JP2018125845A - 撮像素子 - Google Patents

撮像素子 Download PDF

Info

Publication number
JP2018125845A
JP2018125845A JP2017227723A JP2017227723A JP2018125845A JP 2018125845 A JP2018125845 A JP 2018125845A JP 2017227723 A JP2017227723 A JP 2017227723A JP 2017227723 A JP2017227723 A JP 2017227723A JP 2018125845 A JP2018125845 A JP 2018125845A
Authority
JP
Japan
Prior art keywords
circuit
chip
pixel
analog
digital conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017227723A
Other languages
English (en)
Inventor
文秀 村尾
Fumihide Murao
文秀 村尾
志田 光司
Koji Shida
光司 志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to US15/856,671 priority Critical patent/US20180220093A1/en
Priority to EP18150955.5A priority patent/EP3358623A1/en
Priority to TW107102607A priority patent/TW201839966A/zh
Priority to KR1020180010521A priority patent/KR20200067257A/ko
Priority to CN201810101279.0A priority patent/CN108462840A/zh
Publication of JP2018125845A publication Critical patent/JP2018125845A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/531Control of the integration time by controlling rolling shutters in CMOS SSIS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Abstract

【課題】従来の撮像素子では、撮像信号のSN比が劣化する問題があった。【解決手段】一実施の形態によれば、撮像素子は、第1のチップAと、第1のチップが積層され、第1のチップとマイクロバンプを介して信号の送受信を行う第2のチップBと、を有し、第1のチップに光電変換素子41、転送トランジスタ42、リセットトランジスタ43、及び、増幅トランジスタ44を有する画素回路31〜3nが格子状に配置され、第2のチップに画素回路31〜3nから出力されるダークレベル信号及び撮像信号をデジタル値に変換するアナログデジタル変換回路の入力段回路COMPが少なくとも形成され、入力段回路COMPの数が画素回路の行数の2倍以上である。【選択図】図3

Description

本発明は撮像素子に関し、例えば複数枚のチップを積層した構造を有する撮像素子に関する。
カメラ等において光情報を画像データに変換する撮像素子では、光電変換素子を格子状に配置される。そして、撮像素子では、シャッター方式としてローリングシャッター方式とグローバルシャッター方式とがある。ローリングシャッター方式では、露光と撮像信号の読み出しを行毎にずらしたタイミングで行う。ローリングシャッター方式では、行単位で撮像するため、高速で動いている被写体を撮像すると、画像が斜めに流れるローリング歪が発生する。一方、グローバルシャッター方式では、全光電変換素子に対して同時に露光を行い、この露光処理により生じた撮像信号の読み出しを行う。そのため、グローバルシャッター方式ではローリング歪は発生しない。このグローバルシャッター方式に対応した撮像素子の一例が特許文献1に開示されている。
特許文献1に記載の固体撮像装置は、光電変換部が形成された第1の基板と、電荷蓄積容量部及び複数のMOSトランジスタが形成された第2の基板が張り合わされた構成とされている。また、第1の基板と、第2の基板にはそれぞれ接続電極が形成されており、第1の基板と第2の基板は、接続電極により電気的に接続されている。これにより、特許文献1に記載の固体撮像装置は、グローバルシャッター機能を有する固体撮像装置をより小さい面積に形成することが可能となる。
特許第4835710号明細書
しかし、特許文献1に記載の撮像素子では、光電変換部から撮像信号を取り出して、撮像信号を画像データに変換する過程で撮像信号の電位が不安定になる、或いは混入するノイズ等に起因して、得られる画像データの画質が劣化するという問題があった。
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
一実施の形態によれば、撮像素子は、第1のチップと、第1のチップが積層され、第1のチップとマイクロバンプを介して信号の送受信を行う第2のチップとを有し、第1のチップに光電変換素子、転送トランジスタ、リセットトランジスタ、及び、増幅トランジスタを有する画素回路が格子状に配置され、第2のチップに画素回路から出力されるダークレベル信号及び撮像信号をデジタル値に変換するアナログデジタル変換回路の入力段回路が少なくとも形成され、当該入力段回路の数が画素回路の行数の2倍以上である。
前記一実施の形態によれば、高画質な画像データを生成するグローバルシャッター方式の撮像素子を実現することができる。
実施の形態1にかかる撮像素子を含むカメラシステムのブロック図である。 実施の形態1にかかる撮像素子のフロアレイアウトの概略図である。 実施の形態1にかかる撮像素子のブロック図である。 実施の形態1にかかる撮像素子のアナログデジタル変換回路の一例の回路及び動作を説明する図である。 実施の形態1にかかる撮像素子のアナログデジタル変換回路の別の例の回路及び動作を説明する図である。 実施の形態1にかかる撮像素子の動作を説明するタイミングチャートである。 実施の形態1にかかる撮像素子の動作と比較例にかかる撮像素子の動作との違いを説明するタイミングチャートである。 実施の形態1にかかる撮像素子の他の例を説明するブロック図である。 実施の形態1にかかる撮像素子の他の例を説明するブロック図である。 実施の形態1にかかる撮像素子の動作の他の例を説明するタイミングチャートである。 実施の形態2にかかる撮像素子の第1の例のブロック図である。 実施の形態2にかかる撮像素子の第2の例のブロック図である。 実施の形態2にかかる撮像素子の第3の例のブロック図である。 実施の形態3にかかる撮像素子の第1の例ブロック図である。 実施の形態3にかかる撮像素子の第2の例ブロック図である。 実施の形態4にかかる撮像素子のブロック図である。 実施の形態5にかかる撮像素子の画素回路の第1の例を説明するブロック図である。 実施の形態5にかかる撮像素子の画素回路の第2の例を説明するブロック図である。 実施の形態6にかかる撮像素子のブロック図である。 実施の形態7にかかる撮像素子のブロック図である。 図3に示した撮像素子に対応するレイアウト例を示す図である。 図14に示した撮像素子に対応するレイアウト例を示す図である。 図19に示した撮像素子に対応するレイアウト例を示す図である。 実施の形態8にかかる撮像素子のブロック図である。 実施の形態8にかかる撮像素子の動作を説明するタイミングチャートである。 実施の形態9にかかる撮像素子のブロック図である。 実施の形態9にかかる撮像素子の動作を説明するタイミングチャートである。
実施の形態1
説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
図1に実施の形態1にかかるカメラシステム1のブロック図を示す。図1に示すように、カメラシステム1は、ズームレンズ11、絞り機構12、固定レンズ13、フォーカスレンズ14、撮像素子15、ズームレンズアクチュエータ16、フォーカスレンズアクチュエータ17、信号処理回路18、システム制御MCU19、モニタ、記憶装置を有する。ここで、モニタ及び記憶装置は、カメラシステム1で撮影した画像を確認及び記憶するものであり、これらをカメラシステム1とは切り離した別のシステム上に設けても良い。
ズームレンズ11、絞り機構12、固定レンズ13及びフォーカスレンズ14は、カメラシステム1のレンズ群を構成する。ズームレンズ11は、ズームアクチュエータ16により位置の変更が行われる。フォーカスレンズ14は、フォーカスアクチュエータ17により位置の変更が行われる。そして、カメラシステム1では、各種アクチュエータによりレンズを移動させることでズーム倍率、フォーカスを変更し、かつ、絞り機構12を動作させることで入射光量を変更する。
ズームアクチュエータ16は、システム制御MCU19が出力するズーム制御信号SZCに基づきズームレンズ11を移動させる。フォーカスアクチュエータ17は、システム制御MCU19が出力するフォーカス制御信号SFCに基づきフォーカスレンズ14を移動させる。絞り機構12は、システム制御MCU19が出力する絞り制御信号SDCにより絞り量を調節する。
撮像素子15は、例えば、フォトダイオード等の光電変換素子(以下、受光素子と称す)を有し、当該受光素子から得られた受光画素情報をデジタル値に変換して画像情報Doを出力する。また、撮像素子15は、撮像素子15が出力する画像情報Doを解析して画像情報Doの特徴を表す画像特徴情報DCIを出力する。この画像特徴情報DCIには、後述するオートフォーカス処理において取得される2つの画像が含まれる。さらに、撮像素子15は、システム制御MCU19モジュール制御MCU18から与えられるセンサ制御信号SSCに基づき画像情報Doの画素毎のゲイン制御、画像情報Doの露光制御、及び、画像情報DoのHDR(High Dynamic Range)制御を行う。撮像素子15の詳細については後述する。
信号処理回路18は、撮像素子15から受信した画像情報Doに画像補正等の画像処理を施して画像データDimgを出力する。信号処理回路18は、受信した画像情報Doを解析して色空間情報DCDを出力する。色空間情報DCDには、例えば、画像情報Doの輝度情報、及び、色情報が含まれる。
システム制御MCU19は、撮像素子15から出力される画像特徴情報DCIに基づきレンズ群のフォーカスを制御する。より具体的には、システム制御MCU19は、フォーカス制御信号SFCをフォーカスアクチュエータ17に出力することでレンズ群のフォーカスを制御する。システム制御MCU19は、絞り制御信号SDCを絞り機構12に出力して絞り機構12の絞り量を調節する。さらに、システム制御MCU19は、外部から与えられるズーム指示に従ってズーム制御信号SZCを生成し、ズーム制御信号SZCをズームアクチュエータ16に出力することでレンズ群のズーム倍率を制御する。
より具体的には、ズームアクチュエータ16によりズームレンズ11を移動することでフォーカスがずれる。そこで、システム制御MCU19は、撮像素子15から得た画像特徴情報DCIに含まれる2つの画像に基づき2つの物体像間の位置的位相差を算出し、この位置的位相差に基づきレンズ群のデフォーカス量を算出する。システム制御MCU19は、このデフォーカス量に応じて自動的にフォーカスを合わせる。この処理がオートフォーカス制御である。
また、システム制御MCU19は、信号処理回路18が出力する色空間情報DCDに含まれる輝度情報に基づき撮像素子15の露出設定を指示する露出制御値を算出して、信号処理回路18から出力される色空間情報DCDに含まれる輝度情報が露出制御値に近づくように撮像素子15の露光設定及びゲイン設定を制御する。このとき、システム制御MCU19は、露出を変更する際に絞り機構12の制御値を算出しても良い。
また、システム制御MCU19は、ユーザーからの指示に基づき画像データDimgの輝度或いは色を調整する色空間制御信号SICを出力する。なお、システム制御MCU19は、信号処理回路18から取得した色空間情報DCDとユーザーから与えられた情報との差分に基づき色空間制御信号SICを生成する。
実施の形態1にかかるカメラシステム1では、撮像素子15内においてフォトダイオードから画素情報を読み出す際の制御方法に特徴の1つを有する。そこで、以下では、撮像素子15についてより詳細に説明する。
図2に実施の形態1にかかる撮像素子15のフロアレイアウトの一部の概略図を示す。図2では、撮像素子15のフロアレイアウトのうち画素垂直制御部20、画素アレイ21、画素電流源22、増幅回路23、アナログデジタル変換回路24、引き算回路(例えば、CDS(Correlated Double Sampling)回路)25、転送回路26、タイミングジェネレータ27、出力制御部28、出力インタフェース29のフロアレイアウトのみを示した。
また、図2に示すように、実施の形態1にかかる撮像素子15は、2つのチップにより構成される。実施の形態1にかかる撮像素子15では、第1のチップ(例えば、チップA)に画素垂直制御部20、画素アレイ21、画素電流源22が設けられる。また、第2のチップ(例えば、チップB)に増幅回路23、アナログデジタル変換回路24、CDS回路25、転送回路26、タイミングジェネレータ27、出力制御部28、出力インタフェース29が設けられる。そして、実施の形態1にかかる撮像素子15は、第2のチップ上に第1のチップが積層される形態となる。また、実施の形態1にかかる撮像素子15は、第1のチップと第2のチップとをマイクロバンプによって接続し、このマイクロバンプを介して第1のチップと第2のチップとの信号の送受信を行う。
画素垂直制御部20は、画素アレイ21に格子状に配置される画素回路の動作を行毎に制御する。画素電流源22は、画素アレイ21に配置される画素回路の毎に設けられる電流源を有する。増幅回路23は、画素回路から読み出した信号の増幅及びゲイン調整を行う。アナログデジタル変換回路24は、増幅回路23でゲイン調整された信号をデジタル値に変換する。CDS回路25は、画素回路内のフローティングディフュージョンをリセットした際に得られるダークレベル信号に対応するダークレベル値と、画素回路が受光量に応じて出力する撮像信号の信号レベルに対応するピクセル値と、の差分値を画素値として出力する。また、CDS回路25が出力する画素値は、画素情報となる。CDS回路25により撮像信号に重畳されているノイズが除去される。転送回路26は、CDS回路25でノイズ除去された画素情報を出力制御部28に近い方から順に出力制御部28に転送する。タイミングジェネレータ27は、画素垂直制御部20、画素電流源22、増幅回路23、AD変換回路24、CDS回路25が動作するタイミングを制御する。出力制御部28は、水平転送回路26により転送された画素情報を出力インタフェース29に出力する。出力インタフェース29は、撮像素子15の出力インタフェース回路である。
実施の形態1にかかる撮像素子15では、チップAとチップBとにどの回路を配置するかに特徴の1つを有する。そこで、以下では撮像素子15について詳細に説明する。
図3に実施の形態1にかかる撮像素子15のブロック図を示す。図3に示すように、実施の形態1にかかる撮像素子15では、チップAに画素垂直制御部20、画素アレイ21が形成される。また、図2で示した画素電流源22は、図3では、画素アレイ21内に設けられる画素回路31に定電流源45として組み込まれている。図3に示すように、実施の形態1にかかる撮像素子15では、画素回路毎に定電流源45が設けられる。
また、図3に示すように、実施の形態1にかかる撮像素子15では、チップBに、アナログデジタル変換回路24、CDS回路25、転送回路26、出力制御部28、出力インタフェース29が設けられる。なお、図3では、アナログデジタル変換回路24及びタイミングジェネレータ27については図示を省略したが、これら回路もチップBに設けられるものとする。また、図3に示す例では、チップBに設けられる入力段回路は、アナログデジタル変換回路24内に設けられ、画素信号Vopxが入力される比較器COMPとなる。なお、画素信号Vopxには、フローティングディフュージョンFDのリセット電圧に対応するダークレベル信号と、フォトダイオード41の露光により生じた電荷量に対応した撮像信号と、が含まれ、動作タイミングの違いによりいずれかの信号となる。
そして、図3に示すように、実施の形態1にかかる撮像素子15では、チップAに設けられる画素回路が出力する画素信号Vopx1〜VopxnはマイクロバンプMBを介してチップBのアナログデジタル変換回路24に与えられる。
ここで、実施の形態1にかかる撮像素子15の回路構成についてより詳細に説明する。図3に示す例では、画素アレイ21にn個(nは画素回路の個数を示す整数)の画素回路31〜3nが設けられる。そして、画素回路31〜3nは、それぞれ、光電変換素子(例えば、フォトダイオード41)、転送トランジスタ42、リセットトランジスタ43、増幅トランジスタ44、定電流源45、フローティングディフュージョンFDを有する。
フォトダイオード41は、受光素子であって、受光量に応じた電荷を生成する。フローティングディフュージョンFDは、フォトダイオード41により生成された電荷を一時的に蓄積する容量である。転送トランジスタ42は、フォトダイオード41とフローティングディフュージョンFDとの間に設けられる。転送トランジスタ42は、画素垂直制御部20が出力する読み出し制御信号TXにより開閉状態が制御される。
リセットトランジスタ43は、電源配線PWRとフローティングディフュージョンFDとの間に設けられ、ゲートにリセット制御信号RSTが与えられる。リセットトランジスタ43は、リセット制御信号RSTにより開閉状態が制御される。リセットトランジスタ43は、フローティングディフュージョンFD及びフォトダイオード41にリセット電圧を与える。実施の形態1にかかる撮像素子15では、リセット電圧は電源電圧である。
増幅トランジスタ44は、ドレインが電源配線PWRが接続され、ゲートがフローティングディフュージョンFDに接続される。また、増幅トランジスタ44のソースは、画素回路31の出力端子となっている。また、増幅トランジスタ44のソースと接地配線との間には定電流源45が設けられる。定電流源45は、増幅トランジスタ44の負荷回路となるものである。
続いて、アナログデジタル変換回路24について説明する。図3に示す例では、実施の形態1にかかる撮像素子15は、アナログデジタル変換回路24内にn個の個別アナログデジタル変換回路241〜24nを有する。そして、個別アナログデジタル変換回路241〜24nには、比較器COMPが設けられ、この比較器COMPに画素信号Vopxが与えられる。つまり、図3に示す例では、比較器COMPがチップBに設けられる画素信号Vopxに対する信号処理回路の入力段回路となる。また、実施の形態1にかかる撮像素子15がn個の画素回路に対して、n個のマイクロバンプMBを有している。そこで、アナログデジタル変換回路24に含まれる個別アナログデジタル変換回路の数を、前記画素回路に対応して設けられる前記マイクロバンプの数と同数であるn個とする。
また、図3に示す例では、チップBに個別アナログデジタル変換回路241〜24nに加えて、CDS回路25、転送回路26、タイミングジェネレータ27、出力制御部28、出力インタフェース29が設けられる。また、個別アナログデジタル変換回路241〜24nには、それぞれデジタル値保持回路51が設けられる。デジタル値保持回路51は、個別アナログデジタル変換回路241〜24nの回路形式に応じてカウンタ、或いは、ラッチ回路が用いられる。
ここで、個別アナログデジタル変換回路241〜24nについてより詳細に説明する。個別アナログデジタル変換回路241〜24nとしてはいくつかの回路形式が考えられる。そこで、個別アナログデジタル変換回路241を例に、個別アナログデジタル変換回路について説明する。図4に実施の形態1にかかる撮像素子の個別アナログデジタル変換回路の一例の回路及び動作を説明する図を示す。なお、図4では、上図に個別アナログデジタル変換回路241のブロック図を示し、下図に個別アナログデジタル変換回路241の動作を示すタイミングチャートを示した。
図4に示した例では、個別アナログデジタル変換回路241は、比較器COMP、デジタル値保持回路51、ランプ波生成回路52を有する。ランプ波生成回路52は、所定の傾きに応じて電圧が変化する比較基準電圧(例えば、ランプ波信号)を出力する。また、ランプ波生成回路52は、クロック信号に応じてランプ波信号の電圧レベルを遷移させる。比較器COMPは、比較基準電圧と画素信号とを比較して、比較基準電圧の電圧レベルが画素信号の電圧レベルを上回ったことに応じて出力値をロウレベルからハイレベルに切り替える。デジタル値保持回路51は、例えば、カウンタである。カウンタは、アナログデジタル変換処理の開始時点からクロック信号のクロック数をカウントし、比較器COMPの出力値がハイレベルになった時点でのカウント値を保持する。カウンタが保持している値が個別アナログデジタル変換回路241の出力値となる。図4に示す例では、カウント値が十進表現で20に達した時点でランプ波の電圧レベルが画素信号の電圧レベルを超えるため、個別アナログデジタル変換回路241が出力するデジタル値は”10100”となる。
続いて、図5に実施の形態1にかかる撮像素子の個別アナログデジタル変換回路の別の例の回路及び動作を説明する図を示す。なお、図5では、上図に個別アナログデジタル変換回路241のブロック図を示し、下図に個別アナログデジタル変換回路241の動作を示すタイミングチャートを示した。
図5に示した例では、個別アナログデジタル変換回路241は、比較器COMP、デジタル値保持回路51、逐次比較ロジック53、デジタルアナログ変換回路54を有する。この例では、デジタル値保持回路51は、ラッチ回路である。デジタルアナログ変換回路54は、デジタル値保持回路51に保持されているデジタル値に応じた電圧レベルを有する比較基準電圧を出力する。比較器COMPは、比較基準電圧と画素信号の電圧レベルとを比較して、比較基準電圧が画素信号の電圧レベルよりも高ければロウレベルを出力し、比較基準電圧が画素信号の電圧レベルよりも低ければハイレベルを出力する。逐次比較ロジック53は、比較器COMPの出力値が切り替わる毎にレジスタに格納されているデジタル値を更新する。
図5に示す例では、変換処理がクロック信号に応じて進み、ラッチ回路に保持されている値が上位ビットから順に決定されていることがわかる。また、デジタルアナログ変換回路54が出力する比較基準電圧は、前変換タイミングの変換結果を反映して変動していることがわかる。
続いて、実施の形態1にかかる撮像素子15の動作について説明する。そこで、図6に実施の形態1にかかる撮像素子の動作を説明するタイミングチャートを示す。図6に示すように、実施の形態1にかかる撮像素子15では、全画素に対して同じ制御を同じタイミングで実施する。
具体的には、タイミングT11からタイミングT12の期間にリセット制御信号RST1〜RSTn及び読み出し制御信号TX1〜TXnをともにハイレベルにして、フォトダイオード41及びフローティングディフュージョンFDにリセット電圧を与えてこれらの電位をリセットするPDリセット処理を行う。そして、タイミングT12において、リセット制御信号RST1〜RSTnと、読み出し制御信号TX1〜TXnをともにロウレベルとすることで、フォトダイオード41をフローティングディフュージョンFDから切り離して露光処理を開始する。
次いで、タイミングT13からタイミングT14の期間にリセット制御信号RST1〜RSTnをハイレベルに切り替えてフローティングディフュージョンFDをリセット電圧にリセットする。また、タイミングT13からタイミングT15の期間にフローティングディフュージョンFDのリセット電圧をダークレベル信号として読み出して、このダークレベル信号に対するアナログデジタル変換処理とダークレベル信号のデータの保存とを行う。
次いで、タイミングT15からタイミングT16の期間に読み出し制御信号TX1〜TXnをハイレベルに切り替えてフォトダイオード41からフローティングディフュージョンFDへの電荷の転送の読み出しを行う。また、タイミングT15からタイミングT17の期間にフローティングディフュージョンFDに転送された電荷に基づき生成される画素信号を読み出して、この画素信号に対するアナログデジタル変換処理と画素信号のデータの保存とを行う。
次いで、タイミングT17からタイミングT18の期間にダークレベル信号のデータと撮像信号のデータとを差分を算出して、最終的な画素のデータとなる画素情報の読み出しが行われる。
実施の形態1にかかる撮像素子15では、上記回路構成とすることで、グローバルシャッター方式に対応しながら、画像の画素情報のSN(Signal Noise)比を高め、画像の画質を向上することができる。この効果を以下で説明する。
特許文献1で開示されている撮像素子では、図3で示した画素回路のフォトダイオード41及び転送トランジスタ42が第1のチップに設けられ、フローティングディフュージョンFD及びリセットトランジスタ43、増幅トランジスタ44が第2のチップに設けられる。また、第1のチップから第2のチップへの電荷の転送を行う際に第2のチップに設けられた電荷保持用容量にフォトダイオード41で生成された電荷を一旦蓄積した後にフローティングディフュージョンFDに転送する。
そのため、特許文献1の撮像素子では、転送トランジスタ42のソース(拡散領域)が常に光に晒され、電荷保持用容量への電荷を転送した後に入射光に起因して転送トランジスタ42のソースで発生する電荷がさらに電荷保持用容量に蓄積されることになる。そのため、特許文献1に記載の撮像素子では、電荷保持用容量にフォトダイオード41で生成された電荷以上の電荷が蓄積され、画素回路が出力する撮像信号がフォトダイオード41の露光量に対応した電圧以上の電圧となる。この撮像信号の電圧ズレは、ダークレベル信号を差し引いても残ってしまうノイズとなる。
また、特許文献1の撮像素子では、撮像信号の出力時に電荷保持用容量が増幅トランジスタのゲートに接続されるため、撮像信号を出力する際に電荷保持容量と増幅トランジスタのゲートの寄生容量とが合算され、撮像信号の出力前後で撮像信号となる電荷が蓄積される容量の容量値が変動する。これにより、特許文献1の撮像素子では、電荷保持用容量に蓄積されている電荷に起因して生じる電圧に変動が生じ、この電圧変動が増幅トランジスタに入力され、ドレインから撮像信号とし出力されるので撮像信号のSN比が低下する。
一方、実施の形態1にかかる撮像素子15では、画素回路を入射光に晒されるチップAに配置し、画素回路から出力される撮像信号に対する信号処理を行う回路を遮光されるチップBに配置する。つまり、実施の形態1にかかる撮像素子15では、ソースフォロワ回路となる増幅トランジスタによりチップA内でフォトダイオード41により生成された電荷を電圧信号である撮像信号に変換する。そして、実施の形態1にかかる撮像素子15は、電圧信号となった撮像信号をチップAからチップBに伝達する。これにより、実施の形態1にかかる撮像素子15では、フローティングディフュージョンFDの電荷量が入射光に起因して変動する前にフローティングディフュージョンFDの電荷量に応じた電圧を有する撮像信号に変換することができる。また、実施の形態1にかかる撮像素子15では、撮像信号に対する処理を入射光の影響を受けないチップBで行う。このような回路構成により、実施の形態1にかかる撮像素子15は、グローバルシャッター方式に対応し、かつ、SN比の劣化のない撮像信号及び画素情報を得ることができる。
ここで、特許文献1に記載の撮像素子の動作を比較例として、実施の形態1にかかる撮像素子15の動作について説明する。そこで、図7に実施の形態1にかかる撮像素子の動作と比較例にかかる撮像素子の動作との違いを説明するタイミングチャートを示す。図7に示すように、比較例にかかる撮像素子では、露光処理と露光により生じた電荷の転送を電荷保持用容量に転送する転送処理までは全画素に対して一括して行われる。しかしながら、比較例にかかる撮像素子では、電荷保持用容量に保持された電荷に基づく撮像信号の生成及び撮像信号に対するアナログデジタル変換回路は行毎に順次行われる。そのため、読み出し順が後ろになるほど、転送トランジスタのソースが光に晒されることにより生じる電荷による電荷保持用容量の電圧変動が大きくなる問題が生じる。
一方、実施の形態1にかかる撮像素子15では、露光から撮像信号に対するアナログデジタル変換処理までが全画素に対して一括して行われる。そのため、実施の形態1にかかる撮像素子15では、撮像信号に転送トランジスタのソースが光に晒されることにより生じる電荷の影響が及ぶことを避けることができる。
実施の形態1にかかる撮像素子15におけるCDS回路25の配置例について説明する。図3で説明した例では、CDS回路25と転送回路26を1つの回路ブロックとして示したが、CDS回路25は、転送回路26の前後のいずれにも配置することができる。そこで、CDS回路25を転送回路26の前段に配置した撮像素子15のブロック図を図8に示し、CDS回路25を転送回路26の後段に配置した撮像素子15のブロック図を図9に示す。
CDS回路25を転送回路26の前段に配置した場合、CDS回路25は、個別アナログデジタル変換回路毎に設けられる。このような配置とすることで、CDS回路25による引き算処理を並列化することができるため、処理速度を高めることができる。
CDS回路25を転送回路26の後段に配置した場合、CDS回路25は、n個の個別アナログデジタル変換回路に対して1つ設けるだけで良い。このような配置とすることで、CDS回路25に要する回路面積を削減することができる。
また、図6に示した実施の形態1にかかる撮像素子15の動作についても別の例をかんがえることが出来る。そこで、図10に実施の形態1にかかる撮像素子の動作の他の例を説明するタイミングチャートを示す。図10に示す例では、撮像信号に対するアナログデジタル変換処理中にデジタル値保持回路51に保持されたダークレベル信号を転送する。このように他の処理を行っている期間にデジタル値保持回路51に保持された値を転送することで処理を高速化して、撮像素子15のフレームレートを高めることができる。
実施の形態2
実施の形態2では、チップ構成の別の例について説明する。なお、実施の形態2の説明では、実施の形態1と同じ構成要素については、実施の形態1と同じ符号を付して説明を省略する。
図11から図13に実施の形態2にかかる撮像素子の第1の例から第3の例のブロック図を示す。図11に示した第1の例では、3つのチップにより撮像素子15を構成する。図11に示すように、第1の例では、第1のチップ(例えば、チップA)の構成は実施の形態1と同じである。一方、第1の例では、個別アナログデジタル変換回路の比較器COMPを含む入力段回路を第2のチップ(例えば、チップB)に配置し、入力段回路を除く比較器COMPの後段回路を第3のチップ(例えば、チップC)に配置する。
図12に示した第2の例では、4つのチップにより撮像素子15を構成する。図12に示すように、第2の例では、第1の例のデジタル値保持回路51をデジタル値保持回路511とデジタル値保持回路512に分割し、デジタル値保持回路511を第3のチップ(例えば、チップC)に配置し、デジタル値保持回路512とそれに続く後段回路を第4のチップ(例えば、チップD)に配置する。
図13に示した第3の例では、5つのチップにより撮像素子15を構成する。図13に示すように、第3の例では、第2の例のチップDに配置された回路を更に分割する。具体的には、デジタル値保持回路512を第4のチップ(例えば、チップD)に配置し、デジタル値保持回路512の後段回路を第5のチップ(例えば、チップE)に配置する。
このように、1つのチップに搭載される回路単位を小さくすることで、1つのチップに配置する画素回路及び当該画素回路に対応して設けられる処理回路の数を増加させることができる。つまり、1つのチップに搭載される回路単位を小さくすることで同一のチップ面積であっても画素数を増やすことができる。
実施の形態3
実施の形態3では、1つの画素回路内に設けられる光電変換素子の数を増加させた変形例について説明する。なお、実施の形態3の説明では、実施の形態1と同じ構成要素については、実施の形態1と同じ符号を付して説明を省略する。
図14に実施の形態3にかかる撮像素子の第1の例ブロック図を示す。図14に示す第1の例では、1つの画素回路内に4つのフォトダイオード(図14のフォトダイオード41a〜41d)が設けられる。具体的には、第1の例では、フォトダイオードと転送トランジスタとの組が、画素回路内のフローティングディフュージョンFDに対して4つ並列接続される。
また、第1の例では、個別アナログデジタル変換回路内に、フォトダイオード41a〜41dに対応した4つのデジタル値保持回路(例えば、デジタル値保持回路51a〜51d)が設けられる。そして、実施の形態3にかかる撮像素子15の第1の例では、フォトダイオード41a〜41dを露光することにより生成される4つの撮像信号を順にデジタル値保持回路51a〜51dに保持する。
図15に実施の形態3にかかる撮像素子の第2の例ブロック図を示す。図15に示す第2の例では、1つの画素回路内に2つのフォトダイオード(図15のフォトダイオード41a、41b)が設けられる。具体的には、第2の例では、フォトダイオードと転送トランジスタとの組が、画素回路内のフローティングディフュージョンFDに対して2つ並列接続される。
一方、第2の例では、個別アナログデジタル変換回路内のデジタル値保持回路51は、実施の形態1と同様に1つである。そして、実施の形態3にかかる撮像素子15の第2の例では、フォトダイオード41a、41bを露光することにより生成される2つの撮像信号を順にデジタル値保持回路51に保持すると共に後段回路に転送する。
実施の形態3にかかる撮像素子15では、1組のリセットトランジスタ43、増幅トランジスタ44、定電流源45に対して複数のフォトダイオードが設けられる。これにより、実施の形態3にかかる撮像素子15では、フォトダイオード1つ当たりに必要な画素回路内のトランジスタ数を削減することができる。例えば、実施の形態3にかかる第1の例では、1つのフォトダイオード当たりのトランジスタ数を1.75個とすることができ、第2の例では、1つのフォトダイオード当たりのトランジスタ数を2.5個とすることができる。また、第2の例では、個別アナログデジタル変換回路の回路規模を第1の例の回路規模よりも小さくすることができる。
実施の形態4
実施の形態4では、増幅トランジスタ44の負荷として設けられる定電流源45の配置場所の変形例について説明する。なお、実施の形態4の説明では、実施の形態1と同じ構成要素については、実施の形態1と同じ符号を付して説明を省略する。
図16に実施の形態4にかかる撮像素子15のブロック図を示す。図16に示すように、実施の形態4にかかる撮像素子15では、定電流源45が第2のチップ(例えば、チップB)に設けられる。
実施の形態4にかかる撮像素子15では、定電流源45をチップBに配置することで、画素回路31〜3nの回路面積を実施の形態1にかかる撮像素子15よりも小さくすることができる。これにより、実施の形態4にかかる撮像素子15では、チップAに設けることができる画素回路の数を増加させることができる。なお、定電流源45をチップBに設けたとしても、増幅トランジスタ44に与える電流量は変化しないため、撮像信号に対するSN比等の特性は変化しない。
実施の形態5
実施の形態5では、画素回路内の回路構成の変形例について説明する。なお、実施の形態5の説明では、実施の形態1と同じ構成要素については、実施の形態1と同じ符号を付して説明を省略する。
図17に実施の形態5にかかる撮像素子15の画素回路の第1の例を説明するブロック図を示す。図17に示す第1の例では、画素回路31〜3nに出力クランプトランジスタ46が追加されている。出力クランプトランジスタ46は、ゲートにクランプ設定電圧が与えられ、前記増幅トランジスタと並列に接続される。また、実施の形態5にかかる撮像素子15では、このクランプ設定電圧を出力する電圧源60がチップAに設けられる。
出力クランプトランジスタ46は画素出力に対するクリップ回路として機能する。このようなクリップ回路を設けることで、画素の電流源の電流変動を抑えて、画素の固定パターンノイズを抑えることができる。つまり、実施の形態5にかかる撮像素子15の第1の例では、固定ノイズパターンを抑制することができる。
図18に実施の形態5にかかる撮像素子15の画素回路の第2の例を説明するブロック図を示す。図18に示す第2の例では、リセット電圧と増幅トランジスタ44のドレインに与える画素電源電圧とを独立した配線によって与える。図18に示す例では、リセットトランジスタ43のドレインにはリセット電源配線PWRrsを介してリセット電圧が与えられる。また、増幅トランジスタ44のドレインには画素電源配線PWRpxを介して画素電源電圧が与えられる。
このように画素電源電圧とリセット電圧とを独立した配線により供給することで、フローティングディフュージョンFDのリセット時の電位調整をすることができる。
実施の形態6
実施の形態6では、複数の画素回路により1つのマイクロバンプMB及びマイクロバンプMBの後段に設けられる回路を共有する変形例について説明する。なお、実施の形態6の説明では、実施の形態1と同じ構成要素については、実施の形態1と同じ符号を付して説明を省略する。
図19に実施の形態6にかかる撮像素子15のブロック図を示す。図19に示す例では、4つの画素回路(例えば、画素回路31〜34)が1つのマイクロバンプMBに接続される。また、実施の形態6にかかる画素回路は、実施の形態1にかかる画素回路に対して選択トランジスタ47を追加したものである。具体的には、選択トランジスタ47は、増幅トランジスタ44とマイクロバンプMBとの間に設けられる。また、選択トランジスタ47には選択信号SELが与えられる。そして、実施の形態6にかかる撮像素子15では、撮像信号の読み出し対象となる画素回路を選択トランジスタ47により切り替えながら、個別アナログデジタル変換回路241が画素回路31〜34から順次ダークレベル信号及び撮像信号を読み出す。
実施の形態6にかかる撮像素子15では、複数の画素回路によりマイクロバンプMBを共有することで、マイクロバンプMBの数を削減することができる。また、実施の形態6にかかる撮像素子15では、個別アナログデジタル変換回路が複数の画素回路で共有されるため、1つの画素回路当たりの個別アナログデジタル変換回路の回路面積を削減することができる。
また、実施の形態3にかかる撮像素子15では、複数のフォトダイオードを共通の増幅トランジスタ44に接続する。そのため、複数のフォトダイオードが順次読み出す必要があるため、各フォトダイオードの露光タイミングがずれる欠点が生じる。しかしながら、実施の形態6にかかる撮像素子15では、複数のフォトダイオードにそれぞれ増幅トランジスタ44が設けられ、各増幅トランジスタ44のソースが選択トランジスタを介して共通のバンプに接続される。そのため、実施の形態6にかかる撮像素子15は、転送トランジスタ42を同タイミングで制御して、選択トランジスタ47で各トランジスタのソース電圧を順次読み出すことで、露光タイミングをずらすことなく、動作させることができる。
実施の形態7
実施の形態7では、第1のチップ及び第2のチップ上における回路配置の例について説明する。なお、実施の形態7の説明では、実施の形態1と同じ構成要素については、実施の形態1と同じ符号を付して説明を省略する。
図20に実施の形態7にかかる撮像素子15のブロック図を示す。図20に示すように、実施の形態7にかかる撮像素子15では、第1のチップ(例えば、チップA)に格子状に画素回路が配置される。そして、実施の形態7にかかる撮像素子15では、画素回路毎にマイクロバンプMBが設けられる。
また、実施の形態7にかかる撮像素子15では、第2のチップ(例えば、チップB)に格子状に個別アナログデジタル変換回路が配置される。また、チップBでは、格子状に配置された個別アナログデジタル変換回路の行毎にCDS回路25及び転送回路26が設けられる。そして、全ての転送回路26に対して出力制御部28及び出力インタフェース29が設けられる。
そして、チップBでは、個別アナログデジタル変換回路が生成したデジタル値が転送回路26により横方向に転送され、転送されたデジタル値が順次出力回路に転送され、最終的に出力回路から外部に出力される。
ここで、チップAに設けられる画素回路と、チップBに設けられるアナログデジタル変換回路のレイアウトについて説明する。なお、図21から図23において、PDはフォトダイオード、TXは転送トランジスタ、RSTはリセットトランジスタ、AMIは増幅トランジスタ、SELは選択トランジスタ、MBはマイクロバンプを示すものとする。
図21に図3に示した撮像素子に対応するレイアウト例を示す。図21に示すように、チップAに配置される画素回路は、それぞれがフォトダイオード、転送トランジスタ、リセットトランジスタ、増幅トランジスタ及びマイクロバンプを有する。また、チップBに配置されるアナログデジタル変換回路は、比較器、カウンタ及びマイクロバンプと有する。そして、本願の撮像素子15は、図21の一点鎖線を対称軸としてチップAとチップBとを貼り合わせることで形成される。また、チップBに形成されるアナログデジタル変換回路の1つ分のレイアウト面積は、チップAに形成される画素回路の1つ分のレイアウト面積以下となるようにレイアウトされる。このように1つ分のアナログデジタル変換回路のレイアウト面積を画素回路の1つ分のレイアウト面積以下とすることで、格子状に配置された画素回路のそれぞれから出力される画素信号(ダークレベル信号及び撮像信号を含む信号)を一括してデジタル値に変換可能な数のアナログデジタル変換回路をチップBに形成することができる。
また、図22に図14に示した撮像素子に対応するレイアウト例を示す。図22に示した撮像素子では、1つの画素回路が4つのフォトダイオードを有し、かつ、転送トランジスタ、リセットトランジスタ、増幅トランジスタ及びマイクロバンプの組を一組有する。また、図22に示す例では、チップBに配置されるアナログデジタル変換回路は、比較器、カウンタ及びマイクロバンプと有する。そして、本願の撮像素子15は、図22の一点鎖線を対称軸としてチップAとチップBとを貼り合わせることで形成される。ここで、図22に示す例では、チップBに形成されるアナログデジタル変換回路の1つ分のレイアウト面積は、チップAに形成される画素回路の1つ分のレイアウト面積以下となるようにレイアウトされる。このように1つ分のアナログデジタル変換回路のレイアウト面積を画素回路の1つ分のレイアウト面積以下とすることで、図14に示した撮像素子においても、格子状に配置された画素回路のそれぞれから出力される画素信号を一括してデジタル値に変換可能な数のアナログデジタル変換回路をチップBに形成することができる。
また、図23に図19に示した撮像素子に対応するレイアウト例を示す。図23に示した撮像素子では、4つの画素回路に対してマイクロバンプが1つ設けられる。また、図23に示す例では、チップBに配置されるアナログデジタル変換回路は、比較器、カウンタ及びマイクロバンプと有する。そして、本願の撮像素子15は、図23の一点鎖線を対称軸としてチップAとチップBとを貼り合わせることで形成される。ここで、図23に示す例では、チップBに形成されるアナログデジタル変換回路の1つ分のレイアウト面積は、チップAにおいて1つのマイクロバンプに接続される画素回路のレイアウト面積以下となるようにレイアウトされる。このように1つ分のアナログデジタル変換回路のレイアウト面積を1つのマイクロバンプに接続される画素回路のレイアウト面積以下とすることで、図19に示した撮像素子においても、格子状に配置された画素回路から順次出力される画素信号を出力タイミング毎に一括してデジタル値に変換可能な数のアナログデジタル変換回路をチップBに形成することができる。
なお、図21から図23で示した例は、本願の撮像素子15のレイアウトの好適な一例を示したものであり実際のレイアウト方法は適宜変更することができる。また、図21から図23は、画素回路とアナログデジタル変換回路とのレイアウト面積の関係を説明するために示したものであり、チップA及びチップBには他の回路も形成される。また、アナログデジタル変換回路の個数を画素回路の個数に近づける方法として、チップA上に画素回路毎にアナログデジタル変換回路を形成することが考えられるが、この場合、画素回路の回路面積が大きくなり、撮像素子及びレンズシステムのサイズが現実的なサイズに収まらない問題が生じる。
実施の形態8
実施の形態8では、実施の形態1にかかる撮像素子15の別の形態となる撮像素子について説明する。なお、実施の形態8の説明では、実施の形態1と同じ構成要素については、実施の形態1と同じ符号を付して説明を省略する。
図24に実施の形態8にかかる撮像素子のブロック図を示す。図24に示すように、実施の形態8にかかる撮像素子は、アナログデジタル変換回路24に加算平均処理回路551〜55nを追加したものである。加算平均処理回路551〜55nは、個別アナログデジタル変換回路241〜24nに対応して設けられる。加算平均処理回路551〜55nは、それぞれ、対応するアナログデジタル変換回路の出力値(デジタル値)が変化する毎に変化した出力値を積算して積算出力値を生成し、積算出力値を積算の回数で除した値を後段に設けられる回路に出力する。
例えば、個別アナログデジタル変換回路として、図4に示した個別アナログデジタル変換回路241を用いた場合、比較基準電圧が画素信号の電圧レベルを下回るまでの期間、個別アナログデジタル変換回路241の出力値となるカウンタ51の値が変化を続ける。加算平均処理回路551〜55nは、個別アナログデジタル変換回路241の出力値が変化する毎に出力値の積算を行う。このときの積算回数は、カウンタ51のカウント値が変化した回数となる。このようなことから、加算平均処理回路551〜55nは、画素信号の電圧レベル(つまり、画素値の明るさ)に応じて異なる積算回数により積算出力値を除した値を加算平均出力値とすることができる。
ここで、加算平均処理回路551〜55nは、同一の回路構成であるため、加算平均処理回路551を例に加算平均処理回路について説明する。加算平均処理回路551は、デジタル値積算処理回路60、回数比較器61、積算回数カウンタ62、除算器63を有する。
デジタル値積算処理回路60は、個別アナログデジタル変換回路241が出力する出力値(デジタル値)が変化する毎に変化した出力値を積算して積算出力値を生成する。回数比較器61は、固定値として予め設定されるリミット設定値と、デジタル値積算処理回路60で行われる積算処理の処理回数(以下、積算回数と称す)とを比較して、積算回数がリミット設定値を超えた場合にデジタル値積算処理回路60、積算回数カウンタ62及び個別アナログデジタル変換回路241に動作の停止を指示する。リミット設定値は、積算回数カウンタ62のカウント値がオーバーフローしない回数に設定される。なお、積算回数カウンタ62が十分なカウント上限値を有している場合には回数比較器61は無くても構わない。
積算回数カウンタ62は、デジタル値積算処理回路60における積算回数をカウントしてカウント値を生成する。除算器63は、デジタル値積算処理回路60が出力する積算出力値を積算回数カウンタ62が出力するカウント値で除して加算平均出力値を後段回路に出力する。
続いて、実施の形態8にかかる撮像素子の動作について説明する。そこで、図25に実施の形態8にかかる撮像素子の動作を説明するタイミングチャートを示す。図25に示す例では、個別アナログデジタル変換回路として図4に示したアナログデジタル変換回路を用いたものを示した。また、図25に示す例は、長い露光時間で1枚の画像中の暗い部分の明瞭度を高めた長秒露光画像と、短い露光時間で1枚の画像中の明るい部分の明瞭度を高めた短秒露光画像と、を合成して1枚の画像を得るハイダイナミックレンジ合成処理を行う撮像素子のものである。このハイダイナミックレンジ合成処理では、長秒露光で得られた画素信号については高いゲインを与えてその後のデジタル値への変換処理を行い、短秒露光で得られた画素信号については長秒露光中よりも小さいゲインを与えてその後のデジタル値への変換処理を行う。長秒露光で得られる画像のくらい部分は、ゲインを高くしても信号振幅は不十分である。短秒露光で得られる画像の明るい部分は、ゲインは低いが信号振幅は十分である。
図25に示すように、実施の形態8にかかる撮像素子は、ダークレベル信号をリセット期間の終了後からアナログデジタル変換回路を開始し、比較基準電圧の低下と共に変化する個別アナログデジタル変換回路241のデジタル出力値を積算する。ここで、図25に示すように、長秒露光により得られた画像の暗い部分の画素信号は輝度が不十分で電圧レベルが低く、短秒露光により得られた画像の明るい部分の画素信号は輝度が十分で電圧レベルが高い、傾向にある。そのため、個別アナログデジタル変換回路241が行う変換処理の回数は、長秒露光により得られた画素信号に対する変換処理回数のほうが、短秒露光により得られた画素信号に対する変換処理回数よりも多くすることができる。
そして、実施の形態8にかかる撮像素子では、加算平均出力値(図25の除算器出力)を次の読み出しタイミングで次段に出力する。このとき、実施の形態8にかかる撮像素子では、積算出力値を積算回数で除算した値を加算平均出力値とする。
上記説明より、実施の形態8にかかる撮像素子では、アナログデジタル変換回路の出力値に対して加算平均処理を施した後に後段回路に出力する。これにより、実施の形態8にかかる撮像素子では、画素値のノイズを抑制することができる。より具体的には、積算回数をNとした場合、実施の形態8にかかる撮像素子では、ノイズレベルを1/√N倍程度に抑制することができる。アナログデジタル変換回路の変換精度を10ビットとすると、Nは1024となり、この場合ノイズレベルは加算平均処理を行わない場合よりも30倍程度抑制される。
また、実施の形態8にかかる撮像素子では、画素信号の電圧レベルが低い(或いは画素値が暗い)ほど積算回数が多くなる。長秒露光と短秒露光の異なる露光時間で得られた画像を合成するハイダイナミックレンジ合成処理では、暗部に対して高いゲインを適用する。そのため、ハイダイナミックレンジ合成処理では、暗部のノイズレベルが高くなる傾向にある。しかしながら、実施の形態8にかかる撮像素子では、この暗部の画素信号に対しては積算回数が多くなるためノイズ抑制能力を高めることができる。一方、実施の形態8にかかる撮像素子では、短秒露光で得られる明部の画素信号に対しては積算回数を増やす必要がないため、その分消費電力を抑えることができる。
このように、画素信号のレベルに応じて積算回数を変化させることで、実施の形態8にかかる撮像素子では、暗部の画素信号に対しては高いノイズ抑制能力を発揮し、明部の画素信号に対しては積算回数を抑制することで消費電力を抑制することができる。
実施の形態9
実施の形態9では、実施の形態8にかかる撮像素子の別の形態となる撮像素子について説明する。なお、実施の形態9の説明では、実施の形態1、8と同じ構成要素については、実施の形態1、8と同じ符号を付して説明を省略する。
図26に実施の形態9にかかる撮像素子のブロック図を示す。図26に示すように、実施の形態9にかかる撮像素子は、加算平均処理回路551〜55nを加算平均処理回路561〜56nに置き換えたものである。加算平均処理回路561〜56nは、加算平均処理回路551〜55nに処理時間設定回路64を追加したものである。
処理時間設定回路64は、個別アナログデジタル変換回路が1つの画素信号に対して繰り返して行うアナログデジタル変換処理のうち初期のアナログデジタル変換処理で得られた出力値の大きさに基づき個別アナログデジタル変換回路の処理サイクル時間の長さを設定する。具体的には、処理時間設定回路64は、個別アナログデジタル変換回路が1つの画素信号に対して行う最初の変換処理に要する時間として、明部に対応した変換時間を初期値として有する。そして、処理時間設定回路64は、初期のアナログデジタル変換処理で得られた出力値が明部に対応するものであれば、変換サイクル時間の長さは変更しない。一方、処理時間設定回路64は、初期のアナログデジタル変換処理で得られた出力値が暗部に対応するものであれば、変換サイクル時間を短い時間に変更する。
続いて、実施の形態9にかかる撮像素子の動作について説明する。そこで、図27に実施の形態9にかかる撮像素子の動作を説明するタイミングチャートを示す。図27に示すタイミングチャートは、図25に示した実施の形態8にかかる撮像素子と同様の動作を実施の形態9にかかる撮像素子に行わせたものである。図27に示すように、実施の形態9にかかる撮像素子では、暗部に対応する画素信号が得られる期間の変換サイクル時間が短く変更される。
上記説明より、実施の形態9にかかる撮像素子では、暗部に対応する画素信号に対しては変換サイクル時間を短くすることで、同一の期間内に行われる積算回数を増やすことができる。このように、暗部に対応する画素信号に対する積算回数を増加させることで、実施の形態9にかかる撮像素子では、暗部に対応する画素信号に対してより高いノイズ圧縮能力を実現することができる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は既に述べた実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能であることはいうまでもない。
なお、上記実施の形態で説明した撮像素子は、以下に示す付記に示す内容を含む。
(付記)
第1のチップと、
前記第1のチップが積層され、前記第1のチップとマイクロバンプを介して信号の送受信を行う第2のチップと、を有し、
前記第1のチップは、
光電変換素子と、
フローティングディフュージョンと、
前記光電変換素子と前記フローティングディフュージョンとの間に設けられる転送トランジスタと、
前記フローティングディフュージョンにリセット信号に応じてリセット電圧を与えるリセットトランジスタと、
前記フローティングディフュージョンの電位に基づき画素信号を出力する増幅トランジスタと、を備える画素回路が格子状に配置され、
前記第2のチップは、
前記画素信号の電圧レベルをデジタル値に変換するアナログデジタル変換回路が少なくとも配置され、
前記アナログデジタル変換回路は、1つの前記マイクロバンプに接続される前記画素回路のレイアウト面積以下のレイアウト面積でレイアウトされる撮像素子。
1 カメラシステム
11 ズームレンズ
12 絞り機構
13 固定レンズ
14 フォーカスレンズ
15 撮像素子
16 ズームレンズアクチュエータ
17 フォーカスレンズアクチュエータ
18 信号処理回路
19 システム制御MCU
20 画素垂直制御部
21 画素アレイ
22 画素電流源
23 増幅回路
24 アナログデジタル変換回路
241 個別アナログデジタル変換回路
25 CDS回路
26 転送回路
27 タイミングジェネレータ
28 出力制御部
29 出力インタフェース
31 画素回路
41 フォトダイオード
42 転送トランジスタ
43 リセットトランジスタ
44 増幅トランジスタ
45 定電流源
46 出力クランプトランジスタ
47 選択トランジスタ
51 デジタル値保持回路
52 ランプ波生成回路
53 逐次比較ロジック
54 デジタルアナログ変換回路
551 加算平均処理回路
561 加算平均処理回路
60 デジタル値積算処理回路
61 回数比較器
62 積算回数カウンタ
63 除算器
64 処理時間設定回路
COMP 比較器
PWR 電源配線
PWRrs リセット電源配線
PWRpx 画素電源配線
RST リセット制御信号
TX 読み出し制御信号
SEL 選択信号
FD フローティングディフュージョン
Vopx 画素信号

Claims (12)

  1. 第1のチップと、
    前記第1のチップが積層され、前記第1のチップとマイクロバンプを介して信号の送受信を行う第2のチップと、を有し、
    前記第1のチップは、
    光電変換素子と、
    フローティングディフュージョンと、
    前記光電変換素子と前記フローティングディフュージョンとの間に設けられる転送トランジスタと、
    前記フローティングディフュージョンにリセット信号に応じてリセット電圧を与えるリセットトランジスタと、
    前記フローティングディフュージョンの電位に基づき画素信号を出力する増幅トランジスタと、を備える画素回路が格子状に配置され、
    前記第2のチップは、
    前記画素信号に対する信号処理を行う回路の入力段回路が少なくとも配置され、
    前記入力段回路は、同一列に配置される前記画素回路に対して2つ以上設けられる撮像素子。
  2. 前記入力段回路は、前記画素信号のアナログレベルに応じたデジタル値を生成するアナログデジタル変換回路である請求項1に記載の撮像素子。
  3. 前記第2のチップには、前記アナログデジタル変換回路の後段に設けられる複数の回路が設けられる請求項2に記載の撮像素子。
  4. 前記第2のチップが積層され、前記第2のチップとマイクロバンプを介して信号の送受信を行う第3のチップを有し、
    前記第2のチップには少なくとも前記入力段回路が設けられ、
    前記第3のチップには、前記入力段回路を除く回路が形成される請求項1に記載の撮像素子。
  5. 前記画素回路は、複数の前記光電変換素子を有する請求項1に記載の撮像素子。
  6. 前記入力段回路は、アナログデジタル変換回路であり、
    前記アナログデジタル変換回路は、前記アナログデジタル変換回路の変換結果を保持するデジタル値保持回路を、複数の前記光電変換素子の個数に対応した個数有する請求項5に記載の撮像素子。
  7. 前記第2のチップは、前記増幅トランジスタの負荷となる電流源を有する請求項1に記載の撮像素子。
  8. 前記画素回路は、ゲートにクランプ設定電圧が与えられ、前記増幅トランジスタと並列に接続される出力クランプトランジスタを有する請求項1に記載の撮像素子。
  9. 前記増幅トランジスタのドレインに与えられる画素電源電圧と、前記リセット電圧とは、異なる電圧値である請求項1に記載の撮像素子。
  10. 前記マイクロバンプは、複数の前記画素回路に対して1つ設けられる請求項1に記載の撮像素子。
  11. 前記第2のチップには、前記アナログデジタル変換回路の出力値が変化する毎に変化した前記出力値を積算して積算出力値を生成し、前記積算出力値を前記積算の回数で除して生成した加算平均出力値を後段に設けられる回路に出力する加算平均処理回路が設けられる請求項2に記載の撮像素子。
  12. 前記加算平均処理回路は、前記アナログデジタル変換回路が1つの前記画素信号に対して繰り返して行うアナログデジタル変換処理のうち初期のアナログデジタル変換処理で得られた前記出力値の大きさに基づき前記アナログデジタル変換回路の処理サイクル時間の長さを設定する処理時間設定回路を有する請求項11に記載の撮像素子。
JP2017227723A 2017-02-01 2017-11-28 撮像素子 Pending JP2018125845A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/856,671 US20180220093A1 (en) 2017-02-01 2017-12-28 Image sensor
EP18150955.5A EP3358623A1 (en) 2017-02-01 2018-01-10 Image sensor
TW107102607A TW201839966A (zh) 2017-02-01 2018-01-25 影像感測器
KR1020180010521A KR20200067257A (ko) 2017-02-01 2018-01-29 이미지 센서
CN201810101279.0A CN108462840A (zh) 2017-02-01 2018-02-01 图像传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017017152 2017-02-01
JP2017017152 2017-02-01

Publications (1)

Publication Number Publication Date
JP2018125845A true JP2018125845A (ja) 2018-08-09

Family

ID=63110508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017227723A Pending JP2018125845A (ja) 2017-02-01 2017-11-28 撮像素子

Country Status (4)

Country Link
JP (1) JP2018125845A (ja)
KR (1) KR20200067257A (ja)
CN (1) CN108462840A (ja)
TW (1) TW201839966A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078024A (ja) * 2018-11-09 2020-05-21 キヤノン株式会社 固体撮像素子およびその制御方法、撮像装置、プログラム
JP2020096225A (ja) * 2018-12-10 2020-06-18 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2022210917A1 (ja) * 2021-03-31 2022-10-06 株式会社ニコン 撮像素子および撮像装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020153054A1 (ja) * 2019-01-22 2021-12-02 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078024A (ja) * 2018-11-09 2020-05-21 キヤノン株式会社 固体撮像素子およびその制御方法、撮像装置、プログラム
JP7330684B2 (ja) 2018-11-09 2023-08-22 キヤノン株式会社 固体撮像素子およびその制御方法、撮像装置、プログラム
JP2020096225A (ja) * 2018-12-10 2020-06-18 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2022210917A1 (ja) * 2021-03-31 2022-10-06 株式会社ニコン 撮像素子および撮像装置

Also Published As

Publication number Publication date
CN108462840A (zh) 2018-08-28
TW201839966A (zh) 2018-11-01
KR20200067257A (ko) 2020-06-12

Similar Documents

Publication Publication Date Title
US20180220093A1 (en) Image sensor
US8659693B2 (en) Solid-state image pickup element and camera system
CN107079116B (zh) 摄像元件、驱动方法和电子装置
JP6735582B2 (ja) 撮像素子およびその駆動方法、および撮像装置
US8031241B2 (en) Solid-state imaging device and imaging apparatus
US7321329B2 (en) Analog-to-digital converter and semiconductor device
US8963759B2 (en) Imaging systems with per-column analog-to-digital converter non-linearity correction capabilities
JP6406977B2 (ja) 光電変換装置、撮像システム
JP2018125845A (ja) 撮像素子
JP6457738B2 (ja) 固体撮像装置および撮像装置
CN108605105B (zh) 固体摄像装置以及摄像装置
JP6120495B2 (ja) 撮像装置、撮像装置の駆動方法、撮像システム、撮像システムの駆動方法
US20220367557A1 (en) Solid-state imaging apparatus and imaging apparatus including the same
JP2013051575A (ja) 固体撮像装置、撮像装置および撮像方法
JP2018037921A (ja) 撮像素子
JP5332314B2 (ja) 固体撮像素子およびカメラシステム
JP5115602B2 (ja) 半導体装置およびその制御方法
JP5115601B2 (ja) 半導体装置およびその制御方法
KR20140107212A (ko) 고체 촬상 소자 및 그 구동 방법, 카메라 시스템
JP2013179479A (ja) 固体撮像装置及びこれを用いた電子カメラ
JP2016136766A (ja) 撮像素子及び撮像装置
WO2023002643A1 (ja) 撮像素子及び撮像装置
JP6673310B2 (ja) 撮像素子及び撮像装置
JP2011010370A (ja) 物理情報取得方法および物理情報取得装置
WO2020090166A1 (ja) 信号処理装置、イメージセンサ、撮像装置、並びに情報処理装置