JP2018107118A - Nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2018107118A
JP2018107118A JP2017208446A JP2017208446A JP2018107118A JP 2018107118 A JP2018107118 A JP 2018107118A JP 2017208446 A JP2017208446 A JP 2017208446A JP 2017208446 A JP2017208446 A JP 2017208446A JP 2018107118 A JP2018107118 A JP 2018107118A
Authority
JP
Japan
Prior art keywords
transition metal
positive electrode
secondary battery
electrolyte secondary
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017208446A
Other languages
Japanese (ja)
Other versions
JP7205051B2 (en
JP2018107118A5 (en
Inventor
諒 原田
Ryo Harada
諒 原田
遠藤 大輔
Daisuke Endo
大輔 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Publication of JP2018107118A publication Critical patent/JP2018107118A/en
Publication of JP2018107118A5 publication Critical patent/JP2018107118A5/ja
Application granted granted Critical
Publication of JP7205051B2 publication Critical patent/JP7205051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To further improve the safety of a nonaqueous electrolyte secondary battery.SOLUTION: A nonaqueous electrolyte secondary battery comprises a positive electrode, a negative electrode and a nonaqueous electrolyte. In the nonaqueous electrolyte secondary battery, the positive electrode includes, as an active material, a first lithium transition metal composite oxide having an α-NaFeOstructure and represented by the general formula, LiMe1O(where Me1 is a transition metal element including Ni, Co and Mn), and a second lithium transition metal composite oxide having an α-NaFeOstructure and represented by the general formula, LiMe2O(where 0<α, and Me2 is a transition metal element including a combination of Ni and Mn or a combination of Ni, Mn and Co). As to the positive electrode, a diffraction peak is observed at or near 21° in an X-ray diffraction diagram with Cu Kα rays.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解質二次電池、及び非水電解質二次電池の製造方法に関する。   The present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing a non-aqueous electrolyte secondary battery.

リチウム二次電池に代表される非水電解質二次電池は、近年ますます用途が拡大され、より高容量の正極材料の開発が求められている。
従来、非水電解質二次電池用正極活物質として、α−NaFeO型結晶構造を有するリチウム遷移金属複合酸化物が検討され、LiCoOを用いた非水電解質二次電池が広く実用化されている。LiCoOの放電容量は120〜130mAh/g程度である。前記リチウム遷移金属複合酸化物を構成する遷移金属(Me)として、地球資源として豊富なMnを用い、前記リチウム遷移金属複合酸化物を構成する遷移金属に対するLiのモル比Li/Meがほぼ1であり、遷移金属中のMnのモル比Mn/Meが0.5以下であるいわゆる「LiMeO型」活物質を用いた非水電解質二次電池も実用化されている。例えば、LiNi1/2Mn1/2やLiNi1/3Co1/3Mn1/3を含有する正極活物質の放電容量は150〜180mAh/gである。
一般に、これらのいわゆる「LiMeO型」活物質を用いた非水電解質二次電池に対して採用される充電電圧は、約4.3Vであり、このときの正極の最大到達電位は約4.4V(vs.Li/Li)である。これは、これ以上充電電圧を高くしても、より多くの放電容量が取りだせないためである。
Non-aqueous electrolyte secondary batteries represented by lithium secondary batteries have been increasingly used in recent years, and development of higher-capacity cathode materials has been demanded.
Conventionally, lithium transition metal composite oxides having an α-NaFeO 2 type crystal structure have been studied as positive electrode active materials for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary batteries using LiCoO 2 have been widely put into practical use. Yes. The discharge capacity of LiCoO 2 is about 120 to 130 mAh / g. As the transition metal (Me) constituting the lithium transition metal composite oxide, abundant Mn is used as an earth resource, and the molar ratio Li / Me of Li to the transition metal constituting the lithium transition metal composite oxide is approximately 1. In addition, a nonaqueous electrolyte secondary battery using a so-called “LiMeO 2 type” active material having a Mn molar ratio Mn / Me in the transition metal of 0.5 or less has been put into practical use. For example, the discharge capacity of the positive electrode active material containing LiNi 1/2 Mn 1/2 O 2 or LiNi 1/3 Co 1/3 Mn 1/3 O 2 is 150 to 180 mAh / g.
Generally, the charging voltage adopted for a non-aqueous electrolyte secondary battery using these so-called “LiMeO 2 type” active materials is about 4.3 V, and the maximum potential reached at the positive electrode at this time is about 4. 4 V (vs. Li / Li + ). This is because even if the charging voltage is further increased, a larger discharge capacity cannot be obtained.

非水電解質二次電池には、誤って過充電がされた場合においても安全性が確保されることが規格によって定められている。非水電解質二次電池の安全性を向上させる技術としては、非水電解質(電解液)に特定の添加剤を適用する技術が知られている(例えば、特許文献1参照)。   The standard stipulates that safety is ensured for non-aqueous electrolyte secondary batteries even when they are overcharged by mistake. As a technique for improving the safety of a non-aqueous electrolyte secondary battery, a technique for applying a specific additive to a non-aqueous electrolyte (electrolytic solution) is known (see, for example, Patent Document 1).

特許文献1には、「非水電解質を備える非水電解質二次電池であって、前記非水電解質は、下記一般式(1)で表されるハロゲン化芳香族化合物と、下記一般式(2)で表される含窒素ヘテロ環式化合物とを含む、非水電解質二次電池。」(請求項1)が記載されている。
そして、実施例には、「正極活物質としてLiNi1/3Mn1/3Co1/3」を用いて作製した正極板(段落[0063])と、「負極活物質としてグラファイト(黒鉛)」を用いて作製した負極板(段落[0064])と、「エチレンカーボネート(EC):エチルメチルカーボネート(EMC)=30:70(体積比)の混合溶媒にLiPFを1mol/Lの濃度で溶解させ、一般式(1)で表されるハロゲン化芳香族化合物である2−フルオロトルエン(オルトフルオロトルエン)及び一般式(2)で表される含窒素ヘテロ環式化合物である3−メチル−2−オキサゾリドンをそれぞれ非水電解質に対して、5.0質量%及び4.0質量%添加することにより」調整した非水電解質(段落[0066])を備えた非水電解質二次電池について、過充電試験を行ったこと(段落[0069]、[0070])が記載されている。
Patent Document 1 states that “a nonaqueous electrolyte secondary battery including a nonaqueous electrolyte, wherein the nonaqueous electrolyte includes a halogenated aromatic compound represented by the following general formula (1) and the following general formula (2 Non-aqueous electrolyte secondary battery comprising a nitrogen-containing heterocyclic compound represented by the formula (1)].
Examples include a positive electrode plate (paragraph [0063]) prepared using “LiNi 1/3 Mn 1/3 Co 1/3 O 2 as a positive electrode active material” and “graphite (graphite as a negative electrode active material). ) ”And LiPF 6 at a concentration of 1 mol / L in a mixed solvent of“ ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 30: 70 (volume ratio) ”(paragraph [0064]). 2-fluorotoluene (orthofluorotoluene) which is a halogenated aromatic compound represented by the general formula (1) and 3-methyl which is a nitrogen-containing heterocyclic compound represented by the general formula (2) Non-aqueous electrolyte with non-aqueous electrolyte (paragraph [0066]) prepared by adding 5.0 mass% and 4.0 mass% of 2-oxazolidone to the non-aqueous electrolyte, respectively On solution electrolyte secondary battery, it was subjected to the overcharge test (paragraph [0069], [0070]) have been described.

一方、近年、α−NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の中でも、遷移金属(Me)中のMnのモル比Mn/Meが0.5を超え、遷移金属(Me)に対するLiのモル比Li/Meが1を超えるいわゆる「リチウム過剰型」活物質が知られている。この活物質は、電池を組立てて、最初に行う充電過程において、4.5〜5.0V(vs.Li/Li)の電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察されるという特徴があり、上記平坦な領域が観察される充電過程が終了するまで充電を行うことにより、以降の充電電位をそれほど貴としなくても、「LiMeO型」活物質に比べて高い放電容量を有することから、注目されている(特許文献2参照)。 On the other hand, in recent years, among lithium transition metal composite oxides having an α-NaFeO 2 type crystal structure, the Mn molar ratio Mn / Me in the transition metal (Me) exceeds 0.5, and Li to the transition metal (Me) So-called “lithium-rich” active materials having a molar ratio Li / Me of greater than 1 are known. This active material has a relatively flat potential change with respect to the amount of charge in the potential range of 4.5 to 5.0 V (vs. Li / Li + ) in the initial charging process after assembling the battery. In this case, the “LiMeO 2 type” active material can be obtained by charging until the charging process in which the flat region is observed is completed, even if the subsequent charging potential is not so noble. It has attracted attention because it has a high discharge capacity compared to (see Patent Document 2).

特許文献2には、「α−NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の固溶体を含むリチウム二次電池用活物質であって、前記固溶体が含有するLi,Co,Ni及びMnの組成比が、Li1+(1/3)xCo1−x−yNi(1/2)yMn(2/3)x+(1/2)y(x+y≦1、0≦y、1−x−y=z)を満たし、・・・で表され、かつ、X線回折測定による(003)面と(104)面の回折ピークの強度比が、充放電前においてI(003)/I(104)≧1.56であり、放電末においてI(003)/I(104)>1でああり、4.3V(vs.Li/Li)を超え4.8V以下(vs.Li/Li)の正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域に少なくとも至る初期充電を行う工程を経た場合に、4.3V(vs.Li/Li)以下の電位領域において放電可能な電気量が177mAh/g以上となることを特徴とするリチウム二次電池用活物質。」(請求項3)が記載されている。 Patent Document 2 states that “an active material for a lithium secondary battery including a solid solution of a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure, which includes Li, Co, Ni, and Mn contained in the solid solution. The composition ratio is Li 1+ (1/3) x Co 1-xy Ni (1/2) y Mn (2/3) x + (1/2) y (x + y ≦ 1, 0 ≦ y, 1−x −y = z), and the intensity ratio of the diffraction peaks of the (003) plane and the (104) plane by X-ray diffraction measurement is I (003) / I ( 104) ≧ 1.56, and I (003) / I (104) > 1 at the end of discharge, exceeding 4.3 V (vs. Li / Li + ) and 4.8 V or less (vs. Li / Li) potential change appearing against amount of charge in the positive electrode potential range of +) is relatively flat region When passing through the step of performing at least throughout the initial charge, 4.3 V for a lithium secondary battery (vs.Li/Li +) electric quantity capable discharge in the following potential region is characterized to be a 177 mAh / g or more Active material "(Claim 3).

そして、段落[0062]には、「本発明に係るリチウム二次電池用活物質を用い、使用時において、充電時の正極の最大到達電位が4.3V(vs.Li/Li)以下となるような充電方法を採用しても、充分な放電容量を取り出すことのできるリチウム二次電池を製造するためには、次に述べる、本発明に係るリチウム二次電池用活物質に特徴的な挙動を考慮した充電工程を該リチウム二次電池の製造工程中に設けることが重要である。即ち、本発明に係るリチウム二次電池用活物質を正極に用いて定電流充電を続けると、正極電位4.3V〜4.8Vの範囲に、電位変化が比較的平坦な領域が比較的長い期間に亘って観察される。・・・ここで採用した充電条件は、電流0.1ItA、電圧(正極電位)4.5V(vs.Li/Li)の定電流定電圧充電であるが、充電電圧をさらに高く設定しても、この比較的長い期間に亘る電位平坦領域は、xの値が1/3以下の材料を用いた場合にはほとんど観察されない。逆に、xの値が2/3を超える材料では、電位変化が比較的平坦な領域が観察される場合であっても短いものとなる。また、従来のLi[Co1−2xNiMn]O(0≦x≦1/2)系材料でもこの挙動は観察されない。この挙動は、本発明に係るリチウム二次電池用活物質に特徴的なものである。」と記載されている。 And, in paragraph [0062], “the use of the active material for a lithium secondary battery according to the present invention, in use, the maximum potential of the positive electrode during charging is 4.3 V (vs. Li / Li + ) or less. In order to produce a lithium secondary battery capable of taking out a sufficient discharge capacity even when such a charging method is adopted, the following characteristic of the active material for a lithium secondary battery according to the present invention is described. It is important to provide a charging process in consideration of the behavior during the manufacturing process of the lithium secondary battery, that is, when the constant current charging is continued using the active material for lithium secondary battery according to the present invention as the positive electrode, A region where the potential change is relatively flat is observed over a relatively long period in the range of potential 4.3 V to 4.8 V. The charging conditions employed here are a current of 0.1 ItA, a voltage ( Positive electrode potential) 4.5V (vs. Li / L +) Of is a constant-current constant-voltage charging, setting even higher charging voltage, the potential flat region over the relatively long period of time, when the value of x was used 1/3 of the material Conversely, in the case of a material having a value of x exceeding 2/3, the potential change is short even when a relatively flat region is observed, and the conventional Li [Co 1− 2x Ni x Mn x] O 2 this behavior in (0 ≦ x ≦ 1/2 ) material is not observed. this behavior is characteristic of the active material for a lithium secondary battery according to the present invention. " It is described.

また、「LiMeO型」活物質と「リチウム過剰型」活物質を混合して正極活物質として用いることも知られている(特許文献3及び4参照)。
特許文献3には、「α−NaFeO構造を有し、遷移金属Me1としてCo、Ni及びMnを含有し、1<モル比Li/Me1<1.5、モル比Mn/Me1>0.5であるリチウム遷移金属複合酸化物Aと、組成式LiMe2O(但し、Me2はCo、Ni及びMnを含む遷移金属、0<モル比Mn/Me2≦0.5)で表されるリチウム遷移金属複合酸化物Bの混合物を活物質とするリチウム二次電池用混合活物質であって、前記リチウム遷移金属複合酸化物Aを前記混合物中に50〜85質量%含有し、前記リチウム遷移金属複合酸化物Aは、平均粒子径が前記リチウム遷移金属複合酸化物Bの平均粒子径よりも小さく、かつ、窒素ガス吸着法を用いた吸着等温線からBJH法で求めた微分細孔容積が最大値を示す細孔径が30〜40nmの範囲で、ピーク微分細孔容積が0.85mm/(g・nm)以上であることを特徴とするリチウム二次電池用混合活物質。」(請求項1)が記載されている。
そして、実施例に係る混合活物質を用いた正極と、金属リチウムを用いた負極を有する二次電池(段落[0119])について、「25℃の下、初期充放電工程に供した。充電は、電流0.1CmA、電圧4.6Vの定電流定電圧充電とし、充電終止条件は電流値が1/6に減衰した時点とした。放電は、電流0.1CmA、終止電圧2.0Vの定電流放電とした。この充放電を2サイクル行った。」と記載されている。
It is also known that a “LiMeO 2 type” active material and a “lithium-excess type” active material are mixed and used as a positive electrode active material (see Patent Documents 3 and 4).
Patent Document 3 discloses that “having an α-NaFeO 2 structure and containing Co, Ni and Mn as transition metals Me1, 1 <molar ratio Li / Me1 <1.5, molar ratio Mn / Me1> 0.5. lithium transition metal complex oxide a is represented by a composition formula LiMe2O 2 (where, Me2 is Co, transition metal containing Ni and Mn, 0 <mole ratio Mn / Me2 ≦ 0.5) lithium transition metal complex represented by A mixed active material for a lithium secondary battery using a mixture of oxide B as an active material, the lithium transition metal composite oxide A being contained in the mixture in an amount of 50 to 85% by mass, and the lithium transition metal composite oxide A is the average particle diameter is smaller than the average particle diameter of the lithium transition metal composite oxide B, and the differential pore volume determined by the BJH method from the adsorption isotherm using the nitrogen gas adsorption method shows the maximum value. Pore diameter is 30 In the range of 40 nm, a mixed active material for a lithium secondary battery, wherein the peak differential pore volume is 0.85mm 3 / (g · nm) or more. "(Claim 1) is described.
And about the secondary battery (paragraph [0119]) which has the positive electrode using the mixed active material which concerns on an Example, and the negative electrode using metallic lithium, it used for the initial stage charge / discharge process under 25 degreeC. The constant current and constant voltage charging with a current of 0.1 CmA and a voltage of 4.6 V was performed, and the charge termination condition was set at the time when the current value was attenuated to 放電 The discharge was performed at a constant current of 0.1 CmA and a final voltage of 2.0 V. It was referred to as “current discharge. This charge / discharge was performed for two cycles”.

特許文献4には、「組成式LixNiaMnbc2(1.09<x<1.20、0.21<a<0.42、0.42<b<0.63、0≦c≦0.02、x+a+b+c=2.0、MはCo、V、Mo、W、Zr、Nb、Ti、Al、Fe、Mg、Cu等の少なくともいずれかの元素)で表される第一の正極活物質粒子と、組成式LiM’O2(0.9≦y≦1.1、M’はNiまたはCoの少なくともいずれかを含む一種類以上の金属元素)で表わされる第二の正極活物質粒子とを含むことを特徴とするリチウムイオン二次電池用正極材料。」(請求項1)が記載されている。
そして、実施例に係る正極材料を用いた正極と、金属リチウムを用いた負極(段落[0038])を有する試作電池について、「充放電試験をした。充電は定電流定電圧充電(CC−CVモード)とし、上限電圧は4.5Vとした。放電は定電流放電(CCモード)とし、下限電圧は3.0Vとした。」(段落[0040])と記載されている。
Patent Document 4 states that “compositional formula Li x Ni a Mn b M c O 2 (1.09 <x <1.20, 0.21 <a <0.42, 0.42 <b <0.63, 0 ≦ c ≦ 0.02, x + a + b + c = 2.0, where M is an element represented by at least one of Co, V, Mo, W, Zr, Nb, Ti, Al, Fe, Mg, Cu, etc. One positive electrode active material particle and a compositional formula LiM′O 2 (0.9 ≦ y ≦ 1.1, where M ′ is one or more metal elements including at least one of Ni and Co). And a positive electrode material for a lithium ion secondary battery, comprising positive electrode active material particles.
And about the prototype battery which has the positive electrode using the positive electrode material which concerns on an Example, and the negative electrode (paragraph [0038]) using metallic lithium, "The charge / discharge test was done. Charging is constant current constant voltage charge (CC-CV. The upper limit voltage was 4.5 V. The discharge was constant current discharge (CC mode) and the lower limit voltage was 3.0 V ”(paragraph [0040]).

特開2016−46125号公報JP-A-2006-46125 特許第4877660号公報Japanese Patent No. 4877660 特開2016−119288号公報Japanese Patent Laid-Open No. 2006-119288 特開2016−62788号公報JP, 2006-62788, A

非水電解質二次電池には、上記のように、誤って過充電がされた場合においても安全性が確保されることが規格(例えば自動車用電池に対して「GB/T(中国勧奨国家標準)」)によって定められている。安全性が向上したことを評価する方法としては、充電制御回路が壊れた場合を想定し、満充電状態(SOC100%)を超えてさらに電流を強制的に印加したときに、電極電位の急上昇が観察されたSOCを記録する方法がある。より高いSOCに至るまで、電極電位の急上昇が観察されない場合、安全性が向上したと評価される。
特許文献1には、「LiMeO型」活物質を正極に用い、非水電解質に特定の添加剤を加えることにより過充電による安全性の向上を図ることが示されている。しかし、このような添加剤は、電池性能の低下をもたらすという問題がある。
特許文献2には、「リチウム過剰型」活物質を正極に用い、また、特許文献3,4には、「LiMeO型」活物質と「リチウム過剰型」活物質を混合して正極活物質に用い、金属リチウムに対する初期充電電位を4.5V以上とすることにより、放電容量等を向上させることが示されている。しかし、過充電時の安全性については示すところがない。
本発明は、非水電解質二次電池の安全性をより向上させることを目的とする。
As described above, non-aqueous electrolyte secondary batteries have standards that ensure safety even if they are accidentally overcharged (for example, GB / T (China recommended national standard for automotive batteries). ) ”). As a method of evaluating the improvement in safety, assuming that the charge control circuit is broken, when the current is forcibly applied beyond the fully charged state (SOC 100%), the electrode potential rapidly increases. There is a method of recording the observed SOC. If no rapid increase in electrode potential is observed until a higher SOC is reached, it is evaluated that safety has improved.
Patent Document 1 discloses that a “LiMeO 2 type” active material is used for a positive electrode and a specific additive is added to a nonaqueous electrolyte to improve safety by overcharging. However, there is a problem that such an additive causes a decrease in battery performance.
Patent Document 2 uses a “lithium-excess type” active material as a positive electrode, and Patent Documents 3 and 4 describe a mixture of a “LiMeO 2 type” active material and a “lithium-excess type” active material to form a positive electrode active material. It is shown that the discharge capacity and the like can be improved by setting the initial charging potential for metallic lithium to 4.5 V or higher. However, there is no indication of safety during overcharging.
An object of this invention is to improve the safety | security of a nonaqueous electrolyte secondary battery more.

本発明の一側面は、正極、負極及び非水電解質を備える非水電解質二次電池であって、前記正極は、活物質として、α−NaFeO構造を有し、一般式 LiMe1O(Me1はNi、Co及びMnを含む遷移金属元素)で表される第一のリチウム遷移金属複合酸化物と、α−NaFeO構造を有し、一般式 Li1+αMe21−α(0<α、Me2はNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表される第二のリチウム遷移金属複合酸化物を含み、前記活物質は、CuKα線を用いたエックス線回折図において、21°付近に回折ピークが観察される、非水電解質二次電池である。 One aspect of the present invention is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode has an α-NaFeO 2 structure as an active material, and has a general formula LiMe1O 2 (Me1 is A first lithium transition metal composite oxide represented by a transition metal element including Ni, Co, and Mn), an α-NaFeO 2 structure, and a general formula Li 1 + α Me2 1-α O 2 (0 <α, Me2 includes a second lithium transition metal composite oxide represented by Ni and Mn, or a transition metal element including Ni, Mn, and Co), and the active material is 21 in an X-ray diffraction diagram using CuKα rays. This is a non-aqueous electrolyte secondary battery in which a diffraction peak is observed in the vicinity of °.

本発明の他の一側面は、正極、負極及び非水電解質を備える非水電解質二次電池であって、前記正極は、活物質として、α−NaFeO構造を有し、一般式 LiMe1O(Me1はNi、Co及びMnを含む遷移金属元素)で表される第一のリチウム遷移金属複合酸化物と、α−NaFeO構造を有し、一般式 Li1+αMe21−α(0<α、Me2はNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表される第二のリチウム遷移金属複合酸化物を含み、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5〜5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池である。 Another aspect of the present invention is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode has an α-NaFeO 2 structure as an active material, and has a general formula of LiMe1O 2 ( Me1 has a first lithium transition metal composite oxide represented by Ni, Co, and Mn) and an α-NaFeO 2 structure, and has the general formula Li 1 + α Me2 1-α O 2 (0 < α, Me2 includes a second lithium transition metal composite oxide represented by Ni and Mn, or a transition metal element including Ni, Mn, and Co), and the positive electrode potential is 5.0 V (vs. Li / Li + ). When charging up to is performed, a region in which the potential change is relatively flat with respect to the amount of charge is observed in the positive electrode potential range of 4.5 to 5.0 V (vs. Li / Li + ). It is a water electrolyte secondary battery.

本発明の別の側面は、上記非水電解質二次電池の製造方法であって、初期充放電工程を4.5V(vs.Li/Li)未満で行う、非水電解質二次電池の製造方法である。 Another aspect of the present invention is a method of manufacturing a non-aqueous electrolyte secondary battery, wherein the initial charge / discharge step is performed at less than 4.5 V (vs. Li / Li + ). Is the method.

本発明によれば、誤って過充電された場合でも、より安全性が向上した非水電解質二次電池、及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even when it overcharges accidentally, the nonaqueous electrolyte secondary battery which improved safety | security, and its manufacturing method can be provided.

本発明の実施形態に係る正極活物質のエックス線回折図X-ray diffraction pattern of positive electrode active material according to an embodiment of the present invention 本発明の実施形態に係る非水電解質二次電池を過充電した後の正極活物質のエックス線回折図X-ray diffraction pattern of a positive electrode active material after overcharging a nonaqueous electrolyte secondary battery according to an embodiment of the present invention 本発明の比較例に係る正極活物質のエックス線回折図X-ray diffraction pattern of positive electrode active material according to comparative example of the present invention 本発明の実施形態及び比較例に係る正極の過充電時の充電電気量に対する電位変化を示す図The figure which shows the electrical potential change with respect to the charge amount of electricity at the time of the overcharge of the positive electrode which concerns on embodiment and comparative example of this invention. 「LiMeO型」及び「リチウム過剰型」活物質を4.5V(vs.Li/Li+)未満の正極電位範囲で充放電した場合に観察される充電電気量に対する電位変化を示す図It shows the potential change for the amount of charge to be observed "LiMeO 2 Model" and "lithium-excess type" active material when charged and discharged at the positive electrode potential range of less than 4.5V (vs.Li/Li +) 「LiMeO型」及び「リチウム過剰型」活物質を4.5V(vs.Li/Li+)以上の正極電位範囲で初期充放電した場合に観察される充電電気量に対する電位変化を示す図Shows the potential change for the amount of charge that is observed when the initial charge-discharge "LiMeO 2 Model" and "lithium-excess type" active material 4.5V (vs.Li/Li +) or more positive electrode potential range 本発明の実施形態に係る非水電解質二次電池における「充電電気量に対して電位変化が比較的平坦な領域」を説明する図The figure explaining "the area | region where an electric potential change is comparatively flat with respect to the amount of charge electricity" in the nonaqueous electrolyte secondary battery which concerns on embodiment of this invention 本発明の一態様に係る非水電解質二次電池の一実施形態を示す斜視図The perspective view which shows one Embodiment of the nonaqueous electrolyte secondary battery which concerns on 1 aspect of this invention 本発明の一態様に係る非水電解質二次電池を複数個備えた蓄電装置を示す概略図1 is a schematic diagram illustrating a power storage device including a plurality of nonaqueous electrolyte secondary batteries according to one embodiment of the present invention.

本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施形態又は実施例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。   The configuration and operational effects of the present invention will be described with the technical idea. However, the action mechanism includes estimation, and the correctness does not limit the present invention. It should be noted that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the following embodiments or examples are merely examples in all respects, and should not be interpreted in a limited manner. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明者は、いわゆる「LiMeO型」活物質を正極に用い、充電中の正極の最大到達電位を4.45V(vs.Li/Li+)以下とする充電条件を採用して使用することを前提とした電池において、いわゆる「リチウム過剰型」活物質を正極に混合することで、電池の充電状態(SOC)を100%を超えて故意に高くしていったときの発熱反応が、より高いSOCにおいて観察される効果が奏されることを見出し、本発明に至った。
本発明の実施形態(以下、「本実施形態」という。)に係る非水電解質二次電池は、正極の活物質として、以下に示す第一のリチウム遷移金属複合酸化物と、第二のリチウム遷移金属複合酸化物を含み、前記活物質は、CuKα線を用いたエックス線回折図において、21°付近に回折ピークが観察される、非水電解質二次電池である。
本実施形態に係る非水電解質二次電池は、正極の活物質として、以下に示す第一のリチウム遷移金属複合酸化物と、第二のリチウム遷移金属複合酸化物を含み、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5〜5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される正極を備えた、非水電解質二次電池であるということもできる。
さらに、本実施形態に係る非水電解質二次電池は、上記の正極と、非水溶媒にフルオロエチレンカーボネート(FEC)を含む非水電解質とを組み合わせる態様を含む。この態様により、安全性がより向上し、かつ、充放電サイクル後の内部抵抗を低く維持された非水電解質二次電池とすることができる。
以下、本実施形態について、詳述する。
The present inventor uses a so-called “LiMeO 2 type” active material as a positive electrode and adopts a charging condition in which the maximum potential of the positive electrode during charging is 4.45 V (vs. Li / Li + ) or less. In a battery based on the assumption that the so-called “lithium-excess” active material is mixed with the positive electrode, the exothermic reaction when the state of charge (SOC) of the battery is intentionally increased beyond 100% is more The inventors have found that the effect observed at high SOC is achieved, and have reached the present invention.
A nonaqueous electrolyte secondary battery according to an embodiment of the present invention (hereinafter referred to as “this embodiment”) includes a first lithium transition metal composite oxide and a second lithium as a positive electrode active material. The active material is a non-aqueous electrolyte secondary battery that includes a transition metal composite oxide and has a diffraction peak observed at around 21 ° in an X-ray diffraction diagram using CuKα rays.
The nonaqueous electrolyte secondary battery according to the present embodiment includes the following first lithium transition metal composite oxide and second lithium transition metal composite oxide as the positive electrode active material, and the positive electrode potential is 5. 0V when performing charging leading to (vs.Li/Li +), in the positive electrode potential range of 4.5~5.0V (vs.Li/Li +), the potential change with respect to the charge electrical quantity is relatively It can also be said that the non-aqueous electrolyte secondary battery includes a positive electrode in which a flat region is observed.
Furthermore, the nonaqueous electrolyte secondary battery according to the present embodiment includes an aspect in which the positive electrode is combined with a nonaqueous electrolyte containing fluoroethylene carbonate (FEC) in a nonaqueous solvent. According to this aspect, it is possible to obtain a nonaqueous electrolyte secondary battery in which safety is further improved and internal resistance after the charge / discharge cycle is kept low.
Hereinafter, this embodiment will be described in detail.

<第一のリチウム遷移金属複合酸化物>
第一のリチウム遷移金属複合酸化物は、一般式LiMe1O(M1はNi、Co及びMnを含む遷移金属元素)で表されるいわゆる「LiMeO型」活物質である。この活物質においては、LiがLiサイトに専ら位置し、理論的にLi/Me1=1であるから、典型的には、組成式LiNiCoMn(a+b+c=1)で表される。ただし、LiMe1Oは、合成時のLi原料の仕込み量をLi/Me1>1とするといった工程を経た場合、定量分析学的にはLi/Me1>1となることがあり、また、電気化学的に酸化(充電)させた場合、定量分析学的にはLi/Me1<1となることがある。しかしながら、LiMe1Oで表されるリチウム遷移金属複合酸化物は、Li/Me1が1と等しくない場合であっても、実質的にリチウム過剰型リチウム遷移金属複合酸化物のようにLiの一部が遷移金属サイトに位置するものではないから、第二のリチウム遷移金属複合酸化物であるリチウム過剰型活物質とは区別できる。
遷移金属元素Me1に対するNiのモル比Ni/Me1、すなわちaは、非水電解質二次電池の充放電サイクル性能を向上させるために、0.3以上0.6以下とすることが好ましい。
遷移金属元素Me1に対するCoのモル比Co/Me1、すなわちbは、活物質粒子の導電性を高めるために、0.1以上0.4以下とすることが好ましい。
遷移金属元素Me1に対するMnのモル比Mn/Me1、すなわちcは、充放電サイクル性能を向上させるために、0.5以下とすることが好ましい。また、材料コストの観点から、0.2以上とすることが好ましい。
なお、本実施形態に係る第一のリチウム遷移金属複合酸化物は、本発明の効果を損なわない範囲で、Na,K等のアルカリ金属、Mg,Ca等のアルカリ土類金属、Fe等の3d遷移金属に代表される遷移金属など少量の他の金属を含有することを排除するものではない。
<First lithium transition metal composite oxide>
The first lithium transition metal composite oxide is a so-called “LiMeO 2 type” active material represented by the general formula LiMe1O 2 (M1 is a transition metal element containing Ni, Co and Mn). In this active material, Li is exclusively located at the Li site, and theoretically Li / Me1 = 1. Therefore, it is typically represented by the composition formula LiNi a Co b Mn c O 2 (a + b + c = 1). The However, LiMe1O 2 may be Li / Me1> 1 in terms of quantitative analysis when it is subjected to a process such that the charging amount of the Li raw material during synthesis is Li / Me1> 1. When it is oxidized (charged), Li / Me1 <1 in some quantitative analysis. However, in the lithium transition metal composite oxide represented by LiMe1O 2 , even when Li / Me1 is not equal to 1, a part of Li is substantially not contained in the lithium-excess lithium transition metal composite oxide. Since it is not located at the transition metal site, it can be distinguished from the lithium-rich active material that is the second lithium transition metal composite oxide.
The molar ratio Ni / Me1 of Ni to the transition metal element Me1, that is, a is preferably set to 0.3 or more and 0.6 or less in order to improve the charge / discharge cycle performance of the nonaqueous electrolyte secondary battery.
The molar ratio Co / Me1 of Co to the transition metal element Me1, that is, b is preferably 0.1 or more and 0.4 or less in order to increase the conductivity of the active material particles.
The molar ratio of Mn to transition metal element Me1, Mn / Me1, that is, c is preferably 0.5 or less in order to improve charge / discharge cycle performance. Moreover, it is preferable to set it as 0.2 or more from a viewpoint of material cost.
The first lithium transition metal composite oxide according to the present embodiment is an alkali metal such as Na and K, an alkaline earth metal such as Mg and Ca, and 3d such as Fe, as long as the effects of the present invention are not impaired. It does not exclude inclusion of a small amount of other metals such as transition metals typified by transition metals.

本実施形態に係る第一のリチウム遷移金属複合酸化物は、α−NaFeO構造を有している。合成後(充放電前)及び充放電後の上記リチウム遷移金属複合酸化物は、ともにR3−mに帰属される。なお、「R3−m」は本来「R3m」の「3」の上にバー「−」を施して表記すべきものである。 The first lithium transition metal composite oxide according to this embodiment has an α-NaFeO 2 structure. The lithium transition metal composite oxide after synthesis (before charge / discharge) and after charge / discharge are both attributed to R3-m. Note that “R3-m” should be represented by adding a bar “-” on “3” of “R3m”.

<第二のリチウム遷移金属複合酸化物>
本実施形態に係る第二のリチウム遷移金属複合酸化物は、一般式Li1+αMe21−α(0<α、Me2はNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるいわゆる「リチウム過剰型」活物質である。典型的には、Li1+α(NiβCoγMnδ1−α(β+γ+δ=1)と表すことができる。過充電時の安全性を高めるために、遷移金属元素Me2に対するLiのモル比Li/Me2、すなわち(1+α)/(1−α)は1.1以上であることが好ましく、1.15以上であることがより好ましい。放電容量の低下を抑制するためには、Li/Me2は1.35以下であることが好ましく、1.3以下であることがより好ましい。
遷移金属元素Me2に対するMnのモル比Mn/Me2、すなわちδは、層状構造の安定化の観点から、0.5を超えることが好ましい。また、充放電容量の観点から、Mn/Me2は0.7以下であることが好ましく、0.65以下であることがより好ましい。
遷移金属元素Meに対するNiのモル比Ni/Me2、すなわちβは、非水電解質二次電池の充放電サイクル性能を向上させるために、0.2以上0.5以下とすることが好ましい。
遷移金属元素Me2に対するCoのモル比Co/Me2、すなわちγは、活物質粒子の導電性を高めるが、材料コストを削減するために、0.0以上0.3以下とすることが好ましい。
なお、本実施形態に係る第二のリチウム遷移金属複合酸化物も、本発明の効果を損なわない範囲で、Na,K等のアルカリ金属、Mg,Ca等のアルカリ土類金属、Fe等の3d遷移金属に代表される遷移金属など少量の他の金属を含有することを排除するものではない。
<Second lithium transition metal composite oxide>
The second lithium transition metal composite oxide according to the present embodiment has the general formula Li 1 + α Me2 1-α O 2 (0 <α, Me2 is a transition metal element containing Ni and Mn, or Ni, Mn and Co). It is a so-called “lithium-rich” active material. Typically, it can be expressed as Li 1 + α (Ni β Co γ Mn δ ) 1-α O 2 (β + γ + δ = 1). In order to increase safety during overcharge, the molar ratio Li / Me2 of Li to the transition metal element Me2, that is, (1 + α) / (1-α) is preferably 1.1 or more, and is 1.15 or more. More preferably. In order to suppress a decrease in discharge capacity, Li / Me2 is preferably 1.35 or less, and more preferably 1.3 or less.
The molar ratio of Mn to transition metal element Me2 Mn / Me2, that is, δ, preferably exceeds 0.5 from the viewpoint of stabilizing the layered structure. Further, from the viewpoint of charge / discharge capacity, Mn / Me2 is preferably 0.7 or less, and more preferably 0.65 or less.
In order to improve the charge / discharge cycle performance of the nonaqueous electrolyte secondary battery, the molar ratio Ni / Me2 of Ni with respect to the transition metal element Me, that is, β is preferably 0.2 or more and 0.5 or less.
The molar ratio Co / Me2 of Co to the transition metal element Me2, that is, γ increases the conductivity of the active material particles, but is preferably 0.0 or more and 0.3 or less in order to reduce the material cost.
Note that the second lithium transition metal composite oxide according to the present embodiment is also an alkali metal such as Na and K, an alkaline earth metal such as Mg and Ca, and 3d such as Fe, as long as the effects of the present invention are not impaired. It does not exclude inclusion of a small amount of other metals such as transition metals typified by transition metals.

本実施形態に係る第二のリチウム遷移金属複合酸化物は、α−NaFeO構造を有している。合成後(充放電前)の上記リチウム遷移金属複合酸化物は、空間群P312に帰属されると共に、CuKα管球を用いたエックス線回折図上、2θ=21°付近に超格子ピーク(Li[Li1/3Mn2/3]O型の単斜晶に見られるピーク)が確認される。ところが、一度でも4.5V(vs.Li/Li+)付近を超えた充電を行うと、結晶中のLiの脱離に伴って結晶の対称性が変化することにより、この超格子ピークが消失して、上記リチウム遷移金属複合酸化物は空間群R3−mに帰属されるようになる。ここで、P312は、R3−mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3−mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。 The second lithium transition metal composite oxide according to this embodiment has an α-NaFeO 2 structure. The lithium transition metal composite oxide after synthesis (before charge / discharge) is attributed to the space group P3 1 12 and has a superlattice peak (Li) near 2θ = 21 ° on an X-ray diffraction diagram using a CuKα tube. [Li 1/3 Mn 2/3 ] O 2 type monoclinic crystal peak) is confirmed. However, when the charge exceeding 4.5V (vs. Li / Li + ) is performed even once, this superlattice peak disappears because the symmetry of the crystal changes with the elimination of Li in the crystal. Thus, the lithium transition metal composite oxide is assigned to the space group R3-m. Here, P3 1 12 is a crystal structure model in which the atomic positions of the 3a, 3b, and 6c sites in R3-m are subdivided, and when ordering is recognized in the atomic arrangement in R3-m, the P3 1 12 model Is adopted.

第二のリチウム遷移金属複合酸化物である「リチウム過剰型」活物質は、正極電位が5.0V(vs.Li/Li)に至る充電を行うと、4.5〜5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される。ところが、上記平坦な領域が観察される充電過程が終了するまでの充電を一度でも行った場合は、その後、5.0V(vs.Li/Li+)に至る充電を行っても、当該平坦な領域は再現されることはない。 The “lithium-excess type” active material that is the second lithium transition metal composite oxide is 4.5 to 5.0 V (vs) when charged so that the positive electrode potential reaches 5.0 V (vs. Li / Li + ). .Li / Li + ), a region where the potential change is relatively flat with respect to the amount of charge is observed in the positive electrode potential range. However, when the charging until the end of the charging process in which the flat region is observed is performed even once, even if the charging reaches 5.0 V (vs. Li / Li + ), the flat region is observed. The area is never reproduced.

<正極活物質>
本実施形態に係る非水電解質二次電池に用いる正極活物質は、前記第一のリチウム遷移金属複合酸化物及び第二のリチウム遷移金属複合酸化物を含む。
この正極活物質は、CuKα線を用いてエックス線回折を行った場合、エックス線回折図において、21°付近に回折ピークが観察されるか、又は、4.5V(vs.Li/Li+)以上の正極電位範囲にした場合、充電電気量に対して電位変化の比較的平坦な領域が出現することで確認することができる。
<Positive electrode active material>
The positive electrode active material used for the non-aqueous electrolyte secondary battery according to this embodiment includes the first lithium transition metal composite oxide and the second lithium transition metal composite oxide.
When this positive electrode active material is subjected to X-ray diffraction using CuKα rays, a diffraction peak is observed in the vicinity of 21 ° in the X-ray diffraction diagram, or 4.5 V (vs. Li / Li + ) or more. In the case of the positive electrode potential range, this can be confirmed by the appearance of a relatively flat region of potential change with respect to the amount of charged electricity.

本実施形態に係る非水電解質二次電池に用いる正極活物質や、本実施形態に係る非水電解質二次電池が備える正極に含まれる活物質に対するエックス線回折測定、及び、CuKα線を用いたエックス線回折図において、21°付近に回折ピークが観察されることの確認は、以下のとおりの手順及び条件により、行う。
測定に供する試料は、電極作製前の活物質粉末であれば、そのまま測定に供する。電池を解体して取り出した電極から試料を採取する場合には、電池を解体する前に、次の手順によって電池を放電状態とする。まず、0.1Cの電流で、正極の電位が4.3V(vs.Li/Li)となる電池電圧まで定電流充電を行い、同じ電池電圧にて、電流値が0.01Cに減少するまで定電圧充電を行い、充電末状態とする。30分の休止後、0.1Cの電流で、正極の電位が2.0V(vs.Li/Li)となる電池電圧に至るまで定電流放電を行い、放電末状態とする。金属リチウム電極を負極に用いた電池であれば、当該電池を放電末状態又は充電末状態とした後に電池を解体して電極を取り出せばよいが、金属リチウム電極を負極に用いた電池でない場合は、正極電位を正確に制御するため、電池を解体して電極を取り出した後に、金属リチウム電極を対極とした電池を組立ててから、上記の手順に沿って、放電末状態に調整する。電池の解体から測定までの作業は露点−60℃以下のアルゴン雰囲気中で行う。取り出した正極板は、ジメチルカーボネートを用いて電極に付着した非水電解質を十分に洗浄し室温にて一昼夜の乾燥後、アルミニウム箔集電体上の合剤を採取する。採取した合剤をめのう乳鉢で軽くほぐし、エックス線回折測定用試料ホルダーに配置して測定に供する。
X-ray diffraction measurement for the positive electrode active material used in the non-aqueous electrolyte secondary battery according to the present embodiment, and the active material included in the positive electrode included in the non-aqueous electrolyte secondary battery according to the present embodiment, and X-rays using CuKα rays In the diffractogram, confirmation that a diffraction peak is observed near 21 ° is performed according to the following procedure and conditions.
If the sample to be used for measurement is an active material powder before electrode preparation, it is used for measurement as it is. When a sample is collected from an electrode taken out by disassembling the battery, the battery is put into a discharged state by the following procedure before disassembling the battery. First, constant current charging is performed up to a battery voltage at which the positive electrode potential becomes 4.3 V (vs. Li / Li + ) with a current of 0.1 C, and the current value decreases to 0.01 C at the same battery voltage. Charge the battery at a constant voltage until the end of charge. After a 30-minute pause, constant current discharge is performed at a current of 0.1 C until the battery voltage reaches a positive electrode potential of 2.0 V (vs. Li / Li + ), and a discharge end state is obtained. If the battery uses a metal lithium electrode as the negative electrode, the battery may be disassembled after the battery is brought into the end-of-discharge state or the end-of-charge state, and the electrode may be taken out. In order to accurately control the positive electrode potential, after disassembling the battery and taking out the electrode, after assembling the battery using the metal lithium electrode as a counter electrode, the battery is adjusted to the end of discharge state according to the above procedure. The work from disassembly of the battery to measurement is performed in an argon atmosphere with a dew point of -60 ° C or lower. The positive electrode plate taken out is washed thoroughly with non-aqueous electrolyte attached to the electrode using dimethyl carbonate, dried at room temperature for a whole day and night, and then the mixture on the aluminum foil current collector is collected. The collected mixture is lightly loosened in an agate mortar and placed in an X-ray diffraction measurement sample holder for measurement.

図1は、後述する実施例1−7に係る非水電解質二次電池について、通常使用時(4.45V(vs.Li/Li+)充電をSOC100%と規定)の放電末状態における正極について、上記の手順で測定したエックス線回折図である。図1では、21°付近に回折ピークが観察されている。
これに対して、図2は、実施例1−7に係る非水電解質二次電池に対して、正極電位が5.0V(vs.Li/Li+)に至るまでSOC202%に相当する過充電を行った後の放電末状態における正極について、上記の手順で測定したエックス線回折図である。ここでは、21°付近の回折ピークは消失している。
図3は、後述する比較例1−3に係る非水電解質二次電池について、通常使用時(4.60V(vs.Li/Li+)充電をSOC100%と規定)の放電末状態における正極について、上記の手順で測定したエックス線回折図である。即ち、比較例1−3では、通常使用時において、すでに21°付近の回折ピークは消失している。
FIG. 1 shows the positive electrode in the end-of-discharge state during normal use (4.45 V (vs. Li / Li + ) charging is defined as SOC 100%) for the nonaqueous electrolyte secondary battery according to Example 1-7 to be described later. FIG. 3 is an X-ray diffraction diagram measured by the above procedure. In FIG. 1, a diffraction peak is observed near 21 °.
On the other hand, FIG. 2 shows an overcharge corresponding to SOC 202% until the positive electrode potential reaches 5.0 V (vs. Li / Li + ) with respect to the nonaqueous electrolyte secondary battery according to Example 1-7. It is an X-ray-diffraction figure measured by said procedure about the positive electrode in the end-of-discharge state after performing. Here, the diffraction peak near 21 ° disappears.
FIG. 3 shows the positive electrode in the end-of-discharge state during normal use (4.60 V (vs. Li / Li + ) charging is defined as SOC 100%) for the nonaqueous electrolyte secondary battery according to Comparative Example 1-3 to be described later. FIG. 3 is an X-ray diffraction diagram measured by the above procedure. That is, in Comparative Example 1-3, the diffraction peak near 21 ° has already disappeared during normal use.

図4は、上記の実施例1−7及び比較例1−3に係る非水電解質二次電池について、それぞれの通常使用時の満充電状態から、正極電位が5.0V(vs.Li/Li+)に至る過充電を行った場合の充電カーブを示している。実施例1−7においては、SOCが200%付近で正極電位が急激に上昇するまで、比較的平坦な充電カーブを有するが、比較例1−3においては、SOCが100%を超えるとすぐに急激な正極電位の上昇が生じている。 FIG. 4 shows that for the nonaqueous electrolyte secondary batteries according to Examples 1-7 and Comparative Example 1-3, the positive electrode potential was 5.0 V (vs. Li / Li from the fully charged state during normal use. The charging curve is shown when overcharging up to + ) is performed. In Example 1-7, it has a relatively flat charging curve until the positive electrode potential suddenly rises at around 200% SOC, but in Comparative Example 1-3, as soon as the SOC exceeds 100%. A rapid increase in the positive electrode potential occurs.

図5、図6を用いて、本発明の作用機構の原理を説明する。図5及び図6は、いずれも、第一のリチウム遷移金属複合酸化物(NCMと表記)、及び第二のリチウム遷移金属複合酸化物(LRと表記)をそれぞれ単独で正極活物質として用いた正極を備えた非水電解質二次電池を組立て、最初に行う充放電正極の電位変化を示している。但し、図5は、充電時の正極の最大到達電位は4.45V(vs.Li/Li+)であり、図6は、充電時の正極の最大到達電位は4.55V(vs.Li/Li+)である。
第一のリチウム遷移金属複合酸化物を単独で正極活物質として用いた非水電解質二次電池は、最大電位4.5V(vs.Li/Li+)未満で充電される場合(図5参照)も、4.5V(vs.Li/Li+)以上で充電される場合(図6参照)も、充電電気量に対して電位が漸増し、電位変化が平坦な領域が出現することがなく、充電電位を4.5V(vs.Li/Li+)以上としても、放電容量は高々210mAh/g程度である。
これに対して、第二のリチウム遷移金属複合酸化物を単独で正極活物質として用いた非水電解質二次電池は、4.5V(vs.Li/Li)以上の正極電位範囲にした場合、4.5〜5.0V(vs.Li/Li)の電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察され(図6参照)、上記平坦な領域が観察される充電過程が終了するまで充電を行うことで、300mAh/g程度の放電容量が得られる。一方、最大電位4.5V(vs.Li/Li+)未満の充電を行った場合は、放電容量が、第一のリチウム遷移金属複合酸化物を単独で正極活物質として用いた非水電解質二次電池を下回る(図5参照)。
本発明の一実施形態に係る非水電解質二次電池は、第一のリチウム遷移金属複合酸化物及び第二のリチウム遷移金属複合酸化物を混合して正極活物質として用いるが、初期充放電工程において、上記平坦な領域が観察される充電過程が終了するまでの充電が行われることなく電池が完成される。さらに、本発明の一実施形態に係る非水電解質二次電池は、上記平坦な領域が観察される充電過程が終了するまでの充電が行われることがない充電条件下で使用される。従って、本発明の一実施形態に係る非水電解質二次電池は、製造段階から使用時に至るまで、一度も上記平坦な領域が観察される充電過程が終了するまでの充電がされていないから、過充電がされた場合、4.5〜5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される。本発明の一実施形態に係る非水電解質二次電池は、上記で説明した挙動を利用することによって、通常使用時の満充電状態であるSOC100%を超える過充電状態で、より高いSOCに至るまで電極電位の急上昇を抑制することができ、過充電に対する安全性を向上させることができる。
The principle of the action mechanism of the present invention will be described with reference to FIGS. 5 and 6, the first lithium transition metal composite oxide (denoted as NCM) and the second lithium transition metal complex oxide (denoted as LR) were each used alone as the positive electrode active material. The nonaqueous electrolyte secondary battery provided with the positive electrode is assembled, and the potential change of the charge / discharge positive electrode performed first is shown. However, FIG. 5 shows that the maximum potential of the positive electrode during charging is 4.45 V (vs. Li / Li + ), and FIG. 6 shows that the maximum potential of the positive electrode during charging is 4.55 V (vs. Li / Li). Li + ).
A nonaqueous electrolyte secondary battery using the first lithium transition metal composite oxide alone as a positive electrode active material is charged at a maximum potential of less than 4.5 V (vs. Li / Li + ) (see FIG. 5). However, even when charged at 4.5 V (vs. Li / Li + ) or more (see FIG. 6), the potential gradually increases with respect to the amount of charged electricity, and a region where the potential change is flat does not appear. Even when the charging potential is 4.5 V (vs. Li / Li + ) or more, the discharge capacity is at most about 210 mAh / g.
On the other hand, the nonaqueous electrolyte secondary battery using the second lithium transition metal composite oxide alone as the positive electrode active material has a positive electrode potential range of 4.5 V (vs. Li / Li + ) or higher. In the potential range of 4.5 to 5.0 V (vs. Li / Li + ), a region where the potential change is relatively flat with respect to the amount of charge is observed (see FIG. 6), and the flat region is By charging until the observed charging process is completed, a discharge capacity of about 300 mAh / g can be obtained. On the other hand, when charging is performed at a maximum potential of less than 4.5 V (vs. Li / Li + ), the discharge capacity is a non-aqueous electrolyte that uses the first lithium transition metal composite oxide alone as the positive electrode active material. Below the secondary battery (see FIG. 5).
The non-aqueous electrolyte secondary battery according to one embodiment of the present invention uses the first lithium transition metal composite oxide and the second lithium transition metal composite oxide as a positive electrode active material by mixing them. The battery is completed without charging until the charging process in which the flat region is observed is completed. Furthermore, the nonaqueous electrolyte secondary battery according to an embodiment of the present invention is used under charging conditions in which charging is not performed until the charging process in which the flat region is observed is completed. Therefore, the non-aqueous electrolyte secondary battery according to an embodiment of the present invention is not charged until the charging process in which the flat region is observed once is completed from the manufacturing stage to the time of use. When overcharging is performed, a region in which the potential change is relatively flat with respect to the amount of charge is observed in the positive electrode potential range of 4.5 to 5.0 V (vs. Li / Li + ). The non-aqueous electrolyte secondary battery according to an embodiment of the present invention uses the behavior described above to reach a higher SOC in an overcharged state exceeding SOC 100% that is a fully charged state during normal use. Thus, it is possible to suppress the rapid increase in electrode potential and improve the safety against overcharge.

本実施形態に係る非水電解質二次電池において、過充電に対する安全性の点から、正極活物質に占める第二のリチウム遷移金属複合酸化物の比は、20質量%以上であることが好ましく、30質量%以上であることがより好ましい。
一方、放電容量に関しては、最大電位が例えば4.5V(vs.Li/Li+)未満の充放電を行う電池に用いる場合、第一のリチウム遷移金属複合酸化物の方が第二のリチウム遷移金属複合酸化物より放電容量が高い(図5参照)。
したがって、放電容量を高めるためには、正極活物質に占める第一のリチウム遷移金属複合酸化物の比は、30質量%以上であることが好ましく、50質量%以上であることがより好ましい。
すなわち、第一のリチウム遷移金属複合酸化物と第二のリチウム遷移金属複合酸化物との混合比は、20:80〜80:20であることが好ましく、30:70〜70:30であることがより好ましく、50:50〜70:30であることが特に好ましい。
ここで、正極が、「正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5〜5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される」ことは、より具体的には、「非水電解質二次電池を0.1Cの電流で4.5V(vs.Li/Li)から5.0V(vs.Li/Li)まで定電流充電を行ったときのdSOC/dVの値の最大値が70以上を示すこと」で判断する。前記dSOC/dVの値の最大値は、90以上であることが好ましく、100以上であることがより好ましい。dSOC/dVは、横軸を充電深度(SOC)とし、縦軸を電位(V(vs.Li/Li))としてプロットした通常の充電曲線の横軸と縦軸を逆転させてカーブの傾きを取る(微分する)ことに相当する(図7参照)。なお、SOC100%の状態は、確認しようとする電池を通常使用時の充電条件に従って充電を行ったときの満充電状態に相当する。なお、本願明細書において、通常使用時とは、当該非水電解質二次電池について推奨され、又は指定される充放電条件を採用して当該非水電解質二次電池を使用する場合であり、当該非水電解質二次電池のための充電器が用意されている場合は、その充電器を適用して当該非水電解質二次電池を使用する場合をいう。
In the nonaqueous electrolyte secondary battery according to the present embodiment, the ratio of the second lithium transition metal composite oxide in the positive electrode active material is preferably 20% by mass or more from the viewpoint of safety against overcharging, More preferably, it is 30% by mass or more.
On the other hand, regarding the discharge capacity, when the battery is used for charging / discharging whose maximum potential is less than, for example, 4.5 V (vs. Li / Li + ), the first lithium transition metal composite oxide is more suitable for the second lithium transition. The discharge capacity is higher than that of the metal composite oxide (see FIG. 5).
Therefore, in order to increase the discharge capacity, the ratio of the first lithium transition metal composite oxide in the positive electrode active material is preferably 30% by mass or more, and more preferably 50% by mass or more.
That is, the mixing ratio of the first lithium transition metal composite oxide and the second lithium transition metal composite oxide is preferably 20:80 to 80:20, and 30:70 to 70:30. Is more preferable, and 50:50 to 70:30 is particularly preferable.
Here, when the positive electrode is “charged up to a positive electrode potential of 5.0 V (vs. Li / Li + ), within a positive electrode potential range of 4.5 to 5.0 V (vs. Li / Li + ). More specifically, “a region where the potential change is relatively flat with respect to the amount of charge is observed” means that “a non-aqueous electrolyte secondary battery is 4.5 V (vs. Li) at a current of 0.1 C. / Li +) maximum value of dSOC / dV of 5.0V (vs.Li/Li +) until the constant current charge was performed from judges in "to show more than 70. The maximum value of the dSOC / dV is preferably 90 or more, and more preferably 100 or more. dSOC / dV is the slope of the curve by reversing the horizontal and vertical axes of a normal charging curve plotted with the horizontal axis as the charge depth (SOC) and the vertical axis as the potential (V (vs. Li / Li + )). (Refer to FIG. 7). The state of SOC 100% corresponds to the fully charged state when the battery to be confirmed is charged according to the charging conditions during normal use. In the specification of the present application, the normal use is a case where the nonaqueous electrolyte secondary battery is used under the charge / discharge conditions recommended or specified for the nonaqueous electrolyte secondary battery. When a charger for a non-aqueous electrolyte secondary battery is prepared, it means a case where the non-aqueous electrolyte secondary battery is used by applying the charger.

<第一及び第二のリチウム遷移金属複合酸化物の前駆体の製造方法>
次に、本実施形態に係る非水電解質二次電池用活物質に用いる第一及び第二のリチウム遷移金属複合酸化物の前駆体を製造する方法について説明する。
本実施形態に係るリチウム遷移金属複合酸化物は、基本的に、活物質を構成する金属元素(Li,Ni,Co,Mn)を目的とする活物質(酸化物)の組成どおりに含有する原料を調製し、これを焼成することによって得ることができる。
目的とする組成の複合酸化物を作製するにあたり、Li,Ni,Co,Mnのそれぞれの塩を混合・焼成するいわゆる「固相法」や、あらかじめNi,Co,Mnを一粒子中に存在させた共沈前駆体を作製しておき、これにLi塩を混合・焼成する「共沈法」が知られている。「固相法」による合成過程では、特にMnはNi,Coに対して均一に固溶しにくいため、各元素が一粒子中に均一に分布した試料を得ることは困難である。これまで文献などにおいては固相法によってNiやCoの一部にMnを固溶(LiNi1−xMnなど)しようという試みが多数なされているが、「共沈法」を選択する方が原子レベルで均一相を得ることが容易である。そこで、後述する実施例においては、「共沈法」を採用した。
<Method for producing precursors of first and second lithium transition metal composite oxide>
Next, a method for producing the precursors of the first and second lithium transition metal composite oxides used for the active material for a nonaqueous electrolyte secondary battery according to this embodiment will be described.
The lithium transition metal composite oxide according to the present embodiment is basically a raw material containing a metal element (Li, Ni, Co, Mn) constituting the active material according to the composition of the target active material (oxide). It can be obtained by preparing and baking this.
In producing a composite oxide having a desired composition, a so-called “solid phase method” in which salts of Li, Ni, Co, and Mn are mixed and fired, or Ni, Co, and Mn are previously present in one particle. There is known a “coprecipitation method” in which a coprecipitation precursor is prepared, and a Li salt is mixed and fired therein. In the synthesis process by the “solid phase method”, especially Mn is difficult to uniformly dissolve in Ni and Co, so it is difficult to obtain a sample in which each element is uniformly distributed in one particle. In literatures and the like, many attempts have been made to dissolve Mn in a part of Ni or Co (LiNi 1-x Mn x O 2 etc.) by solid phase method, but the “coprecipitation method” is selected. It is easier to obtain a homogeneous phase at the atomic level. Therefore, the “coprecipitation method” is employed in the examples described later.

本実施形態に係るリチウム遷移金属複合酸化物の前駆体の製造方法においては、Ni、Co及びMnを含有する原料水溶液を滴下し、溶液中でNi、Co及びMnを含有する化合物を共沈させて前駆体を作製することが好ましい。
共沈前駆体を作製するにあたって、Ni,Co,MnのうちMnは酸化されやすく、Ni,Co,Mnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Ni,Co,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。したがって、本発明においては、共沈前駆体に分布して存在するMnの酸化を抑制するために、溶存酸素を除去することが好ましい。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)等を用いることができる。
In the method for producing a precursor of a lithium transition metal composite oxide according to this embodiment, a raw material aqueous solution containing Ni, Co and Mn is dropped, and a compound containing Ni, Co and Mn is coprecipitated in the solution. It is preferable to prepare a precursor.
In producing a coprecipitation precursor, Mn is easily oxidized among Ni, Co, and Mn, and it is not easy to produce a coprecipitation precursor in which Ni, Co, and Mn are uniformly distributed in a divalent state. Uniform mixing at the atomic level of Ni, Co and Mn tends to be insufficient. Therefore, in the present invention, it is preferable to remove dissolved oxygen in order to suppress oxidation of Mn existing in the coprecipitation precursor. Examples of the method for removing dissolved oxygen include a method of bubbling a gas not containing oxygen. The gas not containing oxygen is not limited, but nitrogen gas, argon gas, carbon dioxide (CO 2 ), or the like can be used.

溶液中でNi、Co及びMnを含有する化合物を共沈させて前駆体を作製する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈水酸化物前駆体として作製しようとする場合には、10.5〜14とすることができる。タップ密度を大きくするためには、pHを制御することが好ましい。pHを11.5以下とすることにより、タップ密度を1.00g/cm以上とすることができ、高率放電性能を向上させることができる。さらに、pHを11.0以下とすることにより、粒子成長速度を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
また、前記共沈前駆体を共沈炭酸塩前駆体として作製しようとする場合には、7.5〜11とすることができる。pHを9.4以下とすることにより、タップ密度を1.25g/cm以上とすることができ、高率放電性能を向上させることができる。さらに、pHを8.0以下とすることにより、粒子成長速度を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
Although the pH in the step of preparing a precursor by co-precipitation of a compound containing Ni, Co and Mn in a solution is not limited, an attempt is made to prepare the co-precipitation precursor as a co-precipitation hydroxide precursor. When doing, it can be set to 10.5-14. In order to increase the tap density, it is preferable to control the pH. By setting the pH to 11.5 or less, the tap density can be set to 1.00 g / cm 3 or more, and the high rate discharge performance can be improved. Furthermore, since the particle growth rate can be accelerated by setting the pH to 11.0 or less, the stirring continuation time after completion of dropping of the raw material aqueous solution can be shortened.
Moreover, when it is going to produce the said coprecipitation precursor as a coprecipitation carbonate precursor, it can be set as 7.5-11. By setting the pH to 9.4 or less, the tap density can be set to 1.25 g / cm 3 or more, and high-rate discharge performance can be improved. Furthermore, since the particle growth rate can be accelerated by setting the pH to 8.0 or less, the stirring continuation time after completion of dropping of the raw material aqueous solution can be shortened.

前記共沈前駆体の原料は、Ni化合物としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co化合物としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を、Mn化合物としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を一例として挙げることができる。   The raw material of the coprecipitation precursor is nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, nickel acetate or the like as the Ni compound, and cobalt sulfate, cobalt nitrate, cobalt acetate, or the like as the Mn compound as the Co compound. Examples thereof include manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, manganese acetate and the like.

前記原料水溶液の滴下速度は、生成する共沈前駆体の1粒子内における元素分布の均一性に大きく影響を与える。好ましい滴下速度については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、30mL/min以下が好ましい。放電容量を向上させるためには、滴下速度は10mL/min以下がより好ましく、5mL/min以下が最も好ましい。   The dropping speed of the raw material aqueous solution greatly affects the uniformity of element distribution in one particle of the coprecipitation precursor to be generated. The preferred dropping rate is influenced by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc., but is preferably 30 mL / min or less. In order to improve the discharge capacity, the dropping rate is more preferably 10 mL / min or less, and most preferably 5 mL / min or less.

また、反応槽内にNH等の錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転及び攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、共沈前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。したがって、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた共沈前駆体を得ることができる。 Further, when a complexing agent such as NH 3 is present in the reaction tank and a certain convection condition is applied, by continuing the stirring after the dropwise addition of the raw material aqueous solution, the rotation of the particles and in the stirring tank are performed. Revolution is promoted, and in this process, particles collide with each other, and the particles grow into concentric spheres step by step. That is, the coprecipitation precursor undergoes a reaction in two stages: a metal complex formation reaction when the raw material aqueous solution is dropped into the reaction tank, and a precipitation formation reaction that occurs while the metal complex is retained in the reaction tank. It is formed. Therefore, a coprecipitation precursor having a target particle size can be obtained by appropriately selecting a time for continuing stirring after the dropping of the raw material aqueous solution.

原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5時間以上が好ましく、1時間以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が充分でないものとなる虞を低減させるため、30時間以下が好ましく、25時間以下がより好ましく、20時間以下が最も好ましい。   The preferable stirring duration after the dropping of the raw material aqueous solution is influenced by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc., but 0.5 hours or more in order to grow the particles as uniform spherical particles 1 hour or more is more preferable. Further, in order to reduce the possibility that the output performance in the low SOC region of the battery is not sufficient due to the particle size becoming too large, it is preferably 30 hours or less, more preferably 25 hours or less, and most preferably 20 hours or less.

<第一及び第二のリチウム遷移金属複合酸化物の製造方法>
本実施形態に係る第一及び第二の非水電解質二次電池用活物質の製造方法は、前記共沈前駆体とLi化合物とを混合し、焼成する方法であることが好ましい。
Li化合物として通常使用されている水酸化リチウム、炭酸リチウムと共に、焼結助剤としてLiF、LiSO、又はLiPOを使用してもよい。これらの焼結助剤の添加比率は、Li化合物の総量に対して1〜10mol%とすることが好ましい。なお、Li化合物の総量は、焼成中にLi化合物の一部が消失することを見込んで、1〜5%程度過剰に仕込むことが好ましい。
<Method for producing first and second lithium transition metal composite oxide>
It is preferable that the manufacturing method of the 1st and 2nd active material for nonaqueous electrolyte secondary batteries which concerns on this embodiment is a method of mixing the said coprecipitation precursor and Li compound, and baking.
LiF, Li 2 SO 4 , or Li 3 PO 4 may be used as a sintering aid together with lithium hydroxide and lithium carbonate that are usually used as Li compounds. The addition ratio of these sintering aids is preferably 1 to 10 mol% with respect to the total amount of the Li compound. The total amount of the Li compound is preferably charged in an excess of about 1 to 5% in view of the disappearance of a part of the Li compound during firing.

焼成温度は、活物質の可逆容量に影響を与える。
焼成温度が低すぎると、結晶化が十分に進まず、電極特性が低下する傾向がある。本発明の一態様においては、焼成温度は900℃以上とすることが好ましい。900℃以上とすることにより、焼結度が高い活物質粒子を得ることができ、充放電サイクル性能を向上させることができる。
The firing temperature affects the reversible capacity of the active material.
If the firing temperature is too low, crystallization does not proceed sufficiently and the electrode characteristics tend to deteriorate. In one embodiment of the present invention, the firing temperature is preferably 900 ° C. or higher. By setting the temperature to 900 ° C. or higher, active material particles having a high degree of sintering can be obtained, and charge / discharge cycle performance can be improved.

一方、焼成温度が高すぎると層状α−NaFeO構造から岩塩型立方晶構造へと構造変化がおこり、充放電反応中における活物質中のリチウムイオン移動に不利な状態となり、放電性能が低下する。本発明において、焼成温度は1000℃以下とすることが好ましい。1000℃以下とすることにより、充放電サイクル性能を向上させることができる。
したがって、本発明の一態様に係るリチウム遷移金属複合酸化物を含有する正極活物質を作製する場合、充放電サイクル性能を向上させるために、焼成温度は900〜1000℃とすることが好ましい。
On the other hand, if the firing temperature is too high, the structure changes from a layered α-NaFeO 2 structure to a rock salt cubic structure, which is disadvantageous for lithium ion movement in the active material during the charge / discharge reaction, and the discharge performance decreases. . In the present invention, the firing temperature is preferably 1000 ° C. or lower. By setting it to 1000 ° C. or less, the charge / discharge cycle performance can be improved.
Therefore, when the positive electrode active material containing the lithium transition metal composite oxide according to one embodiment of the present invention is manufactured, the firing temperature is preferably 900 to 1000 ° C. in order to improve charge / discharge cycle performance.

<負極材料>
本実施形態に係る電池の負極材料としては、限定されるものではなく、リチウムイオンを放出あるいは吸蔵することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料、リチウム金属、リチウム合金(リチウム−シリコン,リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム−チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト,ハードカーボン,低温焼成炭素,非晶質カーボン等)等が挙げられる。
<Negative electrode material>
The negative electrode material of the battery according to the present embodiment is not limited, and any battery material that can release or occlude lithium ions may be selected. For example, titanium-based materials such as lithium titanate having a spinel crystal structure typified by Li [Li 1/3 Ti 5/3 ] O 4 , alloy-based materials such as Si, Sb, and Sn-based materials, lithium metal, lithium Alloys (lithium-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), lithium composite oxide (lithium-titanium), oxidation In addition to silicon, alloys that can occlude and release lithium, carbon materials (eg, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.), and the like can be given.

<正極・負極>
正極活物質、及び負極材料は、平均粒子サイズが100μm以下の粉体であることが望ましい。特に、正極活物質の粉体は、非水電解質二次電池の高出力特性を向上する目的で15μm以下であることが好ましく、充放電サイクル性能を維持するためには10μm以上であることが好ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
<Positive electrode / Negative electrode>
The positive electrode active material and the negative electrode material are desirably powders having an average particle size of 100 μm or less. Particularly, the powder of the positive electrode active material is preferably 15 μm or less for the purpose of improving the high output characteristics of the nonaqueous electrolyte secondary battery, and preferably 10 μm or more in order to maintain the charge / discharge cycle performance. . In order to obtain the powder in a predetermined shape, a pulverizer or a classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill or a sieve is used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as hexane may be used. There is no particular limitation on the classification method, and a sieve, an air classifier, or the like is used as needed for both dry and wet methods.

以上、正極及び負極の主要構成成分である正極活物質及び負極材料について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。   The positive electrode active material and the negative electrode material, which are the main components of the positive electrode and the negative electrode, have been described in detail above. In addition to the main components, the positive electrode and the negative electrode include a conductive agent, a binder, a thickener, and a filler. Etc. may be contained as other constituents.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種又はそれらの混合物として含ませることができる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, Conductive materials such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material can be included as one kind or a mixture thereof. .

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。導電剤の添加量は、正極又は負極の総質量に対して0.1質量%〜50質量%が好ましく、特に0.5質量%〜30質量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため望ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。   Among these, as the conductive agent, acetylene black is desirable from the viewpoints of electron conductivity and coatability. The addition amount of the conductive agent is preferably 0.1% by mass to 50% by mass, and particularly preferably 0.5% by mass to 30% by mass with respect to the total mass of the positive electrode or the negative electrode. In particular, it is desirable to use acetylene black by pulverizing into ultrafine particles of 0.1 to 0.5 μm because the required carbon amount can be reduced. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, powder mixers such as V-type mixers, S-type mixers, crackers, ball mills, and planetary ball mills can be mixed dry or wet.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR),フッ素ゴム等のゴム弾性を有するポリマーを1種又は2種以上の混合物として用いることができる。結着剤の添加量は、正極又は負極の総質量に対して1〜50質量%が好ましく、特に2〜30質量%が好ましい。   The binder is usually a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene. Polymers having rubber elasticity such as rubber (SBR) and fluororubber can be used as one kind or a mixture of two or more kinds. The addition amount of the binder is preferably 1 to 50% by mass, particularly preferably 2 to 30% by mass with respect to the total mass of the positive electrode or the negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極又は負極の総質量に対して添加量は30質量%以下が好ましい。   As the filler, any material that does not adversely affect the battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 30% by mass or less with respect to the total mass of the positive electrode or the negative electrode.

正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、及びその他の材料を混練し合剤とし、N−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、又は圧着して50℃〜250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。   The positive electrode and the negative electrode are prepared by mixing the main components (positive electrode active material in the positive electrode, negative electrode material in the negative electrode) and other materials into a mixture and mixing them in an organic solvent such as N-methylpyrrolidone and toluene or water. After that, the obtained liquid mixture is applied onto a current collector described in detail below, or is pressure-bonded, and is preferably prepared by heat treatment at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. . About the application method, for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.

集電体としては、Al箔、Cu箔等の集電箔を用いることができる。正極の集電箔としてはAl箔が好ましく、負極の集電箔としてはCu箔が好ましい。集電箔の厚みは10〜30μmが好ましい。また、合剤層の厚みはプレス後において、40〜150μm(集電箔厚みを除く)が好ましい。   As the current collector, a current collector foil such as an Al foil or a Cu foil can be used. The positive electrode current collector foil is preferably an Al foil, and the negative electrode current collector foil is preferably a Cu foil. The thickness of the current collector foil is preferably 10 to 30 μm. Further, the thickness of the mixture layer is preferably 40 to 150 μm (excluding the current collector foil thickness) after pressing.

<非水電解質>
本発明の一態様に係る非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類又はそれらのフッ化物;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフラン又はその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソラン又はその誘導体;エチレンスルフィド、スルホラン、スルトン又はその誘導体等の単独又はそれら2種以上の混合物等を挙げることができる。
これらの中では、特に非水溶媒がフッ素化環状炭酸エステルであるFECを含む非水電解質を用いることが好ましい。第一のリチウム遷移金属複合酸化物及び第二のリチウム遷移金属複合酸化物を含む正極と、非水溶媒にFECを含む非水電解質とを組み合わせることにより、安全性がより向上し、かつ、充放電サイクル後の内部抵抗が低く維持された非水電解質二次電池を得ることができる。
<Nonaqueous electrolyte>
The nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery according to one embodiment of the present invention is not limited, and those generally proposed for use in lithium batteries and the like can be used. Nonaqueous solvents used for nonaqueous electrolytes include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, vinylene carbonate or fluorides thereof; cyclic esters such as γ-butyrolactone and γ-valerolactone A chain carbonate such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; a chain ester such as methyl formate, methyl acetate, and methyl butyrate; tetrahydrofuran or a derivative thereof; 1,3-dioxane, 1,4-dioxane, Ethers such as 1,2-dimethoxyethane, 1,4-dibutoxyethane and methyldiglyme; Nitriles such as acetonitrile and benzonitrile; Dioxolane or derivatives thereof; Ethylene sulfide, sulfolane, sulfur Or a mixture of two or more thereof.
Among these, it is preferable to use a nonaqueous electrolyte containing FEC in which the nonaqueous solvent is a fluorinated cyclic carbonate. By combining the positive electrode including the first lithium transition metal composite oxide and the second lithium transition metal composite oxide with the nonaqueous electrolyte including FEC in the nonaqueous solvent, the safety is further improved and the charge is improved. A nonaqueous electrolyte secondary battery in which the internal resistance after the discharge cycle is kept low can be obtained.

本願明細書において、内部抵抗の測定は次の条件で行う。測定に先立ち、通常使用時の条件にて充電末状態とする。次に、0.2Cの電流で端子間の閉回路電圧が通常使用時に到達することが予定されている電圧まで定電流放電を行った後、開回路とし、2h以上放置する。以上の操作によって、非水電解液電池を放電末状態とする。1kHzの交流(AC)を印加する方式のインピーダンスメータを用いて正負極端子間の抵抗値を測定する。過充電された非水電解液電池や過放電された非水電解液電池を測定対象としてはならない。   In this specification, the internal resistance is measured under the following conditions. Prior to measurement, the battery is brought to the end of charge under normal use conditions. Next, after performing constant-current discharge to a voltage that the closed circuit voltage between the terminals is expected to reach during normal use with a current of 0.2 C, the circuit is opened and left for 2 hours or longer. By the above operation, the nonaqueous electrolyte battery is brought into a discharged state. The resistance value between the positive and negative terminals is measured using an impedance meter of a system that applies 1 kHz alternating current (AC). An overcharged non-aqueous electrolyte battery or an over-discharged non-aqueous electrolyte battery should not be measured.

非水電解質に用いる電解質塩としては、例えば、LiClO4,LiBF4,LiAsF6,LiPF6,LiSCN,LiBr,LiI,Li2SO4,Li210Cl10,NaClO4,NaI,NaSCN,NaBr,KClO4,KSCN等のリチウム(Li)、ナトリウム(Na)又はカリウム(K)の1種を含む無機イオン塩、LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,(CH34NBF4,(CH34NBr,(C254NClO4,(C254NI,(C374NBr,(n−C494NClO4,(n−C494NI,(C254N−maleate,(C254N−benzoate,(C254N−phthalate,ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the nonaqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr. , KClO 4 , KSCN and other inorganic ion salts containing one of lithium (Li), sodium (Na) or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C 4 H 9) 4 NI, ( C 2 H 5) 4 N-male te, (C 2 H 5) 4 N-benzoate, (C 2 H 5) 4 N-phthalate, lithium stearyl sulfonate, lithium octyl sulfonate, organic ion salts of lithium dodecyl benzene sulfonate, and the like. These These ionic compounds can be used alone or in admixture of two or more.

さらに、LiPF6又はLiBF4と、LiN(C25SO22のようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より望ましい。 Furthermore, by mixing and using LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further reduced. The low temperature characteristics can be further improved, and self-discharge can be suppressed, which is more desirable.

また、非水電解質として常温溶融塩やイオン液体を用いてもよい。   Moreover, you may use normal temperature molten salt and an ionic liquid as a nonaqueous electrolyte.

非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質二次電池を確実に得るために、0.1mol/L〜5mol/Lが好ましく、さらに好ましくは、0.5mol/L〜2.5mol/Lである。   The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / L to 5 mol / L, more preferably 0.5 mol / L in order to reliably obtain a non-aqueous electrolyte secondary battery having high battery characteristics. -2.5 mol / L.

<セパレータ>
本実施形態に係る非水電解質二次電池に用いるセパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質二次電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。
<Separator>
As a separator used for the non-aqueous electrolyte secondary battery according to the present embodiment, it is preferable to use a porous film or a nonwoven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the material constituting the separator for nonaqueous electrolyte secondary batteries include polyolefin resins typified by polyethylene, polypropylene, etc., polyester resins typified by polyethylene terephthalate, polybutylene terephthalate, etc., polyvinylidene fluoride, vinylidene fluoride, etc. -Hexafluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer , Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinyl fluoride Den - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.

セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。   The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.

また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。   The separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte. Use of the non-aqueous electrolyte in the gel state as described above is preferable in that it has an effect of preventing leakage.

さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため望ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。   Furthermore, it is desirable that the separator be used in combination with the above-described porous film, non-woven fabric, or the like and a polymer gel because the liquid retention of the electrolyte is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the microporous wall are coated with a solvophilic polymer having a thickness of several μm or less, and holding the electrolyte in the micropores of the film, Gels.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。   Examples of the solvophilic polymer include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked. The monomer can be subjected to a crosslinking reaction using a radical initiator in combination with heating or ultraviolet rays (UV), or using an actinic ray such as an electron beam (EB).

その他の電池の構成要素としては、端子、絶縁板、電池ケース等があるが、これらの部品は従来用いられてきたものをそのまま用いて差し支えない。   Other battery components include a terminal, an insulating plate, a battery case, and the like, but these components may be used as they are.

<非水電解質二次電池>
本実施形態に係る非水電解質二次電池を図8に示す。図8は、矩形状の非水電解質二次電池の容器内部を透視した斜視図である。電極群2が収納された電池容器3内に非水電解質(電解液)を注入することにより非水電解質二次電池1が組み立てられる。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
本実施形態に係る非水電解質二次電池の形状については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。
<Nonaqueous electrolyte secondary battery>
A non-aqueous electrolyte secondary battery according to this embodiment is shown in FIG. FIG. 8 is a perspective view of the inside of a rectangular nonaqueous electrolyte secondary battery seen through. The nonaqueous electrolyte secondary battery 1 is assembled by injecting a nonaqueous electrolyte (electrolytic solution) into the battery container 3 in which the electrode group 2 is housed. The electrode group 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material via a separator. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ′, and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5 ′.
The shape of the nonaqueous electrolyte secondary battery according to this embodiment is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), a flat battery, and the like.

本実施形態に係る非水電解質二次電池は、「LiMeO型」活物質と、「リチウム過剰型」活物質を含む正極を用い、「リチウム過剰型」活物質に対して通常行われる、4.5〜5.0V(vs.Li/Li+)の正極電位範囲内に観察される上記平坦な領域が観察される充電過程が終了するまでの充電過程を一度も経ないで製造、及び使用される。 The non-aqueous electrolyte secondary battery according to this embodiment uses a positive electrode including a “LiMeO 2 type” active material and a “lithium-excess type” active material, and is normally performed on a “lithium-excess type” active material. Manufacture and use without passing through the charging process until the end of the charging process in which the flat region observed in the positive electrode potential range of .5 to 5.0 V (vs. Li / Li + ) is observed. Is done.

本実施形態に係る非水電解質二次電池が、上記平坦な領域が観察される充電過程が終了するまでの充電がされた履歴を有しないことは、上記のように、電池から正極を取り出し、CuKα線を用いてエックス線回折を行い、エックス線回折図において、21°付近に回折ピークが観察されること、又は、金属Liを対極として0.1Cの電流で4.5V(vs.Li/Li+)から5V(vs.Li/Li+)まで定電流充電を行い、dSOC/dVの最大値が70以上を示す(充電電気量に対して電位変化が比較的平坦な領域が観察される)ことにより確認することができる。 As described above, the nonaqueous electrolyte secondary battery according to the present embodiment does not have a history of charging until the charging process in which the flat region is observed is taken out from the battery, X-ray diffraction is performed using CuKα rays, and in the X-ray diffraction diagram, a diffraction peak is observed near 21 °, or 4.5 V (vs. Li / Li +) at a current of 0.1 C with metal Li as a counter electrode. ) To 5 V (vs. Li / Li + ), and the maximum value of dSOC / dV is 70 or more (a region where the potential change is relatively flat with respect to the amount of charge is observed). Can be confirmed.

本実施形態の非水電解質二次電池は、電池を複数個集合した蓄電装置としても実現することができる。蓄電装置の一例を図9に示す。図9において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。   The nonaqueous electrolyte secondary battery of this embodiment can also be realized as a power storage device in which a plurality of batteries are assembled. An example of the power storage device is illustrated in FIG. In FIG. 9, the power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of nonaqueous electrolyte secondary batteries 1. The power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).

(実施例1−1)
<第一のリチウム遷移金属複合酸化物の作製>
硫酸ニッケル6水和物350.6g、硫酸コバルト7水和物375.0g、硫酸マンガン5水和物321.6gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が1:1:1となる1.0Mの硫酸塩水溶液を作製した。次に、5Lの反応槽にイオン交換水2Lを注ぎ、Arガスを30minバブリングさせることにより、イオン交換水中に含まれる酸素を除去した。反応槽の温度は50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を1500rpmの回転速度で攪拌しながら、反応層内に対流が十分おこるように設定した。前記硫酸塩水溶液を3mL/minの速度で反応槽に滴下した。ここで、滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、0.5Mのアンモニア水、及び0.5Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHが常に11.0(±0.1)を保つように制御すると共に、反応液の一部をオーバーフローにより排出することにより、反応液の総量が常に2Lを超えないように制御した。滴下終了後、反応槽内の攪拌をさらに3時間継続した。攪拌の停止後、室温で12時間以上静置した。
次に、吸引ろ過装置を用いて、反応槽内に生成した水酸化物前駆体粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20時間乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、水酸化物前駆体を作製した。
(Example 1-1)
<Preparation of first lithium transition metal composite oxide>
350.6 g of nickel sulfate hexahydrate, 375.0 g of cobalt sulfate heptahydrate, and 321.6 g of manganese sulfate pentahydrate were weighed, and all of these were dissolved in 4 L of ion-exchanged water, and Ni: Co: Mn A 1.0 M aqueous sulfate solution with a molar ratio of 1: 1: 1 was prepared. Next, 2 L of ion exchanged water was poured into a 5 L reaction tank, and Ar gas was bubbled for 30 minutes to remove oxygen contained in the ion exchanged water. The reaction vessel temperature is set to 50 ° C. (± 2 ° C.), and the reaction vessel is stirred at a rotational speed of 1500 rpm using a paddle blade equipped with a stirring motor so that sufficient convection occurs in the reaction layer. did. The aqueous sulfate solution was dropped into the reaction vessel at a rate of 3 mL / min. Here, during the period from the start to the end of dropping, a mixed alkaline solution consisting of 4.0 M sodium hydroxide, 0.5 M ammonia water, and 0.5 M hydrazine is appropriately dropped to thereby adjust the pH in the reaction vessel. Was controlled to always maintain 11.0 (± 0.1), and a part of the reaction solution was discharged by overflow, so that the total amount of the reaction solution was always controlled not to exceed 2 L. After completion of the dropwise addition, stirring in the reaction vessel was further continued for 3 hours. After stopping stirring, the mixture was allowed to stand at room temperature for 12 hours or more.
Next, using a suction filtration device, the hydroxide precursor particles generated in the reaction tank are separated, and further, sodium ions adhering to the particles are washed and removed using ion exchange water, and an electric furnace is used. Then, it was dried in an air atmosphere at 80 ° C. under normal pressure for 20 hours. Then, in order to arrange | equalize a particle size, it grind | pulverized for several minutes with the smoked automatic mortar. In this way, a hydroxide precursor was produced.

前記水酸化物前駆体1.898gに、水酸化リチウム1水和物0.896gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni,Co,Mn)のモル比が1:1となるように混合粉体を調製した。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から900℃まで10時間かけて昇温し、900℃で5時間焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、リチウム遷移金属複合酸化物LiNi1/3Co1/3Mn1/3を作製した。 To 1.898 g of the hydroxide precursor, 0.896 g of lithium hydroxide monohydrate is added and mixed well using a smoked automatic mortar. The molar ratio of Li: (Ni, Co, Mn) is 1: A mixed powder was prepared so as to be 1. Using a pellet molding machine, molding was performed at a pressure of 6 MPa to obtain pellets having a diameter of 25 mm. The amount of the mixed powder subjected to pellet molding was determined by conversion so that the mass of the assumed final product was 2 g. One pellet was placed on an alumina boat having a total length of about 100 mm, placed in a box-type electric furnace (model number: AMF20), heated in air at atmospheric pressure and normal temperature to 900 ° C. over 10 hours, Firing at 900 ° C. for 5 hours. The box-type electric furnace has internal dimensions of 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction. After firing, the heater was turned off and allowed to cool naturally with the alumina boat placed in the furnace. As a result, the temperature of the furnace decreases to about 200 ° C. after 5 hours, but the subsequent temperature decrease rate is somewhat moderate. After the passage of day and night, it was confirmed that the furnace temperature was 100 ° C. or lower, and then the pellets were taken out and pulverized for several minutes in a smoked automatic mortar in order to make the particle diameter uniform. Thus, lithium transition metal complex oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 was produced.

<第二のリチウム遷移金属複合酸化物の作製>
硫酸ニッケル6水和物315.6g、硫酸コバルト7水和物168.7g、硫酸マンガン5水和物530.6gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が30:15:55となる1.0Mの硫酸塩水溶液を作製した。
次に、5Lの反応槽にイオン交換水2Lを注ぎ、Arガスを30minバブリングさせることにより、イオン交換水中に含まれる酸素を除去した。反応槽の温度は50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を1500rpmの回転速度で攪拌しながら、反応層内に対流が十分おこるように設定した。前記硫酸塩水溶液を3mL/minの速度で反応槽に滴下した。ここで、滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、0.5Mのアンモニア水、及び0.2Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHが常に9.8(±0.1)を保つように制御すると共に、反応液の一部をオーバーフローにより排出することにより、反応液の総量が常に2Lを超えないように制御した。滴下終了後、反応槽内の攪拌をさらに3時間継続した。攪拌の停止後、室温で12時間以上静置した。
次に、吸引ろ過装置を用いて、反応槽内に生成した水酸化物前駆体粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20時間乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、水酸化物前駆体を作製した。
前記水酸化物前駆体1.852gに、水酸化リチウム1水和物0.971gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni,Co,Mn)のモル比が110:100となるように混合粉体を調製した。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から900℃まで10時間かけて昇温し、900℃で5時間焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製乳鉢で軽くほぐした。
このようにして、リチウム遷移金属複合酸化物Li1.1(Ni0.30Co0.15Mn0.550.9を作製した。
<Preparation of second lithium transition metal composite oxide>
Nickel sulfate hexahydrate 315.6 g, cobalt sulfate heptahydrate 168.7 g, manganese sulfate pentahydrate 530.6 g were weighed, and all of these were dissolved in 4 L of ion-exchanged water, and Ni: Co: Mn A 1.0 M aqueous sulfate solution with a molar ratio of 30:15:55 was prepared.
Next, 2 L of ion exchanged water was poured into a 5 L reaction tank, and Ar gas was bubbled for 30 minutes to remove oxygen contained in the ion exchanged water. The reaction vessel temperature is set to 50 ° C. (± 2 ° C.), and the reaction vessel is stirred at a rotational speed of 1500 rpm using a paddle blade equipped with a stirring motor so that sufficient convection occurs in the reaction layer. did. The aqueous sulfate solution was dropped into the reaction vessel at a rate of 3 mL / min. Here, during the period from the start to the end of the dropping, a mixed alkali solution composed of 4.0 M sodium hydroxide, 0.5 M ammonia water, and 0.2 M hydrazine is appropriately dropped to adjust the pH in the reaction vessel. Was controlled to always maintain 9.8 (± 0.1), and a part of the reaction solution was discharged by overflow, so that the total amount of the reaction solution was always controlled not to exceed 2 L. After completion of the dropwise addition, stirring in the reaction vessel was further continued for 3 hours. After stopping stirring, the mixture was allowed to stand at room temperature for 12 hours or more.
Next, using a suction filtration device, the hydroxide precursor particles generated in the reaction tank are separated, and further, sodium ions adhering to the particles are washed and removed using ion exchange water, and an electric furnace is used. Then, it was dried in an air atmosphere at 80 ° C. under normal pressure for 20 hours. Then, in order to arrange | equalize a particle size, it grind | pulverized for several minutes with the smoked automatic mortar. In this way, a hydroxide precursor was produced.
To 1.852 g of the hydroxide precursor, 0.971 g of lithium hydroxide monohydrate is added and mixed well using a smoked automatic mortar. The molar ratio of Li: (Ni, Co, Mn) is 110: A mixed powder was prepared so as to be 100. Using a pellet molding machine, molding was performed at a pressure of 6 MPa to obtain pellets having a diameter of 25 mm. The amount of the mixed powder subjected to pellet molding was determined by conversion so that the mass of the assumed final product was 2 g. One pellet was placed on an alumina boat having a total length of about 100 mm, placed in a box-type electric furnace (model number: AMF20), heated in air at atmospheric pressure and normal temperature to 900 ° C. over 10 hours, Firing at 900 ° C. for 5 hours. The box-type electric furnace has internal dimensions of 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction. After firing, the heater was turned off and allowed to cool naturally with the alumina boat placed in the furnace. As a result, the temperature of the furnace decreases to about 200 ° C. after 5 hours, but the subsequent temperature decrease rate is somewhat moderate. After a day and night, after confirming that the furnace temperature was 100 ° C. or less, the pellets were taken out and lightly loosened with a smoked mortar to make the particle size uniform.
In this way, lithium transition metal composite oxide Li 1.1 (Ni 0.30 Co 0.15 Mn 0.55 ) 0.9 O 2 was produced.

<結晶構造の確認>
上記の第一及び第二のリチウム遷移金属複合酸化物について、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて粉末エックス線回折測定を行った。第一及び第二のリチウム遷移金属複合酸化物は、α−NaFeO構造を有することを確認した。
<Confirmation of crystal structure>
About said 1st and 2nd lithium transition metal complex oxide, the powder X-ray-diffraction measurement was performed using the X-ray-diffraction apparatus (the Rigaku company make, model name: MiniFlex II). It was confirmed that the first and second lithium transition metal composite oxides have an α-NaFeO 2 structure.

<正極の作製>
第一のリチウム遷移金属複合酸化物70質量部に対して、第二のリチウム遷移金属複合酸化物30質量部を含む実施例1−1に係る活物質を作製した。
N−メチルピロリドンを分散媒とし、実施例1−1に係る活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比90:5:5の割合で混練分散されている塗布用ペーストを作製した。該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布し、実施例1−1に係る正極を作製した。なお、後述する全ての実施例、及び比較例に係る非水電解質二次電池同士で試験条件が同一になるように、一定面積当たりに塗布されている活物質の質量及び塗布厚みを統一した。
<Preparation of positive electrode>
The active material which concerns on Example 1-1 containing 30 mass parts of 2nd lithium transition metal complex oxide with respect to 70 mass parts of 1st lithium transition metal complex oxide was produced.
Coating paste in which N-methylpyrrolidone is used as a dispersion medium, and the active material according to Example 1-1, acetylene black (AB) and polyvinylidene fluoride (PVdF) are kneaded and dispersed at a mass ratio of 90: 5: 5 Was made. The coating paste was applied to one side of an aluminum foil current collector having a thickness of 20 μm to produce a positive electrode according to Example 1-1. In addition, the mass and coating thickness of the active material applied per fixed area were unified so that the test conditions were the same for all non-aqueous electrolyte secondary batteries according to Examples and Comparative Examples described later.

<負極の作製>
金属リチウム箔をニッケル集電体に配置して、負極を作製した。該金属リチウムの量は、上記正極板と組み合わせたときに電池の容量が負極によって制限されないように調整した。
<Production of negative electrode>
A metal lithium foil was placed on a nickel current collector to produce a negative electrode. The amount of the metallic lithium was adjusted so that the battery capacity was not limited by the negative electrode when combined with the positive electrode plate.

<非水電解質二次電池の組立>
実施例1−1に係る正極を用いて、以下の手順で非水電解質二次電池を組み立てた。
非水電解質として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)が体積比6:7:7である混合溶媒に濃度が1mol/LとなるようにLiPFを溶解させた溶液を用いた。セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用いた。実施例1−1に係る正極、及び前記負極を、前記セパレータを介して、正極端子及び負極端子の開放端部が外部露出するように前記外装体に収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記非水電解質を注液後、注液孔を封止して、非水電解質二次電池を組み立てた。
<Assembly of nonaqueous electrolyte secondary battery>
Using the positive electrode according to Example 1-1, a nonaqueous electrolyte secondary battery was assembled by the following procedure.
As a non-aqueous electrolyte, LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) in a volume ratio of 6: 7: 7 so that the concentration would be 1 mol / L. Solution was used. As the separator, a polypropylene microporous film whose surface was modified with polyacrylate was used. A metal resin composite film made of polyethylene terephthalate (15 μm) / aluminum foil (50 μm) / metal-adhesive polypropylene film (50 μm) was used for the outer package. The positive electrode according to Example 1-1 and the negative electrode are accommodated in the exterior body through the separator so that the open ends of the positive electrode terminal and the negative electrode terminal are exposed to the outside, and the inner surfaces of the metal resin composite film are The non-electrolyte secondary battery was assembled by sealing the fusion allowance facing each other except for the portion serving as the injection hole, sealing the injection hole after sealing the non-aqueous electrolyte.

<初期充放電工程>
組み立てた非水電解質二次電池を、25℃の下、初期充放電工程に供した。充電は、電流0.1C、電圧4.45V(vs.Li/Li+)の定電流定電圧(CCCV)充電とし、充電終止条件は電流値が1/6に減衰した時点とした。放電は、電流0.1C、終止電圧2.0V(vs.Li/Li+)の定電流放電とした。この充放電を2サイクル行った。ここで、充電後及び放電後にそれぞれ30分の休止過程を設け、放電容量を確認した。
以上の製造工程を経て、実施例1−1に係る非水電解質二次電池を完成した。
<Initial charge / discharge process>
The assembled nonaqueous electrolyte secondary battery was subjected to an initial charge / discharge step at 25 ° C. Charging was performed at a constant current and a constant voltage (CCCV) with a current of 0.1 C and a voltage of 4.45 V (vs. Li / Li + ), and the charge termination condition was the time when the current value was attenuated to 1/6. The discharge was a constant current discharge with a current of 0.1 C and a final voltage of 2.0 V (vs. Li / Li + ). This charge / discharge was performed for two cycles. Here, a pause process of 30 minutes was provided after charging and after discharging, respectively, and the discharge capacity was confirmed.
The nonaqueous electrolyte secondary battery according to Example 1-1 was completed through the above manufacturing steps.

(実施例1−2〜1−9)
第一のリチウム遷移金属複合酸化物として、実施例1−1における第一のリチウム遷移金属複合酸化物を用いた(以下、実施例1−1における第一のリチウム遷移金属複合酸化物を「NCM」という。)。
前記実施例1−1における第二のリチウム遷移金属複合酸化物の作製工程において、水酸化物前駆体におけるLiに対する遷移金属元素Me2(Ni:Co:Mn=30:15:55)のモル比Li/Me2を、1.1からそれぞれ1.15,1.2,1.25,1.3,1.35,1.4,1.45,1.5に変更して、それぞれ、第二のリチウム遷移金属複合酸化物を作製した(以下、第二のリチウム遷移金属複合酸化物を「LR」という。)。
上記のNCM70質量部に対して、上記のLRをそれぞれ30質量部含む実施例1−2〜1−9に係る正極活物質を作製した以外は実施例1−1と同様にして、非水電解質二次電池の組立及び初期充放電を行い、実施例1−2〜1−9に係る非水電解質二次電池を完成した。
(Examples 1-2 to 1-9)
The first lithium transition metal composite oxide in Example 1-1 was used as the first lithium transition metal composite oxide (hereinafter, the first lithium transition metal composite oxide in Example 1-1 was referred to as “NCM”. ").
In the production process of the second lithium transition metal composite oxide in Example 1-1, the molar ratio Li of the transition metal element Me2 (Ni: Co: Mn = 30: 15: 55) to Li in the hydroxide precursor / Me2 is changed from 1.1 to 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, and 1.5 respectively. A lithium transition metal composite oxide was produced (hereinafter, the second lithium transition metal composite oxide is referred to as “LR”).
A non-aqueous electrolyte was produced in the same manner as in Example 1-1 except that the positive electrode active material according to Examples 1-2 to 1-9 containing 30 parts by mass of the above LR with respect to 70 parts by mass of NCM was prepared. The secondary battery was assembled and initially charged / discharged to complete the nonaqueous electrolyte secondary battery according to Examples 1-2 to 1-9.

(比較例1−1)
実施例1−1に係るNCMを単独で正極活物質として用いた以外は実施例1−1と同様にして、非水電解質二次電池の組立及び初期充放電を行い、比較例1−1に係る非水電解質二次電池を完成した。
(Comparative Example 1-1)
A nonaqueous electrolyte secondary battery was assembled and initially charged / discharged in the same manner as in Example 1-1 except that the NCM according to Example 1-1 was used alone as the positive electrode active material. Such a nonaqueous electrolyte secondary battery was completed.

<過充電時の安全性確認試験>
上記のようにして完成した非水電解質二次電池を用いて、電圧の上限を設けずに電流0.1Cの定電流(CC)充電を行い、充電電気量に対する正極電位の急上昇が観察されたSOC(%)を記録した。ここで、4.45V(vs.Li/Li+)の定電流定電圧(CCCV)充電を行ったときの充電深度をSOC100%とした。
<Safety confirmation test during overcharge>
Using the non-aqueous electrolyte secondary battery completed as described above, a constant current (CC) charge at a current of 0.1 C was performed without setting an upper limit of the voltage, and a rapid increase in the positive electrode potential with respect to the amount of charge was observed. The SOC (%) was recorded. Here, the charging depth when the constant current constant voltage (CCCV) charging of 4.45 V (vs. Li / Li + ) was performed was defined as SOC 100%.

実施例1−1〜1−9、及び比較例1−1に係る非水電解質二次電池の放電容量、安全性確認試験におけるSOC(%)、及びdSOC/dV最大値を表1に示す。
なお、以下の表1〜3において、SOC遅延効果は、dSOC/dV最大値が100以上の場合を「◎」とし、70以上の場合を「〇」とし、70未満の場合を「×」とした。
Table 1 shows the discharge capacities of the nonaqueous electrolyte secondary batteries according to Examples 1-1 to 1-9 and Comparative Example 1-1, the SOC (%) in the safety confirmation test, and the dSOC / dV maximum value.
In Tables 1 to 3 below, the SOC delay effect is “◎” when the maximum value of dSOC / dV is 100 or more, “◯” when 70 or more, and “×” when less than 70. did.

表1によると、活物質としてNCMを単独で用いた正極を備えた比較例1−1に係る非水電解質二次電池は、安全性確認試験において、133%のSOCで正極電位が急激に上昇している。これに対して、活物質としてNCM及びLRを含む正極を備えた実施例1−1〜1−9に係る非水電解質二次電池は、安全性確認試験における正極電位が急激に上昇するSOCが175%以上であり、比較例1−1に比べて安全性が向上していることがわかる。
ここで、比較例1−1に係る非水電解質二次電池は、dSOC/dV最大値が70未満である。即ち、比較例1−1における正極は、5.0V(vs.Li/Li+)に至る充電を行ったとき、4.5〜5.0V(vs.Li/Li+)の正極電位範囲内に、充電電気量に対する電位変化の比較的平坦な領域を有しない。これに対して、実施例1−1〜1−9に係る非水電解質二次電池は、dSOC/dV最大値が70を超えている。即ち、実施例1−1〜1−9における正極は、5.0V(vs.Li/Li+)に至る充電を行ったとき、4.5〜5.0V(vs.Li/Li+)の正極電位範囲内に、充電電気量に対して比較的平坦な領域を有している。
なお、放電容量は、Li/Me2比が1.2で最大となり、同比が1.2を超えると容量が低減する傾向にあることがわかる。
According to Table 1, the non-aqueous electrolyte secondary battery according to Comparative Example 1-1 including the positive electrode using NCM alone as the active material has a positive electrode potential rapidly increased at 133% SOC in the safety confirmation test. doing. On the other hand, the non-aqueous electrolyte secondary batteries according to Examples 1-1 to 1-9 including the positive electrode containing NCM and LR as the active material have an SOC in which the positive electrode potential rapidly increases in the safety confirmation test. It is 175% or more, and it can be seen that the safety is improved as compared with Comparative Example 1-1.
Here, the dSOC / dV maximum value of the nonaqueous electrolyte secondary battery according to Comparative Example 1-1 is less than 70. That is, the positive electrode in Comparative Example 1-1 was within a positive electrode potential range of 4.5 to 5.0 V (vs. Li / Li + ) when charged to 5.0 V (vs. Li / Li + ). Furthermore, it does not have a relatively flat region of potential change with respect to the amount of charge. In contrast, the non-aqueous electrolyte secondary batteries according to Examples 1-1 to 1-9 have a dSOC / dV maximum value exceeding 70. That is, the positive electrodes in Examples 1-1 to 1-9 were 4.5 to 5.0 V (vs. Li / Li + ) when charged to 5.0 V (vs. Li / Li + ). Within the positive electrode potential range, there is a relatively flat region with respect to the amount of charged electricity.
The discharge capacity is maximum when the Li / Me2 ratio is 1.2, and it can be seen that the capacity tends to decrease when the ratio exceeds 1.2.

(実施例1−10、比較例1−2、1−3)
実施例1−3に係る非水電解質二次電池と同様の正極活物質を用い、初期充放電工程における定電流定電圧(CCCV)充電の電圧を、それぞれ4.50V、4.55V、4.60V(いずれもvs.Li/Li+)とした以外は実施例1−3と同様にして、実施例1−10、及び比較例1−2、1−3に係る非水電解質二次電池を完成し、放電容量を確認した。
次に、実施例1−10、及び比較例1−2、1−3に係る非水電解質二次電池に対して、それぞれの初期充放電工程における定電流定電圧(CCCV)で採用した電圧で充電を行ったときの充電深度をSOC100%として、実施例1−3と同様に過充電時の安全性確認試験を行った。
実施例1−10、及び比較例1−2、1−3に係る非水電解質二次電池の放電容量、安全性確認試験によるSOC(%)、及びdSOC/dV最大値を、実施例1−3及び比較例1−1とともに表2に示す。
(Example 1-10, Comparative Example 1-2, 1-3)
Using the same positive electrode active material as that of the nonaqueous electrolyte secondary battery according to Example 1-3, the constant current and constant voltage (CCCV) charging voltages in the initial charge and discharge process were 4.50 V, 4.55 V, and 4. The nonaqueous electrolyte secondary batteries according to Example 1-10 and Comparative Examples 1-2 and 1-3 were the same as Example 1-3 except that the voltage was 60 V (both vs. Li / Li + ). Completed and confirmed the discharge capacity.
Next, with respect to the nonaqueous electrolyte secondary batteries according to Example 1-10 and Comparative Examples 1-2 and 1-3, the voltage adopted in the constant current and constant voltage (CCCV) in each initial charge and discharge process A safety confirmation test at the time of overcharge was performed in the same manner as in Example 1-3, assuming that the charge depth when charging was SOC 100%.
The discharge capacity of the nonaqueous electrolyte secondary batteries according to Example 1-10 and Comparative Examples 1-2 and 1-3, the SOC (%) by the safety confirmation test, and the maximum value of dSOC / dV are shown in Example 1 3 and Comparative Example 1-1 are shown in Table 2.

表2によると、初期充放電工程を4.5V(vs.Li/Li+)で行った実施例1−10に係る非水電解質二次電池も、安全性確認試験における正極電位が急激に上昇するSOCが比較例1−1に比べて向上しており、安全性が向上していることがわかる。ところが、実施例1−10と同じ正極活物質を用い、初期充放電工程を4.55V及び4.60Vで行った比較例1−2、1−3に係る非水電解質二次電池では、安全性確認試験における正極電位が急激に上昇するSOCが比較例1−1に比べて下回っており、安全性が向上していない。
ここで、実施例1−10に係る非水電解質二次電池は、dSOC/dV最大値が70以上である。即ち、実施例1−10における5.0V(vs.Li/Li+)に至る充電を行ったとき、4.5〜5.0V(vs.Li/Li+)の正極電位範囲内に、充電電気量に対して比較的平坦な領域を有している。これに対して、比較例1−2、1−3に係る非水電解質二次電池は、放電容量は高いものの、dSOC/dV最大値が70未満である。即ち、比較例1−2、1−3の電池における正極は、5.0V(vs.Li/Li+)に至る充電を行ったとき、4.5〜5.0V(vs.Li/Li+)の正極電位範囲内に、充電電気量に対する電位変化の比較的平坦な領域を有していない。
According to Table 2, the non-aqueous electrolyte secondary battery according to Example 1-10 in which the initial charge / discharge process was performed at 4.5 V (vs. Li / Li + ) also rapidly increased in the positive electrode potential in the safety confirmation test. It can be seen that the SOC is improved as compared with Comparative Example 1-1, and the safety is improved. However, in the nonaqueous electrolyte secondary batteries according to Comparative Examples 1-2 and 1-3 in which the same positive electrode active material as in Example 1-10 was used and the initial charge / discharge process was performed at 4.55 V and 4.60 V, The SOC at which the positive electrode potential rapidly increases in the safety confirmation test is lower than that in Comparative Example 1-1, and safety is not improved.
Here, the nonaqueous electrolyte secondary battery according to Example 1-10 has a dSOC / dV maximum value of 70 or more. That is, when charging up to 5.0 V (vs. Li / Li + ) in Example 1-10 was performed, charging was performed within the positive electrode potential range of 4.5 to 5.0 V (vs. Li / Li + ). It has a relatively flat area with respect to the amount of electricity. On the other hand, the nonaqueous electrolyte secondary batteries according to Comparative Examples 1-2 and 1-3 have a high discharge capacity but a dSOC / dV maximum value of less than 70. That is, the positive electrode in the battery of Comparative Example 1-2 and 1-3, where a charge leading to 5.0V (vs.Li/Li +), 4.5~5.0V ( vs.Li/Li + ) Does not have a relatively flat region of potential change with respect to the amount of charge.

(実施例1−11、1−12)
実施例1−3におけるNCMとLR(Li/Me2=1.2)の質量比を、70:30からそれぞれ50:50及び30:70に変更した以外は、実施例1−3と同様にして実施例1−11及び実施例1−12に係る非水電解質二次電池を完成した。
実施例1−11、1−12に係る非水電解質二次電池の初期放電容量、及び安全性確認試験によるSOC(%)を、実施例1−3とともに表3に示す。
(Examples 1-11 and 1-12)
Except that the mass ratio of NCM and LR (Li / Me2 = 1.2) in Example 1-3 was changed from 70:30 to 50:50 and 30:70, respectively, in the same manner as Example 1-3. The nonaqueous electrolyte secondary batteries according to Example 1-11 and Example 1-12 were completed.
Table 3 shows the initial discharge capacity of the nonaqueous electrolyte secondary batteries according to Examples 1-11 and 1-12 and the SOC (%) by the safety confirmation test together with Example 1-3.

表3によると、第一のリチウム遷移金属複合酸化物と第二のリチウム遷移金属複合酸化物の質量比を50:50とした正極を備えた実施例1−11に係る非水電解質二次電池や、前記質量比を30:70とした正極を備えた実施例1−12に係る非水電解質二次電池も、安全性確認試験における正極電位が急激に上昇するSOCが比較例1−1に比べて向上しており、安全性が向上していることがわかる。また、放電容量の低下も抑制されていることがわかる。   According to Table 3, the nonaqueous electrolyte secondary battery according to Example 1-11 provided with a positive electrode in which the mass ratio of the first lithium transition metal composite oxide and the second lithium transition metal composite oxide was 50:50 In addition, the non-aqueous electrolyte secondary battery according to Example 1-12 provided with the positive electrode having a mass ratio of 30:70 was also compared with Comparative Example 1-1 in which the positive electrode potential rapidly increased in the safety confirmation test. It can be seen that the safety is improved. Moreover, it turns out that the fall of discharge capacity is also suppressed.

実施例1−1〜1−12に係る非水電解質二次電池については、別途、過充電時の安全性確認試験を行う前の状態で、前述した手順及び条件に基づいて放電末状態の正極を取り出し、エックス線回折測定を行ったところ、正極活物質は、CuKα線を用いたエックス線回折図において、21°付近に回折ピークが観察されることを確認した。比較例1−2,1−3に係る非水電解質二次電池についても、同様のエックス線回折測定を行ったが、21°付近の回折ピークは観察されなかった。   For the nonaqueous electrolyte secondary batteries according to Examples 1-1 to 1-12, the positive electrode in the end-of-discharge state based on the above-described procedures and conditions before separately performing the safety confirmation test during overcharge. When X-ray diffraction measurement was performed, the positive electrode active material was confirmed to have a diffraction peak observed at around 21 ° in an X-ray diffraction diagram using CuKα rays. The same X-ray diffraction measurement was performed on the nonaqueous electrolyte secondary batteries according to Comparative Examples 1-2 and 1-3, but no diffraction peak near 21 ° was observed.

次に挙げる例は、非水電解質が、非水溶媒にFECを含むことにより、充放電サイクル後の内部抵抗に与える影響を確認するためのものである。このため、FECを含まない非水電解質を用いた実施例をここでは「参考例」と表記する。
(実施例2−1
NCM80質量部に対して、Liに対する遷移金属元素Me2(Ni:Co:Mn=20:20:60)のモル比Li/Me2が1.43であるLRを20質量部含む正極活物質を作製し、実施例1と同様にして正極を作製した。
The following example is for confirming the influence of the nonaqueous electrolyte on the internal resistance after the charge / discharge cycle by including FEC in the nonaqueous solvent. For this reason, the Example using the nonaqueous electrolyte which does not contain FEC is described as a "reference example" here.
(Example 2-1 1 )
A positive electrode active material containing 20 parts by mass of LR in which the molar ratio Li / Me2 of the transition metal element Me2 (Ni: Co: Mn = 20: 20: 60) to Li is 1.43 with respect to 80 parts by mass of NCM is prepared. A positive electrode was produced in the same manner as in Example 1.

(負極の作製)
負極活物質として黒鉛、バインダーとしてスチレン−ブタジエン−ゴム及びカルボキシメチルセルロース(CMC)、分散媒に水を用いて負極合材ペーストを作製した。なお、負極活物質とバインダーとCMCの質量比率は97:2:1とした。この負極合材ペーストを負極基材である銅箔の片面に塗布し、100℃で乾燥することにより、負極を得た。
(Preparation of negative electrode)
A negative electrode mixture paste was prepared using graphite as the negative electrode active material, styrene-butadiene-rubber and carboxymethyl cellulose (CMC) as the binder, and water as the dispersion medium. Note that the mass ratio of the negative electrode active material, the binder, and the CMC was 97: 2: 1. This negative electrode mixture paste was applied to one side of a copper foil as a negative electrode substrate and dried at 100 ° C. to obtain a negative electrode.

非水電解質としてFEC/EMCが体積比10:90である混合溶媒を用いた。前記の正極、負極及び非水電解質を用い、実施例1と同様にして、非水電解質二次電池を組み立てた。
組み立てた非水電解質二次電池の初期充放電を、25℃の下、電流0.1C、電圧4.25Vの定電流定電圧(CCCV)充電(電流値が1/6に減衰した時点で充電終止)、及び電流0.1C、終止電圧2.0Vの定電流放電で行い、実施例2−1に係る非水電解質二次電池を完成した。
この電池の充電時における正極の電位は、黒鉛負極の電位が約0.1V(vs.Li/Li)であるから、約4.35V(vs.Li/Li)である。
As the non-aqueous electrolyte, a mixed solvent having an FEC / EMC volume ratio of 10:90 was used. A nonaqueous electrolyte secondary battery was assembled in the same manner as in Example 1 using the positive electrode, the negative electrode, and the nonaqueous electrolyte.
The initial charge / discharge of the assembled non-aqueous electrolyte secondary battery was charged at a constant current / constant voltage (CCCV) charge at 25 ° C. with a current of 0.1 C and a voltage of 4.25 V (when the current value was attenuated to 1/6). stop), and current 0.1 C, carried out at a constant current discharge termination voltage 2.0 V, thereby completing the non-aqueous electrolyte secondary cell according to example 2-1 1.
The potential of the positive electrode during charging of the battery is about 4.35 V (vs. Li / Li + ) because the potential of the graphite negative electrode is about 0.1 V (vs. Li / Li + ).

(実施例2−1
非水電解質としてFECと3,3,3−トリフルオロプロピレン酸メチル(FMP)が体積比10:90である混合溶媒を用いた以外は、実施例2−1と同様にして実施例2−1に係る非水電解質二次電池を完成した。
(Example 2-1 2 )
Except that FEC and 3,3,3-trifluoro propylene methyl (FMP) was used a mixed solvent is a volume ratio 10:90 as a non-aqueous electrolyte, carried out in the same manner as in Example 2-1 1 case 2 It was completed a non-aqueous electrolyte secondary battery according to 1 2.

(参考例2−1)
非水電解質としてECとEMCが体積比30:70である混合溶媒を用いた以外は、実施例2−1と同様にして比較例2−1に係る非水電解質二次電池を完成した。
(Reference Example 2-1)
Nonaqueous except that EC and EMC as electrolyte using a mixed solvent having a volume ratio of 30:70, thereby completing the non-aqueous electrolyte secondary cell according to comparative example 2-1 in the same manner as in Example 2-1 1.

(実施例2−2,2−2、参考例2−2)
正極活物質のNCMとLRの質量比を、50:50とした以外は実施例2−1、2−1、及び参考例2−1と同様にして、それぞれ実施例2−2,2−2、及び参考例2−2に係る非水電解質二次電池を完成した。
(Example 2-2 1 , 2-2 2 , Reference Example 2-2)
The mass ratio of NCM and LR of the positive electrode active material, 50: 50 and then other than the embodiment 2-1 1, 2-1 2, and in the same manner as in Reference Example 2-1, Example 2-2 1, The nonaqueous electrolyte secondary battery according to 2-2 2 and Reference Example 2-2 was completed.

(実施例2−3,参考例2−3)
正極化物質のNCMとLRの質量比を、70:30とした以外は、実施例2−1及び参考例2−1と同様にして、実施例2−3及び参考例2−3に係る非水電解質二次電池を完成した。
(Example 2-3, Reference Example 2-3)
The mass ratio of NCM and LR positive poling material, 70: except for using 30, in the same manner as in Example 2-1 1 and Reference Examples 2-1, according to Examples 2-3 and Reference Examples 2-3 A non-aqueous electrolyte secondary battery was completed.

(比較例2−1〜2−3)
NCMを単独で正極活物質として用いた以外は実施例2−1,2−1、及び参考例2−1と同様にして、比較例2−1〜2−3に係る非水電解質二次電池を完成した。
(Comparative Examples 2-1 to 2-3)
The nonaqueous electrolyte 2 according to Comparative Examples 2-1 to 2-3 is the same as Example 2-1 1 , 2-1 2 and Reference Example 2-1, except that NCM is used alone as the positive electrode active material. The next battery was completed.

上記の実施例、参考例、比較例の各電池に対して、4.25V(正極電位は約4.35V(vs.Li/Li))の定電流定電圧(CCCV)充電を行ったときの充電深度をSOC100%とした以外は、実施例1と同様の過充電時の安全性確認試験を行い、SOC(%)、及びdSOC/dV最大値を求めた。
また、この過充電時の安全性確認試験を行う前の電池に対して、充放電サイクル試験として、45℃の下で、電流0.1C、電圧4.25VのCCCV充電(電流値が1/6に減衰するまで)、及び電流0.1C、終止電圧2.0Vの定電流放電を50サイクル行い、上記した条件にて試験後の電池の内部抵抗を測定した。
また、非水電解質の組成のみが異なる各電池間で、FECを含有しない非水電解質を用いた参考例に係る電池において測定された上記内部抵抗の値を100としたときの、各実施例に係る電池の内部抵抗の比を「抵抗率(%)」として求めた。
これらの結果を以下の表4に示す。
When the constant current and constant voltage (CCCV) charge of 4.25 V (the positive electrode potential is about 4.35 V (vs. Li / Li + )) is performed on the batteries of the above-described examples, reference examples, and comparative examples. Except that the charging depth was set to SOC 100%, the safety confirmation test at the time of overcharging was performed in the same manner as in Example 1, and the SOC (%) and the dSOC / dV maximum value were obtained.
In addition, as a charge / discharge cycle test, the battery before the safety confirmation test at the time of overcharge was subjected to CCCV charge (current value is 1 / C) at a current of 0.1 C and a voltage of 4.25 V at 45 ° C. 50), and constant current discharge with a current of 0.1 C and a final voltage of 2.0 V was performed for 50 cycles, and the internal resistance of the battery after the test was measured under the conditions described above.
Moreover, in each Example when the value of the said internal resistance measured in the battery which concerns on the battery which concerns on the reference example using the nonaqueous electrolyte which does not contain FEC between each battery from which only the composition of a nonaqueous electrolyte differs is set to 100. The ratio of the internal resistance of the battery was determined as “resistivity (%)”.
These results are shown in Table 4 below.

表4からは、NCMとLRを正極活物質に含む正極を有する実施例及び参考例に係る電池は、4.5V(vs.Li/Li)未満の電位で使用されると、表1〜3と同じく、過充電に対する安全性が高いという効果を有することがわかる。また、LRを含む正極とFECを含む非水電解質を組み合わせた実施例2−1〜2−3に係る電池は、FECを含まない非水電解質と組み合わせた参考例2−1〜2−3に係る電池に対して、充放電を50サイクル繰り返した後の電池の内部抵抗が小さい、すなわち、非水電解質に含まれるFECは充放電サイクル後の内部抵抗を低く維持する効果を有することがわかる。
一方、LRを含まない正極とFECを含む非水電解質を組み合わせた比較例2−1,2−2に係る電池は、FECを含まない非水電解質を組み合わせた比較例2−3に係る電池よりも50サイクル後の内部抵抗が大きいから、LRを含まない正極を有する比較例の電池では、FECの含有による内部抵抗を低く維持するという効果を有しないことがわかる。
From Table 4, it can be seen that when the batteries according to Examples and Reference Examples having a positive electrode containing NCM and LR as positive electrode active materials are used at a potential of less than 4.5 V (vs. Li / Li + ), 3 shows that it has the effect of high safety against overcharging. Further, the batteries according to Examples 2-1 to 2-3 in which the positive electrode containing LR and the non-aqueous electrolyte containing FEC were combined were used in Reference Examples 2-1 to 2-3 combined with the non-aqueous electrolyte not containing FEC. It can be seen that the battery has a small internal resistance after 50 cycles of charging and discharging, that is, FEC contained in the nonaqueous electrolyte has an effect of keeping the internal resistance after the charging and discharging cycle low.
On the other hand, the batteries according to Comparative Examples 2-1 and 2-2 in which the positive electrode not including LR and the nonaqueous electrolyte including FEC are combined are more than the battery according to Comparative Example 2-3 in which the nonaqueous electrolyte not including FEC is combined. Since the internal resistance after 50 cycles is large, it can be seen that the battery of the comparative example having the positive electrode containing no LR does not have the effect of keeping the internal resistance low due to the inclusion of FEC.

(実施例2−4,2−5、参考例2−4,2−5)
初期充放電工程における充電を、電圧4.35V(正極電位は約4.45V(vs.Li/Li))の定電流定電圧(CCCV)充電とした以外は実施例2−2,2−3、及び参考例2−2,2−3と同様にして、それぞれ、実施例2−4,2−5及び参考例2−4,2−5に係る電池を完成した。
(Examples 2-4 and 2-5, Reference Examples 2-4 and 2-5)
Example 2-2 1 , 2 except that the charge in the initial charge / discharge process was a constant current constant voltage (CCCV) charge with a voltage of 4.35 V (positive electrode potential was about 4.45 V (vs. Li / Li + )). -3 and Reference Examples 2-2 and 2-3, the batteries according to Examples 2-4 and 2-5 and Reference Examples 2-4 and 2-5 were completed, respectively.

(比較例2−4,2−5)
初期充放電工程における充電を、電圧4.6V(正極電位は約4.7V(vs.Li/Li))の定電流定電圧(CCCV)充電とした以外は実施例2−4、及び参考例2−4と同様にして、それぞれ、比較例2−4,2−5に係る電池を完成した。
(Comparative Examples 2-4 and 2-5)
The charging in the initial charging / discharging process was performed in constant voltage and constant voltage (CCCV) with a voltage of 4.6 V (the positive electrode potential was about 4.7 V (vs. Li / Li + )). In the same manner as in Example 2-4, batteries according to Comparative Examples 2-4 and 2-5 were completed, respectively.

上記の実施例2−4,2−5、参考例2−4,2−5、比較例2−4,2−5に係る非水電解質二次電池について、実施例2−1と同様の充放電サイクル試験を行い、50サイクル後の内部抵抗を測定した。また、非水電解質の組成のみが異なる各電池間で、FECを含有しない非水電解質を用いた参考例に係る電池において測定された上記内部抵抗の値を100としたときの、各実施例に係る電池の内部抵抗の比を「抵抗率(%)」として求めた。結果を以下の表5に示す。 The above embodiments 2-4 and 2-5, Reference Example 2-4 and 2-5, the non-aqueous electrolyte secondary cell according to comparative example 2-4 and 2-5, as in Example 2-1 1 A charge / discharge cycle test was performed, and the internal resistance after 50 cycles was measured. Moreover, in each Example when the value of the said internal resistance measured in the battery which concerns on the battery which concerns on the reference example using the nonaqueous electrolyte which does not contain FEC between each battery from which only the composition of a nonaqueous electrolyte differs is set to 100. The ratio of the internal resistance of the battery was determined as “resistivity (%)”. The results are shown in Table 5 below.

表5によると、初期充放電工程を4.5V(vs.Li/Li)以上の電位で行った比較例2−4,2−5に係る電池では、4.5V(vs.Li/Li)未満で行った実施例2−4,2−5、及び参考例2−4,2−5に係る電池と比べて、50サイクル後の抵抗が大きく、中でも非水電解質にFECを含有する比較例2−4の抵抗がより大きいことがわかる。
これに対して、初期充放電工程を4.5V(vs.Li/Li)未満の4.35V(正極電位は約4.45V(vs.Li/Li))で行った実施例及び参考例では、FECを含む非水電解質を用いた実施例2−4,2−5に係る電池が、FECを含まない非水電解質を用いた参考例2−4、2−5に係る電池と比べて、50サイクル後の抵抗が低い値に維持されていることがわかる。これは、表4に示した、初期充放電工程を4.25V(正極電位は約4.35V(vs.Li/Li))で行った場合の、FECを含まない非水電解質を用いた参考例2−2,2−3に対するFECを含む非水電解質を用いた実施例2−2,2−3に係る電池の効果と同様である。また、NCMとLRを正極活物質に含む正極を有する実施例及び参考例に係る電池は、4.5V(vs.Li/Li)未満の電位で使用されると、実施例1の場合と同じく、過充電に対する安全性が高いという効果を有することがわかる。
According to Table 5, in the batteries according to Comparative Examples 2-4 and 2-5 in which the initial charge / discharge process was performed at a potential of 4.5 V (vs. Li / Li + ) or higher, 4.5 V (vs. Li / Li) Compared with the batteries according to Examples 2-4 and 2-5 and Reference Examples 2-4 and 2-5 performed under less than + ), the resistance after 50 cycles is large, and in particular, FEC is contained in the nonaqueous electrolyte. It can be seen that the resistance of Comparative Example 2-4 is larger.
In contrast, 4.5V the initial charge-discharge process (vs.Li/Li +) less than 4.35V (positive electrode potential is about 4.45V (vs.Li/Li +)) in Examples and Reference Been In the example, the batteries according to Examples 2-4 and 2-5 using the nonaqueous electrolyte containing FEC are compared with the batteries according to Reference Examples 2-4 and 2-5 using the nonaqueous electrolyte not containing FEC. It can be seen that the resistance after 50 cycles is maintained at a low value. This is a non-aqueous electrolyte that does not contain FEC when the initial charge / discharge step shown in Table 4 was performed at 4.25 V (the positive electrode potential was about 4.35 V (vs. Li / Li + )). The effect is similar to that of the batteries according to Examples 2-2 1 and 2-3 using the nonaqueous electrolyte containing FEC for Reference Examples 2-2 and 2-3. In addition, when the battery according to the example and the reference example including the positive electrode containing NCM and LR as the positive electrode active material is used at a potential of less than 4.5 V (vs. Li / Li + ), Similarly, it turns out that it has the effect that the safety | security with respect to an overcharge is high.

また、表4と表5とから、初期充放電工程における充電電圧の条件のみが相違する電池の組を抽出し、各組の充電電圧が4.25Vの電池に対する充電電圧が4.35Vの電池の抵抗率(表4、表5の抵抗率とは基準が異なる。)を求めると、以下の表6のようになる。   In addition, from Table 4 and Table 5, battery sets that differ only in the charge voltage conditions in the initial charge / discharge step are extracted, and the charge voltage for each set of batteries with a charge voltage of 4.25 V is 4.35 V. Table 6 below shows the resistivity (which is different from the resistivity in Tables 4 and 5).

表6からは、FECを含まない非水電解質を用いた参考例2−2〜2−5に係る電池は、初期充放電工程における充電電圧が4.25V(参考例2−2,2−3)から4.35V(参考例2−4,2−5)へ上昇すると、50サイクル後の抵抗値が1.5〜3倍程度大きくなるが、FECを含む非水電解質を用いた実施例2−2,2−3〜2−5に係る電池では、充電電圧が4.25V(実施例2−2,2−3)から4.35V(実施例2−4,2−5)へ上昇しても、50サイクル後の抵抗値が高々3割程度しか大きくなっていないことがわかる。 From Table 6, the batteries according to Reference Examples 2-2 to 2-5 using a non-aqueous electrolyte that does not contain FEC have a charge voltage of 4.25 V in the initial charge / discharge process (Reference Examples 2-2 and 2-3). ) To 4.35 V (Reference Examples 2-4 and 2-5), the resistance value after 50 cycles increases by about 1.5 to 3 times. Example 2 using a nonaqueous electrolyte containing FEC -2 1 , 2-3 to 2-5, the charging voltage is changed from 4.25 V (Example 2-2 1 , 2-3) to 4.35 V (Examples 2-4, 2-5). Even if it rises, it can be seen that the resistance value after 50 cycles is only about 30% higher.

(実施例2−6)
非水電解質の溶媒に、FEC/EMCの体積比が5:95である混合溶媒を用いた以外は、実施例2−2と同様にして、実施例2−6に係る非水電解質二次電池を完成した。
(Example 2-6)
The solvent of the nonaqueous electrolyte, except that the volume ratio of the FEC / EMC was used a mixed solvent of 5:95, the same procedure as in Example 2-2 1, the non-aqueous electrolyte secondary according to Example 2-6 Completed the battery.

(実施例2−7)
非水電解質の溶媒に、FEC/EMCの体積比が20:80である混合溶媒を用いた以外は、実施例2−2と同様にして、実施例2−7に係る非水電解質二次電池を完成した。
(Example 2-7)
The solvent of the nonaqueous electrolyte, except that the volume ratio of the FEC / EMC was used a mixed solvent is 20:80, in the same manner as in Example 2-2 1, the non-aqueous electrolyte secondary according to Examples 2-7 Completed the battery.

実施例2−6,2−7に係る非水電解質二次電池の50サイクル後の抵抗を測定し、FECを含まない参考例2−2の抵抗に対する各実施例の抵抗の割合を抵抗率として求めた。結果を、FEC/EMCの体積比が10:90である実施例2−2,及びFECを含まない参考例2−2とともに、以下の表7に示す。 The resistance after 50 cycles of the nonaqueous electrolyte secondary battery according to Examples 2-6 and 2-7 was measured, and the ratio of the resistance of each example to the resistance of Reference Example 2-2 not including FEC was used as the resistivity. Asked. The results are shown in Table 7 below together with Example 2-2 1 in which the FEC / EMC volume ratio is 10:90 and Reference Example 2-2 not including FEC.

表6から、非水電解質の溶媒に含まれるFECは、少なくとも体積比5〜20%の範囲で、充放電サイクル後の抵抗を低く維持する効果を有意に奏していることがわかる。   From Table 6, it can be seen that FEC contained in the solvent of the nonaqueous electrolyte has a significant effect of maintaining low resistance after the charge / discharge cycle at least in the range of 5 to 20% by volume.

本発明に係る非水電解質二次電池は、誤って過充電された場合においても高い安全性を有する。したがって、この非水電解質二次電池は、高い安全性、充放電サイクル性能が要求されるハイブリッド自動車(HEV)用、プラグインハイブリッド自動車(PHEV)用、電気自動車(EV)用の電池として、有用性が高い。   The nonaqueous electrolyte secondary battery according to the present invention has high safety even when it is overcharged by mistake. Therefore, this non-aqueous electrolyte secondary battery is useful as a battery for hybrid vehicles (HEV), plug-in hybrid vehicles (PHEV), and electric vehicles (EV) that require high safety and charge / discharge cycle performance. High nature.

1 非水電解質二次電池
2 電極群
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
20 蓄電ユニット
30 蓄電装置
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Electrode group 3 Battery container 4 Positive electrode terminal 4 'Positive electrode lead 5 Negative electrode terminal 5' Negative electrode lead 20 Power storage unit 30 Power storage device

Claims (8)

正極、負極及び非水電解質を備える非水電解質二次電池であって、
前記正極は、活物質として、
α−NaFeO構造を有し、
一般式 LiMe1O(Me1はNi、Co及びMnを含む遷移金属元素)で表される第一のリチウム遷移金属複合酸化物と、
α−NaFeO構造を有し、
一般式 Li1+αMe21−α(0<α、Me2はNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表される第二のリチウム遷移金属複合酸化物を含み、
前記活物質は、CuKα線を用いたエックス線回折図において、21°付近に回折ピークが観察される、非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte,
The positive electrode is an active material,
having an α-NaFeO 2 structure,
A first lithium transition metal composite oxide represented by the general formula LiMe1O 2 (Me1 is a transition metal element containing Ni, Co and Mn);
having an α-NaFeO 2 structure,
A second lithium transition metal composite oxide represented by the general formula Li 1 + α Me2 1-α O 2 (0 <α, Me2 is a transition metal element including Ni and Mn, or Ni, Mn and Co);
The active material is a non-aqueous electrolyte secondary battery in which a diffraction peak is observed at around 21 ° in an X-ray diffraction diagram using CuKα rays.
正極、負極及び非水電解質を備える非水電解質二次電池であって、
前記正極は、活物質として、
α−NaFeO構造を有し、
一般式 LiMe1O(Me1はNi、Co及びMnを含む遷移金属元素)で表される第一のリチウム遷移金属複合酸化物と、
α−NaFeO構造を有し、
一般式 Li1+αMe21−α(0<α、Me2はNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表される第二のリチウム遷移金属複合酸化物を含み、
正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5〜5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte,
The positive electrode is an active material,
having an α-NaFeO 2 structure,
A first lithium transition metal composite oxide represented by the general formula LiMe1O 2 (Me1 is a transition metal element containing Ni, Co and Mn);
having an α-NaFeO 2 structure,
A second lithium transition metal composite oxide represented by the general formula Li 1 + α Me2 1-α O 2 (0 <α, Me2 is a transition metal element including Ni and Mn, or Ni, Mn and Co);
When charging is performed until the positive electrode potential reaches 5.0 V (vs. Li / Li + ), within the positive electrode potential range of 4.5 to 5.0 V (vs. Li / Li + ) A non-aqueous electrolyte secondary battery in which a region with a relatively flat potential change is observed.
前記第一のリチウム遷移金属複合酸化物は、遷移金属(Me1)に対するMnのモル比が、Mn/Me1≦0.5である請求項1又は2に記載の非水電解質二次電池。   3. The nonaqueous electrolyte secondary battery according to claim 1, wherein the first lithium transition metal composite oxide has a molar ratio of Mn to transition metal (Me1) of Mn / Me1 ≦ 0.5. 前記第二のリチウム遷移金属複合酸化物は、遷移金属(Me2)に対するMnのモル比が、0.5<Mn/Me2である請求項1〜3のいずれか1項に記載の非水電解質二次電池。   The nonaqueous electrolyte 2 according to any one of claims 1 to 3, wherein the second lithium transition metal composite oxide has a molar ratio of Mn to transition metal (Me2) of 0.5 <Mn / Me2. Next battery. 前記第二のリチウム遷移金属複合酸化物は、遷移金属(Me2)に対するLiのモル比が、Li/Me2≦1.35である請求項1〜4のいずれか1項に記載の非水電解質二次電池。   5. The non-aqueous electrolyte 2 according to claim 1, wherein the second lithium transition metal composite oxide has a molar ratio of Li to the transition metal (Me 2) of Li / Me 2 ≦ 1.35. Next battery. 4.5V(vs.Li/Li)未満の電位で使用される、請求項1〜5のいずれか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, which is used at a potential of less than 4.5 V (vs. Li / Li + ). 前記非水電解質は、非水溶媒にフルオロエチレンカーボネートを含む、請求項1〜6のいずれか1項に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte contains fluoroethylene carbonate in a nonaqueous solvent. 請求項1〜7のいずれか1項に記載の非水電解質二次電池の製造方法であって、初期充放電工程を4.5V(vs.Li/Li)未満の電位で行う、非水電解質二次電池の製造方法。
It is a manufacturing method of the nonaqueous electrolyte secondary battery of any one of Claims 1-7, Comprising : The non-aqueous water which performs an initial stage charging / discharging process with the electric potential of less than 4.5V (vs.Li/Li <+> ). Manufacturing method of electrolyte secondary battery.
JP2017208446A 2016-12-22 2017-10-27 Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery Active JP7205051B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016249128 2016-12-22
JP2016249128 2016-12-22

Publications (3)

Publication Number Publication Date
JP2018107118A true JP2018107118A (en) 2018-07-05
JP2018107118A5 JP2018107118A5 (en) 2020-01-09
JP7205051B2 JP7205051B2 (en) 2023-01-17

Family

ID=62787422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017208446A Active JP7205051B2 (en) 2016-12-22 2017-10-27 Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP7205051B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029229A1 (en) * 2019-08-09 2021-02-18 出光興産株式会社 Electrode composite material and method for manufacturing same
WO2021131964A1 (en) * 2019-12-25 2021-07-01 株式会社Gsユアサ Nonaqueous electrolyte power storage element, power storage device, method for using both, and method for manufacturing both
WO2023032751A1 (en) * 2021-08-30 2023-03-09 株式会社Gsユアサ Positive electrode for nonaqueous electrolyte power storage element, nonaqueous electrolyte power storage element, and power storage device
CN116053469A (en) * 2023-03-06 2023-05-02 宁德时代新能源科技股份有限公司 Positive electrode active material, positive electrode sheet, secondary battery, and electricity device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233234A (en) * 2010-04-23 2011-11-17 Toyota Industries Corp Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2012059527A (en) * 2010-09-08 2012-03-22 Nissan Motor Co Ltd Positive electrode for lithium ion battery and lithium ion battery using the same
WO2012120782A1 (en) * 2011-03-10 2012-09-13 株式会社豊田自動織機 Lithium ion secondary battery
JP2013214385A (en) * 2012-04-02 2013-10-17 Gs Yuasa Corp Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2014029829A (en) * 2012-07-04 2014-02-13 Gs Yuasa Corp Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP2016081716A (en) * 2014-10-16 2016-05-16 日立金属株式会社 Positive electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
JP2016119288A (en) * 2014-12-18 2016-06-30 株式会社Gsユアサ Mixed active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233234A (en) * 2010-04-23 2011-11-17 Toyota Industries Corp Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2012059527A (en) * 2010-09-08 2012-03-22 Nissan Motor Co Ltd Positive electrode for lithium ion battery and lithium ion battery using the same
WO2012120782A1 (en) * 2011-03-10 2012-09-13 株式会社豊田自動織機 Lithium ion secondary battery
JP2013214385A (en) * 2012-04-02 2013-10-17 Gs Yuasa Corp Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2014029829A (en) * 2012-07-04 2014-02-13 Gs Yuasa Corp Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP2016081716A (en) * 2014-10-16 2016-05-16 日立金属株式会社 Positive electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
JP2016119288A (en) * 2014-12-18 2016-06-30 株式会社Gsユアサ Mixed active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029229A1 (en) * 2019-08-09 2021-02-18 出光興産株式会社 Electrode composite material and method for manufacturing same
WO2021131964A1 (en) * 2019-12-25 2021-07-01 株式会社Gsユアサ Nonaqueous electrolyte power storage element, power storage device, method for using both, and method for manufacturing both
WO2023032751A1 (en) * 2021-08-30 2023-03-09 株式会社Gsユアサ Positive electrode for nonaqueous electrolyte power storage element, nonaqueous electrolyte power storage element, and power storage device
CN116053469A (en) * 2023-03-06 2023-05-02 宁德时代新能源科技股份有限公司 Positive electrode active material, positive electrode sheet, secondary battery, and electricity device
CN116053469B (en) * 2023-03-06 2023-08-25 宁德时代新能源科技股份有限公司 Positive electrode active material, positive electrode sheet, secondary battery, and electricity device

Also Published As

Publication number Publication date
JP7205051B2 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
JP6369471B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6471693B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP7147478B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP5871187B2 (en) Non-aqueous electrolyte secondary battery active material, method for producing the active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP2018073481A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20190012214A (en) Cathode active material for lithium secondary battery, production method thereof, and lithium secondary battery
JP6583662B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2012151083A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013065472A (en) Active material for nonaqueous electrolyte secondary battery, method for manufacturing active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7205051B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP2012151084A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6036168B2 (en) Nonaqueous electrolyte secondary battery
JP2018041657A (en) Positive electrode active material for lithium secondary battery, method for manufacturing the same, lithium secondary battery electrode, and lithium secondary battery
JP6910595B2 (en) Non-aqueous electrolyte secondary battery
JP6834629B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and positive electrode active material for non-aqueous electrolyte secondary battery
JP5757140B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, lithium transition metal composite oxide, method for producing the positive electrode active material, etc., and non-aqueous electrolyte secondary battery
JP2015115244A (en) Positive electrode for lithium secondary battery, lithium secondary battery, battery module, and automobile mounting battery module
JP6354964B2 (en) Nonaqueous electrolyte secondary battery
JP7322892B2 (en) Non-aqueous electrolyte secondary battery, method for manufacturing non-aqueous electrolyte secondary battery, and method for using non-aqueous electrolyte secondary battery
JP6474033B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6394956B2 (en) Nonaqueous electrolyte secondary battery
JP7043989B2 (en) A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery.
JP5787079B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP6387054B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP6746099B2 (en) Non-aqueous electrolyte secondary battery active material, method for producing non-aqueous electrolyte secondary battery active material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220629

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220707

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R150 Certificate of patent or registration of utility model

Ref document number: 7205051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150