することができる。従って,(L3+L4)寸法を十分に確保した冷却器7の下面の熱交換効率が高い領域が閉塞され難いため,着霜時においても熱交換性能を維持することができる。   In addition, since the gap 30 is provided on the back side of the cooler 7, the cooler return air is guided to the back side and sufficient frost formation is generated on the back side of the cooler 7. The growth of frost on the lower surface can be mitigated. Therefore, since the area | region with the high heat exchange efficiency of the lower surface of the cooler 7 which fully secured the dimension (L3 + L4) is hard to be obstruct | occluded, heat exchange performance can be maintained even at the time of frost formation.

また,L3>L4としているため,背面側に主要な着霜を集中させ,前面側が閉塞に至り難くなる。よって,状態C程度までの着霜が起こった場合であっても,冷却器7の下面が閉塞に至り難いため,着霜時の熱交換性能を十分に維持することができる。   Further, since L3> L4, main frost formation is concentrated on the back side, and the front side is less likely to be blocked. Therefore, even when frost formation up to about state C occurs, the lower surface of the cooler 7 is unlikely to be blocked, so that the heat exchange performance during frost formation can be sufficiently maintained.

また,万が一状態C程度以上の着霜が生じた場合であっても,冷却器7における熱交換性能を維持するために,冷却器7の前面側に隙間32が設けられている。隙間32の高さL7は,万が一状態C程度以上の着霜が生じた場合であっても十分に流れが流れるように,背面側に設けられた隙間の高さL6以上としている。   In addition, even if frosting of about state C or more occurs, a gap 32 is provided on the front side of the cooler 7 in order to maintain the heat exchange performance in the cooler 7. The height L7 of the gap 32 is set to be equal to or higher than the height L6 of the gap provided on the back side so that a sufficient flow can flow even if frosting in the state C or higher occurs.

また,隙間32の高さはL7を(L3+L4)>L7とすることで,隙間32を通過するようになった流れに関しても十分な熱交換を行わせることができる。   Further, the height of the gap 32 is such that L7 is (L3 + L4)> L7, so that sufficient heat exchange can be performed for the flow that has passed through the gap 32.

以上説明した構成により,着霜時においても,冷却器の熱交換性能を維持することが可能となる。   With the configuration described above, the heat exchange performance of the cooler can be maintained even during frost formation.

さらに,除霜ヒータ22は,冷却器7に生じた着霜を融解させることを目的として設置されるものであるため,冷却器7の着霜箇所に近接させること除霜効率を向上させる効果があるが,周辺構造体,特に熱可塑性構造体に近接させることは望ましくない。従って,L1>L2を満足するように設けられている。   Furthermore, since the defrost heater 22 is installed for the purpose of melting the frost generated in the cooler 7, it has the effect of improving the defrost efficiency by bringing the defrost heater 22 close to the frost spot of the cooler 7. However, it is not desirable to be in close proximity to surrounding structures, especially thermoplastic structures. Therefore, it is provided so as to satisfy L1> L2.

これにより,除霜時においても信頼性が高く,冷蔵庫庫内の温度上昇を抑えた冷蔵庫となる。   As a result, the refrigerator has high reliability even during defrosting and suppresses the temperature rise in the refrigerator.

また,ヒータ22はS1より後方に設置されている。これにより,着霜が多く生じやすい箇所,すなわち着霜が開始する箇所(図8にて図示)を効率よく加熱できるため,除霜時間の短縮にもつながり,省電力に寄与した構成とできる。   Moreover, the heater 22 is installed behind S1. Thus, a portion where frost formation is likely to occur, that is, a portion where frost formation starts (illustrated in FIG. 8) can be efficiently heated, leading to a reduction in defrosting time and a configuration that contributes to power saving.

本実施例に係る冷蔵庫の冷却器とその周辺構造を採用することは,冷蔵庫の庫内有効容積率の向上に寄与する。以下でその理由を説明する。   Adopting the refrigerator cooler and its peripheral structure according to the present embodiment contributes to the improvement of the effective volume ratio in the refrigerator. The reason will be described below.

先述のとおり,図6に示すL1は,通常,製品の変形等の事故を防止するために,所定寸法以上確保される。また,L8は,除霜時に霜が落下した場合であっても,除霜ヒータが埋没しないだけの所定高さ寸法以上が必要となる。従って,本実施例の冷蔵庫の冷却器及びその周辺構造の構成を実施する場合,冷却器の奥行寸法を大きくとることが効果的である。本実施例の冷蔵庫においては,従来60mm程度であった冷却器の奥行を77mmとしている。これにより,特に,図7に示す領域aが大幅に増加するため,その分,従来210mm程度であった冷却器の高さ寸法を149mmと小さくすることができる。すなわち,熱交換効率の高い領域が大幅に拡大されるため,冷却器7の高さ寸法を小さく抑えることができたものである。   As described above, L1 shown in FIG. 6 is usually secured to a predetermined dimension or more in order to prevent accidents such as product deformation. Further, L8 needs to have a predetermined height or more so that the defrost heater is not buried even if frost falls during defrosting. Therefore, when implementing the configuration of the refrigerator cooler and its peripheral structure of this embodiment, it is effective to increase the depth of the cooler. In the refrigerator of the present embodiment, the depth of the cooler, which was conventionally about 60 mm, is 77 mm. Thereby, in particular, since the area a shown in FIG. 7 is greatly increased, the height dimension of the cooler, which was conventionally about 210 mm, can be reduced to 149 mm. That is, since the region with high heat exchange efficiency is greatly expanded, the height of the cooler 7 can be kept small.

この冷却器(奥行77mm,高さ149mmの冷却器)を採用し,図3に示すように,冷却器7の前方端部を基準Sとして,冷蔵温度帯室群12への冷蔵室送風ダクト15を基準Sよりも後方に位置させること,高さ寸法の小さな冷却器としても十分な性能確保可能としたことと,庫内送風ファン9を冷却器7の上方において,傾斜させることによって,庫内送風ファン9を冷蔵温度帯室群12と冷凍温度帯室群13を仕切る断熱仕切壁36よりも下方に設けることができ,従来,庫内の収納空間(庫内有効容積)となっていなかった冷蔵温度帯室群12の背面領域を,収納空間として使用できる。   This cooler (a cooler having a depth of 77 mm and a height of 149 mm) is employed, and as shown in FIG. 3, the front end portion of the cooler 7 is used as a reference S, and the refrigerator compartment air duct 15 to the refrigerator compartment zone 12 is used. Is positioned behind the reference S, sufficient performance can be ensured even as a cooler with a small height, and the internal blower fan 9 is tilted above the cooler 7 so that The blower fan 9 can be provided below the heat insulating partition wall 36 that partitions the refrigeration temperature zone chamber group 12 and the refrigeration temperature zone chamber group 13 and has not conventionally been a storage space in the warehouse (effective volume in the warehouse). The back area of the refrigerated temperature chamber group 12 can be used as a storage space.

この構成による作用効果について図3を用いて説明する。本実施例の冷却室7は、冷凍温度室の背面側に配設されており、この冷却器7が収納される冷却室8と冷凍室との間は、戻り冷気の通路となる冷凍室戻りダクト17によって連通されている。この冷凍室戻りダクト17は、冷却室側の開口部(L5寸法部)と、冷凍室側の開口部とを有しており、冷却室側の開口部よりも冷凍室側の開口部の方を低く位置させている。これらの構成によって、戻り冷気は冷凍室から冷却室8へと上昇しながら送られている。なお、冷気戻りダクト17はこれらの両開口部の間を直線状又は曲線状につなげている。したがって、冷凍室戻りダクト17は、戻り冷気の上流側から下流側に向かって、冷蔵庫の下方前方位置から上方後方位置へと延伸している。   The effect by this structure is demonstrated using FIG. The cooling chamber 7 of the present embodiment is disposed on the back side of the freezing temperature chamber, and the freezer return to the freezing chamber serving as a return cold air passage is provided between the cooling chamber 8 in which the cooler 7 is housed and the freezing chamber. The duct 17 communicates. The freezer compartment return duct 17 has a cooling chamber side opening (L5 size portion) and a freezer compartment side opening, and the freezer compartment side opening is closer to the freezer compartment side opening. Is positioned low. With these configurations, the return cold air is sent from the freezing chamber to the cooling chamber 8 while rising. The cold air return duct 17 is connected between these openings in a straight line or a curved line. Therefore, the freezer return duct 17 extends from the lower front position of the refrigerator to the upper rear position from the upstream side to the downstream side of the return cold air.

本実施例では、この冷凍室戻りダクト17を形成するための上下に対向して配設された通路面のうち、上側の通路面(仕切壁17a)の傾斜角度の範囲内の角度(角度T2)で、庫内送風ファン9を角度T1だけ傾斜させることによって、庫内送風ファン9を断熱仕切壁36の投影面よりも下方に位置させて庫内の有効収納容積を向上している。庫内送風ファン9を角度T1だけ傾斜させることによって、図3の矢印によって示されるように冷凍室戻りダクト17から冷却室8へと供給される冷気が冷却器7の後方側へと送られることになるため、傾斜させた庫内送風ファン9による各室への冷気供給がスムーズになる。したがって、通風抵抗を低減させることができる。   In the present embodiment, of the passage surfaces disposed vertically opposite to form the freezer return duct 17, an angle within the range of the inclination angle of the upper passage surface (partition wall 17a) (angle T2). ), The internal blower fan 9 is tilted by an angle T1, so that the internal blower fan 9 is positioned below the projection surface of the heat insulating partition wall 36 to improve the effective storage capacity in the store. By tilting the internal blower fan 9 by the angle T1, the cool air supplied from the freezer return duct 17 to the cooling chamber 8 is sent to the rear side of the cooler 7 as shown by the arrow in FIG. Therefore, the supply of cool air to each room by the inclined internal fan 9 becomes smooth. Therefore, ventilation resistance can be reduced.

また,基準Sの上方延長部と冷凍温度帯室群13の上方に位置する冷蔵温度帯室(野菜室3)の底面(断熱仕切壁36)とが交差する構造とすること,ダンパ14の前方端部は,基準Sより後方に位置させ,且つ,ダンパ14の後方端部は冷却器7の後方端部よりも前方に位置させることで,冷蔵温度帯室群12の背面の収納空間領域を大きくとることができる。また,冷蔵庫の庫外と庫内を隔てる断熱箱体10内には複数の真空断熱材38を配設させ,冷凍温度帯室群13の両側面と背面の断熱箱体10内には真空断熱材38を配設させ,また,上段冷凍室5,下段冷凍室6の前面に位置する引き出し式扉5a,6a内には真空断熱材38を配設させ,野菜室3と冷凍温度帯室群13を仕切る断熱仕切壁36内には真空断熱材38を配設させることで,断熱部を小さくすることができ,庫内有効容積を大きくすることができる。   Further, the upper extension of the reference S and the bottom surface (the heat insulating partition wall 36) of the refrigerated temperature zone (vegetable room 3) located above the freezing temperature zone group 13 are configured to cross the front of the damper 14. The end portion is positioned rearward of the reference S, and the rear end portion of the damper 14 is positioned forward of the rear end portion of the cooler 7, so that the storage space area on the back side of the refrigeration temperature zone chamber group 12 can be reduced. It can be taken big. Further, a plurality of vacuum heat insulating materials 38 are disposed in the heat insulating box 10 separating the outside of the refrigerator from the inside of the refrigerator, and the vacuum insulating is provided in the heat insulating boxes 10 on both sides and the back of the freezing temperature zone chamber group 13. A material 38 is disposed, and a vacuum heat insulating material 38 is disposed in the pull-out doors 5a and 6a located in front of the upper freezing chamber 5 and the lower freezing chamber 6, and the vegetable room 3 and the freezing temperature zone group. By disposing the vacuum heat insulating material 38 in the heat insulating partition wall 36 that divides 13, the heat insulating portion can be reduced, and the effective volume in the warehouse can be increased.

また,図2に示すように機械室19の前方端部より基準Sを後方に位置させ,冷蔵温度帯室群12と冷凍温度帯室群13の有効内容積の比を約75:25としている。これは,前述のようにFR運転時における各温度帯室群へのそれぞれの冷気循環量の比率を考慮し,F運転とFR運転の2つの運転による冷却制御を行う冷蔵庫においては,冷蔵庫全体としての効率向上に非常に寄与する内容積比率である。   Further, as shown in FIG. 2, the reference S is positioned rearward from the front end of the machine room 19, and the ratio of the effective internal volumes of the refrigeration temperature zone chamber group 12 and the refrigeration temperature zone chamber group 13 is about 75:25. . As described above, in the refrigerator that performs cooling control by two operations of the F operation and the FR operation in consideration of the ratio of the amount of cold air circulation to each temperature zone group during the FR operation as described above, This is an internal volume ratio that greatly contributes to the improvement of the efficiency.

上記構成により,例えば,冷蔵庫の幅Wの概略寸法と奥行Dの概略寸法がともに600mmで,高さHが1798mmの通常の高さの冷蔵庫であっても,十分な収納空間を確保することができ,庫内有効容積を385リットル以上とすることが可能となる。   With the above configuration, for example, a sufficient storage space can be secured even for a refrigerator having a normal height of 600 mm and a height H of 1798 mm, both of the approximate width W of the refrigerator and the approximate depth D. It is possible to make the effective volume inside the cabinet 385 liters or more.

尚,既述したとおり,冷蔵室戻り空気の風量は,冷凍室戻り空気の風量に比して一般に小風量であるため,冷凍室戻り空気が冷却室の下方の前面側から流入する場合であれば,冷凍室戻り空気の影響が強いために,冷蔵室戻り空気の流入箇所(方向)によらず,図7に示す流れ場と類似の流れ場が形成されることになる。従って,図6に示す記号を用いて,L1>L2,L3>L4,L3>L5,(L3+L4)>L7,(L3+L4)>L6,L7>L6,(L3+L4)≧L8の各関係を満足するように各構成を配置することは,冷蔵室戻り空気の流入箇所(方向)によらず効果的である。   As described above, since the air volume of the return air in the refrigerator compartment is generally smaller than the air volume in the freezer room return air, even if the freezer return air flows from the front side below the cooling room. In this case, since the freezer return air has a strong influence, a flow field similar to the flow field shown in FIG. 7 is formed regardless of the inflow location (direction) of the refrigerating room return air. Therefore, using the symbols shown in FIG. 6, the following relationships are satisfied: L1> L2, L3> L4, L3> L5, (L3 + L4)> L7, (L3 + L4)> L6, L7> L6, (L3 + L4) ≧ L8. Arranging the components in this manner is effective regardless of the inflow location (direction) of the return air of the refrigerator compartment.

本発明の実施例に係る冷蔵庫の正面図。The front view of the refrigerator which concerns on the Example of this invention. 図1のA−A断面を表す縦断面図。The longitudinal cross-sectional view showing the AA cross section of FIG. 本発明の実施例に係る冷却器とその周辺の構造を表す縦断面図。The longitudinal cross-sectional view showing the cooler concerning the Example of this invention, and its surrounding structure. 本発明の実施例に係る冷却器とその周辺の構造を表す横断面図。The cross section showing the cooler concerning the example of the present invention, and its peripheral structure. 本発明の実施例に係る冷却器の斜視図。The perspective view of the cooler concerning the example of the present invention. 本発明の実施例に係る冷却器とその周辺構造を表す図。The figure showing the cooler concerning the example of the present invention, and its peripheral structure. 本発明の実施例に係る冷却器とその周辺構造を表す図。The figure showing the cooler concerning the example of the present invention, and its peripheral structure. 本発明の実施例に係る冷却器とその周辺構造を表す図。The figure showing the cooler concerning the example of the present invention, and its peripheral structure. 本発明の実施例に係る冷却器とその周辺構造を表す図。The figure showing the cooler concerning the example of the present invention, and its peripheral structure. 本発明の実施例に係る冷却器とその周辺構造を表す図。The figure showing the cooler concerning the example of the present invention, and its peripheral structure.

符号の説明Explanation of symbols

1:冷蔵庫,2:冷蔵室,2a:回転式の扉,3:野菜室,4:製氷室,5:上段冷凍室,6:下段冷凍室,3a,5a,6a:引き出し式の扉,3b,5b,6b:収納容器,7:冷却器,8:冷却室,9:庫内送風ファン,10:断熱箱体,11:氷温室,12:冷蔵温度帯室群,13:冷凍温度帯室群,14:ダンパ,15:冷蔵室送風ダクト,16:冷凍室送風ダクト,17:冷凍室戻りダクト,17a:冷凍室戻りダクトを形成する仕切壁,18:冷媒管,19:機械室,20:圧縮機,21:フィン,22:除霜ヒータ,23:樋,23a:樋前縁の上端,24a〜24c:冷蔵室吐出口,25:上段冷凍室吐出口,26:下段冷凍室吐出口,27:排水孔,28,31仕切壁,29:通気口,30,32:隙間,30a,32a:隙間を縮小させる構造,33:冷凍室戻り空気を主とする流れ,34:冷蔵室戻り空気を主とする流れ,35:冷蔵室戻り空気と冷凍室戻り空気が混合された流れ,36:断熱仕切壁,37:冷蔵室戻りダクト,38:真空断熱材,39:主要な霜,40:カバー体,W:幅,D:奥行,H:高さ,S,S1,S2:基準線(基準面),L1〜L8:寸法。
1: refrigerator, 2: refrigerator compartment, 2a: rotary door, 3: vegetable room, 4: ice making room, 5: upper freezer room, 6: lower freezer room, 3a, 5a, 6a: drawer door, 3b 5b, 6b: storage container, 7: cooler, 8: cooling chamber, 9: fan in the cabinet, 10: heat insulation box, 11: ice greenhouse, 12: refrigeration temperature zone group, 13: freezing temperature zone chamber Group: 14: damper, 15: refrigerator compartment air duct, 16: freezer compartment air duct, 17: freezer compartment return duct, 17a: partition wall forming the freezer compartment return duct, 18: refrigerant pipe, 19: machine room, 20 : Compressor, 21: fin, 22: defrost heater, 23: firewood, 23a: upper end of firewood front edge, 24a-24c: refrigerator compartment outlet, 25: upper freezer compartment outlet, 26: lower freezer compartment outlet 27: Drain hole, 28, 31 partition wall, 29: Vent, 30, 32: Clearance, 30a, 32a: Reduce the clearance Structure: 33: Flow mainly composed of freezer return air, 34: Flow mainly composed of refrigerator return air, 35: Flow mixed with refrigerator return air and freezer return air, 36: Thermal insulation partition wall, 37 : Refrigerating room return duct, 38: Vacuum heat insulating material, 39: Main frost, 40: Cover body, W: Width, D: Depth, H: Height, S, S1, S2: Reference line (reference surface), L1 -L8: Dimensions.

Claims (10)

断熱箱体内に配設される冷蔵温度帯の冷蔵室及び冷凍温度帯の冷凍室と,
前記冷凍室の背面側に配設され前記冷蔵室と前記冷凍室とを冷却するための冷却器と,
前記冷却器が収納される冷却室と,
前記冷却室の前記冷却器よりも下方の前面部に前記冷凍室からの戻り冷気が通る開口部と,
前記冷却器の下方に設けられる樋と,
前記樋から除霜水を排水する排水手段と,
前記冷却器と前記樋との間に配設された除霜ヒータと、
を備えた冷蔵庫において,
前記冷却器奥行寸法を,前記冷却器下面から前記樋に至る鉛直寸法以上とするとともに、
前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器前面に至る寸法が,前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器背面に至る寸法よりも大きい寸法とし、
前記冷却器の背面側に隙間が設けられ,前記隙間の高さ寸法が,前記冷却器の奥行寸法よりも小さい寸法とした冷蔵庫。
A refrigerating room having a refrigeration temperature zone and a freezing room having a freezing temperature zone disposed in the heat insulation box;
A cooler disposed on the back side of the freezer compartment for cooling the refrigerator compartment and the freezer compartment;
A cooling chamber in which the cooler is housed;
An opening through which the return cold air from the freezer compartment passes through the front portion of the cooling chamber below the cooler;
A gutter provided below the cooler;
Drainage means for draining defrost water from the dredger,
A defrosting heater disposed between the cooler and the soot;
In the refrigerator with
The cooler depth dimension is equal to or greater than the vertical dimension from the cooler bottom surface to the flange ,
The dimension extending from the line intersecting the vertically upper extension surface of the center line of the defrost heater and the lower surface of the cooler to the front surface of the cooler is the vertical upper extension surface of the center line of the defrost heater and the lower surface of the cooler. The dimension is larger than the dimension from the intersecting line to the back of the cooler,
The refrigerator which provided the clearance gap in the back side of the said cooler, and was made into the dimension whose height dimension of the said clearance gap is smaller than the depth dimension of the said cooler .
断熱箱体内に配設される冷蔵温度帯の冷蔵室及び冷凍温度帯の冷凍室と,
前記冷凍室の背面側に配設され前記冷蔵室と前記冷凍室とを冷却するための冷却器と,
前記冷却器が収納される冷却室と,
前記冷却室の前記冷却器よりも下方の前面部に前記冷凍室からの戻り冷気が通る開口部と,
前記冷却器の下方に設けられる樋と,
前記樋から除霜水を排水する排水孔と,
前記冷却器と前記樋との間に配設された除霜ヒータと、
を備えた冷蔵庫において,
前記冷却器奥行寸法を,前記冷却器下面から前記樋に至る鉛直寸法よりも大きくするとともに、
前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器前面に至る寸法が,前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器背面に至る寸法よりも大きい寸法とし、
前記冷却器の背面側に隙間が設けられ,前記隙間の高さ寸法が,前記冷却器の奥行寸法よりも小さい寸法とした冷蔵庫。
A refrigerating room having a refrigeration temperature zone and a freezing room having a freezing temperature zone disposed in the heat insulation box;
A cooler disposed on the back side of the freezer compartment for cooling the refrigerator compartment and the freezer compartment;
A cooling chamber in which the cooler is housed;
An opening through which the return cold air from the freezer compartment passes through the front portion of the cooling chamber below the cooler;
A gutter provided below the cooler;
A drain hole for draining defrost water from the dredger,
A defrosting heater disposed between the cooler and the soot;
In the refrigerator with
While making the said cooler depth dimension larger than the vertical dimension from the said cooler lower surface to the said collar ,
The dimension extending from the line intersecting the vertically upper extension surface of the center line of the defrost heater and the lower surface of the cooler to the front surface of the cooler is the vertical upper extension surface of the center line of the defrost heater and the lower surface of the cooler. The dimension is larger than the dimension from the intersecting line to the back of the cooler,
The refrigerator which provided the clearance gap in the back side of the said cooler, and was made into the dimension whose height dimension of the said clearance gap is smaller than the depth dimension of the said cooler .
断熱箱体内に配設される冷蔵温度帯の冷蔵室及び前記冷蔵室の下方に位置する冷凍温度帯の冷凍室と,
前記冷凍室の背面側に配設され前記冷蔵室と前記冷凍室とを冷却するための冷却器と,
前記冷却器が収納される冷却室と,
前記冷却室の前記冷却器よりも下方の前面部に前記冷凍室からの戻り冷気が通る開口部と,
前記冷却室の側方に設けられ前記冷却器の下方位置まで延伸し前記冷蔵室からの戻り空気が通る通風路と,
前記冷却器の下方に設けられる樋と,
前記樋から除霜水を排水する排水孔と
前記冷却器と前記樋との間に配設された除霜ヒータと、
を備えた冷蔵庫において,
前記冷却器奥行寸法を前記冷却器下面から前記樋に至る鉛直寸法以上とするとともに、
前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器前面に至る寸法が,前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器背面に至る寸法よりも大きい寸法とし、
前記冷却器の背面側に隙間が設けられ,前記隙間の高さ寸法が,前記冷却器の奥行寸法よりも小さい寸法とした冷蔵庫。
A refrigerating room of a refrigerating temperature zone disposed in the heat insulation box, and a freezing room of a refrigerating temperature zone located below the refrigerating room,
A cooler disposed on the back side of the freezer compartment for cooling the refrigerator compartment and the freezer compartment;
A cooling chamber in which the cooler is housed;
An opening through which the return cold air from the freezer compartment passes through the front portion of the cooling chamber below the cooler;
A ventilation path that is provided on a side of the cooling chamber and extends to a position below the cooler and through which return air from the refrigerating chamber passes;
A gutter provided below the cooler;
A drain hole for draining defrost water from the dredger ,
A defrosting heater disposed between the cooler and the soot;
In the refrigerator with
While making the said cooler depth dimension more than the vertical dimension from the said cooler lower surface to the said collar ,
The dimension extending from the line intersecting the vertically upper extension surface of the center line of the defrost heater and the lower surface of the cooler to the front surface of the cooler is the vertical upper extension surface of the center line of the defrost heater and the lower surface of the cooler. The dimension is larger than the dimension from the intersecting line to the back of the cooler,
The refrigerator which provided the clearance gap in the back side of the said cooler, and was made into the dimension whose height dimension of the said clearance gap is smaller than the depth dimension of the said cooler .
前記冷却器奥行寸法を,前記冷却器下面から前記排水孔上端に至る鉛直最長寸法以上とした請求項1乃至3のいずれかに記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 3, wherein the cooler depth dimension is equal to or greater than a vertical longest dimension extending from the cooler lower surface to the drain hole upper end. 前記冷却器の奥行方向中心を通過する鉛直縦断面より,前記除霜ヒータを後方に位置させた請求項1乃至4に記載の冷蔵庫。The refrigerator according to any one of claims 1 to 4, wherein the defrosting heater is positioned rearward from a vertical longitudinal section passing through a center in the depth direction of the cooler. 前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器前面に至る寸法が,前記冷却室の下方前面部の開口部の開口幅よりも大きい寸法とした請求項5に記載の冷蔵庫。The dimension from the line where the upper vertical extension surface of the center line of the defrost heater intersects the lower surface of the cooler to the front surface of the cooler is larger than the opening width of the opening of the lower front surface portion of the cooling chamber. The refrigerator according to claim 5. 前記除霜ヒータから空間を介して熱可塑性周辺構造体に至る最短寸法が,前記除霜ヒータから冷却器に至る最短寸法よりも大きい寸法とした請求項5又は6に記載の冷蔵庫。The refrigerator according to claim 5 or 6, wherein the shortest dimension from the defrost heater through the space to the thermoplastic peripheral structure is larger than the shortest dimension from the defrost heater to the cooler. 前記冷却器の前面側に隙間が設けられ,前記隙間の高さ寸法が,前記冷却器の奥行寸法よりも小さい寸法とした請求項1乃至7のいずれかに記載の冷蔵庫。The refrigerator according to any one of claims 1 to 7, wherein a gap is provided on a front side of the cooler, and a height dimension of the gap is smaller than a depth dimension of the cooler. 前記冷却器の前面側の隙間の高さ寸法が,前記冷却器の背面側の隙間の高さ寸法よりも大きい寸法とした請求項8記載の冷蔵庫。The refrigerator according to claim 8, wherein the height of the gap on the front side of the cooler is larger than the height of the gap on the back side of the cooler. 断熱箱体内に配設される冷蔵温度帯の冷蔵室及び前記冷蔵室の下方に位置する冷凍温度帯の冷凍室と、A refrigerating room of a refrigerating temperature zone disposed in the heat insulating box and a freezing room of a refrigerating temperature zone located below the refrigerating room,
前記冷蔵室と前記冷凍室との間を仕切る断熱仕切体と、A heat insulating partition that partitions the refrigerator compartment and the freezer compartment;
前記冷凍室の背面側に配設され前記冷蔵室と前記冷凍室とを冷却するための冷却器と、A cooler that is disposed on the back side of the freezer compartment and cools the refrigerator compartment and the freezer compartment;
前記冷却器が収納される冷却室と、A cooling chamber in which the cooler is stored;
前記冷凍室から前記冷却室へと至る冷気の戻り路である冷気戻り通路と、A cold air return passage which is a cold air return path from the freezer compartment to the cooling chamber;
前記冷却器の下方に設けられる樋と、A gutter provided below the cooler;
前記冷却器の上方に配設され前記冷却器によって冷却された冷気を前記冷蔵室及び前記冷凍室へと送るための送風ファンと、A blower fan for sending cold air disposed above the cooler and cooled by the cooler to the refrigerator compartment and the freezer compartment;
前記冷却器と前記樋との間に配設された除霜ヒータと、A defrosting heater disposed between the cooler and the soot;
を備えた冷蔵庫において、In the refrigerator with
前記冷却器奥行寸法を前記冷却器下面から前記樋に至る鉛直寸法以上とするとともに、While making the said cooler depth dimension more than the vertical dimension from the said cooler lower surface to the said collar,
前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器前面に至る寸法が,前記除霜ヒータの中心線の鉛直上方延長面と前記冷却器下面が交差する線から,前記冷却器背面に至る寸法よりも大きい寸法とし、The dimension extending from the line intersecting the vertically upper extension surface of the center line of the defrost heater and the lower surface of the cooler to the front surface of the cooler is the vertical upper extension surface of the center line of the defrost heater and the lower surface of the cooler. The dimension is larger than the dimension from the intersecting line to the back of the cooler,
前記冷却器の背面側に隙間が設けられ,前記隙間の高さ寸法が,前記冷却器の奥行寸法よりも小さい寸法とし、A gap is provided on the back side of the cooler, and the height dimension of the gap is smaller than the depth dimension of the cooler,
前記冷気戻り通路は、前記冷気戻り通路と前記冷却室との境界をなし前記冷却室の前記冷却器よりも下方の前面部に開口した冷却室側開口部と、前記冷気戻り通路と前記冷凍室との境界をなし前記冷凍室側に開口した冷凍室側開口部とを有し、前記冷却室側開口部よりも前記冷凍室側開口部の方を低く位置させて、これらの両開口部の間を直線状又は曲線状に連通し、The cold air return passage forms a boundary between the cold air return passage and the cooling chamber, and opens in a front side of the cooling chamber below the cooler, the cooling chamber side opening, the cold air return passage, and the freezer compartment A freezer compartment side opening that opens to the freezer compartment side, and the freezer compartment side opening is positioned lower than the cooling compartment side opening, and Communicated in a straight line or curved line,
前記冷気戻り通路を構成するために上下に対向して配設された通路面のうち、上側の通路面の傾斜角度の範囲内の角度で、前記送風ファンを傾斜させることによって、前記送風ファンを前記断熱仕切体の投影面よりも下方に位置させて庫内の有効収納容積を向上した冷蔵庫。By tilting the blower fan at an angle within the range of the tilt angle of the upper passage surface among the passage surfaces arranged vertically opposite to constitute the cold air return passage, the blower fan is The refrigerator which located below the projection surface of the said heat insulation partition and improved the effective storage volume in a warehouse.
JP2004375271A 2004-12-27 2004-12-27 refrigerator Expired - Fee Related JP4248491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375271A JP4248491B2 (en) 2004-12-27 2004-12-27 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375271A JP4248491B2 (en) 2004-12-27 2004-12-27 refrigerator

Publications (2)

Publication Number Publication Date
JP2006183897A JP2006183897A (en) 2006-07-13
JP4248491B2 true JP4248491B2 (en) 2009-04-02

Family

ID=36737141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375271A Expired - Fee Related JP4248491B2 (en) 2004-12-27 2004-12-27 refrigerator

Country Status (1)

Country Link
JP (1) JP4248491B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452063B2 (en) * 2009-04-14 2014-03-26 三菱電機株式会社 refrigerator
JP5178642B2 (en) 2009-06-29 2013-04-10 日立アプライアンス株式会社 refrigerator
JP5487053B2 (en) * 2010-08-25 2014-05-07 日立アプライアンス株式会社 refrigerator
JP2012255602A (en) * 2011-06-09 2012-12-27 Sharp Corp Refrigerator
JP5810737B2 (en) * 2011-08-18 2015-11-11 富士電機株式会社 Internal wind tunnel structure
EP2765385B1 (en) * 2011-10-03 2020-10-14 Mitsubishi Electric Corporation Refrigeration cycle device
WO2017002768A1 (en) * 2015-06-30 2017-01-05 三菱電機株式会社 Refrigerator
JP7195157B2 (en) * 2019-01-07 2022-12-23 東芝ライフスタイル株式会社 refrigerator
JP2019109042A (en) * 2019-03-04 2019-07-04 東芝ライフスタイル株式会社 refrigerator

Also Published As

Publication number Publication date
JP2006183897A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP5023025B2 (en) refrigerator
KR101306536B1 (en) Refrigerator
JP5903552B2 (en) refrigerator
KR102412189B1 (en) Refrigerator
JP4848332B2 (en) refrigerator
JP4248491B2 (en) refrigerator
WO2018064866A1 (en) Refrigerator
TWI716636B (en) refrigerator
JP6023986B2 (en) refrigerator
JP2000018800A (en) Structure of evaporation pan of refrigerator
JP6940424B2 (en) refrigerator
TWI722397B (en) refrigerator
WO2017163965A1 (en) Refrigerator
JP6490221B2 (en) refrigerator
JP2013160462A (en) Refrigerator
JP7063572B2 (en) refrigerator
CN113028707A (en) Refrigerator with a door
JP2001280794A (en) Refrigerator
CN112113381A (en) Refrigerator with special-shaped evaporator
JP2019138479A (en) refrigerator
WO2023068023A1 (en) Refrigerator
JP2006023035A (en) Refrigerator
CN214665473U (en) Air-cooled refrigerator refrigeration module and refrigerator thereof
JP6955348B2 (en) refrigerator
JP5487054B2 (en) refrigerator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4248491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees