JP2018123643A - Slab replacing method for composite girder - Google Patents

Slab replacing method for composite girder Download PDF

Info

Publication number
JP2018123643A
JP2018123643A JP2017018799A JP2017018799A JP2018123643A JP 2018123643 A JP2018123643 A JP 2018123643A JP 2017018799 A JP2017018799 A JP 2017018799A JP 2017018799 A JP2017018799 A JP 2017018799A JP 2018123643 A JP2018123643 A JP 2018123643A
Authority
JP
Japan
Prior art keywords
floor slab
plate
slab
existing
new
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017018799A
Other languages
Japanese (ja)
Other versions
JP6837343B2 (en
Inventor
政彦 岸田
Masahiko Kishida
政彦 岸田
智也 峯村
Tomoya Minemura
智也 峯村
陽介 石原
Yosuke Ishihara
陽介 石原
佐藤 公紀
Kiminori Sato
公紀 佐藤
幸宏 倉田
Yukihiro Kurata
幸宏 倉田
上田 和哉
Kazuya Ueda
和哉 上田
戸田 勝哉
Katsuya Toda
勝哉 戸田
史朗 齊藤
Shiro Saito
史朗 齊藤
肇 橘
Hajime Tachibana
肇 橘
智之 高尾
Tomoyuki Takao
智之 高尾
光則 重田
Mitsunori Shigeta
光則 重田
夏樹 吉岡
Natsuki Yoshioka
夏樹 吉岡
中村 定明
Sadaaki Nakamura
定明 中村
幸夫 廣井
Yukio Hiroi
幸夫 廣井
俊紀 木村
Toshiki Kimura
俊紀 木村
祐介 ▲高▼木
祐介 ▲高▼木
Yusuke Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOMAIHALTEC Inc
IHI Infrastructure Systems Co Ltd
Metropolitan Expressway Co Ltd
IHI Construction Service Co Ltd
Original Assignee
KOMAIHALTEC Inc
IHI Infrastructure Systems Co Ltd
Metropolitan Expressway Co Ltd
IHI Construction Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOMAIHALTEC Inc, IHI Infrastructure Systems Co Ltd, Metropolitan Expressway Co Ltd, IHI Construction Service Co Ltd filed Critical KOMAIHALTEC Inc
Priority to JP2017018799A priority Critical patent/JP6837343B2/en
Publication of JP2018123643A publication Critical patent/JP2018123643A/en
Application granted granted Critical
Publication of JP6837343B2 publication Critical patent/JP6837343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slab replacement method for a composite girder capable of closing a clearance between an existing slab and a new slab without generating any steps on a road surface.SOLUTION: A top surface of a plate-like member 50 closing clearance between an existing slab 20 and a new slab 30 becomes flush with top surfaces of pavements 22, 23, so as to form that a road surface which does not have any step between slabs 20, 30 by the plate-like member 50, so that traveling vehicles passing on the plate-like member 50 are not subject to impact. In this case, since pre-stressed concrete made of ultrahigh strength fiber reinforced concrete is used for the plate-like member 50, prestress is applied to the plate-like member 50 to suppress tensile stress at the time of loading, and also the ultrahigh strength fiber reinforced concrete enhances tensile strength and toughness of concrete itself.SELECTED DRAWING: Figure 22

Description

本発明は、合成桁からなる既設の橋梁から老朽化した床版を撤去して新たな床版に取り替えるための合成桁の床版取替工法に関するものである。   The present invention relates to a composite slab floor slab replacement method for removing an old floor slab from an existing bridge made of a composite girder and replacing it with a new floor slab.

従来、一般道、高速道路等の橋梁の多くには、鋼桁とコンクリート床版を一体化した合成桁が用いられている。合成桁は、主桁の上フランジ上に設けた複数のずれ止めをコンクリート床版に埋め込むことにより主桁と床版とを結合したものである。   Conventionally, a composite girder in which a steel girder and a concrete slab are integrated is used for many bridges such as ordinary roads and highways. A composite girder combines a main girder and a floor slab by embedding a plurality of slip stoppers provided on an upper flange of the main girder in a concrete floor slab.

ところで、既設の橋梁において床版が老朽化した場合は、既設床版を主桁上から撤去して新たな床版を再構築する床版取替施工が行われる。この場合、長期間に亘る連続した交通遮断は好ましくないため、夜間等の交通量の少ない時間帯を利用して一部区間ずつ取替施工を行う場合がある。このような取替施工においては、夜間等に既設床版の一部区間を撤去した後、既設床版の撤去区間に新設床版を設置し、日中等に交通開放するようにしている。その際、主桁上に残存する既設床版と新設床版との間の隙間を覆工板によって塞ぐことにより車両の走行を可能にしている。   By the way, when the floor slab is deteriorated in the existing bridge, the floor slab replacement construction is performed in which the existing floor slab is removed from the main girder and a new floor slab is reconstructed. In this case, since continuous traffic interruption for a long period is not preferable, replacement work may be performed for each section using a time zone with a small traffic volume such as nighttime. In such replacement construction, a part of the existing floor slab is removed at night and then a new floor slab is installed in the removal section of the existing floor slab to open traffic during the daytime. At that time, the vehicle is allowed to travel by closing the gap between the existing floor slab remaining on the main girder and the new floor slab with a lining plate.

合成桁においては、床版に荷重が載荷されると、主桁の上フランジには圧縮応力が生じ、下フランジには引張応力が生ずるが、合成桁では主桁と床版が一体となった状態で橋軸方向の軸力が生ずるため、曲げ応力の中立軸は非合成桁よりも上フランジ寄りになる。従って、既設床版の一部区間を撤去して新設床版を設置しても、床版同士が隙間をおいて連続していない状態では非合成構造となる。即ち、主桁上に残存する既設床版と新設床版との間の隙間により床版間に軸力が伝達されないため、主桁のみに曲げ応力が生ずることになり、曲げ応力の中立軸が主桁の下フランジ側に移行する。これにより、上フランジ側の圧縮応力が増大し、交通開放中の荷重により応力超過となるおそれがある。   In the composite girder, when a load is loaded on the floor slab, compressive stress is generated in the upper flange of the main girder and tensile stress is generated in the lower flange, but in the composite girder, the main girder and the floor slab are integrated. Since an axial force in the bridge axis direction is generated in this state, the neutral axis of the bending stress is closer to the upper flange than the non-synthetic beam. Accordingly, even if a part of the existing floor slab is removed and a new floor slab is installed, a non-synthetic structure is obtained if the floor slabs are not continuous with a gap. That is, since the axial force is not transmitted between the floor slabs due to the gap between the existing floor slab remaining on the main girder and the new floor slab, bending stress is generated only on the main girder, and the neutral axis of the bending stress is Move to the lower flange side of the main girder. Thereby, the compressive stress on the upper flange side increases, and there is a possibility that the stress will be exceeded due to the load during traffic opening.

そこで、従来では、既設床版の端面と新設床版の端面との間の隙間に油圧ジャッキを用いた軸力伝達装置を配置し、軸力伝達装置によって各床版の端面に互いに離れる方向に押圧力を付与することにより、既設床版と新設床版との間で橋軸方向の軸力を伝達するようにしている(例えば、特許文献1または2参照)。これにより、主桁の上フランジ側に強制的に引張応力を発生させ、荷重載荷時の上フランジの圧縮応力を低減させることにより、応力超過を抑制するようにしている。   Therefore, conventionally, an axial force transmission device using a hydraulic jack is disposed in the gap between the end surface of the existing floor slab and the end surface of the new floor slab, and the axial force transmission device separates the end surfaces of the floor slabs from each other. By applying the pressing force, the axial force in the bridge axis direction is transmitted between the existing floor slab and the new floor slab (see, for example, Patent Document 1 or 2). Thereby, a tensile stress is forcibly generated on the upper flange side of the main girder, and the compressive stress of the upper flange at the time of loading is reduced, thereby suppressing the excess stress.

特開昭63−64565号公報JP-A-63-64565 特開2005−282272号公報JP 2005-282272 A

ところで、既設床版と新設床版との間の隙間を塞ぐ覆工板は、車両走行時の荷重に耐え得る強度が必要である。しかしながら、覆工板にコンクリート板を用いる場合は、厚さ寸法が大きくなり、路面との間に大きな段差を生ずることになる。これにより、覆工板による段差を乗り越える際に走行車両に衝撃が発生するため、速度規制により徐行させて安全性を確保する必要があり、交通量の多いときは徐行による交通渋滞が発生するという問題点があった。   By the way, the covering plate that closes the gap between the existing floor slab and the new floor slab needs to be strong enough to withstand the load during vehicle travel. However, when a concrete board is used as the lining board, the thickness dimension becomes large, and a large step is generated between the road surface. As a result, an impact is generated on the traveling vehicle when overcoming the level difference due to the lining plate, so it is necessary to ensure safety by slowing down by speed regulation, and traffic congestion due to slow driving occurs when there is a lot of traffic There was a problem.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、路面に段差を生ずることなく既設床版と新設床版との間の隙間を閉鎖することのできる合成桁の床版取替工法を提供することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to provide a composite girder that can close a gap between an existing floor slab and a new floor slab without causing a step on the road surface. The purpose is to provide a floor slab replacement method.

本発明は前記目的を達成するために、主桁上の既設床版の橋軸方向一部区間を撤去した後、既設床版の撤去区間に新設床版を設置し、主桁上に残存する既設床版と前記新設床版との端面間に配置した軸力伝達装置によって各床版の端面に橋軸方向への軸力を付与した後、各床版間の隙間を板状部材によって閉鎖することにより各床版間の通行を可能にする合成桁の床版取替工法において、前記板状部材に超高強度繊維補強コンクリートからなるプレストレストコンクリートを用いるとともに、前記既設床版の橋軸方向端部に舗装の存在しない非舗装部を形成し、舗装の厚さ以下の厚さ寸法に形成された前記板状部材をその上面が舗装の上面と同等の高さになるように既設床版の非舗装部と新設床版に亘って載置することにより、各床版間の隙間を板状部材によって閉鎖するようにしている。   In order to achieve the above object, the present invention, after removing a part of the existing floor slab in the bridge axis direction on the main girder, installs a new floor slab in the removed section of the existing floor slab and remains on the main girder After applying axial force in the bridge axis direction to the end face of each floor slab by the axial force transmission device arranged between the end faces of the existing floor slab and the new floor slab, the gap between each floor slab is closed by a plate-like member In the composite girder floor slab replacement method that enables passage between the floor slabs, the plate-like member is made of prestressed concrete made of ultra-high strength fiber reinforced concrete, and the bridge floor direction of the existing floor slab An existing floor slab is formed so that a non-paved portion without pavement is formed at the end, and the plate-like member formed to have a thickness dimension equal to or less than the thickness of the pavement has an upper surface equal to the upper surface of the pavement. Between the floor slabs and the new floor slab. And so as to close the by the plate-like member.

これにより、既設床版と新設床版との間の隙間を閉鎖する板状部材の上面が舗装の上面と同等の高さになることから、板状部材によって各床版間に段差のない路面が形成され、板状部材を通過する走行車両に段差による衝撃を与えることがない。この場合、板状部材には超高強度繊維補強コンクリートからなるプレストレストコンクリートが用いられることから、板状部材にプレストレスが付与されことにより荷重載荷時の引張応力が抑制されるとともに、超高強度繊維補強コンクリートによってコンクリート自体の引張強度と靭性が高められる。   As a result, since the upper surface of the plate member that closes the gap between the existing floor slab and the new floor slab has the same height as the upper surface of the pavement, the road surface without steps between the floor slabs by the plate member. Is formed, and the traveling vehicle passing through the plate-like member is not subjected to an impact due to a step. In this case, prestressed concrete made of ultra-high strength fiber reinforced concrete is used for the plate-like member, so that prestress is applied to the plate-like member, so that tensile stress during loading is suppressed and ultra-high strength is also provided. Fiber reinforced concrete increases the tensile strength and toughness of the concrete itself.

本発明によれば、既設床版と新設床版との間の隙間を閉鎖する板状部材を通過する走行車両に段差による衝撃を与えることがないので、安全に走行することができるとともに、段差のための徐行運転をする必要がなく、徐行による交通渋滞の発生を回避することができる。この場合、板状部材にプレストレスが付与されことにより荷重載荷時の引張応力が抑制されるとともに、超高強度繊維補強コンクリートによってコンクリート自体の引張強度と靭性が高められるので、板状部材を必要な強度を確保しつつ舗装の厚さよりも小さい厚さ寸法に形成することができ、厚さ寸法が小さくとも走行車両による垂直荷重や衝撃に対して十分な強度を得ることができる。   According to the present invention, there is no impact caused by a step on a traveling vehicle that passes through a plate-like member that closes the gap between the existing floor slab and the new floor slab, so that the vehicle can travel safely and the step Therefore, it is not necessary to drive slowly, and traffic congestion due to slow driving can be avoided. In this case, the prestress is applied to the plate-like member, so that the tensile stress during loading is suppressed and the tensile strength and toughness of the concrete itself is enhanced by the ultra-high-strength fiber reinforced concrete. It can be formed in a thickness dimension smaller than the thickness of the pavement while ensuring a sufficient strength, and even when the thickness dimension is small, a sufficient strength against a vertical load and an impact by a traveling vehicle can be obtained.

本発明の一実施形態を示す床版取替工程を示す合成桁の平面図The top view of the composite girder which shows the floor slab replacement | exchange process which shows one Embodiment of this invention 床版取替工程を示す合成桁の平面図Top view of composite girder showing floor slab replacement process 合成桁のX−X線矢視方向断面図X-X arrow direction sectional view of the composite girder 床版取替工程を示す合成桁の要部拡大平面図Main part enlarged plan view of composite girder showing floor slab replacement process 軸力伝達装置及び固定部材の分解斜視図Exploded perspective view of axial force transmission device and fixing member 板状部材の平面図Plan view of plate member 板状部材の正面図Front view of plate member 板状部材のY−Y線矢視方向断面図YY arrow direction sectional view of a plate-like member 板状部材の要部正面断面図Front sectional view of main parts of plate-like member 床版取替工程を示す合成桁の側面図Side view of composite girder showing floor slab replacement process 床版取替工程を示す合成桁の側面図Side view of composite girder showing floor slab replacement process 床版取替工程を示す合成桁の側面図Side view of composite girder showing floor slab replacement process 床版取替工程を示す合成桁の側面図Side view of composite girder showing floor slab replacement process 床版取替工程を示す合成桁の斜視図Composite perspective view showing floor slab replacement process 床版取替工程を示す合成桁の斜視図Composite perspective view showing floor slab replacement process 床版取替工程を示す合成桁の斜視図Composite perspective view showing floor slab replacement process 床版取替工程を示す合成桁の斜視図Composite perspective view showing floor slab replacement process 床版取替工程を示す合成桁の要部拡大側面図Expanded side view of the main part of the composite girder showing the floor slab replacement process 床版取替工程を示す合成桁の要部拡大側面図Expanded side view of the main part of the composite girder showing the floor slab replacement process 床版取替工程を示す合成桁の要部拡大側面図Expanded side view of the main part of the composite girder showing the floor slab replacement process 床版取替工程を示す合成桁の要部拡大側面図Expanded side view of the main part of the composite girder showing the floor slab replacement process 床版取替工程を示す合成桁の要部拡大側面図Expanded side view of the main part of the composite girder showing the floor slab replacement process 板状部材の解析モデルを示す平面図Plan view showing analysis model of plate-like member 板状部材の解析モデルの物性値を示す図The figure which shows the physical property value of the analytical model of the plate-like member 板状部材の解析結果を示す図The figure which shows the analysis result of the plate-like member 板状部材の解析結果を示す図The figure which shows the analysis result of the plate-like member 板状部材の重量の比較結果を示す図The figure which shows the comparison result of the weight of the plate-like member 板状部材の重量の終局耐力の確認結果を示す図The figure which shows the confirmation result of the ultimate strength of the weight of a plate-shaped member

図1乃至図28は本発明の一実施形態を示すもので、合成桁からなる既設の橋梁から老朽化した床版を撤去して新たな床版に取り替える床版取替工法を示すものである。   FIGS. 1 to 28 show an embodiment of the present invention, and show a floor slab replacement method for removing an old floor slab from an existing bridge made of composite girders and replacing it with a new floor slab. .

本実施形態の床版取替工法は、合成桁1において、主桁10上の既設床版20の橋軸方向一部区間を撤去した後、既設床版20の撤去区間に新設床版30を設置し、主桁10上に残存する既設床版20と新設床版30との端面間に設置した軸力伝達装置40によって各床版の端面に橋軸方向の押圧力を付与するとともに、各床版20,30間の隙間を複数の板状部材50によって塞ぐことにより各床版20,30間の通行を可能にする工法である。また、各板状部材50は複数の固定部材60によって床版20,30に固定されるようになっている。   The floor slab replacement method of the present embodiment is such that, in the composite girder 1, after removing a section in the bridge axis direction of the existing floor slab 20 on the main girder 10, the new floor slab 30 is placed in the removal section of the existing floor slab 20. The axial force transmission device 40 installed and installed between the end surfaces of the existing floor slab 20 and the new floor slab 30 remaining on the main girder 10 applies a pressing force in the bridge axis direction to the end surface of each floor slab, This is a construction method that allows passage between the floor slabs 20 and 30 by closing the gap between the floor slabs 20 and 30 with a plurality of plate-like members 50. Each plate-like member 50 is fixed to the floor slabs 20 and 30 by a plurality of fixing members 60.

主桁10は、ウエブ11の上端及び下端にそれぞれ上フランジ12及び下フランジ13を有する鋼桁からなり、互いに橋軸直角方向に間隔をおいて複数列(例えば3列)に配置されている。   The main girder 10 is made of a steel girder having an upper flange 12 and a lower flange 13 at the upper end and lower end of the web 11, respectively, and is arranged in a plurality of rows (for example, three rows) at intervals in the direction perpendicular to the bridge axis.

既設床版20は、各主桁10の上フランジ12上に打設されたコンクリート床版からなり、その幅方向両側には壁高欄21が設けられている。また、既設床版20上にはアスファルトの舗装22が設けられている。   The existing floor slab 20 is made of a concrete floor slab placed on the upper flange 12 of each main girder 10, and wall height columns 21 are provided on both sides in the width direction. An asphalt pavement 22 is provided on the existing floor slab 20.

新設床版30は、例えば工場で製作されたプレキャスト製のコンクリート床版が用いられ、その幅方向両側には壁高欄31が設けられている。新設床版30は、各主桁10上に橋軸方向に複数枚整列させて載置するもので、新設床版30の橋軸方向端部に突出するPC鋼棒(図示せず)の端部を継ぎ手により接続することにより、床版同士が連結されるようになっている。また、新設床版30の下面には固定部材60を連結するための複数のインサート32が埋め込まれており、各インサート32は互いに橋軸直角方向に間隔をおいて配置されている。   As the new floor slab 30, for example, a precast concrete floor slab manufactured at a factory is used, and wall height columns 31 are provided on both sides in the width direction. A plurality of new floor slabs 30 are placed on each main girder 10 so as to be aligned in the bridge axis direction, and the end of a PC steel bar (not shown) protruding from the bridge axis direction end of the new floor slab 30. By connecting the parts with a joint, the floor slabs are connected to each other. A plurality of inserts 32 for connecting the fixing member 60 are embedded in the lower surface of the new floor slab 30, and the inserts 32 are arranged at intervals in the direction perpendicular to the bridge axis.

軸力伝達装置40は、既設床版20と新設床版30の橋軸方向端面にそれぞれ取り付けられる一対の反力台41と、各反力台41間に配置される複数の油圧ジャッキ42とからなり、各油圧ジャッキ42は橋軸直角方向に等間隔で配置される。反力台41は橋軸直角方向に延びるH鋼からなり、橋軸方向に互いに間隔をおいて設けられた一対のフランジ41aの間に複数の補強板41bが互いに橋軸直角方向に間隔をおいて設けられている。各反力台41はそれぞれ既設床版20と新設床版30の橋軸方向端面に支圧板43を介してボルト44により固定されるようになっている。油圧ジャッキ42は、円柱状のジャッキ本体42aと、ジャッキ本体42aの軸方向一端側から突出する押圧ロッド42bとからなり、ジャッキ本体42aは既設床版20側の反力台41に当接し、押圧ロッド42bは新設床版30側の反力台41に当接するようになっている。また、各反力台41には、各油圧ジャッキ42の下方にそれぞれ位置する複数のジャッキ台45が設けられている。各ジャッキ台45は反力台41の下端からジャッキ本体42aの下方に延びる板状の部材からなり、一方の反力台41のジャッキ台45と他方の反力台41のジャッキ台45の先端側が互いに上下方向に重なり合うようになっている。   The axial force transmission device 40 includes a pair of reaction force bases 41 attached to the bridge axial direction end surfaces of the existing floor slab 20 and the new floor slab 30, and a plurality of hydraulic jacks 42 disposed between the reaction force bases 41. The hydraulic jacks 42 are arranged at equal intervals in the direction perpendicular to the bridge axis. The reaction force base 41 is made of H steel extending in the direction perpendicular to the bridge axis, and a plurality of reinforcing plates 41b are spaced from each other in the direction perpendicular to the bridge axis between a pair of flanges 41a spaced apart from each other in the bridge axis direction. Is provided. Each reaction force base 41 is fixed to the bridge axial direction end surfaces of the existing floor slab 20 and the new floor slab 30 by bolts 44 via a bearing plate 43. The hydraulic jack 42 includes a columnar jack main body 42a and a pressing rod 42b protruding from one axial end side of the jack main body 42a. The jack main body 42a abuts against the reaction force table 41 on the existing floor slab 20 side and presses. The rod 42b comes into contact with the reaction table 41 on the new floor slab 30 side. Each reaction force base 41 is provided with a plurality of jack bases 45 located below the respective hydraulic jacks 42. Each jack base 45 is composed of a plate-like member extending from the lower end of the reaction force base 41 to the lower side of the jack body 42a, and the front end side of the jack base 45 of one reaction force base 41 and the jack base 45 of the other reaction force base 41 is arranged. They overlap each other in the vertical direction.

各板状部材50は、長方形状の板状に形成され、各床版20,30の間に橋軸直角方向に並べて配置される。各板状部材50には、超高強度繊維補強コンクリートからなるプレストレストコンクリートが用いられる。超高強度繊維補強コンクリートは、セメントに鋼繊維、ステンレス繊維または有機繊維等からなる補強用繊維を混入するとともに、シリカフューム等の反応性微粉末を使用することにより、水和反応によって化学的に緻密化された硬化体を形成するものである。これにより、通常のコンクリートよりも格段に高い圧縮強度及び耐久性を有するともに、補強用繊維によって高い引張強度と高い靭性が得られる。   Each plate-like member 50 is formed in a rectangular plate shape, and is arranged between the floor slabs 20 and 30 in a direction perpendicular to the bridge axis. Each plate-like member 50 is made of prestressed concrete made of ultra high strength fiber reinforced concrete. Ultra-high-strength fiber reinforced concrete contains chemically reinforcing steel fibers, stainless steel fibers, organic fibers, or other reinforcing fibers in cement, and uses a reactive fine powder such as silica fume to make it chemically dense. A cured body is formed. As a result, the tensile strength and the high toughness can be obtained by the reinforcing fiber while having a compressive strength and durability much higher than those of ordinary concrete.

また、板状部材50は、図6に示すように板状部材50の長辺方向及び短辺方向にそれぞれ複数本ずつ等間隔で配列されたPC鋼材51を有し、PC鋼材51にプレストレスを付与した状態でコンクリート型枠により成形される。PC鋼材51には、鉄筋等の補強用鋼材と比較して高い引張強度を有する緊張材が用いられる。板状部材50の長辺方向(橋軸直角方向)に配列されるPC鋼材51は、板状部材50の短辺方向(橋軸方向)に配列されるPC鋼材51の下側に配置されている。この場合、図9に示すように板状部材50の長辺方向(橋軸直角方向)に延びるPC鋼材51は板状部材50の厚さ方向(上下方向)中央に配置され、板状部材50の短辺方向(橋軸方向)に延びるPC鋼材51から板状部材50の上面までの高さ寸法H1 は板状部材50の下面までの高さ寸法H2 よりも大きくなっている。即ち、板状部材50では、短辺方向に延びるPC鋼材51が板状部材50の厚さ方向(上下方向)中央よりも下方に配置されている。この場合、板状部材50の厚さHを70mmとすると、H1 を45mm、H2 を25mmとするのが好ましい。   Further, as shown in FIG. 6, the plate-like member 50 includes a plurality of PC steel materials 51 arranged at equal intervals in the long side direction and the short side direction of the plate-like member 50, and the PC steel material 51 is prestressed. It is molded by a concrete formwork in a state where is given. As the PC steel material 51, a tension material having a higher tensile strength than a reinforcing steel material such as a reinforcing bar is used. The PC steel material 51 arranged in the long side direction (the direction perpendicular to the bridge axis) of the plate-like member 50 is arranged below the PC steel material 51 arranged in the short side direction (the bridge axis direction) of the plate-like member 50. Yes. In this case, as shown in FIG. 9, the PC steel material 51 extending in the long side direction (the direction perpendicular to the bridge axis) of the plate-like member 50 is disposed in the center of the plate-like member 50 in the thickness direction (vertical direction). The height dimension H 1 from the PC steel material 51 extending in the short side direction (bridge axis direction) to the upper surface of the plate-like member 50 is larger than the height dimension H 2 to the lower surface of the plate-like member 50. That is, in the plate member 50, the PC steel material 51 extending in the short side direction is disposed below the center in the thickness direction (vertical direction) of the plate member 50. In this case, if the thickness H of the plate member 50 is 70 mm, it is preferable that H1 is 45 mm and H2 is 25 mm.

更に、板状部材50の四隅には切り欠き部50aが設けられている。各切り欠き部50aには板状部材50同士を接続するための継ぎ手52が設けられ、継ぎ手52は一端から延びる棒状部材52aを板状部材50のコンクリート内に埋設されることにより板状部材50に固定されている。板状部材50の下面には固定部材60を連結するための複数のインサート53が埋め込まれており、各インサート53は板状部材50の短辺方向略中央側に長辺方向に等間隔で二列に配列されている。また、板状部材50の上面には滑り止め加工が施されている。この滑り止め加工は、例えば板状部材50を型枠で成形する際、硬化前のコンクリートの表面をブラシ等で粗面状に形成したり、或いは板状部材50の上面側を成形する型で多数の凹凸を形成することにより施される。   Further, notches 50 a are provided at the four corners of the plate-like member 50. Each notch 50a is provided with a joint 52 for connecting the plate-like members 50 to each other. The joint 52 has a rod-like member 52a extending from one end embedded in the concrete of the plate-like member 50, thereby providing the plate-like member 50. It is fixed to. A plurality of inserts 53 for connecting the fixing member 60 are embedded in the lower surface of the plate-like member 50, and each insert 53 is arranged at equal intervals in the long-side direction substantially at the center side in the short-side direction of the plate-like member 50. Arranged in columns. Further, the upper surface of the plate-like member 50 is subjected to anti-slip processing. For example, when the plate-like member 50 is formed with a mold, this anti-slip processing is a die that forms a rough surface of the concrete before curing with a brush or the like, or forms the upper surface side of the plate-like member 50. It is applied by forming a large number of irregularities.

各固定部材60は断面L字状の鋼材によって形成され、既設床版20及び新設床版30の下面側に配置されるとともに、複数の連結部材61によって板状部材50の下面側に連結されるようになっている。固定部材60は既設床版20の下面側と新設床版30の下面側に亘る長さを有し、長手方向中央側には連結部材61を挿通する孔60aが長手方向に間隔おいて二箇所に設けられている。また、固定部材60は新設床版30のインサート32に螺合するボルト62によって新設床版30の下面側に連結されるようになっており、固定部材60の長手方向一端側にはボルト62を挿通する孔60bが設けられている。連結部材61は、少なくとも両端側にネジ部を有する棒状の部材からなり、その上端側は固定部材60のインサート53に螺合するようになっている。また、連結部材61の下端側は、固定部材60の孔60aを挿通するとともに、下方からナット63が螺合するようになっている。   Each fixing member 60 is formed of a steel material having an L-shaped cross section, and is disposed on the lower surface side of the existing floor slab 20 and the new floor slab 30 and is connected to the lower surface side of the plate-like member 50 by a plurality of connecting members 61. It is like that. The fixing member 60 has a length extending from the lower surface side of the existing floor slab 20 to the lower surface side of the new floor slab 30, and two holes 60 a through which the connecting member 61 is inserted are spaced apart in the longitudinal direction on the central side in the longitudinal direction. Is provided. Further, the fixing member 60 is connected to the lower surface side of the new floor slab 30 by bolts 62 screwed into the insert 32 of the new floor slab 30, and a bolt 62 is attached to one end side in the longitudinal direction of the fixing member 60. A hole 60b for insertion is provided. The connecting member 61 is made of a rod-like member having screw portions at least on both end sides, and the upper end side thereof is screwed into the insert 53 of the fixing member 60. Further, the lower end side of the connecting member 61 is inserted through the hole 60a of the fixing member 60, and the nut 63 is screwed from below.

次に、本実施形態の床版取替工法について説明する。ここでは、例えば夜間に交通規制をして施工を行い、昼間に交通開放する取替工事において、図10に示すように既に一部区間の既設床版20が新設床版30に取り替えられている状態から説明する。   Next, the floor slab replacement method of this embodiment will be described. Here, for example, in the replacement work in which traffic is regulated at night and traffic is opened during the day, the existing floor slab 20 in a certain section has already been replaced with the new floor slab 30 as shown in FIG. I will explain from the state.

まず、交通規制により一般車両Aの通行を遮断した後、図11に示すように主桁10上の既設床版20の橋軸方向一部区間を撤去する。その際、既に設置されている新設床版30と既設床版20との間の軸力伝達装置40と板状部材50を取り外した後、既設床版20を橋軸直角方向に切断し、クレーン車Bで吊り上げて撤去する。次に、図12に示すように既設床版20の撤去区間に新設床版30を設置する。その際、複数枚の新設床版30をクレーン車Bで主桁10上に橋軸方向に順次載置し、各新設床版30同士を連結する。この後、図13に示すように主桁10上に残存する既設床版20と新設床版30との端面間に軸力伝達装置40を設置し、軸力伝達装置40によって各床版の端面に橋軸方向の押圧力を付与するとともに、各床版20,30間の隙間を板状部材50によって塞いた後、交通開放して一般車両Aの通行を可能にする。   First, after the traffic of the general vehicle A is blocked due to traffic restrictions, a part of the existing floor slab 20 on the main girder 10 in the bridge axis direction is removed as shown in FIG. At that time, after removing the axial force transmission device 40 and the plate member 50 between the newly installed floor slab 30 and the existing floor slab 20, the existing floor slab 20 is cut in a direction perpendicular to the bridge axis, and the crane Lift with car B and remove. Next, as shown in FIG. 12, the new floor slab 30 is installed in the removal section of the existing floor slab 20. At that time, a plurality of new floor slabs 30 are sequentially placed on the main girder 10 in the direction of the bridge axis by the crane vehicle B, and the new floor slabs 30 are connected to each other. Thereafter, as shown in FIG. 13, an axial force transmission device 40 is installed between the end surfaces of the existing floor slab 20 and the new floor slab 30 remaining on the main girder 10, and the end surface of each floor slab is formed by the axial force transmission device 40. A pressing force in the direction of the bridge axis is applied to the slab, and the gap between the floor slabs 20 and 30 is closed by the plate member 50, and then the traffic is released to allow the general vehicle A to pass.

ここで、既設床版20と新設床版30との間に軸力伝達装置40を設置する工程と、各床版20,30間の隙間を板状部材50によって閉鎖する工程について以下に説明する。   Here, the step of installing the axial force transmission device 40 between the existing floor slab 20 and the new floor slab 30 and the step of closing the gap between the floor slabs 20 and 30 by the plate-like member 50 will be described below. .

まず、図18に示すように主桁10上の既設床版20の舗装22を床版端部から橋軸方向に長さLだけ除去し、図14及び図19に示すように既設床版20の端部に舗装22の存在しない非舗装部23を形成する。   First, as shown in FIG. 18, the pavement 22 of the existing floor slab 20 on the main girder 10 is removed from the edge of the floor slab by a length L in the bridge axis direction, and the existing floor slab 20 as shown in FIGS. 14 and 19. The non-paved portion 23 in which the pavement 22 does not exist is formed at the end of the plate.

次に、既設床版20の非舗装部23上と未舗装の新設床版30の上面にそれぞれ緩衝部材70を載置する。緩衝部材70は床版20,30のほぼ全幅に亘って延びるシート状のゴムからなる。   Next, the buffer members 70 are placed on the non-paved portion 23 of the existing floor slab 20 and the upper surface of the unpaved new floor slab 30, respectively. The buffer member 70 is made of a sheet-like rubber extending over almost the entire width of the floor slabs 20 and 30.

続いて、新設床版30のインサート32にボルト62を螺合することにより、各固定部材60を新設床版30の下面側に連結する。これにより、各固定部材60が既設床版20の下面と新設床版30の下面に亘るように取り付けられる。   Subsequently, each fixing member 60 is connected to the lower surface side of the new floor slab 30 by screwing bolts 62 into the inserts 32 of the new floor slab 30. Thereby, each fixing member 60 is attached so that the lower surface of the existing floor slab 20 and the lower surface of the new floor slab 30 may be covered.

次に、図15に示すように既設床版20の端面と新設床版30の端面との間に軸力伝達装置40を設置する。即ち、図19に示すように既設床版20の端面と新設床版30の端面にそれぞれ軸力伝達装置40の反力台41を取り付けるとともに、図20に示すように既設床版20側の反力台41と新設床版30側の反力台41との間に油圧ジャッキ42を配置する。続いて、油圧ジャッキ42を駆動して各反力台41に互いに離れる方向への押圧力を加えることにより、既設床版20の端面と新設床版30の端面に橋軸方向の軸力を付与する。   Next, as shown in FIG. 15, the axial force transmission device 40 is installed between the end surface of the existing floor slab 20 and the end surface of the new floor slab 30. That is, the reaction force base 41 of the axial force transmission device 40 is attached to the end surface of the existing floor slab 20 and the end surface of the new floor slab 30 as shown in FIG. 19, and the reaction on the existing floor slab 20 side as shown in FIG. A hydraulic jack 42 is disposed between the force table 41 and the reaction force table 41 on the new floor slab 30 side. Subsequently, by driving the hydraulic jack 42 and applying a pressing force in the direction away from each reaction table 41, an axial force in the bridge axis direction is applied to the end surface of the existing floor slab 20 and the end surface of the new floor slab 30. To do.

次に、図21に示すように板状部材50を既設床版20と新設床版30に亘るように上方から載置する。その際、板状部材50の橋軸方向一端側は既設床版20の非舗装部23上に一方の緩衝部材70を介して載置され、板状部材50の橋軸方向他端側は未舗装の新設床版30の上面に他方の緩衝部材70を介して載置される。この場合、板状部材50の厚さHは舗装22の厚さtよりも緩衝部材70の厚さ分だけ小さく形成されており(例えばH=70mm,t=80mm)、各床版20,30上に板状部材50が載置されると、板状部材50の上面と舗装22の上面が同等の高さになる。尚、緩衝部材70は、板状部材50の荷重により圧縮される分だけ無負荷状態での厚さ寸法が圧縮状態での厚さ寸法が大きくなるように形成されている。   Next, as shown in FIG. 21, the plate-like member 50 is placed from above so as to extend over the existing floor slab 20 and the new floor slab 30. At that time, one end side in the bridge axis direction of the plate member 50 is placed on the non-paved portion 23 of the existing floor slab 20 via one buffer member 70, and the other end side in the bridge axis direction of the plate member 50 is not yet opened. It is placed on the upper surface of the newly installed floor slab 30 of the pavement through the other buffer member 70. In this case, the thickness H of the plate-like member 50 is formed smaller than the thickness t of the pavement 22 by the thickness of the buffer member 70 (for example, H = 70 mm, t = 80 mm). When the plate-like member 50 is placed on the upper surface, the upper surface of the plate-like member 50 and the upper surface of the pavement 22 have the same height. The buffer member 70 is formed such that the thickness dimension in the unloaded state is increased by the amount compressed by the load of the plate-like member 50.

板状部材50は、図16に示すように橋軸直角方向に並べて配置されるとともに、ジョイント52によって互いに橋軸直角方向に連結される。そして、板状部材50のインサート53に固定部材61の上端側を螺合するとともに、連結部材61の下端側を固定部材60の孔60aに挿通し、連結部材61の下端側に下方からナット63を螺合することにより、図17及び図22に示すように板状部材50が既設床版20及び新設床版30に固定され、板状部材50によって既設床版20と新設床版30との間の隙間が閉塞される。また、既設床版20の壁高欄21と新設床版30の壁高欄31との間の隙間は仮設防護柵80によって覆われる。   As shown in FIG. 16, the plate-like members 50 are arranged side by side in the direction perpendicular to the bridge axis, and are connected to each other in the direction perpendicular to the bridge axis by a joint 52. Then, the upper end side of the fixing member 61 is screwed into the insert 53 of the plate-like member 50, the lower end side of the connecting member 61 is inserted into the hole 60 a of the fixing member 60, and the nut 63 is inserted into the lower end side of the connecting member 61 from below. 17 and 22, the plate-like member 50 is fixed to the existing floor slab 20 and the new floor slab 30, and the plate-like member 50 connects the existing floor slab 20 and the new floor slab 30. The gap between them is closed. Further, a gap between the wall height column 21 of the existing floor slab 20 and the wall height column 31 of the new floor slab 30 is covered with a temporary protective fence 80.

そして、新設床版30上に既設床版20の舗装22と同等の厚さの舗装33を形成することにより、既設床版20と新設床版30との間に段差のない路面が形成される。   Then, by forming a pavement 33 having the same thickness as the pavement 22 of the existing floor slab 20 on the new floor slab 30, a road surface having no step is formed between the existing floor slab 20 and the new floor slab 30. .

このように、本実施形態の床版取替工法によれば、既設床版20の橋軸方向端部に舗装の存在しない非舗装部23を形成し、舗装22の厚さ以下の厚さ寸法に形成された板状部材50をその上面が舗装22の上面と同等の高さになるように既設床版20の非舗装部23と新設床版30に亘って載置することにより、各床版20,30間の隙間を板状部材50によって閉鎖するようにしたので、各床版間20,30に段差のない路面を形成することができる。これにより、板状部材50を通過する走行車両に段差による衝撃を与えることがないので、安全に走行することができるとともに、段差のための徐行運転をする必要がなく、徐行による交通渋滞の発生を回避することができる。   As described above, according to the floor slab replacement method of the present embodiment, the non-paved portion 23 having no pavement is formed at the end portion in the bridge axis direction of the existing floor slab 20, and the thickness dimension is equal to or less than the thickness of the pavement 22. Is placed on the non-paved portion 23 of the existing floor slab 20 and the new floor slab 30 so that the upper surface of the plate-like member 50 is at the same height as the upper surface of the pavement 22. Since the gap between the plates 20 and 30 is closed by the plate-like member 50, a road surface having no step can be formed between the floor plates 20 and 30. As a result, the traveling vehicle passing through the plate-like member 50 is not subjected to an impact due to a step, so that it is possible to travel safely and there is no need for slow driving for the step, and traffic congestion due to slow traveling occurs. Can be avoided.

この場合、板状部材50に超高強度繊維補強コンクリートからなるプレストレストコンクリートを用いるようにしたので、必要な強度を確保しつつ板状部材50を舗装22の厚さよりも小さい厚さ寸法に形成することができる。即ち、板状部材50は既設床版20と新設床版30によって両端側を支持された両端支持梁構造となるため、走行車両の荷重により板状部材50の支間中央の下縁側に引張応力が集中するが、板状部材50はPC鋼材51によってプレストレスが付与されているので、荷重載荷時の引張応力が抑制されるとともに、超高強度繊維補強コンクリートによってコンクリート自体の引張強度と靭性が高い構造となる。従って、板状部材50は、プレストレス構造からなるだけでなく、超高強度繊維補強コンクリートが用いられることにより、厚さ寸法が小さくとも走行車両による垂直荷重や衝撃に対して十分な強度を得ることができる。   In this case, since the prestressed concrete made of ultra-high strength fiber reinforced concrete is used for the plate-like member 50, the plate-like member 50 is formed in a thickness dimension smaller than the thickness of the pavement 22 while ensuring the necessary strength. be able to. That is, since the plate-like member 50 has a double-end support beam structure in which both ends are supported by the existing floor slab 20 and the new floor slab 30, a tensile stress is applied to the lower edge side of the center of the span of the plate-like member 50 due to the load of the traveling vehicle. Although concentrated, the plate-like member 50 is prestressed by the PC steel material 51, so that the tensile stress at the time of loading is suppressed, and the tensile strength and toughness of the concrete itself are high due to the ultra high strength fiber reinforced concrete. It becomes a structure. Therefore, the plate-like member 50 not only has a pre-stress structure, but also uses ultra-high-strength fiber reinforced concrete, thereby obtaining sufficient strength against vertical loads and impacts by the traveling vehicle even if the thickness dimension is small. be able to.

更に、板状部材50の長辺方向に配列されるPC鋼材51が板状部材50の厚さ方向(上下方向)中央よりも下方に配置されているので、板状部材50の長辺方向に配列されるPC鋼材51の圧縮応力を板状部材50の上縁側よりも下縁側が大きくなるように発生させることができ、荷重載荷時に引張応力が生ずる板状部材50の下縁側に対する強度を高めることができる。   Furthermore, since the PC steel materials 51 arranged in the long side direction of the plate-like member 50 are arranged below the center in the thickness direction (vertical direction) of the plate-like member 50, The compressive stress of the arranged PC steel members 51 can be generated so that the lower edge side is larger than the upper edge side of the plate-like member 50, and the strength of the plate-like member 50 where tensile stress is generated when loaded is increased. be able to.

また、各床版20,30の下面側に板状部材50を各床版20,30に固定するための固定部材60を配置し、固定部材60と板状部材50とを締結部材61によって上下方向から締結することにより板状部材50を各床版20,30に固定するようにしたので、走行車両からの衝撃等によって板状部材50が上方に浮き上がることがなく、段差のない路面を確実に保つことができる。   Further, a fixing member 60 for fixing the plate member 50 to the floor slabs 20, 30 is arranged on the lower surface side of each floor slab 20, 30, and the fixing member 60 and the plate member 50 are moved up and down by the fastening member 61. Since the plate-like member 50 is fixed to the floor slabs 20 and 30 by fastening from the direction, the plate-like member 50 is not lifted upward by an impact from a traveling vehicle, and a road surface without a step is ensured. Can be kept in.

更に、各床版20,30間の隙間を橋軸直角方向に並べた複数の板状部材50によって閉鎖するようにしたので、施工現場ごとに床版の幅に応じた枚数の板状部材50を用いて各床版間の隙間を閉鎖することができ、汎用性を高めることができる。   Further, since the gaps between the floor slabs 20 and 30 are closed by the plurality of plate-like members 50 arranged in the direction perpendicular to the bridge axis, the number of plate-like members 50 corresponding to the width of the floor slab at each construction site. The gap between the floor slabs can be closed using, and versatility can be improved.

この場合、各板状部材50を互いに継ぎ手52によって橋軸直角方向に連結するようにしたので、各板状部材50が個々に橋軸直角方向に位置ずれを生ずることがなく、走行車両からの衝撃等による各板状部材50間の隙間の発生を防止することができる。   In this case, since the plate members 50 are connected to each other in the direction perpendicular to the bridge axis by the joint 52, the plate members 50 are not individually displaced in the direction perpendicular to the bridge axis. Generation | occurrence | production of the clearance gap between each plate-shaped member 50 by an impact etc. can be prevented.

また、板状部材50の上面には滑り止め加工が施されているので、走行車両のスリップを効果的に防止することができ、安全性の向上を図ることができる。   Moreover, since the upper surface of the plate-like member 50 is subjected to anti-slip processing, it is possible to effectively prevent the traveling vehicle from slipping and to improve safety.

更に、板状部材50を既設床版20の非舗装部23と新設床版30の上面に緩衝部材70を介して載置するようにしたので、走行車両からの振動や衝撃を緩衝部材70によって吸収することができる。これにより、板状部材50への衝撃荷重を軽減することができるとともに、車両通過時の騒音の発生も抑制することができる。   Furthermore, since the plate-like member 50 is placed on the non-paved portion 23 of the existing floor slab 20 and the upper surface of the new floor slab 30 via the buffer member 70, vibrations and impacts from the traveling vehicle are caused by the buffer member 70. Can be absorbed. Thereby, while being able to reduce the impact load to the plate-shaped member 50, generation | occurrence | production of the noise at the time of vehicle passage can also be suppressed.

尚、前記実施形態では、板状部材50と各床版20,30との間に緩衝部材70が介在することから、板状部材50を舗装22の厚さよりも小さい厚さ寸法に形成したものを示したが、板状部材50を舗装22の厚さと同等の厚さ寸法に形成し、緩衝部材70を用いずに板状部材50を各床版20,30に直接載置するようにしてもよい。   In the above embodiment, since the buffer member 70 is interposed between the plate-like member 50 and each floor slab 20, 30, the plate-like member 50 is formed to have a thickness dimension smaller than the thickness of the pavement 22. However, the plate-like member 50 is formed to have a thickness dimension equivalent to the thickness of the pavement 22, and the plate-like member 50 is directly placed on each floor slab 20, 30 without using the buffer member 70. Also good.

また、本発明の床版取替工法に用いる板状部材について、以下の実施例1及び比較例1,2に対して強度解析を行うことにより、実施例1の板状部材が本発明の床版取替工法に用いるための強度を有することを確認した。   Moreover, about the plate-shaped member used for the floor slab replacement method of this invention, the plate-shaped member of Example 1 is the floor | bed of this invention by performing a strength analysis with respect to the following Example 1 and Comparative Examples 1 and 2. It was confirmed that it had the strength to be used for the plate replacement method.

本発明の実施例1には超高強度繊維補強コンクリートからなるプレストレストコンクリート(以下、UFCPC板という。)、比較例1には通常のコンクリートからなるプレストレストコンクリート(以下、PC板という。)、比較例2には鋼板を用いた。この場合、図23に示すように、本試験に用いる板状部材Mは、縦(短辺)の寸法が1150mm、横(長辺)の寸法が2000mmに形成され、短辺の両端からそれぞれ100mmの位置を支点Rとして、中央の200mm×500mmの範囲の載荷位置Pに荷重が載荷される。この場合、各支点Rは、支間長が950mmで、前記実施形態の緩衝部材70の位置に対応しており、長辺の両端からそれぞれ100mmの位置に亘るように長辺方向に延びている。また、板状部材Mの厚さHは、実施例1及び比較例1が70mm、比較例2が30mmまたは36mmである。尚、板状部材Mの物性値は図24に示す。   Example 1 of the present invention is prestressed concrete (hereinafter referred to as UFCPC board) made of ultra-high strength fiber reinforced concrete, Comparative Example 1 is prestressed concrete (hereinafter referred to as PC board) made of ordinary concrete, and comparative example. A steel plate was used for 2. In this case, as shown in FIG. 23, the plate-like member M used in this test is formed with a vertical (short side) dimension of 1150 mm and a horizontal (long side) dimension of 2000 mm, and 100 mm from both ends of the short side. A load is loaded at a loading position P in the range of 200 mm × 500 mm in the center with the position of as the fulcrum R. In this case, each fulcrum R has a span length of 950 mm, corresponds to the position of the buffer member 70 of the above-described embodiment, and extends in the long side direction from both ends of the long side to the position of 100 mm. The thickness H of the plate-like member M is 70 mm in Example 1 and Comparative Example 1, and 30 mm or 36 mm in Comparative Example 2. The physical properties of the plate member M are shown in FIG.

本強度解析では、前記板状部材Mを解析モデルとして、FEM(有限要素法)構造解析により以下の解析を行った。   In this strength analysis, the following analysis was performed by FEM (finite element method) structural analysis using the plate-like member M as an analysis model.

まず、板状部材Mの載荷位置Pに荷重100kNを載荷した場合の応力を実施例1及び比較例1,2について解析した。   First, Example 1 and Comparative Examples 1 and 2 were analyzed for stress when a load of 100 kN was loaded at the loading position P of the plate-like member M.

解析の結果、図25に示すように、実施例1及び比較例2については、上縁応力度及び下縁応力度が何れも許容応力度を超えておらず、必要強度を有することが確認された。一方、比較例1は上縁応力度及び下縁応力度が何れも許容応力度を超えており、必要強度を有しない結果となった。また、最大変位は、実施例1が比較例1,2よりも小さかった。   As a result of the analysis, as shown in FIG. 25, it was confirmed that the upper edge stress level and the lower edge stress level did not exceed the allowable stress level for Example 1 and Comparative Example 2 and had the required strength. It was. On the other hand, in Comparative Example 1, both the upper edge stress level and the lower edge stress level exceeded the allowable stress level, and the result was that the required strength was not obtained. In addition, the maximum displacement was smaller in Example 1 than in Comparative Examples 1 and 2.

次に、衝撃荷重を考慮し、板状部材Mの載荷位置Pに荷重140kNを載荷した場合の応力を実施例1及び比較例2について解析した。尚、PC板の比較例1は、荷重100kNの解析において必要強度を有していなかったため、荷重140kNの解析対象からは除外した。   Next, in consideration of the impact load, the stress when the load 140 kN was loaded at the loading position P of the plate member M was analyzed for Example 1 and Comparative Example 2. In addition, since the comparative example 1 of PC board did not have required intensity | strength in the analysis of load 100kN, it excluded from the analysis object of load 140kN.

解析の結果、図26に示すように、実施例1及び比較例2については、上縁応力度及び下縁応力度の何れも許容応力度を超えておらず、必要強度を有していることが確認された。また、最大変位は、実施例1が比較例2よりも小さかった。   As a result of the analysis, as shown in FIG. 26, for Example 1 and Comparative Example 2, neither the upper edge stress level nor the lower edge stress level exceeds the allowable stress level and has the required strength. Was confirmed. The maximum displacement was smaller in Example 1 than in Comparative Example 2.

ここで、実施例1及び比較例2の重量を比較したところ、図27に示すように、板状部材Mの一枚当たりの重量は実施例1が402.2kg、比較例2が650.1であり、実施例1は比較例2の約2/3の重量であった。   Here, when the weights of Example 1 and Comparative Example 2 were compared, as shown in FIG. 27, the weight per sheet member M was 402.2 kg in Example 1 and 650.1 in Comparative Example 2. Example 1 weighed about 2/3 of Comparative Example 2.

以上より、UFCPC板の実施例1は、一般的な舗装の厚さ80mmよりも小さい厚さ70mmに形成しても必要強度を有し、比較例1のように厚さ70mmでは必要強度が不足するPC板に対し、強度において優れているという結果が得られた。また、UFCPC板の実施例1は、鋼板の比較例2に対し、軽量且つたわみが少ない点で優れているという結果が得られた。   From the above, Example 1 of the UFCPC board has the required strength even when formed to a thickness of 70 mm, which is smaller than a typical pavement thickness of 80 mm, and the required strength is insufficient at a thickness of 70 mm as in Comparative Example 1. The result that it was excellent in intensity | strength was obtained with respect to PC board to do. Moreover, the result that the Example 1 of the UFCPC board was superior to the comparative example 2 of the steel sheet in terms of light weight and less deflection was obtained.

さらに実施例1については、載荷位置Pに200kNを載荷した場合の終局耐力の確認をおこなった。その結果、図28に示すように、200kNに対しても発生曲げモーメントが破壊抵抗曲げモーメント以下であることを確認した。   Furthermore, about Example 1, the ultimate proof stress at the time of loading 200kN in the loading position P was confirmed. As a result, as shown in FIG. 28, it was confirmed that the generated bending moment was not more than the fracture resistance bending moment even for 200 kN.

1…合成桁、10…主桁、20…既設床版、22…舗装、23…非舗装部、30…新設床版、33…舗装、40…軸力伝達装置、50…板状部材、60…固定部材、70…緩衝部材。   DESCRIPTION OF SYMBOLS 1 ... Composite girder, 10 ... Main girder, 20 ... Existing floor slab, 22 ... Pavement, 23 ... Non-paved part, 30 ... Newly installed floor slab, 33 ... Pavement, 40 ... Axial force transmission device, 50 ... Plate member, 60 ... fixing member, 70 ... buffer member.

Claims (6)

主桁上の既設床版の橋軸方向一部区間を撤去した後、既設床版の撤去区間に新設床版を設置し、主桁上に残存する既設床版と前記新設床版との端面間に配置した軸力伝達装置によって各床版の端面に橋軸方向への軸力を付与した後、各床版間の隙間を板状部材によって閉鎖することにより各床版間の通行を可能にする合成桁の床版取替工法において、
前記板状部材に超高強度繊維補強コンクリートからなるプレストレストコンクリートを用いるとともに、
前記既設床版の橋軸方向端部に舗装の存在しない非舗装部を形成し、
舗装の厚さ以下の厚さ寸法に形成された前記板状部材をその上面が舗装の上面と同等の高さになるように既設床版の非舗装部と新設床版に亘って載置することにより、各床版間の隙間を板状部材によって閉鎖する
ことを特徴とする合成桁の床版取替工法。
After removing a section of the existing floor slab on the main girder in the direction of the bridge axis, a new floor slab is installed in the removed section of the existing floor slab, and the end face of the existing floor slab remaining on the main girder and the new floor slab Passing between floor slabs is possible by applying an axial force in the bridge axis direction to the end face of each floor slab by the axial force transmission device placed between them, and then closing the gap between each floor slab with a plate-like member In the composite girder floor slab replacement method,
While using prestressed concrete made of ultra high strength fiber reinforced concrete for the plate-like member,
Forming a non-paved portion where there is no pavement at the bridge axial direction end of the existing floor slab,
The plate-like member formed to have a thickness dimension equal to or less than the thickness of the pavement is placed over the non-paved portion of the existing floor slab and the new floor slab so that the upper surface of the plate member has the same height as the upper surface of the pavement. The composite girder floor slab replacement method is characterized in that the gap between the floor slabs is closed by a plate-like member.
前記床版の下面側に板状部材を床版に固定するための固定部材を配置し、固定部材と板状部材とを締結部材によって上下方向から締結することにより板状部材を床版に固定する
ことを特徴とする請求項1記載の合成桁の床版取替工法。
A fixing member for fixing the plate member to the floor slab is disposed on the lower surface side of the floor slab, and the plate member is fixed to the floor slab by fastening the fixing member and the plate member from above and below by the fastening member. The floor replacement method for a composite girder according to claim 1, wherein:
前記各床版間の隙間を橋軸直角方向に並べた複数の板状部材によって閉鎖する
ことを特徴とする請求項1または2記載の合成桁の床版取替工法。
The composite slab floor slab replacement method according to claim 1 or 2, wherein the gaps between the floor slabs are closed by a plurality of plate-like members arranged in a direction perpendicular to the bridge axis.
前記各板状部材を互いに橋軸直角方向に連結する
ことを特徴とする請求項3記載の合成桁の床版取替工法。
The said plate-like member is mutually connected in a bridge axis orthogonal direction. The floor slab replacement method of the synthetic girder of Claim 3 characterized by the above-mentioned.
前記板状部材の上面には滑り止め加工が施されている
ことを特徴とする請求項1乃至4の何れか1項記載の合成桁の床版取替工法。
5. The composite girder floor slab replacement method according to claim 1, wherein an anti-slip process is applied to an upper surface of the plate-like member.
前記板状部材を既設床版の非舗装部と新設床版の上面に緩衝部材を介して載置する
ことを特徴とする請求項1乃至5の何れか1項記載の合成桁の床版取替工法。
6. The composite girder floor slab remover according to claim 1, wherein the plate-like member is placed on a non-paved portion of an existing floor slab and an upper surface of a new floor slab via a buffer member. Replacement method.
JP2017018799A 2017-02-03 2017-02-03 Floor slab replacement method for synthetic girders Active JP6837343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017018799A JP6837343B2 (en) 2017-02-03 2017-02-03 Floor slab replacement method for synthetic girders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017018799A JP6837343B2 (en) 2017-02-03 2017-02-03 Floor slab replacement method for synthetic girders

Publications (2)

Publication Number Publication Date
JP2018123643A true JP2018123643A (en) 2018-08-09
JP6837343B2 JP6837343B2 (en) 2021-03-03

Family

ID=63111070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017018799A Active JP6837343B2 (en) 2017-02-03 2017-02-03 Floor slab replacement method for synthetic girders

Country Status (1)

Country Link
JP (1) JP6837343B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100966A (en) * 2018-12-20 2020-07-02 鹿島建設株式会社 Fixed structure of main girder and precast slab and method of fixing main girder and precast slab
JP2020133214A (en) * 2019-02-19 2020-08-31 株式会社Ihiインフラシステム Floor slab replacement method and vehicle going-over board
JP2020186614A (en) * 2019-05-17 2020-11-19 株式会社大林組 Precast floor slab connection part structure and connection part construction method
JP2021001536A (en) * 2019-06-19 2021-01-07 株式会社大林組 Bridge floor slab replacement method
JP2021188454A (en) * 2020-06-03 2021-12-13 株式会社大林組 Bridge floor slab replacement method
JP2022006913A (en) * 2020-06-25 2022-01-13 株式会社大林組 Floor slab replacing method
JP7464075B2 (en) 2022-04-20 2024-04-09 株式会社大林組 Prestressed structure and precast concrete member using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150604A (en) * 1982-02-26 1983-09-07 石川島建材工業株式会社 Impact replacement of synthetic beam floor plate in road bridge
JPS6356711U (en) * 1986-09-25 1988-04-15
US5311629A (en) * 1992-08-03 1994-05-17 Smith Peter J Deck replacement system with improved haunch lock
JPH08226102A (en) * 1995-02-21 1996-09-03 Fuji Car Mfg Co Ltd Non-slip for concrete surface
JPH08246407A (en) * 1995-03-14 1996-09-24 Osaka Gas Co Ltd Lining method and lining plate
JP2008156934A (en) * 2006-12-25 2008-07-10 Nippon Steel Corp Lining plate
JP2015183404A (en) * 2014-03-24 2015-10-22 横河工事株式会社 Replacing method for stretching device and structure temporal forming plate
JP2016008394A (en) * 2014-06-23 2016-01-18 大成建設株式会社 Precast floor slab and connecting structure with main girder
JP2016017269A (en) * 2014-07-04 2016-02-01 大成建設株式会社 Precast structure and joint structure for the precast structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150604A (en) * 1982-02-26 1983-09-07 石川島建材工業株式会社 Impact replacement of synthetic beam floor plate in road bridge
JPS6356711U (en) * 1986-09-25 1988-04-15
US5311629A (en) * 1992-08-03 1994-05-17 Smith Peter J Deck replacement system with improved haunch lock
JPH08226102A (en) * 1995-02-21 1996-09-03 Fuji Car Mfg Co Ltd Non-slip for concrete surface
JPH08246407A (en) * 1995-03-14 1996-09-24 Osaka Gas Co Ltd Lining method and lining plate
JP2008156934A (en) * 2006-12-25 2008-07-10 Nippon Steel Corp Lining plate
JP2015183404A (en) * 2014-03-24 2015-10-22 横河工事株式会社 Replacing method for stretching device and structure temporal forming plate
JP2016008394A (en) * 2014-06-23 2016-01-18 大成建設株式会社 Precast floor slab and connecting structure with main girder
JP2016017269A (en) * 2014-07-04 2016-02-01 大成建設株式会社 Precast structure and joint structure for the precast structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100966A (en) * 2018-12-20 2020-07-02 鹿島建設株式会社 Fixed structure of main girder and precast slab and method of fixing main girder and precast slab
JP7186600B2 (en) 2018-12-20 2022-12-09 鹿島建設株式会社 Fixing structure between main girder and precast floor slab and fixing method between main girder and precast floor slab
JP2020133214A (en) * 2019-02-19 2020-08-31 株式会社Ihiインフラシステム Floor slab replacement method and vehicle going-over board
JP2020186614A (en) * 2019-05-17 2020-11-19 株式会社大林組 Precast floor slab connection part structure and connection part construction method
JP2021001536A (en) * 2019-06-19 2021-01-07 株式会社大林組 Bridge floor slab replacement method
JP7483507B2 (en) 2019-06-19 2024-05-15 株式会社大林組 Bridge deck replacement method
JP2021188454A (en) * 2020-06-03 2021-12-13 株式会社大林組 Bridge floor slab replacement method
JP7484439B2 (en) 2020-06-03 2024-05-16 株式会社大林組 Bridge deck replacement method
JP2022006913A (en) * 2020-06-25 2022-01-13 株式会社大林組 Floor slab replacing method
JP7452284B2 (en) 2020-06-25 2024-03-19 株式会社大林組 Floor slab replacement method
JP7464075B2 (en) 2022-04-20 2024-04-09 株式会社大林組 Prestressed structure and precast concrete member using the same

Also Published As

Publication number Publication date
JP6837343B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP6837343B2 (en) Floor slab replacement method for synthetic girders
JP5266291B2 (en) Construction method of bridge deck and joint structure of precast deck
JP5149853B2 (en) Construction method of track girder, box girder and box girder for straddle type monorail
EP3540125A1 (en) Hybrid composite concrete bridge and method of assembling
WO2010021428A1 (en) Opening steel composite girder and method for manufacturing the same
JP2014001579A (en) Construction method of box-girder bridge
KR100974305B1 (en) Continuous beam bridge construction method using girder for multi-span
KR100635137B1 (en) Bridge slab construction method and lattice bar deck-shaped precast concrete plate applied therein
JP4845039B2 (en) RC slab minority main girder bridge
Kim et al. Structural performance evaluation of a precast PSC curved girder bridge constructed using multi-tasking formwork
KR101160187B1 (en) Precast integrated track girder and it's manufacture and construction method for railway bridge
KR101060103B1 (en) Prestressed concrete paving method for road repair and its structure
JP2007169950A (en) Expansion body for bridge, and bridge expansion structure using the same
KR20060022322A (en) Composite slab and the joint structure
JP2003138521A (en) Re placing method for slab
KR101381974B1 (en) Concrete deck slab assembly, Method for making the same and Temporary bridge using the same
KR100558089B1 (en) Apparatus for repairing and reinforcing box-typed concrete structures by increasing the section of concrete structures, and repairing and reinforcing method using the apparatus
KR100847611B1 (en) Prestress concrete deck plate
JP6755172B2 (en) Floor slab renewal method
JP2020200730A (en) Repair method for concrete slab
KR100569226B1 (en) Bottom plate reinforcement method of continuous bridge by inclined tension material
JP7239356B2 (en) Concrete slab replacement method for highway bridges
JP6778159B2 (en) Reinforcing structure and floor slab replacement method when replacing the floor slab
JP7290461B2 (en) Connection structure of girders and precast floor slabs
JP7272918B2 (en) Existing floor slab replacement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210209

R150 Certificate of patent or registration of utility model

Ref document number: 6837343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250