JP2018112463A - 光照射装置、光学検出装置および光源制御装置 - Google Patents
光照射装置、光学検出装置および光源制御装置 Download PDFInfo
- Publication number
- JP2018112463A JP2018112463A JP2017002747A JP2017002747A JP2018112463A JP 2018112463 A JP2018112463 A JP 2018112463A JP 2017002747 A JP2017002747 A JP 2017002747A JP 2017002747 A JP2017002747 A JP 2017002747A JP 2018112463 A JP2018112463 A JP 2018112463A
- Authority
- JP
- Japan
- Prior art keywords
- light
- unit
- light source
- wavelength region
- intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
【課題】光源部からの出射光の特性を高精度かつ安定的に設定する。【解決手段】光を出射する光源部と、前記光源部からの出射光のうち第1波長域の光を受光する第1受光部と、前記出射光のうち前記第1波長域よりも長波長側の第2波長域の光を受光する第2受光部と、前記第1受光部による受光強度と前記第2受光部による受光強度とに応じて前記光源部を制御する光源制御部とを具備する光照射装置。【選択図】図2
Description
本発明は、光源を制御する技術に関する。
白熱電球やハロゲンランプ等の各種の光源の出射光の特性を制御するための各種の技術が開示されている。例えば特許文献1には、光源からの出射光が所望の強度および色温度となるように光源に対する給電を制御する構成が開示されている。
しかし、光源からの出射光を所望の特性に高精度かつ安定的に設定することは実際には困難である。以上の事情を考慮して、本発明は、光源部からの出射光の特性を高精度かつ安定的に設定することを目的とする。
以上の課題を解決するために、本発明の好適な態様に係る光照射装置は、光を出射する光源部と、前記光源部からの出射光のうち第1波長域の光を受光する第1受光部と、前記出射光のうち前記第1波長域よりも長波長側の第2波長域の光を受光する第2受光部と、前記第1受光部による受光強度と前記第2受光部による受光強度とに応じて前記光源部を制御する光源制御部とを具備する。以上の態様では、光源部からの出射光のうち第1波長域の光の受光強度と第2波長域の光の受光強度とに応じて光源部が制御される。したがって、例えば光源部からの出射光のうち単一の波長域の光に応じて光源部を制御する構成と比較して、光源部からの出射光の特性を高精度かつ安定的に設定することが可能である。なお、光源部は、例えば発熱発光する白熱電球やハロゲンランプである。
本発明の好適な態様において、前記光源制御部は、前記第1受光部による受光強度と前記第2受光部による受光強度とが、前記光源部が出射すべき光の色温度に応じた所定の比率となるように、前記光源部を制御する。以上の態様では、第1受光部による受光強度と第2受光部による受光強度とが所望の色温度に応じた比率となるように光源部が制御されるから、光源部からの出射光の色温度を高精度かつ安定的に設定できるという利点がある。
本発明の好適な態様において、前記光源制御部は、前記第1受光部による受光強度に応じた前記第1受光信号と前記第2受光部による受光強度に応じた第2受光信号とを、前記第1受光部による受光強度と前記第2受光部による受光強度とが前記所定の比率であるときに前記第1受光信号と前記第2受光信号とが相互に同等の信号強度となるように生成する信号生成部と、前記第1受光信号と前記第2受光信号との信号強度の大小に応じて2値的に変動する制御信号を生成する信号比較部と、前記光源部に対する電流の供給を前記制御信号に応じて制御する給電制御部とを含む。以上の態様では、第1受光部による受光強度と第2受光部による受光強度とが目標の色温度に応じた所定の比率であるときに同等の信号強度となるように第1受光信号と第2受光信号とが生成される。そして、第1受光信号と第2受光信号との信号強度の大小に応じて2値的に変動する制御信号を利用して光源部に対する電流の供給が制御される。したがって、光源部に対する電流の供給および遮断を制御する簡便な構成で光源部の出射光を所望の色温度に制御できるという利点がある。
本発明の好適な態様に係る光照射装置は、前記光源部からの出射光のうち前記第1波長域の光を前記第1受光部に導き、当該出射光のうち前記第2波長域の光を前記第2受光部に導き、前記第1波長域と前記第2波長域との間の照射波長域の光を照射対象に導く光学系を具備する。以上の態様では、照射対象に照射される光の光照射波長域に対して短波長側の第1波長域の光と長波長側の第2波長域の光とが光源部の制御に利用される。したがって、照射対象に対する光照射に並行して光源部の出射光の特性を制御できるという利点がある。
本発明の好適な態様において、前記光学系は、前記照射波長域の光を透過して他の波長域の光を反射する反射素子と、前記反射素子による反射光のうち前記第1波長域の光を抽出して前記第1受光部に出射する第1光学フィルターと、前記反射素子による反射光のうち前記第2波長域の光を抽出して前記第2受光部に出射する第2光学フィルターとを含む。
本発明の好適な態様において、前記光学系は、前記光源部からの出射光のうち前記第1波長域の光を前記第1受光部に向けて反射して他の波長域の光を透過する第1反射素子と、前記光源部からの出射光のうち前記第2波長域の光を前記第2受光部に向けて反射して他の波長域の光を透過する第2反射素子とを含む。以上の態様では、光源部からの出射光のうち第1波長域の光が第1反射素子により第1受光部に向けて反射され、第2波長域の光が第2反射素子により第2受光部に向けて反射される。また、光源部からの出射光のうち照射波長域の光は第1反射素子および第2反射素子の双方を透過して照射対象に供給される。したがって、第1反射素子と第2反射素子とを利用した簡便な構成により、光源部からの出射光を第1波長域と第2波長域と照射波長域とに分離できるという利点がある。
本発明の好適な態様に係る光検出装置は、前述の何れかの態様に係る光照射装置と、前記光照射装置から出射して照射対象を通過した光を受光する受光装置とを具備する。前述の各態様に係る光照射装置では、光源部からの出射光のうち第1波長域の光の受光強度と第2波長域の光の受光強度とに応じて光源部が制御されるから、光源部からの出射光の特性を高精度かつ安定的に設定することが可能である。したがって、本発明の好適な態様に係る光検出装置によれば、高精度かつ安定的に特性が設定された光を照射対象に通過させて受光することで、照射対象の特性(例えば生体情報)を高精度に特定可能な検出信号を生成することが可能である。本発明の好適な態様において、前記受光装置は、InGaAsを含有する光電変換層を含む。
本発明の好適な態様に係る光制御装置は、光を出射する光源部を制御する光源制御装置であって、前記光源部からの出射光のうち第1波長域の光を受光する第1受光部と、前記出射光のうち前記第1波長域よりも長波長側の第2波長域の光を受光する第2受光部と、前記第1受光部による受光強度と前記第2受光部による受光強度とに応じて前記光源部を制御する光源制御部とを具備する。以上の態様では、光源部からの出射光のうち第1波長域の光の受光強度と第2波長域の光の受光強度とに応じて光源部が制御される。したがって、例えば光源部からの出射光のうち単一の波長域の光に応じて光源部を制御する構成と比較して、光源部からの出射光の特性を高精度かつ安定的に設定することが可能である。
<第1実施形態>
図1は、本発明の第1実施形態に係る測定装置100の構成図である。第1実施形態の測定装置100は、利用者の生体情報を非侵襲的に測定する生体計測器である。例えば、利用者の血中グルコース濃度(血糖値),ヘモグロビン濃度,血中酸素濃度,中性脂肪濃度等の各種の血液成分濃度が生体情報の好適例である。
図1は、本発明の第1実施形態に係る測定装置100の構成図である。第1実施形態の測定装置100は、利用者の生体情報を非侵襲的に測定する生体計測器である。例えば、利用者の血中グルコース濃度(血糖値),ヘモグロビン濃度,血中酸素濃度,中性脂肪濃度等の各種の血液成分濃度が生体情報の好適例である。
図1に例示される通り、第1実施形態の測定装置100は、光学検出装置12と情報処理装置14とを具備する。光学検出装置12は、利用者の身体のうち測定対象となる部位(以下「測定部位」という)Mの状態に応じた検出信号Zを生成する光学センサーモジュールである。情報処理装置14は、光学検出装置12が生成した検出信号Zから利用者の生体情報を生成する。生体情報の生成には公知の技術が任意に採用され得る。情報処理装置14が生成した生体情報は、例えば表示装置(図示略)に表示される。
図1に例示される通り、光学検出装置12は、光照射装置20と受光装置30とを具備する。光照射装置20は、測定部位M(照射対象の例示)に光を照射する発光装置である。第1実施形態の光照射装置20は、所定の波長の範囲(以下「照射波長域」という)内の光を測定部位Mに照射する。具体的には、照射波長域は、900nm以上かつ1300nm以下の近赤外光の波長域である。他方、受光装置30は、光照射装置20から出射して測定部位Mを通過した光の受光強度に応じた検出信号Zを生成する。受光装置30は、光電変換層がInGaAs(インジウムガリウム砒素)で形成された受光素子を含んで構成され、光照射装置20が出射する近赤外光(波長:900nm〜1300nm)を受光可能である。
図2は、光照射装置20の構成図である。図2に例示される通り、光照射装置20は、光源部22と光源制御装置24とを具備する。光源部22は、光を出射する発光源である。第1実施形態の光源部22は、発熱とともに白色光を出射する白熱電球やハロゲンランプである。光源制御装置24は、光源部22の発光を制御する。具体的には、光源部22からの出射光が目標の色温度(分光特性)に安定的に維持されるように、光源制御装置24は光源部22を制御する。
図2に例示される通り、第1実施形態の光源制御装置24は、光学系40と第1受光部51と第2受光部52と光源制御部60とを含んで構成される。光学系40は、光源部22からの出射光を、照射波長域W0の光L0と第1波長域W1の光L1と第2波長域W2の光L2とに分離する。
図3に例示される通り、第1波長域W1は、照射波長域W0に対して短波長側の波長域であり、例えば900nm以下(具体的には300nm以上かつ900nm以下)の範囲である。第2波長域W2は、照射波長域W0に対して長波長側の波長域であり、例えば1300nm以上(具体的には1300nm以上かつ1600nm以下)の範囲である。以上の説明から理解される通り、照射波長域W0は、第1波長域W1と第2波長域W2との間の範囲(具体的には第1波長域W1の上限値から第2波長域W2の下限値までの範囲)である。
図2に例示される通り、光学系40は、照射波長域W0の光L0を測定部位Mに導き、第1波長域W1の光L1を第1受光部51に導き、第2波長域W2の光L2を第2受光部52に導く。第1実施形態の光学系40は、反射素子41と反射素子42と反射素子43と分光器44と第1光学フィルター45と第2光学フィルター46とを含んで構成される。
反射素子41は、光源部22からの出射光のうち照射波長域W0の光L0を透過して他の光を反射する。例えばビームスプリッターやダイクロイックミラー等が反射素子41として好適に利用される。分光器44は、反射素子41を透過した照射波長域W0の光L0の分光特性を調整して測定部位Mに出射する。例えば、分光器44は、光L0を狭帯域化するファブリ・ペロー干渉計(エタロン)やリニアバリアブルフィルターを含んで構成される。
光源部22からの出射光のうち第1波長域W1および第2波長域W2の光は、反射素子41により反射される。図2の反射素子42は、反射素子41による反射光のうちの一部の光を透過させて他の光を反射する。例えばビームスプリッターが反射素子42として好適に利用される。反射素子43は、反射素子42による反射光を反射させる。例えばミラーが反射素子43として好適に利用される。反射素子42による透過光が第1光学フィルター45に供給され、反射素子43による反射光が第2光学フィルター46に供給される。
第1光学フィルター45は、反射素子42の透過光のうち第1波長域W1の光L1を抽出して第1受光部51に出射するフィルター(例えばハイパスフィルター)である。他方、第2光学フィルター46は、反射素子43の反射光のうち第2波長域W2の光L2を抽出して第2受光部52に出射するフィルター(例えばローパスフィルター)である。
第1受光部51は、光学系40(具体的には第1光学フィルター45)から到来する第1波長域W1の光L1を受光する。例えば光電変換層がシリコン(Si)等の半導体材料で形成された受光素子が第1受光部51として好適に利用される。第2受光部52は、光学系40(具体的には第2光学フィルター46)から到来する第2波長域W2の光L2を受光する。例えば光電変換層がInGaAs(インジウムガリウム砒素)で形成された受光素子が第2受光部52として好適に利用される。したがって、第2受光部52は、波長が1300nm以上の近赤外光を受光可能である。
光源制御部60は、第1受光部51による光L1の受光強度と第2受光部52による光L2の受光強度とに応じて光源部22を制御する。具体的には、第1実施形態の光源制御部60は、第1受光部51による受光強度と第2受光部52による受光強度とが目標の色温度に応じた所定の比率(以下「目標比率」という)となるように、第1受光部51による受光強度と第2受光部52による受光強度とに応じて光源部22を制御する。
図4は、光源部22からの出射光の分光特性(スペクトル)である。図4には、光源部22からの出射光の色温度を相違させた複数の場合について分光特性が併記されている。色温度Tの出射光の分光特性(波長λの光の強度)u(λ,T)は、以下の数式(1)で表現される。数式(1)において、記号hはプランク定数であり、記号kはボルツマン定数であり、記号cは光速度である。
分光特性u(λ,T)を第1波長域W1内で積分することで第1波長域W1の光L1の強度が算定され、分光特性u(λ,T)を第2波長域W2内で積分することで第2波長域W2の光L2の強度が算定される。光源部22からの出射光のうち第1波長域W1の光L1の強度と第2波長域W2の光L2の強度との比率を色温度毎に計算することで、図5のグラフが作成される。図5から理解される通り、光源部22からの出射光のうち第1波長域W1の光L1の強度と第2波長域W2の光L2の強度との比率は、当該出射光の色温度に応じて変化する。具体的には、色温度が高いほど第1波長域W1の光L1が増加するとともに第2波長域W2の光L2が減少する、という傾向が確認できる。したがって、第1受光部51による光L1の受光強度と第2受光部52による光L2の受光強度とが所定の比率(目標比率)となるように光源部22を制御すれば、光源部22からの出射光は当該比率に応じた色温度に調整される。
例えば、図5に鎖線で示される通り、出射光の色温度が7000Kである場合には、第1波長域W1の光L1の強度と第2波長域W2の光L2の強度とは、L1:L2=80:20という比率の関係にある。したがって、第1受光部51による光L1の受光強度と第2受光部52による光L2の受光強度とが80:20となるように光源部22を制御すれば、光源部22からの出射光の色温度は7000Kに設定される。以上の傾向を前提として、第1実施形態の光源制御部60は、前述の通り、第1受光部51の受光強度と第2受光部52の受光強度とが目標比率となるように、第1受光部51および第2受光部52の各々の受光強度に応じて光源部22を制御する。
図6は、光源制御部60の構成図である。図2および図6に例示される通り、第1実施形態の光源制御部60は、信号生成部62と信号比較部64と給電制御部66とを含んで構成される。信号生成部62は、第1受光部51による光L1の受光強度に応じた第1受光信号D1と、第2受光部52による光L2の受光強度に応じた第2受光信号D2とを生成する。
図6に例示される通り、信号生成部62は、電流/電圧変換部71と電流/電圧変換部72と電圧増幅部81と電圧増幅部82とを具備する。電流/電圧変換部71および電圧増幅部81は、第1受光部51の受光強度に応じた第1受光信号D1を生成し、電流/電圧変換部72および電圧増幅部82は、第2受光部52の受光強度に応じた第2受光信号D2を生成する。
電流/電圧変換部71および電流/電圧変換部72の各々は、例えば演算増幅器751と容量素子752と抵抗素子753とで構成されるトランスインピーダンスアンプであり、電流を電圧に変換する。具体的には、電流/電圧変換部71は、第1波長域W1の光L1の受光強度に応じて第1受光部51に発生する電流を電圧V1に変換する。同様に、電流/電圧変換部72は、第2波長域W2の光L2の受光強度に応じて第2受光部52に発生する電流を電圧V2に変換する。第1受光部51に入射する光L1と第2受光部52に入射する光L2とで受光強度が同等である状態で電圧V1と電圧V2とが相等しい電圧となるように、電流/電圧変換部71および電流/電圧変換部72の各々における抵抗素子753の抵抗値が設定される。
図6における電圧増幅部81および電圧増幅部82の各々は、例えば演算増幅器851と抵抗素子852と抵抗素子853と抵抗素子854とを具備するアンプである。電圧増幅部81は、電流/電圧変換部71が生成した電圧V1を増幅することで第1受光信号D1を生成する。同様に、電圧増幅部82は、電流/電圧変換部72が生成した電圧V2を増幅することで第2受光信号D2を生成する。
電圧増幅部81のゲインG1と電圧増幅部82のゲインG2とは、以下の数式で表現される。抵抗値Ra1および抵抗値Ra2の各々は抵抗素子852の抵抗値であり、抵抗値Rb1および抵抗値Rb2の各々は抵抗素子853の抵抗値である。
図5に例示した関係のもとで、目標の色温度に対応する目標比率が、L1:L2=n:mである場合を想定する。第1実施形態では、電圧増幅部81のゲインG1と電圧増幅部82のゲインG2とが、G1:G2=m:n(すなわち受光強度の逆比)となるように、抵抗素子852および抵抗素子853の各々の抵抗値(Ra1,Ra2,Rb1,Rb2)が設定される。したがって、第1受光部51による光L1の受光強度と第2受光部52による光L2の受光強度とが目標比率(L1:L2=n:m)である状態では、第1受光信号D1と第2受光信号D2とは相互に同等の信号強度となる。すなわち、光源部22の出射光が目標の色温度であれば、第1受光信号D1の電圧と第2受光信号D2の電圧とは相等しい。ただし、第1受光部51および第2受光部52の各々による受光強度は微細に変動するから、図7に例示される通り、実際には、第1受光信号D1と第2受光信号D2との電圧の高低は刻々と反転し得る。
図6の信号比較部64は、信号生成部62が生成した第1受光信号D1と第2受光信号D2との間で信号強度(具体的には電圧)を比較する比較器である。第1実施形態の信号比較部64は、第1受光信号D1と第2受光信号D2との信号強度の大小(具体的には電圧の高低)に応じて2値的に変動する制御信号Cを生成する。具体的には、図7に例示される通り、第1受光信号D1の電圧が第2受光信号D2の電圧を上回る場合には、制御信号Cは電圧VL(ローレベル)に設定される。他方、第1受光信号D1の電圧が第2受光信号D2の電圧を下回る場合には、制御信号Cは電圧VH(ハイレベル)に設定される。電圧VHは電圧VLを上回る。
図6の給電制御部66は、光源部22に対する電流の供給を、信号比較部64が生成する制御信号Cに応じて制御する。第1実施形態の給電制御部66は、図6に例示される通り、制御信号Cに応じて開閉が制御されるスイッチ(例えばトランジスター)67を含んで構成される。図6のスイッチ67は、電池等の電源26から光源部22に供給される電流の経路上に設置され、光源部22に対する電流の供給および遮断を制御信号Cに応じて制御する。なお、図6では、光源部22と接地線との間にスイッチ67を設置したが、スイッチ67が設置される位置は図6の例示に限定されない。例えば、光源部22と電源26との間にスイッチ67を設置することも可能である。なお、光源部22には、電流の変動を抑制する容量素子281が並列に接続され、電源26に供給される電流を制限するための抵抗素子282が直列に接続される。
以上の構成において、図7に例示される通り、制御信号Cがハイレベルに設定される期間ではスイッチ67がオン状態に制御されるから、光源部22に電流が供給される。他方、制御信号Cがローレベルに設定される期間ではスイッチ67がオフ状態に制御されるから、光源部22に対する電流の供給が停止する。すなわち、第1受光信号D1と第2受光信号D2との電圧の高低に応じて、光源部22に電流が供給される時間と電流の供給が停止される時間との比率が制御される。
光源部22に供給される電力が増加するほど出射光の色温度は上昇するという傾向がある。光源部22の出射光の色温度が目標よりも低い場合、光L2に対する光L1の強度比率が目標比率に対して低い状態となる。以上の状態では、第1受光信号D1の電圧が第2受光信号D2の電圧を下回るから、制御信号Cは電圧VHに設定される。したがって、光源部22に電流が供給される時間比率が増加し、結果的に色温度が上昇するように作用する。他方、光源部22の出射光の色温度が目標よりも高い場合、光L2に対する光L1の強度比率が目標比率に対して高い状態となる。以上の状態では、第1受光信号D1の電圧が第2受光信号D2の電圧を上回るから、制御信号Cは電圧VLに設定される。したがって、光源部22に対する給電が停止する時間比率が増加し、結果的に色温度が低下するように作用する。以上の説明から理解される通り、光源制御部60は、光源部22からの出射光が目標の色温度に近付くように光源部22を制御する。
以上に説明した通り、第1実施形態では、光源部22からの出射光のうち第1波長域W1の光L1の受光強度と第2波長域W2の光L2の受光強度とに応じて光源部22が制御される。したがって、例えば光源部22からの出射光のうち単一の波長域の光に応じて光源部22を制御する構成と比較して、光源部22からの出射光の特性を高精度かつ安定的に設定することが可能である。例えば第1実施形態では、第1受光部51による受光強度と第2受光部52による受光強度とが目標比率となるように光源部22が制御されるから、光源部22からの出射光を高精度かつ安定的に目標の色温度に設定できるという利点がある。
また、第1実施形態では、第1受光部51による受光強度と第2受光部52による受光強度とが目標比率であるときに同等の信号強度となるように第1受光信号D1と第2受光信号D2とが生成される。そして、第1受光信号D1と第2受光信号D2との信号強度の大小に応じて2値的に変動する制御信号Cを利用して光源部22に対する電流の供給が制御される。したがって、光源部22に対する電流の供給および遮断を制御する簡便な構成で光源部22の出射光の特性を制御できるという利点がある。
第1実施形態では、測定部位Mに照射される照射波長域W0に対して短波長側の第1波長域W1の光L1と長波長側の第2波長域W2の光L2とが光源部22の制御に利用される。したがって、測定部位Mに対する光照射に並行して光源部22からの出射光の特性(特に色温度)を制御できるという利点がある。
<第2実施形態>
本発明の第2実施形態を説明する。なお、以下に例示する各形態において作用や機能が第1実施形態と同様である要素については、第1実施形態の説明で使用した符号を流用して各々の詳細な説明を適宜に省略する。
本発明の第2実施形態を説明する。なお、以下に例示する各形態において作用や機能が第1実施形態と同様である要素については、第1実施形態の説明で使用した符号を流用して各々の詳細な説明を適宜に省略する。
図8は、第2実施形態における光照射装置20の構成図である。図8に例示される通り、第2実施形態の光照射装置20における光学系40は、反射素子47と反射素子48と分光器44とを含んで構成される。反射素子47は、図9に例示された特性Iの通り、光源部22からの出射光のうち第1波長域W1の光L1を第1受光部51に向けて反射するとともに、照射波長域W0を含む他の波長域の光を透過する。また、反射素子48は、図9に例示された特性IIの通り、光源部22からの出射光のうち第2波長域W2の光L2を第2受光部52に向けて反射するとともに、照射波長域W0を含む他の波長域の光を透過する。例えばダイクロイックミラーが反射素子47および反射素子48として好適に利用される。
以上の構成において、光源部22からの出射光のうち照射波長域W0の光L0は、反射素子47および反射素子48の双方を透過して分光器44に到達する。すなわち、第2実施形態の光学系40は、第1実施形態と同様に、第1波長域W1の光L1を第1受光部51に導き、第2波長域W2の光L2を第2受光部52に導き、照射波長域W0の光L0を測定部位Mに導く。他の構成は第1実施形態と同様である。
第2実施形態においても第1実施形態と同様の効果が実現される。また、第2実施形態では、光源部22からの出射光のうち第1波長域W1の光L1が反射素子47により第1受光部51に向けて反射され、第2波長域W2の光L2が反射素子48により第2受光部52に向けて反射される。また、光源部22からの出射光のうち照射波長域W0の光L0は反射素子47および反射素子48の双方を透過して測定部位Mに供給される。したがって、反射素子47と反射素子48とを利用した簡便な構成により、光源部22からの出射光を第1波長域W1と第2波長域W2と照射波長域W0とに分離できるという利点がある。
<変形例>
前述の各形態では、第1受光信号D1と第2受光信号D2との信号強度の大小に応じて光源部22に対する給電を制御したが、第1受光部51の受光強度と第2受光部52の受光強度とに応じて光源部22を制御する方法は以上の例示に限定されない。例えば、第1受光部51による受光強度と第2受光部52による受光強度との強度比に応じて、光源部22に供給される電流の電流量を制御することも可能である。
前述の各形態では、第1受光信号D1と第2受光信号D2との信号強度の大小に応じて光源部22に対する給電を制御したが、第1受光部51の受光強度と第2受光部52の受光強度とに応じて光源部22を制御する方法は以上の例示に限定されない。例えば、第1受光部51による受光強度と第2受光部52による受光強度との強度比に応じて、光源部22に供給される電流の電流量を制御することも可能である。
100…測定装置、12…光学検出装置、14…情報処理装置、20…光照射装置、22…光源部、24…光源制御装置、30…受光装置、40…光学系、41,42,43,47,48…反射素子、44…分光器、45…第1光学フィルター、46…第2光学フィルター、51…第1受光部、52…第2受光部、60…光源制御部、62…信号生成部、64…信号比較部、66…給電制御部、71,72…電流/電圧変換部、81,82…電圧増幅部。
Claims (10)
- 光を出射する光源部と、
前記光源部からの出射光のうち第1波長域の光を受光する第1受光部と、
前記出射光のうち前記第1波長域よりも長波長側の第2波長域の光を受光する第2受光部と、
前記第1受光部による受光強度と前記第2受光部による受光強度とに応じて前記光源部を制御する光源制御部と
を具備する光照射装置。 - 前記光源制御部は、前記第1受光部による受光強度と前記第2受光部による受光強度とが、前記光源部が出射すべき光の色温度に応じた所定の比率となるように、前記光源部を制御する
請求項1の光照射装置。 - 前記光源制御部は、
前記第1受光部による受光強度に応じた第1受光信号と前記第2受光部による受光強度に応じた第2受光信号とを、前記第1受光部による受光強度と前記第2受光部による受光強度とが前記所定の比率であるときに前記第1受光信号と前記第2受光信号とが相互に同等の信号強度となるように生成する信号生成部と、
前記第1受光信号と前記第2受光信号との信号強度の大小に応じて2値的に変動する制御信号を生成する信号比較部と、
前記光源部に対する電流の供給を前記制御信号に応じて制御する給電制御部とを含む
請求項2の光照射装置。 - 前記光源部からの出射光のうち前記第1波長域の光を前記第1受光部に導き、当該出射光のうち前記第2波長域の光を前記第2受光部に導き、前記第1波長域と前記第2波長域との間の照射波長域の光を照射対象に導く光学系
を具備する請求項1から請求項3の何れかの光照射装置。 - 前記光学系は、
前記照射波長域の光を透過して他の波長域の光を反射する反射素子と、
前記反射素子による反射光のうち前記第1波長域の光を抽出して前記第1受光部に出射する第1光学フィルターと、
前記反射素子による反射光のうち前記第2波長域の光を抽出して前記第2受光部に出射する第2光学フィルターとを含む
請求項4の光照射装置。 - 前記光学系は、
前記光源部からの出射光のうち前記第1波長域の光を前記第1受光部に向けて反射して他の波長域の光を透過する第1反射素子と、
前記光源部からの出射光のうち前記第2波長域の光を前記第2受光部に向けて反射して他の波長域の光を透過する第2反射素子とを含む
請求項4の光照射装置。 - 前記光源部は、発熱発光する
請求項1から請求項6の何れかの光照射装置。 - 請求項1から請求項7の何れかの光照射装置と、
前記光照射装置から出射して照射対象を通過した光を受光する受光装置と
を具備する光検出装置。 - 前記受光装置は、InGaAsを含有する光電変換層を含む
請求項8の光検出装置。 - 光を出射する光源部を制御する光源制御装置であって、
前記光源部からの出射光のうち第1波長域の光を受光する第1受光部と、
前記出射光のうち前記第1波長域よりも長波長側の第2波長域の光を受光する第2受光部と、
前記第1受光部による受光強度と前記第2受光部による受光強度とに応じて前記光源部を制御する光源制御部と
を具備する光源制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017002747A JP2018112463A (ja) | 2017-01-11 | 2017-01-11 | 光照射装置、光学検出装置および光源制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017002747A JP2018112463A (ja) | 2017-01-11 | 2017-01-11 | 光照射装置、光学検出装置および光源制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018112463A true JP2018112463A (ja) | 2018-07-19 |
Family
ID=62911057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017002747A Pending JP2018112463A (ja) | 2017-01-11 | 2017-01-11 | 光照射装置、光学検出装置および光源制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018112463A (ja) |
-
2017
- 2017-01-11 JP JP2017002747A patent/JP2018112463A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8649012B2 (en) | Optical gas sensor | |
US11585758B2 (en) | Microspectroscopic device and microspectroscopic method | |
JPH04256733A (ja) | 血液パラメーターの測定装置およびその方法 | |
KR20170023628A (ko) | 시료 분석을 위한 레퍼런스 스펙트럼 측정 장치 및 방법, 시료 분석 장치 및 방법 | |
US10816398B2 (en) | Spectrometer and spectrum measurement method thereof | |
EP2543316A1 (en) | Apparatus for measuring the luminance and temperature of a light source of a spectrophotometric device | |
US10627405B2 (en) | Detection device and biological information measuring device | |
JPH10216112A (ja) | 無侵襲生化学計測装置 | |
JPH09304272A (ja) | 液体の吸光度測定装置 | |
US10677721B2 (en) | Optical concentration measuring device and control method for optical concentration measuring device | |
JP6342445B2 (ja) | 光学計測デバイス及びその方法 | |
TWI646314B (zh) | 光學式溫度感測器及光學式溫度感測器之控制方法 | |
US20030160173A1 (en) | Remote gas molecule detector | |
US9605999B2 (en) | Light sources with highly stable output intensity | |
JP2018112463A (ja) | 光照射装置、光学検出装置および光源制御装置 | |
JP2014238263A (ja) | 血液成分分析装置 | |
JP2005111165A (ja) | 散乱吸収体計測装置及び計測方法 | |
JP4962234B2 (ja) | パルスオキシメータ | |
US10028681B2 (en) | Biological sensor | |
CN114755194A (zh) | 一种糖化血红蛋白检测器及其信号产生和处理方法 | |
JP2011257268A (ja) | 分光光度計 | |
KR101934158B1 (ko) | 보조광원이 포함된 확산 광 분광 프로브 및 그 프로브가 탑재된 확산 광 분광 시스템 | |
JPH04248423A (ja) | ルミネッセンス測定装置 | |
JPS63127127A (ja) | 光パワ−測定器 | |
JP2018196569A (ja) | 照明装置、生体情報測定装置および制御方法 |