JP6023986B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6023986B2
JP6023986B2 JP2013119491A JP2013119491A JP6023986B2 JP 6023986 B2 JP6023986 B2 JP 6023986B2 JP 2013119491 A JP2013119491 A JP 2013119491A JP 2013119491 A JP2013119491 A JP 2013119491A JP 6023986 B2 JP6023986 B2 JP 6023986B2
Authority
JP
Japan
Prior art keywords
temperature
suction port
cooler
cold air
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013119491A
Other languages
Japanese (ja)
Other versions
JP2014238182A (en
Inventor
克則 堀井
克則 堀井
亜有子 宮坂
亜有子 宮坂
堀尾 好正
好正 堀尾
平井 剛樹
剛樹 平井
中西 和也
和也 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013119491A priority Critical patent/JP6023986B2/en
Priority to PCT/JP2014/003031 priority patent/WO2014196210A1/en
Priority to CN201490000783.7U priority patent/CN205482060U/en
Priority to DE212014000135.8U priority patent/DE212014000135U1/en
Publication of JP2014238182A publication Critical patent/JP2014238182A/en
Application granted granted Critical
Publication of JP6023986B2 publication Critical patent/JP6023986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Defrosting Systems (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

本発明は省エネ効果の高い冷蔵庫の構造に関するものである。   The present invention relates to a refrigerator structure having a high energy saving effect.

図5は従来の冷蔵庫の冷却室の断面図である。   FIG. 5 is a cross-sectional view of a cooling chamber of a conventional refrigerator.

図5に示すように、冷蔵庫10には複数の貯蔵室があり、最下部に冷凍室11が配置されている。冷凍室11の背面には内部に冷却器12、その下部に除霜ヒータ22、上部に送風機13を有し冷気を生成、送風する冷却室14が設けられている。冷却器12で生成された冷気は、送風機13により強制的に各貯蔵室へ送られる。一部は冷気吐出口15を通り冷凍室11へ送られ、一部は高温吐出風路16を通り、冷凍室11上方に設けられた野菜室17や冷蔵室(図示せず)へ送られる。冷凍室11を冷却した冷気は冷凍室戻り口18から、冷蔵室、野菜室17を冷却した冷気は順に戻り口19と高温戻り風路20とを通過し高温吸込み口21から、冷却室14へ帰還し再び冷却器12により冷却される。このとき、冷却器12から冷気生成に使われず背面へ漏れ出た冷気は、高温戻り風路20を流れる比較的温かい戻り冷気に吸収されるため、冷蔵庫10の背面から外気へ熱リークさせることなく冷却器12の冷気を強制的に冷却室14へ返還させることで消費電力量を低減することができる。(例えば、特許文献1参照)。   As shown in FIG. 5, the refrigerator 10 has a plurality of storage rooms, and a freezing room 11 is arranged at the bottom. On the back surface of the freezer compartment 11, there is provided a cooler 12 that has a cooler 12 inside, a defrost heater 22 at the bottom, and a blower 13 at the top to generate and blow cool air. The cold air generated by the cooler 12 is forcibly sent to each storage room by the blower 13. A part is sent to the freezer compartment 11 through the cold discharge port 15, and a part is sent to the vegetable compartment 17 and the refrigerator compartment (not shown) provided above the freezer compartment 11 through the high temperature discharge air passage 16. The cold air that has cooled the freezer compartment 11 passes from the freezer compartment return port 18, and the cold air that has cooled the refrigerator compartment and the vegetable compartment 17 sequentially passes through the return port 19 and the high temperature return air passage 20, and then passes from the high temperature suction port 21 to the cooling chamber 14. It returns and is cooled again by the cooler 12. At this time, the cool air leaked from the cooler 12 to the back without being used to generate cool air is absorbed by the relatively warm return cold flowing through the high-temperature return air passage 20, so that heat does not leak from the back of the refrigerator 10 to the outside air. Power consumption can be reduced by forcibly returning the cool air of the cooler 12 to the cooling chamber 14. (For example, refer to Patent Document 1).

特開2012−159239号公報JP 2012-159239 A

しかしながら、上記従来の構成には改善の余地がある。冷却運転時において、冷却器12下方において冷凍室11からの戻り冷気は後向きの風速が大きく、野菜室17や冷蔵室からの戻り冷気は前向きの風速が大きいため、お互いの流れを阻害し合い庫内を循環する風量を減少させることにより、冷却能力を低下させていた。また、除霜運転時において、送風機13が停止した状態で冷却器12に付着した霜を融かす除霜運転は、除霜ヒータ22表面から発生する高温の自然対流(上昇気流)によってなされるが、上記従来の構成ではその上昇気流の一部が高温吸込み口21から高温戻り風路20へ流入してしまい、冷却器12の除霜効率を低下させていた。   However, there is room for improvement in the conventional configuration. During the cooling operation, the return cold air from the freezer compartment 11 below the cooler 12 has a large backward wind speed, and the return cold air from the vegetable compartment 17 and the refrigerator compartment has a large forward wind speed, so that the flow of each other is inhibited. The cooling capacity was reduced by reducing the amount of air circulating inside. Further, during the defrosting operation, the defrosting operation for melting the frost attached to the cooler 12 with the blower 13 stopped is performed by high-temperature natural convection (updraft) generated from the surface of the defrosting heater 22. In the conventional configuration, a part of the ascending airflow flows into the high temperature return air passage 20 from the high temperature suction port 21, and the defrosting efficiency of the cooler 12 is lowered.

本発明は、従来の課題を解決するもので、冷却運転時の複数の戻り冷気の相互干渉を抑制することで庫内を循環する風量を増やし冷却能力を向上し、かつ除霜運転時の戻り風路への自然対流の分流量を低減することで除霜効率の低下を抑制した冷蔵庫を提供することを目的とする。   The present invention solves the conventional problem, increases the air volume circulating in the warehouse by suppressing the mutual interference of a plurality of return cold air during the cooling operation, improves the cooling capacity, and returns during the defrost operation. It aims at providing the refrigerator which suppressed the fall of the defrost efficiency by reducing the partial flow volume of the natural convection to an air path.

上記従来の課題を解決するために、本発明の冷蔵庫は、冷気を生成する冷却器と、前記冷却器で生成された冷気を強制的に循環させる送風機と、前記冷却器下方に霜や氷を融かすための除霜ヒータと、前記冷却器、送風機および除霜ヒータとを収める冷却室と、前記冷却室を背面に備える低温貯蔵室と、前記低温貯蔵室と温度帯の異なる少なくとも一つの高温貯蔵室と、前記低温貯蔵室からの低温戻り冷気を前記冷却室へ導入する低温吸込み口と、前記高温貯蔵室からの高温戻り冷気を前記冷却室へ導入する高温吸込み口とを備え、前記低温吸込み口は前記冷却室前面に、前記高温吸込み口は前記冷却室背面に設けられ、
前記高温吸込み口の下端は前記除霜ヒータより上方に位置し、前記高温吸込み口の下端面は上端面より前記冷却室内へ突出している突出部を備えたことを特徴とする。これにより、冷却運転時において、前記低温吸込み口は前記高温吸込み口よりも下方に位置することで、後向きの速度が大きい低温戻り冷気と前向きの速度が大きい高温戻り冷気は、上下方向にずれることで相互干渉を抑制し庫内を循環する風量を大きくすることができるため、より冷却能力を向上することができる。また、除霜運転時において、前記除霜ヒータ表面から発生する上昇気流の前記高温吸込み口への流入量を低減できるため、除霜効率の低下を抑制することができる。
In order to solve the above-described conventional problems, a refrigerator according to the present invention includes a cooler that generates cold air, a blower that forcibly circulates the cold air generated by the cooler, and frost and ice below the cooler. A defrosting heater for melting, a cooling chamber for storing the cooler, the blower and the defrosting heater, a low temperature storage chamber having the cooling chamber on the back surface, and at least one high temperature different from that of the low temperature storage chamber A low-temperature inlet for introducing low-temperature return cold air from the low-temperature storage chamber into the cooling chamber, and a high-temperature inlet for introducing high-temperature return cold air from the high-temperature storage chamber into the cooling chamber, The suction port is provided in the front of the cooling chamber, the high temperature suction port is provided in the back of the cooling chamber,
A lower end of the high temperature suction port is located above the defrosting heater, and a lower end surface of the high temperature suction port includes a protruding portion that protrudes from the upper end surface into the cooling chamber. Thus, during the cooling operation, the low temperature intake port is positioned below the high temperature intake port, so that the low temperature return cold air having a large backward speed and the high temperature return cold air having a large forward speed are shifted in the vertical direction. Thus, the mutual interference can be suppressed and the air volume circulating in the cabinet can be increased, so that the cooling capacity can be further improved. Moreover, since the inflow amount to the said high temperature suction inlet of the updraft generated from the said defrost heater surface can be reduced at the time of a defrost operation, the fall of defrost efficiency can be suppressed.

本発明の冷蔵庫は、冷却運転時の冷却室内での複数の戻り冷気の相互干渉を抑制し、庫内を循環する風量を大きくすることで冷却能力を向上させ、かつ除霜運転時の戻り風路への自然対流の分流を防止することで除霜効率の低下を抑制した冷蔵庫を提供できる。   The refrigerator of the present invention suppresses mutual interference of a plurality of return cold air in the cooling chamber during the cooling operation, improves the cooling capacity by increasing the amount of air circulating in the warehouse, and returns air during the defrost operation. The refrigerator which suppressed the fall of defrost efficiency can be provided by preventing the diversion of the natural convection to a road.

本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷却室の縦断面図1 is a longitudinal sectional view of a cooling chamber in Embodiment 1 of the present invention. 本発明の実施の形態2における冷蔵庫の縦断面図Longitudinal sectional view of the refrigerator in the second embodiment of the present invention 図3におけるA−A’正面図A-A 'front view in FIG. 従来の冷蔵庫の冷却室の縦断面図Longitudinal sectional view of the cooling chamber of a conventional refrigerator

第1の発明は、冷気を生成する冷却器と、前記冷却器で生成された冷気を強制的に循環させる送風機と、前記冷却器下方に霜や氷を融かすための除霜ヒータと、前記冷却器、送風機および除霜ヒータとを収める冷却室と、前記冷却室を背面に備える低温貯蔵室と、前記低温貯蔵室と温度帯の異なる少なくとも一つの高温貯蔵室と、前記低温貯蔵室からの低温戻り冷気を前記冷却室へ導入する低温吸込み口と、前記高温貯蔵室からの高温戻り冷気を前記冷却室へ導入する高温吸込み口とを備える冷蔵庫において、前記低温吸込み口は前記冷却室前面に、前記高温吸込み口は前記冷却室背面に設けられ、前記高温吸込み口の下端は前記除霜ヒータより上方に位置し、前記高温吸込み口の下端面は上端面より前記冷却室内へ突出している突出部を備えたことを特徴とする。これにより、冷却運転時において、後向きの速度が大きい低温戻り冷気と前向きの速度が大きい高温戻り冷気は、上下方向にずれることで相互干渉を抑制し庫内を循環する風量を大きくすることができるため、より冷却能力を向上することができる。また、除霜運転時において、除霜ヒータ表面から発生する上昇気流の高温吸込み口への流入量を低減できるため、除霜効率の低下を抑制することができる。   The first invention includes a cooler that generates cold air, a blower that forcibly circulates the cold air generated by the cooler, a defrost heater that melts frost and ice below the cooler, and A cooling chamber containing a cooler, a blower and a defrosting heater; a low-temperature storage chamber provided with the cooling chamber on the back; at least one high-temperature storage chamber having a temperature range different from that of the low-temperature storage chamber; In a refrigerator comprising a low-temperature inlet for introducing low-temperature return cold air into the cooling chamber and a high-temperature inlet for introducing high-temperature return cold air from the high-temperature storage chamber into the cooling chamber, the low-temperature inlet is provided in front of the cooling chamber. The high temperature suction port is provided in the back of the cooling chamber, the lower end of the high temperature suction port is located above the defrosting heater, and the lower end surface of the high temperature suction port protrudes into the cooling chamber from the upper end surface. Be prepared Characterized in that was. Thus, during the cooling operation, the low-temperature return cold air having a large backward speed and the high-temperature return cold air having a large forward speed are shifted in the vertical direction, thereby suppressing mutual interference and increasing the amount of air circulating in the interior. Therefore, the cooling capacity can be further improved. Moreover, since the inflow amount to the high temperature inlet of the updraft generated from the surface of the defrost heater can be reduced during the defrost operation, it is possible to suppress a decrease in defrost efficiency.

第2の発明は、第1の発明において、前記低温吸込み口は前記高温吸込み口よりも下方に位置することを特徴とする。これにより、最も大きな冷却効果が必要となる低温貯蔵室からの冷気をより下方から冷却室へ戻すことで、低温戻り冷気が冷却器を通過する距離が長くなり熱交換量を増やすことで更に冷却能力を向上させることができる。   A second invention is characterized in that, in the first invention, the low-temperature suction port is located below the high-temperature suction port. As a result, by returning the cool air from the low temperature storage room where the greatest cooling effect is required from the lower part to the cooling room, the distance that the low temperature return cold air passes through the cooler becomes longer, and the heat exchange amount is increased to further cool the air. Ability can be improved.

第3の発明は、第1または第2の発明において、前記突出部は上方に傾斜していることを特徴とする。これにより、除霜運転時において、より効率良く除霜ヒータ表面から発生する上昇気流の高温吸込み口への流入量を低減できる。   A third invention is characterized in that, in the first or second invention, the projecting portion is inclined upward. Thereby, at the time of a defrost operation, the inflow amount to the high temperature inlet of the updraft generated from the defrost heater surface can be reduced more efficiently.

第4の発明は、第1から第3のいずれかの発明において、冷蔵庫縦断面において、前記除霜ヒータから前記突出部先端までの距離の最大値は前記低温吸込み口の垂直方向の空間距離の最大値よりも大きく設定したことを特徴とする。これにより、冷却運転時において、除霜ヒータと突出部先端との間の空間を大きく確保できるため、低温吸込み口から流れ
込んだ低温戻り冷気は圧力損失を大きくすることなく高温戻り冷気とよりスムーズに合流できる。
According to a fourth aspect of the present invention, in any one of the first to third aspects, in the vertical section of the refrigerator, the maximum value of the distance from the defrost heater to the tip of the protruding portion is a spatial distance in the vertical direction of the low temperature suction port. It is characterized by being set larger than the maximum value. As a result, a large space between the defrost heater and the tip of the protrusion can be secured during the cooling operation, so that the low-temperature return cold air flowing from the low-temperature suction port is smoother than the high-temperature return cold air without increasing the pressure loss. Can join.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same configurations as those of the conventional example or the embodiments described above, and detailed descriptions thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の縦断面図、図2は、本発明の実施の形態1における冷却室の縦断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a refrigerator according to Embodiment 1 of the present invention, and FIG. 2 is a longitudinal sectional view of a cooling chamber according to Embodiment 1 of the present invention.

図1および2において、冷蔵庫30の断熱箱体31は主に鋼板を用いた外箱32とABSなどの樹脂で成型された内箱33とで構成され、その内部には断熱材として例えば硬質発泡ウレタンなどの発泡断熱材34が充填、周囲と断熱され、複数の貯蔵室に区分されている。   1 and 2, a heat insulating box 31 of a refrigerator 30 is mainly composed of an outer box 32 using a steel plate and an inner box 33 molded of a resin such as ABS, and the inside thereof is, for example, a hard foam as a heat insulating material. A foam insulation material 34 such as urethane is filled, insulated from the surroundings, and divided into a plurality of storage rooms.

複数の貯蔵室は、最上部に冷蔵室35、その冷蔵室35の下部に野菜室36、そして最下部に冷凍室37が配置されている。   The plurality of storage rooms have a refrigeration room 35 at the top, a vegetable room 36 at the bottom of the refrigeration room 35, and a freezing room 37 at the bottom.

冷蔵室35の前面開口部には冷蔵室ドア38、野菜室36の前面開口部には野菜室ドア39、冷凍室37の前面開口部には冷凍室ドア40が、それぞれの前面開口部を開閉自在に支持されている。   A refrigerator compartment door 38 is opened at the front opening of the refrigerator compartment 35, a vegetable compartment door 39 is opened at the front opening of the vegetable compartment 36, and a freezer compartment door 40 is opened and closed at the front opening of the freezer compartment 37. It is supported freely.

冷蔵室35は冷蔵保存のために凍らない温度を下限に通常1℃〜5℃とし、野菜室36は、3〜8℃まで設定することができる。冷凍室37は冷凍温度帯に設定されており、冷凍保存のために通常−22℃〜−15℃で設定されているが、冷凍保存状態の向上のために、例えば−30℃や−25℃の低温で設定されることもある。   The refrigerator compartment 35 is normally set to 1 ° C to 5 ° C at the lower limit of the temperature at which it is not frozen for refrigerated storage, and the vegetable compartment 36 can be set to 3 to 8 ° C. The freezer compartment 37 is set in a freezing temperature zone and is usually set at −22 ° C. to −15 ° C. for frozen storage, but for example, −30 ° C. or −25 ° C. to improve the frozen storage state. It may be set at a low temperature.

また、仕切壁である第一区画壁41によって野菜室36と冷凍室37とは上下に区画され、仕切壁である第二区画壁42によって冷蔵室35と野菜室36とは上下に区画されている。   Moreover, the vegetable compartment 36 and the freezer compartment 37 are divided up and down by the 1st division wall 41 which is a partition wall, and the refrigerator compartment 35 and the vegetable compartment 36 are divided up and down by the 2nd division wall 42 which is a partition wall. Yes.

また冷凍室37の背面には冷気を生成する冷却室43が設けられ、内部には冷却器44が配設されている。冷却室43は縦区画壁45によって冷凍室37と断熱区画されている。冷却器44の上方に生成された冷気を強制的に送風する送風機46が配置され、冷却器44の下方に、冷却器44に付着した霜や氷を除霜する除霜ヒータ47が設けられている。さらにその下部には除霜時に生じる除霜水を受けるためのドレンパン48、その最深部から庫外に貫通したドレンチューブ49が構成され、その下流側の庫外に蒸発皿50が構成されている。   A cooling chamber 43 for generating cool air is provided on the back of the freezing chamber 37, and a cooler 44 is provided inside. The cooling chamber 43 is insulated from the freezing chamber 37 by a vertical partition wall 45. A blower 46 that forcibly blows cool air generated above the cooler 44 is disposed, and a defrost heater 47 that defrosts frost and ice adhering to the cooler 44 is provided below the cooler 44. Yes. Furthermore, a drain pan 48 for receiving defrosted water generated at the time of defrosting, a drain tube 49 penetrating from the deepest part to the outside of the cabinet are configured at the lower part, and an evaporating dish 50 is configured outside the warehouse on the downstream side. .

除霜ヒータ47は、具体的にはガラス製のガラス管ヒータであり、特に冷媒が炭化水素系冷媒ガスである場合、防爆対応としてガラス管が2重に形成された2重ガラス管ヒータが採用されている。   Specifically, the defrost heater 47 is a glass tube heater made of glass, and in particular, when the refrigerant is a hydrocarbon-based refrigerant gas, a double glass tube heater in which glass tubes are formed in a double manner is adopted for explosion protection. Has been.

ドレンパン48は冷却室43の底面および背面の一部を構成している。底面は、除霜水をドレンチューブ49に集めるためにドレンチューブ49との接続部が最も低くなるよう構成されており、ドレンチューブ49との接続部において除霜ヒータ47から最も離れる(距離L)ことになる。背面はドレンパン48の貯水量が確保できる高さを超える高さまで立ち上がっており、底面と背面とのなす角は緩やかな曲面で構成される。   The drain pan 48 constitutes a part of the bottom surface and the back surface of the cooling chamber 43. The bottom surface is configured such that the connection portion with the drain tube 49 is the lowest in order to collect the defrost water in the drain tube 49, and is farthest from the defrost heater 47 at the connection portion with the drain tube 49 (distance L). It will be. The back surface rises to a height that exceeds the height at which the amount of water stored in the drain pan 48 can be secured, and the angle formed between the bottom surface and the back surface is a gently curved surface.

縦区画壁45は、冷凍室37の外殻をなす前区画壁45aと冷却室43の外殻をなす後区画壁45bとから構成される。前区画壁45aと後区画壁45bとの間の空間は各貯蔵室に向けて冷気を分岐させる分配風路51である。   The vertical partition wall 45 includes a front partition wall 45 a that forms the outer shell of the freezing chamber 37 and a rear partition wall 45 b that forms the outer shell of the cooling chamber 43. A space between the front partition wall 45a and the rear partition wall 45b is a distribution air passage 51 that branches cold air toward each storage chamber.

前区画壁45aは、上方に冷凍室吐出口52を有し、分配風路51と冷凍室37とを連通している。下方には冷凍室37側へ突出した冷凍室戻り風路53を有し、冷凍室戻り風路53前面に設けられた入り口53aから冷却室43へ冷凍室37の戻り冷気を導入する。   The front partition wall 45 a has a freezer compartment discharge port 52 on the upper side, and communicates the distribution air passage 51 and the freezer compartment 37. There is a freezer return air passage 53 protruding downward from the freezer compartment 37 side, and the return cold air from the freezer compartment 37 is introduced into the cooling chamber 43 through an inlet 53a provided in front of the freezer return air passage 53.

分配風路51はまた、第一区画壁41内に設けられた高温吐出風路54に接続している。さらに高温吐出風路54は冷蔵室35および野菜室36と接続している。   The distribution air passage 51 is also connected to a high temperature discharge air passage 54 provided in the first partition wall 41. Further, the high temperature discharge air passage 54 is connected to the refrigerator compartment 35 and the vegetable compartment 36.

後区画壁45bは上方に送風機46を備え、下方には冷凍室戻り風路53と冷却室43とを区画するリブ55を有する。冷凍室戻り風路53をリブ55とドレンパン48とにより囲まれた領域が冷凍室吸込み口56であり、冷凍室戻り風路53と冷却室43とを連通する。   The rear partition wall 45 b includes a blower 46 on the upper side, and has a rib 55 that partitions the freezer return air passage 53 and the cooling chamber 43 on the lower side. A region surrounded by the freezing chamber return air passage 53 by the rib 55 and the drain pan 48 is a freezing chamber suction port 56, and the freezer compartment return air passage 53 and the cooling chamber 43 communicate with each other.

冷凍室吸込み口56の面積は、入り口53aの面積よりも大きくなるように構成される。また、ドレンチューブ49の中心を通る縦断面において、除霜ヒータ47とドレンチューブ49との距離Lは、同じ縦断面での冷凍室吸込み口56の高さHよりも大きくなるように構成される。   The area of the freezer compartment suction port 56 is configured to be larger than the area of the entrance 53a. Further, in the longitudinal section passing through the center of the drain tube 49, the distance L between the defrost heater 47 and the drain tube 49 is configured to be larger than the height H of the freezer compartment suction port 56 in the same longitudinal section. .

冷凍室戻り風路53の底面は、ドレンパン48の一部により冷却室43の底面と続きで構成される。ドレンパン48は入り口53aの下端より始まり冷凍室吸込み口56下端を通りドレンチューブ49まで下向きに傾斜し、その後緩やかに上向きに転じ冷却室43の背面へと繋がる形状を有する。   The bottom surface of the freezing chamber return air passage 53 is constituted by a part of the drain pan 48 and the bottom surface of the cooling chamber 43. The drain pan 48 starts from the lower end of the inlet 53a, passes through the lower end of the freezing chamber suction port 56, inclines downward to the drain tube 49, and then gradually turns upward to connect to the back surface of the cooling chamber 43.

冷却器44の背面に高温戻り風路57が配置されている。第一区画壁41および第二区画壁42を通り、野菜室36と冷蔵室35とにそれぞれ連通しており、冷蔵室35と野菜室36を冷却した冷気が高温戻り風路57内で合流する。高温戻り風路57は下方に冷却室43と連通する高温吸込み口58を備える。高温吸込み口58の下端面は、除霜ヒータ47かつ冷凍室吸込み口56よりも上方に設けられるとともに、上端面よりも冷却室43内へと突出させた突出部58aを有しており、上方に傾斜させている。また、除霜ヒータ47と突出部58a先端との距離Bは、冷凍室吸込み口56の高さHより大きくなるように構成される。   A high-temperature return air passage 57 is disposed on the back surface of the cooler 44. It passes through the first partition wall 41 and the second partition wall 42 and communicates with the vegetable compartment 36 and the refrigeration compartment 35, respectively, and the cold air that has cooled the refrigeration compartment 35 and the vegetable compartment 36 merges in the high-temperature return air passage 57. . The high temperature return air passage 57 includes a high temperature suction port 58 that communicates with the cooling chamber 43 below. The lower end surface of the high temperature suction port 58 is provided above the defrosting heater 47 and the freezer compartment suction port 56, and has a protruding portion 58a that protrudes into the cooling chamber 43 from the upper end surface. It is inclined to. Further, the distance B between the defrost heater 47 and the tip of the protrusion 58 a is configured to be larger than the height H of the freezer compartment suction port 56.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、冷却運転時について説明する。冷却室43の冷却器44で生成された冷気の一部は送風機46によって分配風路51内前方へ強制的に送風される。冷凍室37は冷凍室吐出口52から吐出された冷気によって冷却され、冷気は縦区画壁45の下部に設けられた冷凍室戻り風路53を介して冷凍室吸込み口56より冷却器44の下部に導かれ、冷却器44で熱交換されて、再び新鮮な冷気が送風機46によって循環を繰返す。これによって冷凍室37は冷凍室センサー(図示しない)の制御で適温に冷却される。   First, the cooling operation will be described. A part of the cold air generated by the cooler 44 in the cooling chamber 43 is forcibly blown forward by the blower 46 in the distribution air passage 51. The freezer compartment 37 is cooled by the cold air discharged from the freezer compartment discharge port 52, and the cold air is below the cooler 44 from the freezer compartment suction port 56 via the freezer return air passage 53 provided at the lower part of the vertical partition wall 45. Then, heat is exchanged in the cooler 44, and fresh cold air is circulated again by the blower 46. As a result, the freezer compartment 37 is cooled to an appropriate temperature under the control of a freezer sensor (not shown).

また分配風路51内上方に吐出された冷気は第一区画壁41内の高温吐出風路54を経て冷蔵室35や野菜室36に吐出される。循環した冷気は冷蔵室35や野菜室36内の空気や貯蔵物に含まれる湿気を帯びた空気となって、高温戻り風路57を通り高温吸込み口58から冷却器44の下部に導かれて冷却器44と熱交換および除湿されて、新鮮な冷気が再び送風機によって強制的に送風される。この時、冷却器44には霜が生成される。   Further, the cold air discharged upward in the distribution air passage 51 is discharged to the refrigerator compartment 35 and the vegetable compartment 36 through the high temperature discharge air passage 54 in the first partition wall 41. The circulated cold air becomes the air in the refrigerator compartment 35 and the vegetable compartment 36 and the humid air contained in the stored product, passes through the high temperature return air passage 57 and is led to the lower part of the cooler 44 through the high temperature suction port 58. Heat exchange with the cooler 44 and dehumidification are performed, and fresh cool air is forcibly blown by the blower again. At this time, frost is generated in the cooler 44.

これによって、冷蔵室35や野菜室36は、冷却器44から離れた位置にあっても、送風機46によって冷気を強制的に循環させることで貯蔵室内を設定温度に冷却することができる。   Thereby, even if the refrigerator compartment 35 and the vegetable compartment 36 are in the position away from the cooler 44, the air can be forcedly circulated by the blower 46 to cool the storage compartment to the set temperature.

ここで、送風機46から吐出された冷気が、冷蔵室35、野菜室36、冷凍室37の全ての貯蔵室を循環しているとき、冷却室43には冷凍室37からの戻り冷気と、冷蔵室35および野菜室36からの高温戻り冷気の2つの流れが同時に流れ込むことになる。   Here, when the cool air discharged from the blower 46 circulates through all the storage rooms of the refrigerating room 35, the vegetable room 36, and the freezing room 37, the cooling room 43 returns the refrigerating air from the freezing room 37 and the refrigerating room. Two flows of hot return cold air from the chamber 35 and the vegetable chamber 36 will flow simultaneously.

冷凍室37からの戻り冷気は、入り口53aから冷凍室戻り風路53を通り、冷凍室吸込み口56から冷却室43へ入る。冷蔵室35および野菜室36からの高温戻り冷気は、高温戻り風路57を通り、高温吸込み口58から冷却室43へ入る。   The return cold air from the freezer compartment 37 passes through the freezer compartment return air passage 53 from the entrance 53 a and enters the cooling compartment 43 from the freezer compartment suction port 56. The high temperature return cold air from the refrigerator compartment 35 and the vegetable room 36 passes through the high temperature return air passage 57 and enters the cooling chamber 43 from the high temperature suction port 58.

このとき、冷凍室戻り冷気は、入り口53aより冷凍室吸込み口56が下方にあることから、冷凍室戻り風路53の底面を構成するドレンパン48に沿って下向きに冷却室43に流れ込む。さらに、冷凍室吸込み口56の高さよりも除霜ヒータ47とドレンパン48との距離Lや、冷却室43の背面との距離Bが大きいために、冷凍室戻り冷気は空間の広い除霜ヒータ47の下へ流れ込む。その後はそのまま冷却室43の底面を流れドレンパン48の形状に従って方向転換し、冷却室43の背面に沿って上向きに流れる。   At this time, the freezer return air flows downward into the cooling chamber 43 along the drain pan 48 constituting the bottom surface of the freezer return air passage 53 because the freezer inlet 56 is located below the inlet 53a. Furthermore, since the distance L between the defrost heater 47 and the drain pan 48 and the distance B between the rear surface of the cooling chamber 43 are larger than the height of the freezer inlet 56, the freezing chamber return cold air has a wide space. Flows down. After that, it flows through the bottom surface of the cooling chamber 43 as it is and changes direction according to the shape of the drain pan 48, and flows upward along the back surface of the cooling chamber 43.

冷蔵室35および野菜室36からの高温戻り冷気は、高温戻り風路57中を下向きに流れてくるが、高温戻り風路57の下面で前向きに方向転換し冷却室43の背面に設置された高温吸込み口58から冷却室43内に流れ込む。   The high-temperature return cold air from the refrigerator compartment 35 and the vegetable compartment 36 flows downward in the high-temperature return air passage 57, but is turned forward on the lower surface of the high-temperature return air passage 57 and installed on the back surface of the cooling chamber 43. It flows into the cooling chamber 43 from the high temperature suction port 58.

高温吸込み口58から出てきた高温戻り冷気は、冷却室43の背面に沿って上ってきた冷凍室戻り冷気と合流する。高温戻り冷気は上向きの冷凍室戻り冷気に押され、スムーズに上向きに方向転換し、冷凍室戻り冷気と一緒に冷却器44へ突入することができる。従って、冷凍室戻り冷気と高温戻り冷気の2つの流れが正面衝突しお互いに邪魔することがないため、2つの流れの風量を増やすことで冷却器44の熱交換量を増加させ、冷却能力を向上させることができる。   The high temperature return cold air that has come out of the high temperature suction port 58 merges with the freezer compartment return cold air that has risen along the back surface of the cooling chamber 43. The high temperature return cold air is pushed by the upward freezer return cold air, smoothly turns upward, and can enter the cooler 44 together with the freezer return cold air. Therefore, since the two flows of the freezer return cold air and the high temperature return cold air do not interfere with each other and interfere with each other, increasing the air volume of the two flows increases the heat exchange amount of the cooler 44 and increases the cooling capacity. Can be improved.

冷蔵庫30は3つの貯蔵室の中で外気温との温度差が大きい冷凍室37を最も冷やす必要があるため、高温吐出風路54を開閉弁(図示せず)で閉じるなどすることで、冷凍室37のみに冷気を循環させる必要がある。送風機46から吐出された冷気が冷凍室37のみを循環しているとき、冷却室43には冷凍室37からの戻り冷気のみが流れ込むことになる。   Since the refrigerator 30 needs to cool the freezer compartment 37 having the largest temperature difference from the outside temperature among the three storage rooms, the refrigerator 30 can be frozen by closing the high-temperature discharge air passage 54 with an on-off valve (not shown). It is necessary to circulate cold air only to the chamber 37. When the cool air discharged from the blower 46 circulates only in the freezer compartment 37, only the return cool air from the freezer compartment 37 flows into the cooler chamber 43.

このときも冷凍室戻り冷気は、全貯蔵室に冷気が循環しているときと同様に、入り口53aから冷凍室戻り風路53を通り、冷凍室吸込み口56から冷却室43へ入り、除霜ヒータ47の下を通りドレンパン48に沿って背面から冷却器44へ突入する。従って、冷凍室戻り冷気は冷却器44内を対角線上に流れることができ、熱交換距離を長く取ることができるため、熱交換量を増加し冷却能力を向上させることができる。   At this time, the freezing room return cold air passes through the freezing room return air passage 53 from the entrance 53a and enters the cooling room 43 through the freezing room suction port 56 as in the case where the cold air circulates in all the storage rooms. It passes under the heater 47 and enters the cooler 44 along the drain pan 48 from the back surface. Therefore, the freezer return cold air can flow diagonally in the cooler 44, and the heat exchange distance can be increased, so that the heat exchange amount can be increased and the cooling capacity can be improved.

さらに、冷却室43の前面に設置された吸込み口は冷凍室吸込み口56のみであるため冷凍室吸込み口56の幅を冷却器44の幅と同じまで広げることができる。従って、冷凍室37のみに冷気が循環しているときでも、冷却器44全体を使うことができ、冷却能力を更に向上させることができる。   Furthermore, since the suction port installed on the front surface of the cooling chamber 43 is only the freezing chamber suction port 56, the width of the freezing chamber suction port 56 can be expanded to the same as the width of the cooler 44. Therefore, even when the cold air is circulating only in the freezer compartment 37, the entire cooler 44 can be used, and the cooling capacity can be further improved.

また、冷凍室吸込み口は冷凍室戻り風路53の入り口53aよりも大きいため、ここでの圧力損失も抑制することができ、さらに風量を増加させることができる。   Moreover, since the freezer compartment suction inlet is larger than the entrance 53a of the freezer compartment return air path 53, the pressure loss here can also be suppressed and the air volume can be increased.

また、一般的に冷蔵庫30の奥面部には低温の冷却器44が配置されているため外気との温度差が大きくなり、背面の断熱壁を介して侵入する熱が多いが、冷却室43と断熱壁の間に高温戻り風路を構成しているため、冷蔵庫30の背面の断熱壁を介して侵入する熱量を低減することができる。   In general, a low-temperature cooler 44 is disposed on the back surface of the refrigerator 30, so that the temperature difference from the outside air becomes large and much heat enters through the heat insulating wall on the back side. Since the high-temperature return air passage is configured between the heat insulating walls, the amount of heat entering through the heat insulating wall on the back surface of the refrigerator 30 can be reduced.

次に、除霜運転時について説明する。前述したが、循環した冷気は冷蔵室35や野菜室36内の空気や貯蔵物に含まれる湿気を帯びた空気となって、高温戻り風路57を通り高温吸込み口58から冷却器44の下部に導かれて冷却器44と熱交換および除湿される。この時に、冷却器44の表面に霜が生成される。霜が成長するにつれて冷却器44の通風抵抗や熱抵抗が増加し熱交換能力が低下するため、タイミング良く除霜運転をする必要がある。   Next, the defrosting operation will be described. As described above, the circulated cold air becomes the air in the refrigerator compartment 35 and the vegetable compartment 36 and the moisture contained in the stored product, passes through the high temperature return air passage 57 and passes through the high temperature suction port 58 to the lower part of the cooler 44. The heat is exchanged with the cooler 44 and dehumidified. At this time, frost is generated on the surface of the cooler 44. As the frost grows, the ventilation resistance and thermal resistance of the cooler 44 increase and the heat exchange capacity decreases, so it is necessary to perform the defrosting operation with good timing.

冷却器44の除霜は送風機46が停止した状態で行われ、主に、通電により高温となった除霜ヒータ47表面から発生する高温の自然対流(上昇気流)による熱伝達によってなされる。この時、高温吸込み口58付近へと流れた上昇気流は突出部58aに沿って流れるため冷却器44へ導かれる。これにより、高温吸込み口58へ上昇気流の一部が流入することがなく、かつ冷却器44へと導かれるため除霜効率を低下することなく除霜運転することができる。   The defrosting of the cooler 44 is performed in a state in which the blower 46 is stopped, and is mainly performed by heat transfer by high-temperature natural convection (updraft) generated from the surface of the defrosting heater 47 that has become high temperature due to energization. At this time, the ascending airflow that has flowed to the vicinity of the high-temperature suction port 58 flows along the protruding portion 58a, and thus is guided to the cooler 44. Thereby, a part of the ascending airflow does not flow into the high-temperature suction port 58 and is guided to the cooler 44, so that the defrosting operation can be performed without reducing the defrosting efficiency.

以上のように、本実施の形態では、冷却運転時において、冷凍室吸込み口56は冷却室43前面に、高温吸込み口58は冷却室43背面に設けられ、冷凍室吸込み口56は高温吸込み口58よりも下方に位置することにより、後向きの速度が大きい冷凍室戻り冷気と前向きの速度が大きい高温戻り冷気は、上下方向にずれることで相互干渉を抑制し庫内を循環する風量を大きくすることができるため、より冷却能力を向上することができる。また、最も冷やす必要がある冷凍室37のみに冷気が循環している際も、冷凍室吸込み口56がより下方にあることで、冷凍室戻り冷気が冷却器を通過する距離が長くなり熱交換量を増やすことで更なる冷却能力を向上させることができる。   As described above, in the present embodiment, during the cooling operation, the freezer compartment suction port 56 is provided on the front surface of the cooling chamber 43, the high temperature suction port 58 is provided on the rear surface of the cooling chamber 43, and the freezer compartment suction port 56 is provided on the high temperature suction port. By being positioned below 58, the freezer return cold air having a large backward speed and the high temperature return cold air having a large forward speed are displaced in the vertical direction to suppress mutual interference and increase the amount of air circulating in the cabinet. Therefore, the cooling capacity can be further improved. Further, even when the cold air is circulating only in the freezer compartment 37 that needs to be cooled most, the freezer compartment suction port 56 is located further downward, so that the distance that the freezer return cold air passes through the cooler is increased and heat exchange is performed. Further cooling capacity can be improved by increasing the amount.

また、冷却室43の底面を構成するドレンパン48は冷凍室吸込み口56からドレンチューブ49にかけて下方に傾斜した形状を有することにより、冷凍室戻り冷気は、ドレンパン48沿って下方へ流れた後背面に沿って上昇させることができるため、高温吸込み口58前方において冷凍室戻り冷気の速度が上向きとなり、高温戻り冷気とスムーズに合流できるため、より風量を増やし冷却能力を向上させることができる。   Further, the drain pan 48 constituting the bottom surface of the cooling chamber 43 has a shape inclined downward from the freezing chamber suction port 56 to the drain tube 49, so that the freezing chamber return cold air flows downward along the drain pan 48 on the rear surface. Therefore, the speed of the freezer compartment return cold air is increased in front of the high temperature inlet 58 and can smoothly merge with the high temperature return cold air, so that the air volume can be increased and the cooling capacity can be improved.

また、冷凍室吸込み口56は上流側に冷凍室戻り風路53を備え、冷凍室戻り風路53の入り口53aは冷凍室吸込み口56よりも上方に位置することにより、冷凍室吸込み口56において冷凍室戻り冷気は下向きに冷却室43に流れ込むため、よりドレンパン48に沿って流れ易くなり、より圧力損失を小さくしたまま低温戻り冷気との干渉を抑制することができる。さらに、冷凍室戻り風路53の入り口53aの面積は冷凍室吸込み口56の面積よりも小さいことにより、さらに冷凍室吸込み口56での圧力損失を低減することができる。   Further, the freezer compartment suction port 56 is provided with a freezer compartment return air passage 53 on the upstream side, and an inlet 53a of the freezer compartment return air passage 53 is located above the freezer compartment suction port 56, so that Since the freezing chamber return cold air flows downward into the cooling chamber 43, it becomes easier to flow along the drain pan 48, and interference with the low temperature return cold air can be suppressed while reducing the pressure loss. Furthermore, since the area of the inlet 53a of the freezer return air passage 53 is smaller than the area of the freezer compartment inlet 56, pressure loss at the freezer compartment inlet 56 can be further reduced.

また、冷却室43は冷却器44の下方に霜や氷を溶かすための除霜ヒータ47を備え、冷凍室吸込み口56よりも除霜ヒータ47とドレンパン48との距離Lや、冷却室43の背面との距離Bが大きいために、冷凍室戻り冷気は空間の広い除霜ヒータ47の下へ流れ込む。その後はそのまま冷却室43の底面を流れドレンパン48の形状に従って方向転換し、冷却室43の背面を上向きに流れる際も、圧力損失を小さく抑えることができる。従って、風量を増やし且つ冷却器を通過する距離が長くできるため冷却能力を向上させることができる。   The cooling chamber 43 includes a defrost heater 47 for melting frost and ice below the cooler 44, and the distance L between the defrost heater 47 and the drain pan 48 from the freezer inlet 56 and the cooling chamber 43. Since the distance B from the back surface is large, the freezer return cold air flows under the defrost heater 47 having a large space. After that, it flows through the bottom surface of the cooling chamber 43 as it is and changes its direction according to the shape of the drain pan 48, and the pressure loss can be kept small even when it flows upward through the back surface of the cooling chamber 43. Accordingly, the cooling capacity can be improved because the air volume can be increased and the distance passing through the cooler can be increased.

また、除霜運転時において、高温吸込み口58の下端面に上端面より冷却室43内へ突出している突出部58aを備えていることで、除霜ヒータ47表面から発生し高温吸込み口58付近へと流れた上昇気流は突出部58aに沿って流れるため、高温吸込み口58へ上昇気流の一部が流入することがなく、かつ冷却器44へと導かれるため除霜効率を低下することなく除霜運転することができる。   Further, during the defrosting operation, the lower end surface of the high temperature suction port 58 is provided with a protruding portion 58a that protrudes into the cooling chamber 43 from the upper end surface, so that it is generated from the surface of the defrost heater 47 and near the high temperature suction port 58. Ascending airflow that has flown into the airflow flows along the projecting portion 58a, so that part of the ascending airflow does not flow into the high-temperature suction port 58 and is guided to the cooler 44 without deteriorating the defrosting efficiency. Defrosting operation can be performed.

(実施の形態2)
図3は、本発明の実施の形態2における冷蔵庫の縦断面図、図4は、本発明の実施の形態2における冷却室の正面図である。
(Embodiment 2)
FIG. 3 is a longitudinal sectional view of the refrigerator according to the second embodiment of the present invention, and FIG. 4 is a front view of the cooling chamber according to the second embodiment of the present invention.

なお、実施の形態1と同様の構成および同様の技術思想が適用できる部分については、説明を省略するが、不具合がない限り実施の形態1の構成に本実施の形態を組み合わせて適用することが可能である。   In addition, although description is abbreviate | omitted about the part which can apply the structure similar to Embodiment 1, and the same technical idea, as long as there is no malfunction, it can apply combining this Embodiment with the structure of Embodiment 1. Is possible.

図3および図4において、冷蔵庫30の複数の貯蔵室は、最上部に冷蔵室35、最下部に野菜室36、そして冷蔵室35と野菜室36の間に冷凍室37が配置されている。   3 and 4, the plurality of storage rooms of the refrigerator 30 includes a refrigeration room 35 at the top, a vegetable room 36 at the bottom, and a freezing room 37 between the refrigeration room 35 and the vegetable room 36.

また、仕切壁である第一区画壁71によって野菜室36と冷凍室37とは上下に区画され、仕切壁である第二区画壁72によって冷蔵室35と冷凍室37とは上下に区画されている。   Moreover, the vegetable compartment 36 and the freezer compartment 37 are divided up and down by the 1st division wall 71 which is a partition wall, and the refrigerator compartment 35 and the freezer compartment 37 are divided up and down by the 2nd division wall 72 which is a partition wall. Yes.

分配風路51は、第一区画壁71内に設けられた野菜室吐出風路(図示せず)に接続し、分配風路51と野菜室36とを連通している。また第二区画壁72内に設けられた冷蔵室吐出風路85に接続し、分配風路51と冷蔵室35とを連通している。   The distribution air passage 51 is connected to a vegetable room discharge air passage (not shown) provided in the first partition wall 71 and communicates the distribution air passage 51 and the vegetable compartment 36. In addition, the distribution air passage 51 and the refrigerating chamber 35 are communicated with each other by connecting to a refrigerating chamber discharge air passage 85 provided in the second partition wall 72.

冷却器44の背面に冷蔵室戻り風路87が配置されている。冷蔵室戻り風路87は第二区画壁72を通り冷蔵室35と冷却室43とを連通しており、冷蔵室35を冷却した冷気が流れている。冷蔵室戻り風路87は下方に冷却室43と連通する冷蔵室吸込み口88を備える。   A refrigeration chamber return air passage 87 is disposed on the back surface of the cooler 44. The refrigeration chamber return air passage 87 passes through the second partition wall 72 and communicates the refrigeration chamber 35 and the cooling chamber 43, and cold air that has cooled the refrigeration chamber 35 flows therethrough. The refrigerating room return air passage 87 includes a refrigerating room suction port 88 communicating with the cooling room 43 below.

また、冷却器44の背面には、冷蔵室吸込み口88の横に野菜室吸込み口89を有する。野菜室吸込み口89は第一区画壁71内に設けられた野菜室戻り風路90を介して野菜室36と連通している。   Further, on the back surface of the cooler 44, there is a vegetable room suction port 89 next to the refrigerator compartment suction port 88. The vegetable room suction port 89 communicates with the vegetable room 36 via a vegetable room return air passage 90 provided in the first partition wall 71.

冷蔵室吸込み口88および野菜室吸込み口89は、冷却器44の下端近傍に設けられ、冷凍室吸込み口56よりも高い位置に構成される。また、冷蔵室吸込み口88および野菜室吸込み口89の下端面は、除霜ヒータ47かつ冷凍室吸込み口56よりも上方に設けられるとともに、上端面よりも冷却室43内へと突出させた突出部88aおよび89aをそれぞれ有しており、上方に傾斜させている。   The refrigerator compartment suction port 88 and the vegetable compartment suction port 89 are provided in the vicinity of the lower end of the cooler 44 and are configured at a position higher than the freezer compartment suction port 56. Further, the lower end surfaces of the refrigerator compartment suction port 88 and the vegetable chamber suction port 89 are provided above the defrost heater 47 and the freezer compartment suction port 56, and the protrusions protruded into the cooling chamber 43 from the upper end surface. Each has a portion 88a and 89a and is inclined upward.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、冷却運転時について説明する。分配風路51内上方に吐出された冷気は第二区画壁72内の冷蔵室吐出風路84を経て冷蔵室35に吐出される。冷蔵室35内を冷却した冷気は湿気を帯びた空気となって、冷蔵室戻り風路87を通り冷蔵室吸込み口88から冷却器44の下部に導かれて冷却器44と熱交換および除湿され、新鮮な冷気が再び送風機によって強制的に送風される。   First, the cooling operation will be described. The cold air discharged upward in the distribution air passage 51 is discharged to the refrigerating chamber 35 through the refrigerating chamber discharge air passage 84 in the second partition wall 72. The cold air that has cooled the inside of the refrigerating chamber 35 becomes humid air, passes through the refrigerating chamber return air passage 87, is led from the refrigerating chamber suction port 88 to the lower part of the cooler 44, and is heat exchanged and dehumidified with the cooler 44. The fresh cold air is forced to be blown again by the blower.

また分配風路51内側方に吐出された冷気は第一区画壁71内の野菜室吐出風路84を
経て野菜室36に吐出される。野菜室36内を冷却した冷気は湿気を帯びた空気となって、野菜室戻り風路90を通り野菜室吸込み口89から冷却器44の下部に導かれて冷却器44と熱交換および除湿され、新鮮な冷気が再び送風機によって強制的に送風される。これらの際に、冷却器44には霜が生成される。
Further, the cold air discharged to the inside of the distribution air passage 51 is discharged to the vegetable compartment 36 through the vegetable compartment discharge air passage 84 in the first partition wall 71. The cold air that has cooled the inside of the vegetable compartment 36 becomes humid air, passes through the vegetable compartment return air passage 90, is led from the vegetable compartment suction port 89 to the lower part of the cooler 44, and is heat-exchanged and dehumidified with the cooler 44. The fresh cold air is forced to be blown again by the blower. At these times, frost is generated in the cooler 44.

冷蔵室35からの冷蔵室戻り冷気は、冷蔵室戻り風路87中を下向きに流れてくるが、冷蔵室戻り風路87の下面で前向きに方向転換し冷却室43の背面に設置された高温吸込み口58から冷却室43内に流れ込む。   The refrigerated room return cold air from the refrigeration room 35 flows downward in the refrigeration room return air passage 87, but the high temperature is installed on the back surface of the cooling room 43 by changing the direction forward on the lower surface of the refrigeration room return air passage 87. It flows into the cooling chamber 43 from the suction port 58.

冷蔵室吸込み口88から出てきた冷蔵室戻り冷気は、冷却室43の背面に沿って上ってきた冷凍室戻り冷気と合流する。冷蔵室戻り冷気は上向きの冷凍室戻り冷気に押され、スムーズに上向きに方向転換し、冷凍室戻り冷気と一緒に冷却器44へ突入することができる。   The cold room return cold air that has come out of the cold room suction port 88 merges with the freezer compartment return cold air that has risen along the back surface of the cooling chamber 43. The cold air returning from the refrigerator compartment is pushed by the upward freezing room return air, smoothly turning upward, and can enter the cooler 44 together with the freezing room return cold air.

一方、野菜室36からの野菜室戻り冷気は、野菜室戻り風路90中を上向きに流れてくるため、野菜室吸込み口89から出てきた野菜室戻り冷気は、冷却室43の背面に沿って上ってきた冷凍室戻り冷気とスムーズに合流し、冷凍室戻り冷気と一緒に冷却器44へ突入することができる。   On the other hand, since the vegetable room return cold air from the vegetable room 36 flows upward in the vegetable room return air passage 90, the vegetable room return cold air that has come out from the vegetable room suction port 89 runs along the back of the cooling room 43. The freezing room return cold air that has come up can smoothly merge and enter the cooler 44 together with the freezing room return cold air.

ここで、冷蔵室吸込み口88と野菜室吸込み口89とは横並びで構成されているため、上向きに流れる冷却室43内ではお互いが干渉することはない。   Here, since the refrigerator compartment inlet 88 and the vegetable compartment inlet 89 are arranged side by side, they do not interfere with each other in the cooling chamber 43 that flows upward.

なお、風路構成により冷蔵室吸込み口88と野菜室吸込み口89とを上下に並べて構成した場合でも、全ての冷却室43内では全ての流れが上方向を向くため、干渉し合い風量を低下させることはない。   Even when the refrigeration room suction port 88 and the vegetable room suction port 89 are arranged one above the other according to the air path configuration, since all the flows are directed upward in all the cooling chambers 43, they interfere with each other and reduce the air volume. I will not let you.

従って、全ての戻り冷気はお互いに干渉し合うことがないため、循環する風量を増やすことで冷却器44の熱交換量を増加させ、冷却能力を向上させることができる。   Accordingly, since all the return cold air does not interfere with each other, the amount of heat exchange of the cooler 44 can be increased by increasing the amount of circulating air, and the cooling capacity can be improved.

次に、除霜運転時について説明する。前述したが、循環した冷気は冷蔵室35や野菜室36内の空気や貯蔵物に含まれる湿気を帯びた空気となって、それぞれ冷蔵室戻り風路87、野菜室戻り風路90を通り、冷蔵室吸込み口88、野菜室吸込み口89から冷却器44の下部に導かれて冷却器44と熱交換および除湿される。この時に、冷却器44の表面に霜が生成される。霜が成長するにつれて冷却器44の通風抵抗や熱抵抗が増加し熱交換能力が低下するため、タイミング良く除霜運転をする必要がある。   Next, the defrosting operation will be described. As described above, the circulated cold air becomes the air in the refrigerator compartment 35 and the vegetable compartment 36 and the humid air contained in the storage, and passes through the refrigerator compartment return air passage 87 and the vegetable compartment return air passage 90, respectively. Heat is exchanged with the cooler 44 and dehumidified through the refrigerator compartment suction port 88 and the vegetable compartment suction port 89 to the lower part of the cooler 44. At this time, frost is generated on the surface of the cooler 44. As the frost grows, the ventilation resistance and thermal resistance of the cooler 44 increase and the heat exchange capacity decreases, so it is necessary to perform the defrosting operation with good timing.

冷却器44の除霜は送風機46が停止した状態で行われ、主に、通電により高温となった除霜ヒータ47表面から発生する高温の自然対流(上昇気流)による熱伝達によってなされる。この時、高温吸込み口58付近へと流れた上昇気流は突出部に沿って流れるため冷却器44へ導かれる。これにより、冷蔵室吸込み口88、野菜室吸込み口89へ上昇気流の一部が流入することがなく、かつ冷却器44へと導かれるため除霜効率を低下することなく除霜運転することができる。   The defrosting of the cooler 44 is performed in a state in which the blower 46 is stopped, and is mainly performed by heat transfer by high-temperature natural convection (updraft) generated from the surface of the defrosting heater 47 that has become high temperature due to energization. At this time, the ascending airflow that has flowed to the vicinity of the high-temperature suction port 58 flows along the protruding portion, and thus is guided to the cooler 44. Accordingly, a part of the rising airflow does not flow into the refrigerator compartment suction port 88 and the vegetable compartment suction port 89 and is guided to the cooler 44, so that the defrosting operation can be performed without reducing the defrosting efficiency. it can.

以上のように、本実施の形態では、冷却運転時において、冷凍室吸込み口56は冷却室43前面に、冷蔵室吸込み口88および野菜室吸込み口89は冷却室43背面に設けられ、冷凍室吸込み口56は冷蔵室吸込み口88および野菜室吸込み口89よりも下方に位置することにより、前後から戻り冷気が冷却室43に同時に流れ込んでも上下方向にずれることでお互いの流れを阻害しあうことなく庫内を循環する風量を大きくすることができるため、より冷却能力を向上することができる。   As described above, in the present embodiment, during the cooling operation, the freezer compartment suction port 56 is provided on the front surface of the cooling chamber 43, and the refrigerator compartment suction port 88 and the vegetable room suction port 89 are provided on the back surface of the cooling chamber 43. The suction port 56 is located below the refrigeration chamber suction port 88 and the vegetable chamber suction port 89, so that even if cold air returns from the front and rear and flows into the cooling chamber 43 at the same time, the mutual flow is hindered. Since the air volume circulating through the interior can be increased, the cooling capacity can be further improved.

また、除霜運転時において、冷蔵室吸込み口88および野菜室吸込み口89の下端面に上端面より冷却室43内へ突出している突出部88a、89aを備えていることで、除霜ヒータ47表面から発生し高温吸込み口58付近へと流れた上昇気流は突出部に沿って流れるため、冷蔵室吸込み口88および野菜室吸込み口89へ上昇気流の一部が流入することがなく、かつ冷却器44へと導かれるため除霜効率を低下することなく除霜運転することができる。   Further, at the time of the defrosting operation, the defrost heater 47 is provided with projecting portions 88a and 89a projecting from the upper end surface into the cooling chamber 43 at the lower end surfaces of the refrigerator compartment suction port 88 and the vegetable chamber suction port 89. Ascending airflow generated from the surface and flowing to the vicinity of the high-temperature suction port 58 flows along the protruding portion, so that a part of the ascending airflow does not flow into the refrigerating room suction port 88 and the vegetable room suction port 89 and is cooled. Therefore, the defrosting operation can be performed without reducing the defrosting efficiency.

以上のように、本発明にかかる冷蔵庫の構成は、風路の圧力損失を大きくすることなく冷却器の熱交換量を向上させることができ、かつ除霜効率の低下を防止できるので、家庭用又は業務用冷蔵庫など、強制的に風を循環させて冷却を行っている機器に対しても適用できる。   As described above, the configuration of the refrigerator according to the present invention can improve the heat exchange amount of the cooler without increasing the pressure loss of the air passage, and can prevent the defrosting efficiency from being lowered. Or it can apply also to the apparatus which circulates air forcedly, such as a commercial refrigerator.

30 冷蔵庫
35 冷蔵室(高温貯蔵室)
36 野菜室(高温貯蔵室)
37 冷凍室(低温貯蔵室)
43 冷却室
44 冷却器
46 送風機
47 除霜ヒータ
48 ドレンパン(冷却室底面)
53 冷凍室戻り風路
53a 入り口
56 冷凍室吸込み口(低温吸込み口)
58a 突出部
58 高温吸込み口
57、87 冷蔵室戻り風路(高温戻り風路)
58、88 冷蔵室吸込み口(高温吸込み口)
88a 突出部
89 野菜室吸込み口(高温吸込み口)
89a 突出部
90 野菜室戻り風路(高温戻り風路)
30 Refrigerator 35 Refrigerated room (high temperature storage room)
36 Vegetable room (high temperature storage room)
37 Freezer room (cold storage room)
43 Cooling chamber 44 Cooler 46 Blower 47 Defrost heater 48 Drain pan (cooling chamber bottom)
53 Freezer return air passage 53a Entrance 56 Freezer compartment inlet (low temperature inlet)
58a Protrusion 58 High temperature inlet 57, 87 Refrigeration room return air path (high temperature return air path)
58, 88 Refrigerating room inlet (high temperature inlet)
88a Projection 89 Vegetable room inlet (high temperature inlet)
89a Protrusion 90 Vegetable room return air path (high temperature return air path)

Claims (4)

冷気を生成する冷却器と、前記冷却器で生成された冷気を強制的に循環させる送風機と、前記冷却器下方に霜や氷を融かすための除霜ヒータと、前記冷却器、送風機および除霜ヒータとを収める冷却室と、前記冷却室を背面に備える低温貯蔵室と、前記低温貯蔵室と温度帯の異なる少なくとも一つの高温貯蔵室と、前記低温貯蔵室からの低温戻り冷気を前記冷却室へ導入する低温吸込み口と、前記高温貯蔵室からの高温戻り冷気を前記冷却室へ導入する高温吸込み口とを備える冷蔵庫において、前記低温吸込み口は前記冷却室前面に、前記高温吸込み口は前記冷却室背面に設けられ、前記高温吸込み口の下端は前記除霜ヒータより上方に位置し、前記高温吸込み口の下端面は上端面より前記冷却室内へ突出している突出部を備えていることを特徴とする冷蔵庫。 A cooler that generates cold air, a blower that forcibly circulates the cold air generated by the cooler, a defrost heater that melts frost and ice below the cooler, the cooler, the blower, and the removal device A cooling chamber containing a frost heater; a low-temperature storage chamber provided with the cooling chamber on the back; at least one high-temperature storage chamber having a temperature range different from that of the low-temperature storage chamber; and cooling the low-temperature return cold air from the low-temperature storage chamber A refrigerator having a low-temperature inlet to be introduced into the chamber and a high-temperature inlet to introduce the high-temperature return cold air from the high-temperature storage chamber into the cooling chamber, wherein the low-temperature inlet is in front of the cooling chamber, and the high-temperature inlet is Provided on the rear surface of the cooling chamber, a lower end of the high temperature suction port is located above the defrosting heater, and a lower end surface of the high temperature suction port has a protruding portion protruding from the upper end surface into the cooling chamber. The Refrigerator and butterflies. 前記低温吸込み口は前記高温吸込み口よりも下方に位置することを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the low-temperature suction port is positioned below the high-temperature suction port. 前記突出部は上方に傾斜していることを特徴とする請求項1または2に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the protruding portion is inclined upward. 冷蔵庫縦断面において、前記除霜ヒータから前記突出部先端までの距離の最大値は前記低温吸込み口の垂直方向の空間距離の最大値よりも大きく設定したことを特徴とする請求項1から3のいずれか一項に記載の冷蔵庫。 The maximum value of the distance from the said defrost heater to the said front-end | tip part of a protrusion is set larger in the vertical cross section of a refrigerator than the maximum value of the vertical space distance of the said low-temperature inlet. The refrigerator as described in any one.
JP2013119491A 2013-06-06 2013-06-06 refrigerator Expired - Fee Related JP6023986B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013119491A JP6023986B2 (en) 2013-06-06 2013-06-06 refrigerator
PCT/JP2014/003031 WO2014196210A1 (en) 2013-06-06 2014-06-06 Refrigerator
CN201490000783.7U CN205482060U (en) 2013-06-06 2014-06-06 Refrigerator
DE212014000135.8U DE212014000135U1 (en) 2013-06-06 2014-06-06 fridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013119491A JP6023986B2 (en) 2013-06-06 2013-06-06 refrigerator

Publications (2)

Publication Number Publication Date
JP2014238182A JP2014238182A (en) 2014-12-18
JP6023986B2 true JP6023986B2 (en) 2016-11-09

Family

ID=52135468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013119491A Expired - Fee Related JP6023986B2 (en) 2013-06-06 2013-06-06 refrigerator

Country Status (1)

Country Link
JP (1) JP6023986B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6490221B2 (en) * 2015-07-21 2019-03-27 三菱電機株式会社 refrigerator
JP6557547B2 (en) * 2015-08-07 2019-08-07 日立グローバルライフソリューションズ株式会社 refrigerator
JP7097046B2 (en) * 2017-12-26 2022-07-07 アクア株式会社 refrigerator
CN115682531A (en) * 2021-07-23 2023-02-03 合肥海尔电冰箱有限公司 Air-cooled refrigeration equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514369Y2 (en) * 1972-05-26 1976-02-06
US5899083A (en) * 1997-03-12 1999-05-04 Whirlpool Corporation Multi-compartment refrigeration system
KR100389382B1 (en) * 1998-11-28 2003-10-04 주식회사 엘지이아이 Refrigerator
JP2001133180A (en) * 1999-10-29 2001-05-18 Matsushita Refrig Co Ltd Fin-tube-type heat exchanger
JP2006214641A (en) * 2005-02-03 2006-08-17 Matsushita Electric Ind Co Ltd Refrigerator
JP5023025B2 (en) * 2008-09-03 2012-09-12 日立アプライアンス株式会社 refrigerator
JP5531703B2 (en) * 2010-03-25 2014-06-25 パナソニック株式会社 refrigerator
JP5903552B2 (en) * 2011-09-29 2016-04-13 パナソニックIpマネジメント株式会社 refrigerator

Also Published As

Publication number Publication date
JP2014238182A (en) 2014-12-18

Similar Documents

Publication Publication Date Title
US8099975B2 (en) Icemaker for a refrigerator
KR101306536B1 (en) Refrigerator
CN105452785B (en) Refrigerator
CN104641190B (en) Freezer
TWI716636B (en) refrigerator
CN103339454B (en) Freezer
CN104101154A (en) Refrigerator
JP6023986B2 (en) refrigerator
WO2018064866A1 (en) Refrigerator
WO2015029409A1 (en) Refrigerator
JP5966145B2 (en) refrigerator
JP6405526B2 (en) refrigerator
JP6145643B2 (en) refrigerator
JP5317924B2 (en) Freezer refrigerator
JP2014077615A (en) Refrigerator
CN203615672U (en) Refrigerator-freezer
CN106766582B (en) A kind of refrigerator
JP6405525B2 (en) refrigerator
KR20140019596A (en) 3 door type refrigerator
JP6940424B2 (en) refrigerator
JP6145640B2 (en) refrigerator
JP6145639B2 (en) refrigerator
CN111886461A (en) Refrigerator with a door
WO2014196210A1 (en) Refrigerator
JP6145642B2 (en) refrigerator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R151 Written notification of patent or utility model registration

Ref document number: 6023986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees