JP6755172B2 - Floor slab renewal method - Google Patents

Floor slab renewal method Download PDF

Info

Publication number
JP6755172B2
JP6755172B2 JP2016251603A JP2016251603A JP6755172B2 JP 6755172 B2 JP6755172 B2 JP 6755172B2 JP 2016251603 A JP2016251603 A JP 2016251603A JP 2016251603 A JP2016251603 A JP 2016251603A JP 6755172 B2 JP6755172 B2 JP 6755172B2
Authority
JP
Japan
Prior art keywords
floor slab
main girder
existing
steel main
jack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016251603A
Other languages
Japanese (ja)
Other versions
JP2018104970A (en
Inventor
仁志 田嶋
仁志 田嶋
政彦 岸田
政彦 岸田
陽介 石原
陽介 石原
智也 峯村
智也 峯村
佐藤 公紀
公紀 佐藤
貴宏 山内
貴宏 山内
明男 森田
明男 森田
明洋 山浦
明洋 山浦
晃生 白水
晃生 白水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawada Industries Inc
Original Assignee
Kawada Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawada Industries Inc filed Critical Kawada Industries Inc
Priority to JP2016251603A priority Critical patent/JP6755172B2/en
Publication of JP2018104970A publication Critical patent/JP2018104970A/en
Application granted granted Critical
Publication of JP6755172B2 publication Critical patent/JP6755172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、鋼主桁を有する道路の既設床版、例えばRC床版(Reinforced-Concrete床版)を新規の床版、例えば鋼床版に取替える(更新する)工法に関するものである。 The present invention relates to a method of replacing (renewing) an existing floor slab of a road having a steel main girder, for example, an RC slab (Reinforced-Concrete slab) with a new slab, for example, a steel slab.

床版を更新する際に、道路の幅員全域を更新すること(全幅工法)がよく行われてきたが、この工法は道路の全幅員を同時に更新するため、道路を閉鎖しなければならず、交通量への影響が大きく、物流面への影響も大きいという問題がある。また、交通量が既設橋梁設置時よりも増大し、それに伴って交通荷重が大きくなったこともあり、設計基準も変遷し、その関係で床版厚は以前より厚くなる。この結果、荷重全体が増加したので、以前の基準で設計されたRC床版を、最新の規準で設計したRC床版に更新すると鋼主桁の補強を行う必要が生じる。一方では、床版を更新する際に、鋼主桁の応力が残存している状態では、床版を更新したときに、鋼桁への補強量が増えることが懸念されている。 When updating the floor slab, it has been common practice to update the entire width of the road (full-width construction method), but since this construction method updates the full width of the road at the same time, the road must be closed. There is a problem that the impact on traffic volume is large and the impact on logistics is also large. In addition, the traffic volume has increased compared to when the existing bridge was installed, and the traffic load has increased accordingly, and the design standards have changed, so the slab thickness will be thicker than before. As a result, the overall load has increased, and if the RC deck designed according to the previous standards is replaced with the RC deck designed according to the latest standards, it will be necessary to reinforce the steel main girder. On the other hand, when the floor slab is renewed, if the stress of the steel main girder remains, there is a concern that the amount of reinforcement to the steel girder will increase when the floor slab is renewed.

前記問題に対しては、少しでも交通量への影響が少なくなるように、道路の横断面で二分して半幅ずつ施工する分割工法(半幅工法)や、そのための床版が発明されてきた(特許文献1)。半幅工法は鋼橋の一部車線を交通規制し、他の車線を交通解放して、交通規制している側の床版を更新してから、交通規制と交通解放を反対車線に切り替えて、切り替え後に交通規制している側の床版を更新する工法であるため、全幅工法に比して交通量の制約が低減する。ここで、鋼橋とは梁状の鋼主桁や鋼横桁と各種床版からなる構造物をいう。 To solve the above problem, a division method (half-width method) in which the cross section of the road is divided into two parts and half-width is constructed, and a floor slab for that purpose have been invented so as to reduce the influence on the traffic volume as much as possible (half-width method). Patent Document 1). The half-width construction method regulates traffic in some lanes of the steel bridge, releases traffic in other lanes, updates the floor slab on the side that regulates traffic, and then switches traffic regulation and release to the opposite lane. Since it is a construction method that renews the floor slab on the side that regulates traffic after switching, restrictions on traffic volume are reduced compared to the full-width construction method. Here, the steel bridge refers to a structure composed of a beam-shaped steel main girder, a steel cross girder, and various floor slabs.

従来、床版を更新する際に、外ケーブルにより鋼主桁の応力を低減する工法が提案されている(特許文献2)。この工法は、ケーブル定着用ブラケットを、桁に、高張力万力を用いて摩擦接合し、橋軸方向にケーブルを配し、このケーブルに緊張力を与えることによって、桁に負の曲げモーメントを生ぜしめるのに必要なプレストレスを導入する工法である。しかし、この工法は、これまで実施されることはほとんどなかった。それは、鋼主桁がもともと曲げ部材として設計されており、圧縮力を与えることで架設時に座屈の可能性が生じるため安全性が低下することや、圧縮力を与えることで床版を切断するときにカッターがかんで施工できないこと、下フランジにブラケットを設けるための施工は万力では許可が下りずに高力ボルトによる摩擦接合を用いれば大掛かりとなるのが理由であった。 Conventionally, a method of reducing the stress of the steel main girder by using an outer cable when updating the floor slab has been proposed (Patent Document 2). In this method, the cable fixing bracket is frictionally welded to the girder using a high-tensile vise, the cable is arranged in the direction of the bridge axis, and a tension is applied to this cable to give a negative bending moment to the girder. It is a construction method that introduces the prestress necessary for producing. However, this method has rarely been implemented so far. The steel main girder was originally designed as a bending member, and applying compressive force causes the possibility of buckling during erection, which reduces safety and cuts the floor slab by applying compressive force. The reason was that sometimes the cutter could not be installed with a can, and the installation to install the bracket on the lower flange was not permitted by vise, and it would be large if frictional joining with high-strength bolts was used.

前記理由等もあって、これまで、床版を更新する際に、鋼主桁の応力改善を行うことはほとんどなく、鋼主桁に作用する応力がその許容応力を超過すれば鋼主桁を補強しているのが現状である。場合によっては、許容たわみを越える場合もあり、その場合も鋼主桁を補強して対処しているのが現状である。 For the above reasons, the stress of the steel main girder has rarely been improved when updating the plate, and if the stress acting on the steel main girder exceeds the allowable stress, the steel main girder will be replaced. The current situation is that it is being reinforced. In some cases, the allowable deflection may be exceeded, and even in such cases, the current situation is to reinforce the steel main girder.

特開2015−151768号公報Japanese Unexamined Patent Publication No. 2015-151768 特開平6−322715号公報Japanese Unexamined Patent Publication No. 6-322715

本発明の解決課題は、鋼橋の床版更新において、鋼橋の横断面を分割して床版を更新する場合に、鋼主桁を補強することなく簡易に、効率良く施工できるようにすること、短期間での施工を可能として交通規制の影響を極力少なくすることにある。また、鋼主桁の応力改善を図ることで、鋼主桁への補強をなくしたり、補強量を削減したりすることにある。 The problem to be solved by the present invention is to enable easy and efficient construction without reinforcing the steel main girder when the cross section of the steel bridge is divided and the floor slab is renewed in the renewal of the floor slab of the steel bridge. The purpose is to enable construction in a short period of time and minimize the impact of traffic regulations. Further, by improving the stress of the steel main girder, the reinforcement to the steel main girder is eliminated or the amount of reinforcement is reduced.

本発明者らは、前記課題解決に先立って、合成桁及び非合成桁の構造及び構築工法に着目した。合成桁は鋼主桁の上にコンクリート床版(RC床版)が設置され、スタッドで連結固定して、RC床版が位置ずれしないようにしてある。非合成桁は鋼主桁の上にRC床版が設置されているが、鋼主桁とRC床版がスタッドで連結固定されないため、RC床版は合成桁に比して位置ずれし易い。合成桁の場合も、非合成桁の場合も、RC床版の上には舗装が施工され、高欄が設置されている。 Prior to solving the above problems, the present inventors focused on the structure and construction method of synthetic girders and non-synthetic girders. For the synthetic girder, a concrete slab (RC slab) is installed on the steel main girder and connected and fixed with studs to prevent the RC slab from shifting. In the non-synthetic girder, the RC slab is installed on the steel main girder, but since the steel main girder and the RC slab are not connected and fixed by studs, the RC slab is more likely to be displaced than the synthetic girder. In both the case of synthetic girders and non-synthetic girders, pavement is constructed on the RC plate bridge and balustrades are installed.

合成桁の場合も、非合成桁の場合も、鋼主桁、床版、舗装、高欄(図示しない)の総合荷重(δall)により、鋼主桁、床版、舗装が下方にたわむことが予想される。一般に、合成桁、非合成桁いずれの場合も、支間長がその輸送可能な部材長を越えるため、部材と部材を現場にて接合する現場継手が必要となる。このため、構築時に、鋼主桁の下の横断面の幅方向に、例えば、ベント(支保工)を現場継手部に配置し、工場製作時に前記予想されるたわみ分を上方に反り返らせた状態として製作し(キャンバーを付与し)、その位置で仮受けする。この状態を、鋼主桁に作用する荷重がないことから、無応力状態と呼ぶ。この状態で鋼主桁の現場接合を行う。その後に、前記支保工を撤去すると鋼主桁の死荷重分のたわみが鋼主桁に生じる。このときは鋼主桁に鋼主桁の死荷重相当の応力が作用する。 For both synthetic girders and non-synthetic girders, it is expected that the steel main girder, plate bridge, pavement, and pavement will bend downward due to the total load (δall) of the steel main girder, plate bridge, pavement, and balustrade (not shown). Will be done. In general, in both synthetic girders and non-synthetic girders, the span length exceeds the transportable member length, so an on-site joint is required to join the members on-site. For this reason, at the time of construction, for example, a vent (support work) was placed at the site joint in the width direction of the cross section below the steel main girder, and the expected deflection at the time of factory production was warped upward. Manufactured as a state (with camber) and temporarily received at that position. This state is called a stress-free state because there is no load acting on the steel main girder. In this state, the steel main girder is joined in the field. After that, when the support work is removed, the steel main girder is deflected by the dead load of the steel main girder. At this time, a stress equivalent to the dead load of the steel main girder acts on the steel main girder.

合成桁の場合は、前記キャンバー付与された鋼主桁を架設後、ベントを解放し、鋼主桁がその自重でたわんだ状態で、鋼主桁の上にコンクリートを打設してRC床版を構築する。なお、このときの鋼主桁のたわみを前死荷重と呼ぶ。前死荷重=δ1(鋼主桁の荷重)+δ2(床版の荷重)である。RC床版が硬化すれば鋼主桁と合成される。この合成以降に舗装が施工され高欄が設置される。この舗装及び高欄等鋼主桁とRC床版が合成された後、載荷される死荷重を後死荷重と呼ぶ。舗装の荷重をδ3、高欄の荷重をδ4とすると、製作時に付与するたわみ分(総合死荷重)δall=δ1+δ2+δ3+δ4となる。この量をキャンバー(上げこし量)と呼ぶ。 In the case of a synthetic girder, after erection of the steel main girder with the camber, the vent is released, and with the steel main girder flexed by its own weight, concrete is placed on the steel main girder and the RC floor slab is placed. To build. The deflection of the steel main girder at this time is called the pre-dead load. Pre-dead load = δ1 (load of steel main girder) + δ2 (load of plate slab). When the RC plate is hardened, it is combined with the steel main girder. After this synthesis, pavement will be constructed and balustrades will be installed. The dead load that is loaded after the pavement and balustrade steel main girder and RC deck slab are combined is called the post-dead load. Assuming that the load of the pavement is δ3 and the load of the balustrade is δ4, the amount of deflection (total dead load) given at the time of production is δall = δ1 + δ2 + δ3 + δ4. This amount is called camber (raising amount).

非合成桁の場合は、前記キャンバー付与後、床版と鋼主桁との合成作用を考慮しないので、前死荷重、後死荷重といった分け方はしないのが一般的である。また、床版と鋼主桁が重ね梁のように挙動するので、鋼主桁と床版が同じ材料で同じ断面であっても、たわみが増え、応力も大きくなることが一般的である。 In the case of a non-synthetic girder, after the camber is applied, the composite action of the floor slab and the steel main girder is not considered, so that the pre-dead load and the post-dead load are generally not divided. Further, since the floor slab and the steel main girder behave like a lap beam, even if the steel main girder and the floor slab are made of the same material and have the same cross section, the deflection is generally increased and the stress is also increased.

本発明の床版更新工法は、合成桁、非合成桁のいずれの場合も、鋼橋の既設床版を撤去し、撤去跡に新設床版を設置し、当該新設床版を鋼橋の既設鋼主桁に接合する床版更新工法であり、新設床版を既設鋼主桁に接合する前に、既設鋼主桁を当該既設鋼主桁自身によるたわみを打ち消す以上に鋼主桁を下方より上方に向けてジャッキアップ(強制押上げ)して当該既設鋼主桁に蓄積されているひずみを緩和して応力状態を低減してから、既設床版を橋軸方向と橋軸直角方向に切断して任意サイズに区画し、区画された床版を個別に撤去し、撤去跡に新設床版を設置して、その新設床版を既設鋼主桁と接合し、少なくとも当該接合後にジャッキアップを解放することを特徴とする工法である。既設床版を供用しながら新設床版に更新する工法の場合、既設床版にジャッキアップによる引張力をそれほど与えないための床版更新工法では、ジャッキアップを段階的に行ってトータルのジャッキアップ量を既設鋼主桁自身によるたわみを打ち消す量と同等あるいはそれ以上のジャッキアップ量にし、トータルのジャッキアップ量になる前に既設床版の橋軸直角方向への切断を行い、トータルジャッキアップ量になってから既設床版の橋軸方向への切断を行うこともできる。この場合、既設床版を橋軸直角方向へ切断するときのジャッキアップ量を、後死荷重分のひずみを緩和できる量又は打ち消すことのできる量にし、既設床版を橋軸方向へ切断するときのジャッキアップ量をトータルのジャッキアップ量とするのが望ましい。 In the floor slab renewal method of the present invention, the existing floor slab of the steel bridge is removed, a new floor slab is installed at the removal trace, and the new floor slab is used as the existing steel bridge for both synthetic girders and non-synthetic girders. It is a floor slab renewal method that joins to the steel main girder, and before joining the new floor slab to the existing steel main girder, the steel main girder is moved from below more than canceling the deflection of the existing steel main girder itself. After jacking up (forced pushing up) upward to alleviate the strain accumulated in the existing steel main girder and reduce the stress state, the existing slab is cut in the direction perpendicular to the bridge axis. Then, divide it into arbitrary sizes, remove the divided floor slabs individually, install a new floor slab at the removal site, join the new floor slab to the existing steel main girder, and jack up at least after the joining. It is a construction method characterized by releasing. In the case of the construction method of updating to a new floor slab while using the existing floor slab, in the floor slab renewal method to not give much tensile force by jacking up to the existing floor slab, jacking up is performed step by step to total jack up. The amount of jack-up is equal to or greater than the amount that cancels the deflection of the existing steel main girder itself, and before the total jack-up amount is reached, the existing floor slab is cut in the direction perpendicular to the bridge axis to achieve the total jack-up amount. It is also possible to cut the existing floor slab in the direction of the bridge axis after becoming. In this case, when the existing slab is cut in the direction perpendicular to the bridge axis, the jack-up amount is set to an amount that can alleviate or cancel the strain of the post-dead load, and the existing slab is cut in the direction of the bridge axis. It is desirable that the jack-up amount of is the total jack-up amount.

本発明の床版更新工法は、既設鋼橋の幅員全域に亘って交通規制して床版を更新する全幅更新工法にも、鋼橋の幅員全域を二以上の領域に区分し、一部領域を交通規制し、他の領域を交通解放して、交通規制している領域(先行側領域)の床版更新をしてから、交通規制と交通解放を他の領域に切り替えて、切り替え後に交通規制している領域(後行側領域)の床版を更新する領域別更新工法にも適用できる。 The floor slab renewal method of the present invention also includes a full-width renewal method in which traffic is regulated over the entire width of an existing steel bridge to renew the floor slab, and the entire width of the steel bridge is divided into two or more areas, and some areas. After traffic regulation, releasing traffic in other areas, updating the floor slab of the area where traffic is restricted (preceding area), switch traffic regulation and traffic release to other areas, and traffic after switching It can also be applied to the area-specific renewal method for renewing the floor slab of the regulated area (backward side area).

前記全幅更新工法の場合は、鋼橋の幅員全域に亘ってジャッキアップしてから、当該全域の既設床版を任意サイズに切断して区画し、区画された床版を個別に撤去し、撤去跡に新設床版を設置し、その新設床版を既設鋼主桁と接合する。前記領域別更新工法の場合は、鋼橋の幅員全域を二以上の領域に区分し、鋼主桁のジャッキアップ量を前記領域別に変え、領域ごとに既設床版を任意サイズに切断して区画し、区画された床版を個別に撤去し、撤去跡に新設床版を設置し、その新設床版を既設鋼主桁と接合する。 In the case of the full-width renewal method, after jacking up the entire width of the steel bridge, the existing floor slabs in the entire width are cut to an arbitrary size and partitioned, and the partitioned floor slabs are individually removed and removed. A new floor slab will be installed at the site, and the new floor slab will be joined to the existing steel main girder. In the case of the area-specific renewal method, the entire width of the steel bridge is divided into two or more areas, the jack-up amount of the steel main girder is changed for each area, and the existing floor slab is cut to an arbitrary size for each area. Then, the partitioned floor slabs are individually removed, a new floor slab is installed at the removal trace, and the new floor slab is joined to the existing steel main girder.

本発明の床版更新工法は次の効果がある。
(1)鋼主桁に蓄積されていたひずみを低減した既存の鋼主桁と、ひずみのない新設床版とを接合するので、鋼主桁への補強作業が不要となったり、削減されたりし、作業効率の良い工法となる。
(2)鋼主桁に蓄積されているひずみを低減するとか、逆のひずみ、つまり支間中央部の下フランジのひずみに圧縮側のひずみを、上フランジ側に引張側のひずみを与えた状態で新設床版と接合すると、鋼主桁への補強作業がより不要或いはより削減されることとなり作業効率が向上する。更に、更新後の橋梁全体の重さも補強材を使用しない分だけ抑制される工法となる。つまり、死活荷重合成桁や、予め、鋼主桁に逆にひずみを与えた合成桁となる。
ここで、一般の活荷重合成桁が、鋼主桁と床版が合成される以降の荷重が交通荷重である活荷重が主となることから、活荷重合成桁と呼ばれる。一方、死活荷重合成桁とは、鋼主桁と床版が合成されるのが前死荷重状態であることから、前死荷重に対しても鋼主桁と床版との合成断面で有効である。このため、応力やひずみ、たわみが同じ断面であれば活荷重合成桁よりも小さくなる。つまり、ある程度荷重が増えても、補強することなく現状の断面で抵抗できる可能性がある。一般に、鋼床版桁や場所打ちのコンクリート桁は死活荷重合成桁である。
(3)床版に蓄積されているひずみを低減してから既設床版を橋軸直角方向に垂直に切断するので切断作業が容易になる。鋼主桁を切断する場合も同様である。
(4)ジャッキアップを段階的に行ってトータルのジャッキアップ量を既設鋼主桁自身によるたわみを打ち消す量と同等あるいはそれ以上のジャッキアップ量にし、トータルのジャッキアップ量になる前に既設床版の橋軸直角方向への切断を行い、トータルジャッキアップ量になってから既設床版の橋軸方向への切断を行えば、既設床版の橋軸直角方向への切断と、既設床版の橋軸方向への切断を、夫々の切断に適した応力状態で行うことができ床版にそれほどジャッキアップによる引張力をあたえることなく切断することができる。
(5)既設床版を橋軸直角方向へ切断するときのジャッキアップ量を、後死荷重分のひずみを緩和できる量又は打ち消すことのできる量にし、既設床版を橋軸方向へ切断するときのジャッキアップ量をトータルのジャッキアップ量にした場合も、夫々の切断を、夫々の切断に適した応力状態で行うことができ、床版にそれほどジャッキアップによる引張力をあたえることなく切断することができる。
(6)鋼橋を二以上の領域に分けて施工する場合、ジャッキアップ量を、施工領域の鋼主桁に多く、未施工側の鋼主桁に少なくすれば、未施工側の床版に加わる押し上げ量が抑制され、当該床版に亀裂、損傷等が生じにくくなり、未施工側を走行する自動車の安全が確保される。
(7)更新する床版にコンクリート床版を適用する場合、鋼主桁をジャッキアップした後、コンクリート床版を鋼主桁上に設置し橋軸方向に連続した状態で、鋼主桁と接続し、その後ジャッキアップを解放すれば、コンクリート床版に圧縮力が作用し、ひび割れの発生を低減することができ、床版の耐久性向上に期待できる。
The floor slab renewal method of the present invention has the following effects.
(1) Since the existing steel main girder with reduced strain accumulated in the steel main girder is joined to the new floor slab without strain, reinforcement work for the steel main girder becomes unnecessary or reduced. However, it is a construction method with good work efficiency.
(2) In a state where the strain accumulated in the steel main girder is reduced, or the reverse strain, that is, the strain on the compression side is applied to the strain on the lower flange at the center of the support, and the strain on the tension side is applied to the upper flange side. When joined with a new floor slab, the work of reinforcing the steel main girder becomes unnecessary or reduced, and work efficiency is improved. Furthermore, the weight of the entire bridge after renewal will be reduced by the amount that no reinforcing material is used. That is, it becomes a life-and-death load composite girder or a composite girder in which strain is applied to the steel main girder in advance.
Here, a general live load composite girder is called a live load composite girder because the load after the steel main girder and the floor slab are combined is mainly the live load which is the traffic load. On the other hand, the life-and-death load composite girder is effective in the combined cross section of the steel main girder and the floor slab against the pre-dead load because the steel main girder and the floor slab are combined in the pre-dead load state. is there. Therefore, if the cross section has the same stress, strain, and deflection, it will be smaller than the live load composite girder. In other words, even if the load increases to some extent, it may be possible to resist with the current cross section without reinforcement. In general, steel plate girders and cast-in-place concrete girders are life-and-death load composite girders.
(3) Since the existing floor slab is cut vertically in the direction perpendicular to the bridge axis after reducing the strain accumulated in the floor slab, the cutting work becomes easy. The same applies when cutting a steel main girder.
(4) Jack-up is performed step by step to make the total jack-up amount equal to or greater than the amount that cancels the deflection caused by the existing steel main girder itself, and the existing floor slab is made before the total jack-up amount is reached. If you cut in the direction perpendicular to the bridge axis and then cut in the direction of the bridge axis of the existing floor slab after the total jack-up amount is reached, you can cut the existing floor slab in the direction perpendicular to the bridge axis and the existing floor slab. Cutting in the direction of the bridge axis can be performed in a stress state suitable for each cutting, and the floor slab can be cut without applying so much tensile force due to jacking up.
(5) When the amount of jack-up when cutting the existing floor slab in the direction perpendicular to the bridge axis is set to an amount that can alleviate or cancel the strain due to the post-dead load, and when cutting the existing floor slab in the direction of the bridge axis. Even when the jack-up amount is set to the total jack-up amount, each cutting can be performed under a stress state suitable for each cutting, and the floor slab can be cut without applying so much tensile force due to the jack-up. Can be done.
(6) When constructing a steel bridge by dividing it into two or more areas, if the amount of jacking up is large in the steel main girder in the construction area and small in the steel main girder on the unconstructed side, it will be used as the floor slab on the unconstructed side. The amount of push-up applied is suppressed, cracks, damage, etc. are less likely to occur in the floor slab, and the safety of the automobile traveling on the unconstructed side is ensured.
(7) When applying a concrete slab to the floor slab to be renewed, after jacking up the steel main girder, install the concrete slab on the steel main girder and connect it to the steel main girder in a continuous state in the bridge axis direction. After that, if the jack-up is released, a compressive force acts on the concrete floor slab to reduce the occurrence of cracks, which can be expected to improve the durability of the floor slab.

(a)は通常の車両走行状態の正面図、(b)は側面図、(c)は床版の区画説明図。(A) is a front view of a normal vehicle running state, (b) is a side view, and (c) is a section explanatory view of a floor slab. (a)は本発明の床版更新工法における規制前作業(Step1:縦桁、横桁改造)の正面図、(b)は側面図。(A) is a front view of the pre-regulation work (Step 1: vertical girder, horizontal girder modification) in the floor slab renewal method of the present invention, and (b) is a side view. (a)は本発明の床版更新工法における規制前作業(Step2:支持桁架設)の正面図、(b)は側面図。(A) is a front view of the pre-regulation work (Step2: support girder erection) in the floor slab renewal method of the present invention, and (b) is a side view. (a)は本発明の床版更新工法における規制前作業(Step3:1次ジャッキアップ)の正面図、(b)は側面図。(A) is a front view of the pre-regulation work (Step 3: 1 primary jack-up) in the floor slab renewal method of the present invention, and (b) is a side view. (a)は本発明の床版更新工法における規制前作業(Step4:補強部材設置・主桁水平切断・仮添接)の正面図、(b)は側面図。(A) is a front view of the pre-regulation work (Step 4: installation of reinforcing member, horizontal cutting of main girder, temporary attachment) in the floor slab renewal method of the present invention, and (b) is a side view. (a)は本発明の床版更新工法における規制時先行側作業(Step5:先行側2次ジャッキアップ・先行側橋軸直角方向床版切断・先行側補強部材設置)の正面図、(b)は側面図。(A) is a front view of the leading side work (Step 5: leading side secondary jack-up, leading side bridge axis perpendicular direction floor slab cutting, leading side reinforcing member installation) in the floor slab renewal method of the present invention, (b). Is a side view. 本発明の床版更新工法における規制時先行側作業(Step6:橋軸方向床版切断・既設床版撤去)の正面図。The front view of the work on the leading side at the time of regulation in the floor slab renewal method of the present invention (Step 6: cutting of the bridge axial slab and removal of the existing slab). 本発明の床版更新工法における規制時先行側作業(Step7:新設床版設置・仮舗装)の正面図。The front view of the work on the leading side at the time of regulation (Step 7: new floor slab installation / temporary pavement) in the floor slab renewal method of the present invention. 本発明の床版更新工法における規制時後行側作業(Step8:後行側3次ジャッキアップ・後行側橋軸直角方向床版切断・後行側補強部材設置)の正面図。The front view of the trailing side work at the time of regulation in the floor slab renewal method of the present invention (Step 8: trailing side tertiary jack up, trailing side bridge axis perpendicular direction slab cutting, trailing side reinforcing member installation). (a)〜(c)は図7〜図9の側面図。(A) to (c) are side views of FIGS. 7 to 9. (a)は本発明の床版更新工法における後行側作業(Step9:既設床版撤去作業の正面図、(b)は後行側作業(Step10:新設床版設置・仮舗装)の側面図。(A) is a front view of the trailing side work (Step 9: existing floor slab removal work) in the floor slab renewal method of the present invention, and (b) is a side view of the trailing side work (Step 10: new floor slab installation / temporary pavement). .. (a)は本発明の床版更新工法における後行側作業(Step11:ジャッキアップの解放・補強部材撤去・支持桁撤去・本舗装作業の正面図、(b)は側面図。(A) is a front view of the trailing side work (Step 11: release of jack-up, removal of reinforcing member, removal of support girder, main pavement work) in the floor slab renewal method of the present invention, and (b) is a side view. 鋼主桁のひずみ(応力)−たわみ曲線。Strain (stress) -deflection curve of steel main girder.

本発明の床版更新工法は、既設鋼主桁を当該既設鋼主桁自身によるたわみを打ち消す以上にジャッキアップして当該既設鋼主桁に蓄積されているひずみを緩和し、応力状態を低減してから、既設床版を切断することに特徴があるため、本発明の実施形態の説明に先立って鋼主桁の応力(ひずみ)とたわみの関係を図13に基づいて説明する。 The floor slab renewal method of the present invention jacks up the existing steel main girder more than canceling the deflection caused by the existing steel main girder itself to alleviate the strain accumulated in the existing steel main girder and reduce the stress state. Since it is characterized by cutting the existing floor slab, the relationship between the stress (strain) and the deflection of the steel main girder will be described with reference to FIG. 13 prior to the description of the embodiment of the present invention.

図13は鋼主桁のひずみ(応力)−たわみ曲線の図である。図13では縦軸Yに鋼主桁の応力σ又はひずみεを示し、横軸Xに鋼主桁のたわみδを示す。通常、σ:応力、E:ヤング率、ε:ひずみは、σ=Eεの関係にある。従来の床版更新では、既設床版の切断を少なくとも前死荷重が鋼主桁に加わっている状態で行っている。本発明は、既設床版を更新する前に、既設鋼主桁を前死荷重相当分以上にジャッキアップして、既設鋼主桁自身の荷重による当該鋼主桁のたわみ(図13のδ1)を打ち消し、当該既設鋼主桁に蓄積されているひずみを緩和して応力状態を図13のε1以下、δ1以下に低減してから、既設床版を橋軸方向(図1(c)のZ−Z方向)又は/及び橋軸直角方向(図1(c)のA−A方向、B−B方向)に更新し鋼主桁と接合した後、ジャッキアップを解放することに特徴がある。以下に、本発明の実施形態を説明する。 FIG. 13 is a diagram of the strain (stress) -deflection curve of the steel main girder. In FIG. 13, the vertical axis Y shows the stress σ or the strain ε of the steel main girder, and the horizontal axis X shows the deflection δ of the steel main girder. Normally, σ: stress, E: Young's modulus, and ε: strain have a relationship of σ = Eε. In the conventional plate renewal, the existing plate is cut with at least a pre-dead load applied to the steel main girder. In the present invention, before updating the existing floor slab, the existing steel main girder is jacked up to the amount equivalent to the front dead load or more, and the steel main girder is deflected by the load of the existing steel main girder itself (δ1 in FIG. 13). Is canceled, the strain accumulated in the existing steel main girder is relaxed to reduce the stress state to ε1 or less and δ1 or less in FIG. 13, and then the existing floor slab is changed in the bridge axis direction (Z in FIG. 1 (c)). It is characterized in that the jack-up is released after updating in the −Z direction) or / and the direction perpendicular to the bridge axis (AA direction and BB direction in FIG. 1C) and joining with the steel main girder. Hereinafter, embodiments of the present invention will be described.

(実施形態1:合成桁の鋼主桁を水平切断する半幅更新工法)
この実施形態は合成桁を半幅更新する場合であり、既設鋼主桁のウエブを水平切断して、当該鋼主桁の上フランジ側と床版を下フランジ側から分離する場合である。この工法では、図1(a)(b)のように車両が走行している状態(片側車線を交通規制する前)の作業(規制前作業)をしてから、片側交通規制して規制側の床版を先に更新し(先行側作業を行い)、その後に片側交通規制を入れ替えて、入れ替え後の規制側の床版を更新する(後行側作業を行う)場合の例である。
(Embodiment 1: Half-width renewal method for horizontally cutting the steel main girder of the synthetic girder)
This embodiment is a case where the composite girder is renewed by half width, and is a case where the web of the existing steel main girder is horizontally cut to separate the upper flange side and the floor slab of the steel main girder from the lower flange side. In this construction method, as shown in FIGS. 1 (a) and 1 (b), work (pre-regulation work) is performed while the vehicle is running (before traffic regulation on one side lane), and then one-side traffic regulation is performed on the regulated side. This is an example of the case where the floor slab of the above is updated first (work on the leading side is performed), then the one-sided traffic regulation is replaced, and the floor slab on the regulated side after the replacement is updated (work on the trailing side is performed).

(規制前作業)
(1)Step1:仮設縦桁、新設横桁の設置
図1(a)の鋼橋は鋼主桁1が3本の場合である。この場合、半幅施工では一方の施工側の鋼主桁が1本となって既設床版2が不安定になるため、図2(a)(b)に示すように、既設床版2の下方に仮受縦桁3をし、主桁1の間に新設横桁4を設置する。
(Pre-regulation work)
(1) Step 1: Installation of temporary vertical girders and new horizontal girders The steel bridge in Fig. 1 (a) has three steel main girders 1. In this case, in half-width construction, one steel main girder on one construction side becomes one and the existing floor slab 2 becomes unstable. Therefore, as shown in FIGS. 2A and 2B, the lower side of the existing floor slab 2 Temporary receiving vertical girder 3 is installed in, and a new horizontal girder 4 is installed between the main girder 1.

(2)Step2:支持桁又は支保工の設置
図3(a)(b)に示すように、鋼主桁1の下方に支持桁5を架設する。この場合、反力台6、横桁7を設ける。支持桁5に代えてベント(支保工)を設置することも、架設桁を設置することもできる。支保工の設置、架設桁の設置は通常の方法で設置する。
なお、支持桁とは対象となる鋼主桁の下方に支持されるものであり、上部にジャッキを設けることのできる空間を保持して支持され、支間部で鋼主桁の下部をジャッキ等で支持する、いわば重ね梁の機能を有する仮設の梁のことをいう。
架設桁は、対象となる橋梁側の両側端部の橋脚あるいは橋台の前に支保工を設け、その両側の支保工上に梁状の構造物を対象とする鋼主桁の下方にジャッキ等を設けることのできる空間を保持した位置に設け、鋼主桁を架設桁上方に設けたジャッキ等で支持できる仮設構造物をいう。
(2) Step2: Installation of support girder or support girder As shown in FIGS. 3A and 3B, the support girder 5 is erected below the steel main girder 1. In this case, the reaction force base 6 and the cross girder 7 are provided. A vent (support work) can be installed in place of the support girder 5, or an erection girder can be installed. Installation of support works and installation of erection girders are done by the usual method.
The support girder is supported below the target steel main girder, is supported by holding a space where a jack can be provided at the upper part, and the lower part of the steel main girder is jacked at the span. It refers to a temporary beam that supports, so to speak, has the function of a lap beam.
For the erection girder, support works are provided in front of the piers or abutments at both ends on the target bridge side, and jacks, etc. are placed below the steel main girders for beam-shaped structures on the support works on both sides. A temporary structure that is provided at a position that holds a space that can be provided and that can be supported by a jack or the like provided above the erection girder.

(3)Step3:1次ジャッキアップ
Step1、2の後に、図4(a)(b)のように、油圧ジャッキ8により、3本の鋼主桁1をジャッキアップ(1次ジャッキアップ)して、鋼主桁1に蓄積されている後死荷重相当分の応力(ひずみ)を低減する。後死荷重以上のジャッキアップをすると既設床版2に引っ張り力が生じてクラックが発生し、車両の走行に危険を招くので1次ジャッキアップは床版設置以降に鋼主桁に載荷される死荷重である後死荷重以内に収めるのが望ましい。前記切断箇所に補強部材9を仮添接する。ジャッキアップは必要なジャッキアップ量を段階的に行っても一度に行ってもよい(以下同じ)。
(3) Step3: Primary jack-up After Steps 1 and 2, as shown in FIGS. 4A and 4B, three steel main girders 1 are jacked up (primary jack-up) by the hydraulic jack 8. , The stress (strain) corresponding to the post-dead load accumulated in the steel main girder 1 is reduced. If the jack-up exceeds the post-death load, a tensile force is generated on the existing floor slab 2 and cracks occur, which poses a danger to the running of the vehicle. Therefore, the primary jack-up is a death loaded on the steel main girder after the floor slab is installed. It is desirable to keep it within the post-dead load, which is the load. The reinforcing member 9 is temporarily attached to the cut portion. The required amount of jack-up may be performed step by step or all at once (the same shall apply hereinafter).

(4)Step4:主桁水平切断・仮添接
前記1次ジャッキアップ状態で、図5(a)(b)のように、鋼主桁1をその軸方向に水平に切断して、既設床版2及び主桁1の上フランジ側を下フランジ側から分離する。
(4) Step4: Main girder horizontal cutting / temporary attachment In the primary jack-up state, the steel main girder 1 is cut horizontally in the axial direction as shown in FIGS. 5A and 5B, and the existing floor is used. Separate the upper flange side of the plate 2 and the main girder 1 from the lower flange side.

(先行側作業)
前記規制前作業終了後に片側車線を交通規制し、その規制側の床版を更新する、この更新作業(先行側作業)は次のようにして行うことができる。
(Preceding work)
After the completion of the pre-regulation work, traffic is regulated on one side of the lane, and the floor slab on the regulated side is updated. This updating work (preceding side work) can be performed as follows.

(5)Step5:2次ジャッキアップ・橋軸直角方向床版切断
Step4の後に、図6(a)(b)のように、3本の鋼主桁1を1次ジャッキアップの状態よりも更にジャッキアップ(2次ジャッキアップ)して前死荷重相当分の応力を打消して、先行側の鋼主桁1の下フランジに蓄積されているひずみを解放する。この場合、3本の鋼主桁1の2次ジャッキアップ量G1、G2、G3は、G1側からG3側に次第に少なくするのが望ましい。ジャッキアップ量の一例としては、G1を鋼主桁1の前死荷重変形量の80%とし、これを基準として、他の鋼主桁1にアップリフトが生じないように配分を決める。例えばG1:100%、G2:62.5%、G3:25%程度の割合でジャッキアップするのが望ましい。この理由として、ジャッキアップ量を前死荷重以上に行うと走行側の床版にも引張力が生じひび割れが生じ走行性が低下することのないよう配慮するためである。前記2次ジャッキアップの状態で、図1(c)のように、先行側の既設床版2及び鋼主桁1を橋軸直角方向(図1(c)の仮想線A−A方向)に切断して任意のサイズの先行側区画床版10とする。
(5) Step 5: Secondary jack-up / cutting of slab in the direction perpendicular to the bridge axis After Step 4, as shown in FIGS. 6 (a) and 6 (b), the three steel main girders 1 are further jacked up than in the primary jack-up state. Jacking up (secondary jacking up) cancels the stress corresponding to the pre-dead load and releases the strain accumulated in the lower flange of the steel main girder 1 on the leading side. In this case, it is desirable that the secondary jack-up amounts G1, G2, and G3 of the three steel main girders 1 are gradually reduced from the G1 side to the G3 side. As an example of the jack-up amount, G1 is set to 80% of the front dead load deformation amount of the steel main girder 1, and the distribution is determined based on this so that the uplift does not occur in the other steel main girder 1. For example, it is desirable to jack up at a ratio of about G1: 100%, G2: 62.5%, and G3: 25%. The reason for this is that if the jack-up amount is greater than the pre-dead load, a tensile force is also generated on the floor slab on the traveling side to cause cracks and the traveling performance is not deteriorated. In the state of the secondary jack-up, as shown in FIG. 1 (c), the existing floor slab 2 and the steel main girder 1 on the leading side are moved in the direction perpendicular to the bridge axis (in the direction of the virtual line AA in FIG. 1 (c)). It is cut into a leading compartment floor slab 10 of an arbitrary size.

(6)Step6:橋軸方向床版切断、既設床版撤去
Step5で区画された先行側区画床版10を図7、図10(a)のように撤去する。先行側区画床版10の撤去跡に新設床版11を設置する。新設床版11は鋼床版、プレキャストRC床版、プレキャストPC床版のいずれでもよい。また、場所打ちコンクリート床版を適用してもよい。そして最終的に主桁とRC床版やPC床版はモルタルやコンクリート等の間詰め材により、鋼床版は高力ボルトや溶接により主桁と接合される。
(6) Step 6: Cutting the slab in the direction of the bridge axis and removing the existing slab The leading side compartment slab 10 partitioned by Step 5 is removed as shown in FIGS. 7 and 10 (a). A new floor slab 11 will be installed at the removal trace of the preceding side compartment floor slab 10. The new floor slab 11 may be a steel floor slab, a precast RC floor slab, or a precast PC floor slab. In addition, cast-in-place concrete slabs may be applied. Finally, the main girder and the RC floor slab or PC floor slab are joined to the main girder by a filling material such as mortar or concrete, and the steel floor slab is joined to the main girder by high-strength bolts or welding.

(7)Step7:新設床版設置・仮舗装
Step6の先行側区画床版10の撤去、新設床版11の設置を繰り返してから、図8、図10(b)のように、新設床版11の上に仮舗装をする。
(7) Step 7: Installation of new floor slab / temporary pavement After repeating the removal of the preceding side section floor slab 10 of Step 6 and the installation of the new floor slab 11, the new floor slab 11 is as shown in FIGS. 8 and 10 (b). Temporarily pave on top.

(後行側作業)
Step7の先行側作業終了後に、交通規制を反対側に切り替えてから、当該交通規制側の床版更新作業(後行側作業)を次のようにして行う。
(Backward work)
After the work on the preceding side of Step 7 is completed, the traffic regulation is switched to the opposite side, and then the floor slab updating work (work on the trailing side) on the traffic regulation side is performed as follows.

(8)Step8:3次ジャッキアップ・橋軸直角方向床版切断
3本の鋼主桁1を3次ジャッキアップして3本の主桁1を押し上げて前死荷重相当分の応力を打消して、後行側の主桁1の下フランジに蓄積されているひずみを解放する。3次ジャッキアップ量G1、G2、G3は後行側の主桁1に多く、先行側の主桁1に少なくする。例えば、G3を主桁1の前死荷重量の80%とし、これを基準として、他の主桁1にアップリフトが生じないように配分を決める。例えば、G3:100%、G2:62.5%、G1:25%程度の割合でジャッキアップするのが望ましい。この理由として、ジャッキアップ量はG1側で多くの量を行っており、同じ量を行うとなると、G1側が高くなり走行性に支障をきたす可能性が生じるためである。よって、ジャッキアップ量は、1次から3次までを足し合わせて最終的に全鋼主桁の量がほぼ同じ量、あるいはキャンバー量に対してほぼ同じ割合となるようにすることが望ましい。3次ジャッキアップの状態で、図1(c)のように、先行側の既設床版2及び鋼主桁1を橋軸直角方向(図1(c)の仮想線B−B方向)に切断して任意のサイズに区画して後行側区画床版12とする。
(8) Step8: Third-order jack-up / Bridge axis orthogonal slab cutting Three steel main girders 1 are tertiary-jacked up and the three main girders 1 are pushed up to cancel the stress equivalent to the pre-dead load. Then, the strain accumulated in the lower flange of the main girder 1 on the trailing side is released. The tertiary jack-up amounts G1, G2, and G3 are larger in the trailing main girder 1 and less in the leading girder 1. For example, G3 is set to 80% of the front dead load amount of the main girder 1, and the distribution is determined based on this so that the uplift does not occur in the other main girder 1. For example, it is desirable to jack up at a ratio of G3: 100%, G2: 62.5%, and G1: 25%. The reason for this is that the jack-up amount is large on the G1 side, and if the same amount is used, the G1 side may become high and the running performance may be hindered. Therefore, it is desirable that the jack-up amount is the sum of the first to third orders so that the amount of all steel main girders is finally about the same amount, or about the same ratio with respect to the camber amount. In the state of the tertiary jack-up, as shown in FIG. 1 (c), the existing floor slab 2 and the steel main girder 1 on the leading side are cut in the direction perpendicular to the bridge axis (in the direction of the virtual line BB in FIG. 1 (c)). Then, it is divided into arbitrary sizes to form a trailing side partition plate 12.

(9)Step9:既設床版撤去
Step8で区画された後行側区画床版12を図11(a)のように撤去する。
(9) Step 9: Removal of existing floor slab The trailing side partition floor slab 12 partitioned by Step 8 is removed as shown in FIG. 11 (a).

(10)Step10:新設床版設置・仮舗装
図11(b)のように、後行側区画床版12の撤去跡に新設床版11を設置する。
(10) Step 10: Installation of new floor slab / temporary pavement As shown in Fig. 11 (b), the new floor slab 11 is installed at the removal trace of the trailing side compartment floor slab 12.

前記Step8〜10の側面図はStep5〜7の側面図と同じであるため省略する。 Since the side views of Steps 8 to 10 are the same as the side views of Steps 5 to 7, they are omitted.

前記Step1〜10の作業により、全ての既設床版が新設床版に更新された後は、前記ジャッキアップの解放、支持桁5もしくは支保工の撤去、本舗装を行って床版更新は完了となる。 After all the existing floor slabs have been updated to the new floor slabs by the work of Steps 1 to 10, the jack-up is released, the support girder 5 or the support work is removed, and the main pavement is performed to complete the floor slab update. Become.

(実施形態2:合成桁の主桁を水平切断しない半幅更新)
この実施形態は、合成桁の主桁を水平切断せずに半幅更新する場合である。この場合は、実施形態1のStep4の主桁水平切断作業、仮添接が不要となるが、それ以外のステップの作業は実施形態1の場合と同様に行う。なお、主桁水平切断作業を行わない代わりに、いずれかのステップにおいて、既設床版2を鋼主桁1からブレーカー等で斫り作業などして鋼主桁1から分離する必要がある。
(Embodiment 2: Half-width update without horizontally cutting the main girder of the composite girder)
This embodiment is a case where the main girder of the composite girder is updated by half width without horizontal cutting. In this case, the main girder horizontal cutting work and temporary attachment of Step 4 of the first embodiment are unnecessary, but the work of the other steps is performed in the same manner as in the case of the first embodiment. Instead of performing the main girder horizontal cutting work, it is necessary to separate the existing floor slab 2 from the steel main girder 1 by scraping the steel main girder 1 with a breaker or the like in any step.

(実施形態3:非合成桁の半幅更新)
この実施形態は、非合成桁を半幅更新する場合である。この半幅更新も基本的には実施形態1の場合と同様に規制前作業、先行側作業、後行側作業を行うが、非合成桁は鋼主桁と床版が合成桁に比して分離し易い構造であるため、鋼主桁1をその軸方向に水平に切断する作業は行う必要はなく、その他の作業は実施形態2の場合と同様の作業を行う。
(Embodiment 3: Half-width update of non-synthetic girder)
This embodiment is a case where the non-composite girder is updated by half width. This half-width update is basically the same as in the case of the first embodiment, and the pre-regulation work, the leading side work, and the trailing side work are performed, but the steel main girder and the floor slab are separated from the synthetic girder in the non-synthetic girder. Since the structure is easy to use, it is not necessary to perform the work of cutting the steel main girder 1 horizontally in the axial direction thereof, and the other work is the same as that of the second embodiment.

(実施形態4:合成桁又は非合成桁の全幅更新)
この実施形態は合成桁又は非合成桁の床版を全幅に亘って更新する全幅更新の場合である。この全幅更新では交互に交通規制して交互に床版更新するのではなく、全幅に亘って交通規制して全幅の床版を更新する工法である。いずれの桁の場合も、1次ジャッキアップは行うが、2次ジャッキアップ、3次ジャッキアップを行う必要はない。理由として、更新作業中に一般車両を走行させる必要がないため、床版へのひび割れに配慮する必要がないためである。合成桁の場合は実施形態1のStep4の鋼主桁水平切断、仮添接を行うことなく、鋼主桁全体をジャッキアップした状態で、実施形態1の他のステップの作業を行う。非合成桁の場合は鋼主桁全体をジャッキアップした状態で、実施形態3と同様の作業を行って床版更新する。
(Embodiment 4: Full width update of synthetic girder or non-synthetic girder)
This embodiment is a case of full-width update in which the floor slab of a synthetic girder or a non-synthetic girder is updated over the entire width. In this full-width update, instead of alternately restricting traffic and updating the floor slab alternately, it is a construction method in which traffic is regulated over the entire width and the full-width plate is updated. In the case of any of the digits, the primary jack-up is performed, but the secondary jack-up and the tertiary jack-up are not necessary. The reason is that it is not necessary to run a general vehicle during the renewal work, and it is not necessary to consider cracks in the floor slab. In the case of a synthetic girder, the work of the other steps of the first embodiment is performed with the entire steel main girder jacked up without performing horizontal cutting and temporary attachment of the steel main girder of Step 4 of the first embodiment. In the case of a non-synthetic girder, the entire steel main girder is jacked up, and the same work as in the third embodiment is performed to update the floor slab.

(実施形態5:段階的ジャッキアップ)
本発明の床版更新工法は、前記したような工法であるが、本発明では前記ジャッキアップを段階に行って、トータルのジャッキアップ量を既設鋼主桁自身によるたわみを打ち消す量と同等あるいはそれ以上のジャッキアップ量にし、トータルのジャッキアップ量になる前の所望のジャッキアップ量で既設床版の橋軸直角方向への切断を行い、トータルジャッキアップ量になってから既設床版の橋軸方向への切断を行うこともできる。既設床版を橋軸直角方向へ切断するときのジャッキアップ量は、後死荷重分のひずみを緩和できる量又は打ち消すことのできる量にし、既設床版を橋軸方向へ切断するときのジャッキアップ量をトータルのジャッキアップ量とすることもできる。
(Embodiment 5: Gradual jack-up)
The floor slab renewal method of the present invention is the above-mentioned method, but in the present invention, the jack-up is performed in stages, and the total jack-up amount is equal to or equal to the amount of canceling the deflection due to the existing steel main girder itself. With the above jack-up amount, cut the existing floor slab in the direction perpendicular to the bridge axis with the desired jack-up amount before reaching the total jack-up amount, and after the total jack-up amount is reached, the bridge shaft of the existing floor slab. It is also possible to cut in the direction. The amount of jack-up when cutting the existing floor slab in the direction perpendicular to the bridge axis should be an amount that can alleviate or cancel the strain due to the post-dead load, and jack-up when cutting the existing floor slab in the direction of the bridge axis. The amount can also be the total jack-up amount.

前記実施形態の作業工程、作業手順は本発明の一例である。それら作業工程、作業手順は本発明の課題を解決可能な範囲で変更可能である。例えば、必要に応じて他のステップを付加することもあり、一部のステップを削除することもある。また、ステップの前後が入れ替わる場合もある。 The work process and work procedure of the above-described embodiment are examples of the present invention. These work processes and work procedures can be changed to the extent that the problems of the present invention can be solved. For example, other steps may be added as needed, and some steps may be deleted. In addition, the front and back of the step may be interchanged.

前記実施形態の半幅施工は、鋼橋を横断面方向(横幅方向)に二つの領域に区分し、交互に交通規制して施工する場合であるが、本発明では鋼橋を横断面方向(幅員方向)に二つの領域に区分する場合に限られず、車線が多い場合(鋼橋の横幅が広い場合)は三以上の領域に区分して施工することもできる。 The half-width construction of the above embodiment is a case where the steel bridge is divided into two regions in the cross-sectional direction (horizontal width direction) and the steel bridge is constructed by alternately restricting traffic. In the present invention, the steel bridge is constructed in the cross-sectional direction (width). It is not limited to the case of dividing into two areas in the direction), and when there are many lanes (when the width of the steel bridge is wide), the construction can be divided into three or more areas.

1 (既設)鋼主桁
2 (既設)床版
3 仮受縦桁
4 新設横桁
5 支持桁或いは支保工
6 反力台
7 横桁
8 油圧ジャッキ
9 補強部材
10 先行側区画床版
11 新設床版
12 後行側区画床版
13 支間長
1 (Existing) Steel main girder 2 (Existing) Floor slab 3 Temporary receiving vertical girder 4 New horizontal girder 5 Support girder or support 6 Reaction force stand 7 Horizontal girder 8 Hydraulic jack 9 Reinforcing member 10 Leading side section Floor slab 11 New floor Plate 12 Backward side section Floor plate 13 Span length

Claims (5)

鋼橋の既設床版を撤去し、撤去跡に新設床版を設置し、当該新設床版を鋼橋の既設鋼主桁に接合する床版更新工法において、
新設床版を既設鋼主桁に接合する前に、既設鋼主桁を当該既設鋼主桁自身によるたわみを打ち消す量と同等あるいはそれ以上に、鋼主桁を下方より上方に向けてジャッキアップして当該既設鋼主桁に蓄積されているひずみを緩和して応力状態を低減してから、既設床版を橋軸方向と橋軸直角方向に任意サイズに切断して区画し、区画された床版を個別に撤去して撤去跡に新設床版を設置し、その新設床版を既設鋼主桁と接合し、少なくとも当該接合後に前記ジャッキアップを解放する、
ことを特徴とする床版更新工法。
In the floor slab renewal method in which the existing floor slab of the steel bridge is removed, a new floor slab is installed at the removal trace, and the new floor slab is joined to the existing steel main girder of the steel bridge.
Before joining the new floor slab to the existing steel main girder, jack up the existing steel main girder from the bottom to the top so that the amount of the existing steel main girder cancels the deflection of the existing steel main girder itself or more. After relaxing the strain accumulated in the existing steel main girder to reduce the stress state, the existing floor slab is cut to an arbitrary size in the direction perpendicular to the bridge axis and partitioned, and the partitioned floor. The slabs are individually removed, a new floor slab is installed at the removal site, the new floor slab is joined to the existing steel main girder, and the jack-up is released at least after the joining.
A floor slab renewal method characterized by this.
請求項1記載の床版更新工法において、
ジャッキアップを段階的に行ってトータルのジャッキアップ量を既設鋼主桁自身によるたわみを打ち消す量と同等あるいはそれ以上のジャッキアップ量にし、トータルのジャッキアップ量になる前に既設床版の橋軸直角方向への切断を行い、トータルジャッキアップ量になってから既設床版の橋軸方向への切断を行う、
ことを特徴とする床版更新工法。
In the floor slab renewal method according to claim 1,
Jack up is performed step by step to make the total jack up amount equal to or greater than the amount that cancels the deflection caused by the existing steel main girder itself, and before the total jack up amount is reached, the bridge shaft of the existing floor slab. Cut in the perpendicular direction, and after the total jack-up amount is reached, cut the existing floor slab in the direction of the bridge axis.
A floor slab renewal method characterized by this.
請求項2記載の床版更新工法において、
既設床版を橋軸直角方向へ切断するときのジャッキアップ量を、後死荷重分のひずみを緩和できる量又は打ち消すことのできる量にし、既設床版を橋軸方向へ切断するときのジャッキアップ量をトータルのジャッキアップ量とする、
ことを特徴とする床版更新工法。
In the floor slab renewal method according to claim 2,
The amount of jack-up when cutting the existing floor slab in the direction perpendicular to the bridge axis is set to an amount that can relax or cancel the strain due to the post-dead load, and jack-up when cutting the existing floor slab in the direction of the bridge axis. Let the amount be the total jack-up amount,
A floor slab renewal method characterized by this.
請求項1から請求項3のいずれか1項に記載の床版更新工法において、
鋼橋の幅員全域に亘って鋼主桁をジャッキアップしてから、当該全域の既設床版を任意サイズに切断して区画し、区画された床版を個別に撤去して撤去跡に新設床版を設置し、その新設床版を既設鋼主桁と接合する、
ことを特徴とする床版更新工法。
In the plate renewal method according to any one of claims 1 to 3,
After jacking up the steel main girder over the entire width of the steel bridge, the existing floor slabs in the entire area are cut to any size and partitioned, and the partitioned floor slabs are individually removed to create a new floor at the removal trace. Install a plate and join the new floor slab to the existing steel main girder,
A floor slab renewal method characterized by this.
請求項1から請求項3のいずれか1項に記載の床版更新工法において、
鋼橋の幅員全域を二以上の領域に区分し、鋼主桁のジャッキアップ量を前記領域別に変え、領域ごとに既設床版を任意サイズに切断して区画し、区画された床版を個別に撤去して撤去跡に新設床版を設置し、その新設床版を既設鋼主桁と接合する、
ことを特徴とする床版更新工法。
In the plate renewal method according to any one of claims 1 to 3,
The entire width of the steel bridge is divided into two or more areas, the jack-up amount of the steel main girder is changed for each area, the existing slab is cut to an arbitrary size for each area, and the divided slabs are individually divided. A new floor slab is installed at the removal trace, and the new floor slab is joined to the existing steel main girder.
A floor slab renewal method characterized by this.
JP2016251603A 2016-12-26 2016-12-26 Floor slab renewal method Active JP6755172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016251603A JP6755172B2 (en) 2016-12-26 2016-12-26 Floor slab renewal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016251603A JP6755172B2 (en) 2016-12-26 2016-12-26 Floor slab renewal method

Publications (2)

Publication Number Publication Date
JP2018104970A JP2018104970A (en) 2018-07-05
JP6755172B2 true JP6755172B2 (en) 2020-09-16

Family

ID=62787447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016251603A Active JP6755172B2 (en) 2016-12-26 2016-12-26 Floor slab renewal method

Country Status (1)

Country Link
JP (1) JP6755172B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114481843A (en) * 2022-01-12 2022-05-13 中铁大桥局集团第二工程有限公司 Integrated rapid construction method for single-pile foundation trestle platform on water

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301565A (en) * 1980-03-19 1981-11-24 Irwin Weinbaum Method and system for the removal and replacement of a bridge
JPS60138106A (en) * 1983-12-23 1985-07-22 石川島建材工業株式会社 Casting replacement construction method of synthetic beam floor panel in road bridge
JPH02132206A (en) * 1988-11-11 1990-05-21 Sho Bond Constr Co Ltd Replacing method of floor board
JP2533830B2 (en) * 1993-05-14 1996-09-11 ショーボンド建設株式会社 Girder section stress improvement method
JPH07216827A (en) * 1994-01-27 1995-08-15 Ishikawajima Constr Materials Co Ltd Construction method of floor slab for bridge or the like
JP2007077630A (en) * 2005-09-13 2007-03-29 Oriental Construction Co Ltd Continuous girder using precast main-girder segment, and its erection method
JP4709665B2 (en) * 2006-03-10 2011-06-22 川田工業株式会社 Replacement method for bridge concrete slab and concrete slab.
JP5848716B2 (en) * 2013-01-11 2016-01-27 株式会社駒井ハルテック Floor slab replacement method
JP6323776B2 (en) * 2014-02-14 2018-05-16 株式会社高速道路総合技術研究所 Replacement method of concrete floor slab for elevated road and replacement PC floor slab by the same method
JP6180376B2 (en) * 2014-06-23 2017-08-16 首都高速道路株式会社 Main girder provision method in composite girder floor slab replacement method, composite girder floor slab replacement method, and main girder provision structure in composite girder floor slab replacement method

Also Published As

Publication number Publication date
JP2018104970A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP2018123643A (en) Slab replacing method for composite girder
JP4897643B2 (en) Reinforced concrete composite steel slab girder bridge
JP5015049B2 (en) Pier extension method
WO2018052030A1 (en) Bridge construction method
KR100892163B1 (en) Tensile stress control method of prestressed concrete beam using temporary steel member
JP6755172B2 (en) Floor slab renewal method
JP7009724B2 (en) Column-beam frame repair method and repair column-beam frame
JPH083937A (en) Repair method for existing bridge
JP5848716B2 (en) Floor slab replacement method
JP5174688B2 (en) Reinforcement structure and reinforcement method for existing simple girder bridges
KR20130081606A (en) Method for continuous supporting structure of corrugated steel plate web-psc composite beam
WO2006065085A1 (en) Manufacturing method for prestressed steel composite girder and prestressed steel composite girder thereby
KR101300490B1 (en) Hollow girder having upper flange of different materials, and method for constructing bridge using for the same
JP7461855B2 (en) Superstructure support structure, step prevention structure and bearing replacement method
KR20050095049A (en) Continuous bridge construction method using a psc girder
JP2003138521A (en) Re placing method for slab
KR101121725B1 (en) Construction method for psc girder and slab with precast deck and bridge construction method using the same
JP2009007790A (en) Bridge compound steel floor slab applied with mma resin mortar applied
JP7012486B2 (en) Bridge construction method
JP2003293323A (en) Reinforcement structure of continuous girder bridge
JP7290461B2 (en) Connection structure of girders and precast floor slabs
JP6586305B2 (en) Replacement method for existing bridges
JP7124794B2 (en) Bridge replacement method
JP2020186516A (en) Method of constructing bridge railing
KR100588350B1 (en) Bridge slab construction method for the median strip side end of the slab and upper part bracket applied therein

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200825

R150 Certificate of patent or registration of utility model

Ref document number: 6755172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250