JP6394956B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6394956B2
JP6394956B2 JP2014201579A JP2014201579A JP6394956B2 JP 6394956 B2 JP6394956 B2 JP 6394956B2 JP 2014201579 A JP2014201579 A JP 2014201579A JP 2014201579 A JP2014201579 A JP 2014201579A JP 6394956 B2 JP6394956 B2 JP 6394956B2
Authority
JP
Japan
Prior art keywords
positive electrode
capacity
negative electrode
lithium
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014201579A
Other languages
Japanese (ja)
Other versions
JP2016072129A5 (en
JP2016072129A (en
Inventor
彰文 菊池
彰文 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2014201579A priority Critical patent/JP6394956B2/en
Publication of JP2016072129A publication Critical patent/JP2016072129A/en
Publication of JP2016072129A5 publication Critical patent/JP2016072129A5/ja
Application granted granted Critical
Publication of JP6394956B2 publication Critical patent/JP6394956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

従来、非水電解質二次電池であるリチウム二次電池には、正極活物質として、α−NaFeO型結晶構造を有する「LiMeO型」活物質(Meは遷移金属)が検討され、LiCoOが広く実用化されていた。LiCoOを正極活物質として用いたリチウム二次電池は、放電容量が120〜130mAh/g程度であった。 Conventionally, in a lithium secondary battery which is a non-aqueous electrolyte secondary battery, a “LiMeO 2 type” active material (Me is a transition metal) having an α-NaFeO 2 type crystal structure has been studied as a positive electrode active material, and LiCoO 2 Has been widely used. The lithium secondary battery using LiCoO 2 as the positive electrode active material had a discharge capacity of about 120 to 130 mAh / g.

充放電サイクル性能の点でも優れる「LiMeO型」活物質が種々提案され、一部実用化されている。例えば、LiNi1/2Mn1/2やLiCo1/3Ni1/3Mn1/3は、150〜180mAh/gの放電容量を有する。 Various “LiMeO 2 type” active materials that are also excellent in charge / discharge cycle performance have been proposed and partially put into practical use. For example, LiNi 1/2 Mn 1/2 O 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 have a discharge capacity of 150 to 180 mAh / g.

前記Meとして、地球資源として豊富なMnを用いることが望まれていた。しかし、Meに対するMnのモル比Mn/Meが0.5を超える「LiMeO型」活物質は、充電に伴いα−NaFeO型からスピネル型へと構造変化が起こり、結晶構造が維持できず、充放電サイクルが著しく劣るという問題があった。
そこで、近年、上記のような「LiMeO型」活物質に対し、遷移金属(Me)に対するマンガン(Mn)のモル比Mn/Meが0.5を超え、充電をしてもα−NaFeO構造を維持できる活物質が提案された。
As the Me, it has been desired to use abundant Mn as a global resource. However, the “LiMeO 2 type” active material in which the molar ratio of Mn to Me, Mn / Me exceeds 0.5, undergoes a structural change from α-NaFeO 2 type to spinel type with charge, and the crystal structure cannot be maintained. There was a problem that the charge / discharge cycle was extremely inferior.
Therefore, in recent years, the molar ratio Mn / Me of manganese (Mn) to transition metal (Me) exceeds 0.5 for the “LiMeO 2 type” active material as described above, and α-NaFeO 2 even when charged. An active material capable of maintaining the structure was proposed.

特許文献1には、MeとしてNi,Co及びMnを含み、Meに対するMnのモル比Mn/Meが0.62〜0.72であるリチウム遷移金属複合酸化物を正極活物質に用いた非水電解質二次電池であって、製造工程中に行う初期充放電における充電を4.5〜4.6V(vs.Li/Li)で行い、使用時における充電時の正極の最大到達電位を4.4V(vs.Li/Li)以下や4.3V(vs.Li/Li)以下とする電池について、200mAh/g以上の放電容量が得られることが記載されている。特許文献2にも、同様の正極活物質について、初期充放電の充電を4.6V(vs.Li/Li)で行い、その後の充放電サイクルを4.3V(vs.Li/Li)充電で行い、同様の放電容量を得ることが記載されている。 Patent Document 1 discloses a non-aqueous solution using, as a positive electrode active material, a lithium transition metal composite oxide containing Ni, Co, and Mn as Me and having a molar ratio of Mn to Me, Mn / Me of 0.62 to 0.72. The electrolyte secondary battery is charged at 4.5 to 4.6 V (vs. Li / Li + ) in the initial charge / discharge performed during the manufacturing process, and the maximum potential of the positive electrode during charge during use is 4 It is described that a discharge capacity of 200 mAh / g or more can be obtained for a battery having a voltage of .4 V (vs. Li / Li + ) or less or 4.3 V (vs. Li / Li + ) or less. Also in Patent Document 2, for the same positive electrode active material, initial charging / discharging is performed at 4.6 V (vs. Li / Li + ), and the subsequent charging / discharging cycle is 4.3 V (vs. Li / Li + ). It is described that the same discharge capacity is obtained by charging.

このように、従来の「LiMeO型」正極活物質の場合とは異なり、MeとしてNi,Co及びMnを含み、Meに対するMnのモル比Mn/Meが0.5を超え、充電をしてもα−NaFeO構造を維持できる正極活物質では、初回に、使用時の充電電位より高い電位に至るまで充電(以下、「初回充電」という。)を行うことにより、高い放電容量が得られるという特徴がある。
なお、この材料は、遷移金属(Me)の比率に対するリチウム(Li)の組成比率Li/Meが1より大きく、例えばLi/Meが1.25〜1.6であるように原料を混合して合成されることから、「リチウム過剰型」活物質とも呼ばれ、合成後の組成はLi1+αMe1−α(α>0)と表記できる。ここで、遷移金属(Me)の比率に対するリチウム(Li)の組成比率Li/Meをβとすると、β=(1+α)/(1−α)であるから、例えば、Li/Meが1.5のとき、α=0.2である。
Thus, unlike the case of the conventional “LiMeO 2 type” positive electrode active material, Me contains Ni, Co and Mn, and the molar ratio of Mn to Me Mn / Me exceeds 0.5. In the positive electrode active material capable of maintaining the α-NaFeO 2 structure, a high discharge capacity can be obtained by performing charging (hereinafter referred to as “first charge”) until reaching a potential higher than the charge potential at the time of use. There is a feature.
In this material, the raw materials are mixed so that the composition ratio Li / Me of lithium (Li) to the ratio of transition metal (Me) is greater than 1, for example, Li / Me is 1.25 to 1.6. Since it is synthesized, it is also called a “lithium-excess type” active material, and the composition after synthesis can be expressed as Li 1 + α Me 1-α O 2 (α> 0). Here, when the composition ratio Li / Me of lithium (Li) with respect to the ratio of the transition metal (Me) is β, β = (1 + α) / (1-α), and thus, for example, Li / Me is 1.5. In this case, α = 0.2.

特許文献3には、4.3V以上4.8V以下の電位範囲における充電又は充放電を行うことによりスピネル構造に変化する層状構造部位と変化しない層状構造部位とを有する固溶体リチウム含有遷移金属酸化物Aと、4.3V以上4.8V以下の電位範囲における充電又は充放電を行うことによりスピネル構造に変化しない層状構造部位を有するリチウム含有遷移金属酸化物Bとを含有する正極活物質を含む正極を有するリチウムイオン二次電池(段落0010、特許請求の範囲、等)が記載され、「電位を規制した充放電前処理法として、リチウム金属対極に対する所定の電位範囲の最高の電位(リチウム金属またはリチウム金属に換算した充放電の上限電位)が、4.3V(vs.Li/Li)以上4.8V(vs.Li/Li)以下となる条件下で充放電を1〜30サイクル行うことが望ましい。より好ましくは4.4V(vs.Li/Li)以上4.6V(vs.Li/Li)以下となる条件下で充放電を1〜30サイクル行うことが望ましい。」(段落0034)と記載されている。 Patent Document 3 discloses a solid solution lithium-containing transition metal oxide having a layered structure portion that changes into a spinel structure and a layered structure portion that does not change by charging or charging / discharging in a potential range of 4.3 V to 4.8 V. A positive electrode comprising a positive electrode active material containing A and a lithium-containing transition metal oxide B having a layered structure portion that does not change into a spinel structure by charging or charging / discharging in a potential range of 4.3 V to 4.8 V Lithium ion secondary batteries (paragraph 0010, claims, etc.) having the following characteristics are described: “As a charge / discharge pretreatment method with regulated potential, the highest potential in a predetermined potential range with respect to a lithium metal counter electrode (lithium metal or The upper limit potential of charge / discharge converted to lithium metal) is 4.3 V (vs. Li / Li + ) or more and 4.8 V (vs. Li / Li + ). It is desirable to perform 1 to 30 cycles of charging / discharging under the following conditions, more preferably 4.4 V (vs. Li / Li + ) or more and 4.6 V (vs. Li / Li + ) or less. It is desirable to perform charge and discharge for 1 to 30 cycles "(paragraph 0034).

特許文献4には化学式1、aLiMnO−(1−a)LiMOで表される正極活物質を含む正極を有するリチウムイオン二次電池であって、初回充電を4.5V〜4.7Vの範囲内の電圧で行って正極活物質を活性化させた、リチウムイオン二次電池(請求項1)が記載されている。 Patent Document 4 discloses a lithium ion secondary battery having a positive electrode including a positive electrode active material represented by Chemical Formula 1, aLi 2 MnO 3- (1-a) LiMO 2 , and the initial charge is 4.5 V to 4. A lithium ion secondary battery (Claim 1) is described in which the positive electrode active material is activated at a voltage in the range of 7V.

WO2012/091015WO2012 / 091015 WO2013/084923WO2013 / 084923 特開2013−187023号公報JP 2013-1887023 A 特開2013−214491号公報JP 2013-214491 A

上記した従来技術では、使用時の作動電位である例えば4.35Vを超える電位で初回充電を行い、正極活物質から高容量を引き出している。
そして、初回充電後、実際の作動電位で電池を使用すると、図4に模式的に示すような余剰容量が正極に生じ、この余剰容量分を補うために、初回の充放電にしか関与しない過剰容量分の負極材料を必要としていた。
そのため、負極材料を収容するために大きな体積が必要であり、これが、電池の高容量密度化を妨げる要因となっていた。
In the above-described prior art, the initial charge is performed at a potential exceeding the operating potential at the time of use, for example, 4.35 V, and a high capacity is extracted from the positive electrode active material.
Then, when the battery is used at the actual operating potential after the first charge, an excess capacity as schematically shown in FIG. 4 is generated in the positive electrode, and in order to make up for this excess capacity, an excess that is involved only in the first charge / discharge Necessary amount of negative electrode material was required.
Therefore, a large volume is required to accommodate the negative electrode material, and this has been a factor that hinders the high capacity density of the battery.

本発明は、このような課題に鑑み、遷移金属中のMnの割合を高めたリチウム遷移金属複合酸化物からなる正極活物質を有する非水電解質二次電池において、体積容量密度が高い電池を得ることを目的とする。   In view of such problems, the present invention provides a battery having a high volume capacity density in a nonaqueous electrolyte secondary battery having a positive electrode active material made of a lithium transition metal composite oxide in which the proportion of Mn in the transition metal is increased. For the purpose.

本発明者は、上記目的を達成するために、遷移金属中のMnの割合を高めたリチウム遷移金属複合酸化物からなる正極活物質のサイクリックボルタモグラム(CV)において特徴づけられる容量領域に着目した。   In order to achieve the above object, the present inventor paid attention to a capacity region characterized in a cyclic voltammogram (CV) of a positive electrode active material composed of a lithium transition metal composite oxide in which the proportion of Mn in the transition metal is increased. .

本発明は、以下の構成を有する。
正極と負極と非水電解質を備えた非水電解質二次電池であって、
前記正極は、α−NaFeO 型結晶構造を有するリチウム遷移金属複合酸化物を含有する正極活物質を有し、
前記リチウム遷移金属複合酸化物は、遷移金属(Me)に対するリチウム(Li)のモル比Li/Meが1より大きく、前記遷移金属(Me)として、Mn並びに、Ni及び/又はCoを含み、前記遷移金属(Me)に対するMnのモル比Mn/MeがMn/Me≧0.60であり、
サイクリックボルタモグラム(CV)を、走査電位範囲:2.0−4.45V(vs.Li/Li )、走査速度:0.05mV/secで行ったとき、前記正極のCVにおける酸化側に、電流密度の極小点を挟んで2つのピークが存在し、前記正極の酸化側のCVにおける3.6V(vs.Li/Li)より高い電位の領域の積分値に対する3.6V(vs.Li/Li)より低い電位の領域の積分値の比が0.37〜0.51の範囲であり、
前記負極の容量に対する前記正極の容量の比が0.86〜0.95の範囲である非水電解質二次電池。
The present invention has the following configuration.
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte,
The positive electrode has a positive electrode active material containing a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure,
The lithium transition metal composite oxide has a molar ratio Li / Me of lithium (Li) to transition metal (Me) larger than 1 , and includes Mn and Ni and / or Co as the transition metal (Me), molar ratio Mn / Me of Mn to the transition metal (Me) is Ri Mn / Me ≧ 0.60 der,
The cyclic voltammogram (CV), the scanning potential range: 2.0-4.45V (vs.Li/Li +), scanning speed: When performed in 0.05 mV / sec, the oxidation side in the CV of the positive electrode, There are two peaks across the minimum point of the current density, and 3.6 V (vs. Li) with respect to the integral value in the region of potential higher than 3.6 V (vs. Li / Li + ) in the CV on the oxidation side of the positive electrode. / Li + ), the ratio of the integration values in the lower potential region is in the range of 0.37 to 0.51;
A nonaqueous electrolyte secondary battery in which a ratio of a capacity of the positive electrode to a capacity of the negative electrode is in a range of 0.86 to 0.95.

本発明によれば、体積当たりの容量密度が高い非水電解質二次電池を提供することができる。   According to the present invention, a nonaqueous electrolyte secondary battery having a high capacity density per volume can be provided.

本発明に係る非水電解質二次電池のサイクリックボルタモグラム(CV)Cyclic voltammogram (CV) of non-aqueous electrolyte secondary battery according to the present invention 本発明に係る非水電解質電池の外観図External view of non-aqueous electrolyte battery according to the present invention 本発明に係る非水電解質電池を集合してなる蓄電装置の概念図Conceptual diagram of a power storage device formed by assembling non-aqueous electrolyte batteries according to the present invention 正極の初回充放電によって生じる余剰容量を示す模式図Schematic diagram showing the surplus capacity generated by the initial charge and discharge of the positive electrode

本発明のリチウム遷移金属複合酸化物は、遷移金属(Me)に対するMnのモル比Mn/Meを0.6以上とするものである。
モル比Mn/Meが0.6以上のリチウム遷移金属複合酸化物は高容量である。Li/Meが1より大きいことにより、充電してもα−NaFeO構造を維持できるものであるから、充放電サイクル性能にも優れている。
The lithium transition metal composite oxide of the present invention is such that the molar ratio of Mn to transition metal (Me) Mn / Me is 0.6 or more.
A lithium transition metal composite oxide having a molar ratio Mn / Me of 0.6 or more has a high capacity. Since Li / Me is larger than 1, the α-NaFeO 2 structure can be maintained even when charged, and therefore the charge / discharge cycle performance is also excellent.

図1は、本発明明細書の実施例の欄に詳述するように、モル比Mn/Meが0.6以上であるリチウム遷移金属複合酸化物を含有する正極活物質を有する正極を備えた非水電解質二次電池を組立て、充電電位を4.6V(vs.Li/Li)、4.5V(vs.Li/Li)又は4.45V(vs.Li/Li)に設定して初回充放電を行った後、前記正極を作用極(WE)として、2.0V(vs.Li/Li)〜4.45V(vs.Li/Li)の範囲で電位走査して得られたサイクリックボルタモグラム(CV)である。
図1からわかるように、初回充電電位を4.5V(vs.Li/Li)以上に設定した場合には、3.6V(vs.Li/Li)を挟んで2つのピークが明確に現れることから、3.6V(vs.Li/Li)を挟んでこれらのピークをそれぞれ含む2つの電位領域に分けることができる。そして、初回充電電位を4.45V(vs.Li/Li)に設定した場合との対比により、これらの領域のうち、3.6V(vs.Li/Li)より電位の低い(1)の領域が、初回充電電位を高く設定したことによって容量が大きく増える領域であり、3.6V(vs.Li/Li)より電位の高い(2)の領域が、初回充電電位の設定値によって容量が大きく変化しない領域であることがわかる。
FIG. 1 includes a positive electrode having a positive electrode active material containing a lithium transition metal composite oxide having a molar ratio Mn / Me of 0.6 or more, as described in detail in the Examples section of the present invention. Assemble the non-aqueous electrolyte secondary battery and set the charging potential to 4.6 V (vs. Li / Li + ), 4.5 V (vs. Li / Li + ), or 4.45 V (vs. Li / Li + ). After the first charge and discharge are performed, the positive electrode is used as a working electrode (WE) and is obtained by scanning the potential in the range of 2.0 V (vs. Li / Li + ) to 4.45 V (vs. Li / Li + ). Is a cyclic voltammogram (CV).
As can be seen from FIG. 1, when the initial charge potential is set to 4.5 V (vs. Li / Li + ) or more, two peaks clearly appear across 3.6 V (vs. Li / Li + ). Since it appears, it can be divided into two potential regions each including these peaks across 3.6 V (vs. Li / Li + ). Then, in contrast to setting the initial charging potential 4.45V (vs.Li/Li +), among these regions, a lower potential than 3.6V (vs.Li/Li +) (1) Is a region where the capacity is greatly increased by setting the initial charge potential high, and the region (2) having a potential higher than 3.6 V (vs. Li / Li + ) is determined by the set value of the initial charge potential. It can be seen that this is a region where the capacitance does not change greatly.

本発明者は、(1)の領域における容量発現については、Mnの酸化還元及びOの酸化還元によるものであり、(2)の領域における容量発現については、Ni、Coの酸化還元によるものであると推論し、(1)の領域の積分値と(2)の領域の積分値との比を用いて正極の状態を規定することによって、初回充電電位を高く設定することによる容量増加が適度になされるとともに、初回充放電のみに必要な負極容量分の負極材料を適量に抑えることができ、結果として電池の体積当たりの容量密度を上げることができることを見出した。
したがって、本発明は、モル比Mn/Meが0.6以上であるリチウム遷移金属複合酸化物を活物質とする正極の酸化側のCVにおいて、(2)の領域の積分値に対する(1)の領域の積分値の比(以下、「(1)/(2)」という。)を0.37〜0.51の範囲、好ましくは0.37〜0.48とし、負極に対する正極の容量の比(以下、「正極/負極容量比」という。)を0.86〜0.95とすることを特徴とする。
The inventor found that the capacity development in the region (1) is due to redox of Mn and redox of O 2 , and the capacity development in the region (2) is due to redox of Ni and Co. And by defining the state of the positive electrode using the ratio of the integral value in the region (1) and the integral value in the region (2), the capacity increase due to setting the initial charge potential high is increased. It was found that the negative electrode material required for only the first charge / discharge can be suppressed to an appropriate amount, and the capacity density per volume of the battery can be increased as a result.
Therefore, according to the present invention, in the CV on the oxidation side of the positive electrode using a lithium transition metal composite oxide having a molar ratio Mn / Me of 0.6 or more as an active material, The ratio of the integral value of the region (hereinafter referred to as “(1) / (2)”) is in the range of 0.37 to 0.51, preferably 0.37 to 0.48, and the ratio of the positive electrode capacity to the negative electrode (Hereinafter referred to as “positive electrode / negative electrode capacity ratio”) is set to 0.86 to 0.95.

(1)/(2)が0.37を下回る場合は、初回充電電位を高く設定することによる正極の容量密度の増加効果が十分に生かされないから、初回充放電のみに必要な負極容量が小さく、正極/負極容量比を1に近づけることはできるが、体積当たりの容量密度を上げることができない。
(1)/(2)が0.37〜0.51の範囲の場合、初回充電電位を高く設定することによる正極の容量密度の増加効果を生かすことができるとともに、正極の余剰容量に対応する初回充放電のみに必要な負極容量が適度に低減され、正極/負極容量比を1に近い0.86〜0.95とすることができるから、電池の体積当たりの容量密度が改善される。
(1)/(2)が0.51を超えると、初回充電電位を高く設定することにより正極容量密度は増大するが、初回充放電のみに必要な負極容量が増大するため、負極容量分を供給する負極材料の体積が大きくなり、電池の体積当たりの容量が低減する。
また、初回充電電位を高く設定したことによる負極へのMnの析出等の要因により、充放電サイクル性能が優れない傾向となる。
When (1) / (2) is less than 0.37, since the effect of increasing the capacity density of the positive electrode by setting the initial charge potential high is not fully utilized, the negative electrode capacity required only for the initial charge / discharge is small. The positive electrode / negative electrode capacity ratio can be close to 1, but the capacity density per volume cannot be increased.
When (1) / (2) is in the range of 0.37 to 0.51, it is possible to make use of the effect of increasing the capacity density of the positive electrode by setting the initial charge potential high, and to cope with the surplus capacity of the positive electrode. The negative electrode capacity required only for the first charge / discharge is moderately reduced, and the positive electrode / negative electrode capacity ratio can be 0.86 to 0.95, which is close to 1, thereby improving the capacity density per volume of the battery.
When (1) / (2) exceeds 0.51, the positive electrode capacity density is increased by setting the initial charge potential high, but the negative electrode capacity required only for the initial charge / discharge increases, so the negative electrode capacity is reduced. The volume of the negative electrode material to be supplied is increased, and the capacity per volume of the battery is reduced.
In addition, the charge / discharge cycle performance tends to be inferior due to factors such as precipitation of Mn on the negative electrode due to the high initial charge potential.

特に、(1)/(2)が0.37〜0.48の範囲内であると、充放電サイクル性能が良好となるので、好ましい。これは、(1)/(2)が0.37〜0.48の範囲内では、0.48を上回る範囲と比べ、副反応を抑制できるためであると推測される。(1)の領域では、CV測定によりヒステリシスがみられるから,副反応が起こっていることが推察される。   In particular, when (1) / (2) is within the range of 0.37 to 0.48, the charge / discharge cycle performance is improved, which is preferable. This is presumed to be because, when (1) / (2) is within the range of 0.37 to 0.48, side reactions can be suppressed as compared with a range exceeding 0.48. In the region (1), since a hysteresis is observed by CV measurement, it is assumed that a side reaction has occurred.

(正極活物質)
本発明に係る非水電解質二次電池におけるリチウム遷移金属複合酸化物の組成は、高い放電容量が得られる点から、遷移金属(Me)がCo、Ni及びMnを含み、モル比Mn/Meが0.6以上である。モル比Mn/Meは0.6〜0.75とすることが好ましい。
(Positive electrode active material)
The composition of the lithium transition metal composite oxide in the nonaqueous electrolyte secondary battery according to the present invention is such that the transition metal (Me) contains Co, Ni and Mn, and the molar ratio Mn / Me is from the point of obtaining a high discharge capacity. It is 0.6 or more. The molar ratio Mn / Me is preferably 0.6 to 0.75.

リチウム遷移金属複合酸化物は、非水電解質二次電池の初期効率及び高率放電性能を向上させるために、遷移金属元素Meに対するCoのモル比Co/Meは、0.05〜0.40とすることが好ましく、0.10〜0.30とすることがより好ましい。   In order to improve the initial efficiency and the high rate discharge performance of the non-aqueous electrolyte secondary battery, the lithium transition metal composite oxide has a molar ratio Co / Me of the transition metal element Me of 0.05 to 0.40. It is preferable to set it to 0.10 to 0.30.

リチウム遷移金属複合酸化物は、Mn/Meが高いにも関わらず、充電してもα−NaFeO構造を維持するために、遷移金属Meに対するリチウム(Li)のモル比Li/Meが1より大きいことが好ましい。この特徴は、Li1+αMe1−α((1+α)/(1−α)>1)と表記することができる。
なかでも、初期効率及び高率放電性能が優れた非水電解質二次電池を得るために、遷移金属元素Meに対するLiのモル比Li/Meは、1.2より大きく且つ1.6より小さいこと、すなわち、組成式Li1+αMe1−αにおいて1.2<(1+α)/(1−α)<1.6とすることが好ましい。放電容量が特に大きく、高率放電性能が優れた非水電解質二次電池を得ることができるという観点から、前記Li/Meが1.25〜1.5のものを選択することが好ましい。
Although the lithium transition metal composite oxide has a high Mn / Me, the molar ratio Li / Me of the lithium (Li) to the transition metal Me is more than 1 in order to maintain the α-NaFeO 2 structure even when charged. Larger is preferred. This feature can be expressed as Li 1 + α Me 1-α O 2 ((1 + α) / (1-α)> 1).
Among them, in order to obtain a nonaqueous electrolyte secondary battery with excellent initial efficiency and high rate discharge performance, the molar ratio Li / Me of the transition metal element Me should be larger than 1.2 and smaller than 1.6. That is, it is preferable that 1.2 <(1 + α) / (1-α) <1.6 in the composition formula Li 1 + α Me 1-α O 2 . From the viewpoint that a non-aqueous electrolyte secondary battery having a particularly large discharge capacity and excellent high rate discharge performance can be obtained, it is preferable to select one having the Li / Me of 1.25 to 1.5.

本発明において、リチウム遷移金属複合酸化物は、典型的には、Li1+α(CoNiMn1−α、但し、α>0、a+b+c=1、a>0、b>0、c≧0.6で表わされるものであり、Li、Co、Ni及びMnからなる複合酸化物であるが、放電容量を向上させるために、Naを1000ppm以上含ませることが好ましい。Naの含有量は、2000〜10000ppmがより好ましい。 In the present invention, the lithium transition metal composite oxide is typically Li 1 + α (Co a Ni b Mn c ) 1-α O 2 , where α> 0, a + b + c = 1, a> 0, b> 0. C ≧ 0.6, and is a composite oxide composed of Li, Co, Ni, and Mn. In order to improve the discharge capacity, it is preferable to contain 1000 ppm or more of Na. As for content of Na, 2000-10000 ppm is more preferable.

Naを含有させるために、水酸化物前駆体又は炭酸塩前駆体を作製する工程において、水酸化ナトリウム、炭酸ナトリウム等のナトリウム化合物を中和剤として使用し、洗浄工程でNaを残存させるか、及び、その後の焼成工程において炭酸ナトリウム等のナトリウム化合物を添加する方法を採用することができる。   In order to contain Na, in the step of preparing a hydroxide precursor or a carbonate precursor, a sodium compound such as sodium hydroxide or sodium carbonate is used as a neutralizing agent, and Na is left in the washing step. And the method of adding sodium compounds, such as sodium carbonate, in a subsequent baking process is employable.

また、リチウム遷移金属複合酸化物は、本発明の効果を損なわない範囲で、Na以外のアルカリ金属、Mg,Ca等のアルカリ土類金属、Fe,Zn等の3d遷移金属に代表される遷移金属など少量の他の金属を含有することができる。   In addition, the lithium transition metal composite oxide is a transition metal typified by an alkali metal other than Na, an alkaline earth metal such as Mg and Ca, and a 3d transition metal such as Fe and Zn, as long as the effects of the present invention are not impaired. A small amount of other metals can be contained.

リチウム遷移金属複合酸化物は、炭酸塩前駆体、又は水酸化物前駆体から作製される。
炭酸塩前駆体から作製されるリチウム繊維金属複合酸化物粒子は、2次粒子の粒度分布における累積体積が50%となる粒子径であるD50が、5μm以上であることが好ましく、5〜18μmであることがより好ましい。また、水酸化物前駆体から作製されるリチウム遷移金属複合酸化物粒子は、D50が、8μm以下であることが好ましく、8〜1μmであることがより好ましい。
The lithium transition metal composite oxide is produced from a carbonate precursor or a hydroxide precursor.
In the lithium fiber metal composite oxide particles produced from the carbonate precursor, D50, which is a particle diameter at which the cumulative volume in the particle size distribution of the secondary particles is 50%, is preferably 5 μm or more, and is 5 to 18 μm. More preferably. Moreover, it is preferable that D50 is 8 micrometers or less, and, as for the lithium transition metal complex oxide particle produced from a hydroxide precursor, it is more preferable that it is 8-1 micrometer.

本発明において、初期効率及び充放電サイクル性能が優れた非水電解質二次電池用正極活物質を得るために、炭酸塩前駆体から作製されるリチウム遷移金属複合酸化物は、窒素ガス吸着法を用いた吸着等温線からBJH法で求めた微分細孔容積が最大値を示す細孔径が30〜40nmの範囲で、ピーク微分細孔容積が0.75mm/(g・nm)以上であることが好ましい(特許文献2参照)。 In the present invention, in order to obtain a positive electrode active material for a nonaqueous electrolyte secondary battery having excellent initial efficiency and charge / discharge cycle performance, a lithium transition metal composite oxide produced from a carbonate precursor is subjected to a nitrogen gas adsorption method. The peak differential pore volume is 0.75 mm 3 / (g · nm) or more in the pore diameter range of 30 to 40 nm where the differential pore volume obtained by the BJH method is the maximum value from the adsorption isotherm used. Is preferable (see Patent Document 2).

また、本発明に係る正極活物質のタップ密度は、充放電サイクル性能及び高率放電性能が優れた非水電解質二次電池を得るために、1.25g/cc以上が好ましく、1.7g/cc以上がより好ましい。   In addition, the tap density of the positive electrode active material according to the present invention is preferably 1.25 g / cc or more in order to obtain a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle performance and high rate discharge performance, and is 1.7 g / cc. More than cc is more preferable.

(正極活物質の製造方法)
次に、リチウム遷移金属複合酸化物を製造する方法について説明する。
リチウム遷移金属複合酸化物は、基本的に、リチウム遷移金属複合酸化物を構成する金属元素(Li,Mn,Co,Ni)を目的とする組成通りに含有する原料を調整し、これを焼成することによって得ることができる。但し、Li原料の量については、焼成中にLi原料の一部が消失することを見込んで、1〜5%程度過剰に仕込むことが好ましい。
目的とする組成の酸化物を作製するにあたり、Li,Co,Ni,Mnのそれぞれの塩を混合・焼成するいわゆる「固相法」や、あらかじめCo,Ni,Mnを一粒子中に存在させた共沈前駆体を作製しておき、これにLi塩を混合・焼成する「共沈法」が知られている。「固相法」による合成過程では、特にMnはCo,Niに対して均一に固溶しにくいため、各元素が一粒子中に均一に分布した試料を得ることは困難である。これまで文献などにおいては固相法によってNiやCoの一部にMnを固溶(LiNi1−xMnなど)しようという試みが多数なされているが、「共沈法」を選択する方が原子レベルで均一相を得ることが容易である。そこで、後述する実施例で用いるリチウム遷移金属複合酸化物は、「共沈法」を採用して作製した。
(Method for producing positive electrode active material)
Next, a method for producing a lithium transition metal composite oxide will be described.
The lithium transition metal complex oxide is basically prepared by preparing a raw material containing a metal element (Li, Mn, Co, Ni) constituting the lithium transition metal complex oxide in accordance with the intended composition, and firing it. Can be obtained. However, with respect to the amount of the Li raw material, it is preferable to add an excess of about 1 to 5% in view of the disappearance of a part of the Li raw material during firing.
In producing an oxide having a desired composition, a so-called “solid phase method” in which salts of Li, Co, Ni, and Mn are mixed and fired, or Co, Ni, and Mn were previously present in one particle. A “coprecipitation method” is known in which a coprecipitation precursor is prepared, and a Li salt is mixed and fired therein. In the synthesis process by the “solid phase method”, especially Mn is difficult to uniformly dissolve in Co and Ni, so it is difficult to obtain a sample in which each element is uniformly distributed in one particle. In literatures and the like, many attempts have been made to dissolve Mn in a part of Ni or Co (LiNi 1-x Mn x O 2 etc.) by solid phase method, but the “coprecipitation method” is selected. It is easier to obtain a homogeneous phase at the atomic level. Therefore, lithium transition metal composite oxides used in Examples described later were prepared by employing the “coprecipitation method”.

共沈前駆体を作製するにあたって、Co,Ni,MnのうちMnは酸化されやすく、Co,Ni,Mnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Co,Ni,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。特に本発明の組成範囲においては、Mn比率がCo,Ni比率に比べて高いので、水溶液中の溶存酸素を除去することが特に重要である。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)等を用いることができる。なかでも、共沈炭酸塩前駆体を作製する場合には、酸素を含まないガスとして二酸化炭素を採用すると、炭酸塩がより生成しやすい環境が与えられるため、好ましい。 When preparing a coprecipitation precursor, Mn is easily oxidized among Co, Ni and Mn, and it is not easy to prepare a coprecipitation precursor in which Co, Ni and Mn are uniformly distributed in a divalent state. Uniform mixing at the atomic level of Co, Ni and Mn tends to be insufficient. In particular, in the composition range of the present invention, since the Mn ratio is higher than the Co and Ni ratios, it is particularly important to remove dissolved oxygen in the aqueous solution. Examples of the method for removing dissolved oxygen include a method of bubbling a gas not containing oxygen. The gas not containing oxygen is not limited, but nitrogen gas, argon gas, carbon dioxide (CO 2 ), or the like can be used. Among these, when producing a coprecipitated carbonate precursor, it is preferable to employ carbon dioxide as a gas not containing oxygen because an environment in which carbonate is more easily generated is provided.

溶液中でCo、Ni及びMnを含有する化合物を共沈させて前駆体を製造する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈水酸化物前駆体として作製しようとする場合には、10〜14とすることができ、前記共沈前駆体を共沈炭酸塩前駆体として作製しようとする場合には、7.5〜11とすることができる。タップ密度を大きくするためには、pHを制御することが好ましい。共沈炭酸塩前駆体については、pHを9.4以下とすることにより、タップ密度を1.25g/cc以上とすることができ、高率放電性能を向上させることができる。さらに、pHを8.0以下とすることにより、粒子成長速度を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。   Although the pH in the step of producing a precursor by co-precipitation of a compound containing Co, Ni and Mn in a solution is not limited, an attempt is made to produce the co-precipitation precursor as a co-precipitation hydroxide precursor. When it does, it can be set to 10-14, and when it is going to produce the said coprecipitation precursor as a coprecipitation carbonate precursor, it can be set to 7.5-11. In order to increase the tap density, it is preferable to control the pH. About a coprecipitation carbonate precursor, tap density can be made into 1.25 g / cc or more by making pH into 9.4 or less, and a high rate discharge performance can be improved. Furthermore, since the particle growth rate can be accelerated by adjusting the pH to 8.0 or less, the stirring continuation time after the raw material aqueous solution dropping is completed can be shortened.

前記共沈前駆体は、MnとNiとCoとが均一に混合された化合物であることが好ましい。また、錯化剤を用いた晶析反応等を用いることによって、より嵩密度の大きな前駆体を作製することもできる。その際、Li源と混合・焼成することでより高密度の活物質を得ることができるので電極面積あたりのエネルギー密度を向上させることができる。   The coprecipitation precursor is preferably a compound in which Mn, Ni, and Co are uniformly mixed. In addition, a precursor having a larger bulk density can be produced by using a crystallization reaction using a complexing agent. At that time, a higher density active material can be obtained by mixing and firing with a Li source, so that the energy density per electrode area can be improved.

前記共沈前駆体の原料は、Mn化合物としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を、Ni化合物としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co化合物としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を一例として挙げることができる。   The raw material of the coprecipitation precursor is manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, manganese acetate, etc. as the Mn compound, and nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, nickel acetate as the Ni compound. As examples of the Co compound, cobalt sulfate, cobalt nitrate, cobalt acetate, and the like can be given as examples.

本発明においては、アルカリ性を保った反応槽に前記共沈前駆体の原料水溶液を連続的に滴下供給して共沈前駆体を得る反応晶析法を採用する。ここで、中和剤として、リチウム化合物、ナトリウム化合物、カリウム化合物等を使用することができるが、前記共沈前駆体を共沈水酸化物前駆体として作製する場合には、水酸化ナトリウム、水酸化ナトリウムと水酸化リチウム、又は、水酸化ナトリウムと水酸化カリウムの混合物を使用することが好ましく、また、前記共沈前駆体を共沈炭酸塩前駆体として作製する場合には、炭酸ナトリウム、炭酸ナトリウムと炭酸リチウム、又は、炭酸ナトリウムと炭酸カリウムの混合物を使用することが好ましい。Naを1000ppm以上残存させるために、炭酸ナトリウム(水酸化ナトリウム)と炭酸リチウム(水酸化リチウム)のモル比であるNa/Li、又は、炭酸ナトリウム(水酸化ナトリウム)と炭酸カリウム(水酸化カリウム)のモル比であるNa/Kは、1/1[M]以上とすることが好ましい。Na/Li又はNa/Kを1/1[M]以上とすることにより、引き続く洗浄工程でNaが除去されすぎて1000ppm未満となってしまう虞を低減できる。   In the present invention, a reaction crystallization method is employed in which a raw material aqueous solution of the coprecipitation precursor is continuously supplied dropwise to a reaction tank that maintains alkalinity to obtain a coprecipitation precursor. Here, lithium compounds, sodium compounds, potassium compounds and the like can be used as the neutralizing agent, but when the coprecipitation precursor is prepared as a coprecipitation hydroxide precursor, sodium hydroxide, hydroxide It is preferable to use a mixture of sodium and lithium hydroxide, or sodium hydroxide and potassium hydroxide, and when preparing the coprecipitation precursor as a coprecipitation carbonate precursor, sodium carbonate, sodium carbonate It is preferable to use lithium carbonate or a mixture of sodium carbonate and potassium carbonate. Na / Li, which is a molar ratio of sodium carbonate (sodium hydroxide) and lithium carbonate (lithium hydroxide), or sodium carbonate (sodium hydroxide) and potassium carbonate (potassium hydroxide) in order to leave Na 1000 ppm or more It is preferable that Na / K which is the molar ratio is 1/1 [M] or more. By setting Na / Li or Na / K to 1/1 [M] or more, it is possible to reduce the possibility that Na will be excessively removed in the subsequent washing step and become less than 1000 ppm.

前記原料水溶液の滴下速度は、生成する共沈前駆体の1粒子内における元素分布の均一性に大きく影響を与える。特にMnは、CoやNiと均一な元素分布を形成しにくいので注意が必要である。好ましい滴下速度については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、30ml/min以下が好ましい。放電容量を向上させるためには、滴下速度は10ml/min以下がより好ましく、5ml/min以下が最も好ましい。   The dropping speed of the raw material aqueous solution greatly affects the uniformity of element distribution in one particle of the coprecipitation precursor to be generated. In particular, Mn is difficult to form a uniform element distribution with Co and Ni, so care must be taken. The preferred dropping rate is influenced by the reaction vessel size, stirring conditions, pH, reaction temperature, etc., but is preferably 30 ml / min or less. In order to improve the discharge capacity, the dropping rate is more preferably 10 ml / min or less, and most preferably 5 ml / min or less.

また、反応槽内に錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転および攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、共沈前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。従って、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた共沈前駆体を得ることができる。   In addition, when a complexing agent is present in the reaction tank and a certain convection condition is applied, the particle rotation and revolution in the stirring tank are promoted by continuing the stirring after the dropwise addition of the raw material aqueous solution. In this process, the particles grow concentrically in stages while colliding with each other. That is, the coprecipitation precursor undergoes a reaction in two stages: a metal complex formation reaction when the raw material aqueous solution is dropped into the reaction tank, and a precipitation formation reaction that occurs while the metal complex is retained in the reaction tank. It is formed. Therefore, a coprecipitation precursor having a target particle size can be obtained by appropriately selecting a time for continuing stirring after the dropping of the raw material aqueous solution.

原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5h以上が好ましく、1h以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が充分でないものとなる虞を低減させるため、30h以下が好ましく、25h以下がより好ましく、20h以下が最も好ましい。   The preferable stirring duration after completion of dropping of the raw material aqueous solution is influenced by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc., but 0.5 h or more is required to grow the particles as uniform spherical particles. Preferably, 1 h or more is more preferable. Moreover, in order to reduce the possibility that the output performance in the low SOC region of the battery is not sufficient due to the particle size becoming too large, it is preferably 30 h or less, more preferably 25 h or less, and most preferably 20 h or less.

また、共沈水酸化物前駆体から作製するリチウム遷移金属複合酸化物の50%粒子径(D50)を1〜8μmとするための好ましい攪拌継続時間、共沈炭酸塩前駆体から作製するリチウム遷移金属複合酸化物の50%粒子径(D50)を5〜18μmとするための好ましい攪拌継続時間は、制御するpHによって異なる。例えば、共沈水酸化物前駆体については、pHを10〜12に制御した場合には、撹拌継続時間は1〜10hが好ましく、pHを12〜14に制御した場合には、撹拌継続時間は3〜20hが好ましい。共沈炭酸塩前駆体については、pHを7.5〜8.2に制御した場合には、撹拌継続時間は1〜20hが好ましく、pHを8.3〜9.4に制御した場合には、撹拌継続時間は3〜24hが好ましい。   Moreover, the preferable stirring continuation time for making 50% particle diameter (D50) of lithium transition metal complex oxide produced from a coprecipitation hydroxide precursor into 1-8 micrometers, the lithium transition metal produced from a coprecipitation carbonate precursor A preferable stirring duration time for setting the 50% particle diameter (D50) of the composite oxide to 5 to 18 μm varies depending on the pH to be controlled. For example, for the coprecipitated hydroxide precursor, when the pH is controlled to 10 to 12, the stirring duration is preferably 1 to 10 h, and when the pH is controlled to 12 to 14, the stirring duration is 3 ~ 20h is preferred. For the coprecipitated carbonate precursor, when the pH is controlled to 7.5 to 8.2, the stirring duration is preferably 1 to 20 h, and when the pH is controlled to 8.3 to 9.4. The stirring duration is preferably 3 to 24 hours.

共沈前駆体の粒子を、中和剤として水酸化ナトリウム、炭酸ナトリウム等のナトリウム化合物を使用して作製した場合、その後の洗浄工程において粒子に付着しているナトリウムイオンを洗浄除去するが、本発明においては、Naが1000ppm以上残存するような条件で洗浄除去することが好ましい。例えば、作製した共沈前駆体を吸引ろ過して取り出す際に、イオン交換水200mlによる洗浄回数を5回とするような条件を採用することができる。   When coprecipitation precursor particles are prepared using sodium compounds such as sodium hydroxide and sodium carbonate as neutralizing agents, sodium ions adhering to the particles are washed away in the subsequent washing step. In the present invention, it is preferable to wash and remove under conditions such that Na remains at 1000 ppm or more. For example, when the produced coprecipitation precursor is taken out by suction filtration, a condition such that the number of washings with 200 ml of ion-exchanged water is 5 times can be employed.

本発明において、リチウム遷移金属複合酸化物は、前記水酸化物前駆体又は炭酸塩前駆体とLi化合物とを混合した後、熱処理することで好適に作製することができる。Li化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム等を用いることで好適に製造することができる。但し、Li化合物の量については、焼成中にLi化合物の一部が消失することを見込んで、1〜5%程度過剰に仕込むことが好ましい。   In the present invention, the lithium transition metal composite oxide can be preferably prepared by mixing the hydroxide precursor or carbonate precursor and the Li compound and then heat-treating them. As a Li compound, it can manufacture suitably by using lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, etc. However, with respect to the amount of the Li compound, it is preferable to add an excess of about 1 to 5% in view of the disappearance of a part of the Li compound during firing.

リチウム遷移金属複合酸化物中のNaの含有量を1000ppm以上とするために、前記水酸化物前駆体又は炭酸塩前駆体に含まれるNaが1000ppm以下であっても、焼成工程においてLi化合物と共にNa化合物を、前記水酸化物前駆体又は炭酸塩前駆体と混合することで活物質中に含まれるNa量を1000ppm以上とすることができる。Na化合物としては炭酸ナトリウムが好ましい。   In order to set the Na content in the lithium transition metal composite oxide to 1000 ppm or more, even if the Na contained in the hydroxide precursor or carbonate precursor is 1000 ppm or less, Na is contained together with the Li compound in the firing step. The amount of Na contained in the active material can be 1000 ppm or more by mixing the compound with the hydroxide precursor or carbonate precursor. As the Na compound, sodium carbonate is preferable.

焼成温度は、活物質の可逆容量に影響を与える。
焼成温度が高すぎると、得られた活物質が酸素放出反応を伴って崩壊すると共に、主相の六方晶に加えて単斜晶のLi[Li1/3Mn2/3]O型に規定される相が、固溶相としてではなく、分相して観察される傾向がある。このような分相が多く含まれすぎると、活物質の可逆容量の減少を導くので好ましくない。このような材料では、X線回折図上35°付近及び45°付近に不純物ピークが観察される。従って、焼成温度は、活物質の酸素放出反応の影響する温度未満とすることが好ましい。活物質の酸素放出温度は、本発明に係る組成範囲においては、概ね1000℃以上であるが、活物質の組成によって酸素放出温度に若干の差があるので、あらかじめ活物質の酸素放出温度を確認しておくことが好ましい。特に試料に含まれるCo量が多いほど前駆体の酸素放出温度は低温側にシフトすることが確認されているので注意が必要である。活物質の酸素放出温度を確認する方法としては、焼成反応過程をシミュレートするために、共沈前駆体とリチウム化合物を混合したものを熱重量分析(DTA−TG測定)に供してもよいが、この方法では測定機器の試料室に用いている白金が揮発したLi成分により腐食されて機器を痛めるおそれがあるので、あらかじめ500℃程度の焼成温度を採用してある程度結晶化を進行させた組成物を熱重量分析に供するのが良い。
The firing temperature affects the reversible capacity of the active material.
When the firing temperature is too high, the obtained active material collapses with an oxygen releasing reaction, and in addition to the hexagonal crystal of the main phase, the monoclinic Li [Li 1/3 Mn 2/3 ] O 2 type is obtained. The defined phase tends to be observed as a phase separation rather than as a solid solution phase. If too many such phase separations are contained, it is not preferable because it leads to a reduction in the reversible capacity of the active material. In such materials, impurity peaks are observed around 35 ° and 45 ° on the X-ray diffraction pattern. Therefore, the firing temperature is preferably less than the temperature at which the oxygen release reaction of the active material affects. The oxygen release temperature of the active material is approximately 1000 ° C. or higher in the composition range according to the present invention. However, there is a slight difference in the oxygen release temperature depending on the composition of the active material. It is preferable to keep it. In particular, it is confirmed that the oxygen release temperature of the precursor shifts to the lower temperature side as the amount of Co contained in the sample increases. As a method for confirming the oxygen release temperature of the active material, a mixture of a coprecipitation precursor and a lithium compound may be subjected to thermogravimetric analysis (DTA-TG measurement) in order to simulate the firing reaction process. In this method, the platinum used in the sample chamber of the measuring instrument may be corroded by the Li component volatilized, and the instrument may be damaged. Therefore, a composition in which crystallization is advanced to some extent by adopting a firing temperature of about 500 ° C. in advance. Goods should be subjected to thermogravimetric analysis.

一方、焼成温度が低すぎると、結晶化が十分に進まず、電極特性が低下する傾向がある。本発明において、共沈水酸化物を前駆体として用いたときには焼成温度は少なくとも700℃以上とすることが好ましい。また、共沈炭酸塩を前駆体として用いたときには焼成温度は少なくとも800℃以上とすることが好ましい。特に、前駆体が共沈炭酸塩である場合の最適な焼成温度は、前駆体に含まれるCo量が多いほど、より低い温度となる傾向がある。このように一次粒子を構成する結晶子を十分に結晶化させることにより、結晶粒界の抵抗を軽減し、円滑なリチウムイオン輸送を促すことができる。
本発明者らは、本発明活物質の回折ピークの半値幅を詳細に解析することにより、前駆体が共沈水酸化物である場合においては、焼成温度が650℃未満の温度で合成した試料においては格子内にひずみが残存しており、650℃以上の温度で合成することで顕著にひずみを除去することができること、及び、前駆体が共沈炭酸塩である場合においては、焼成温度が750℃未満の温度で合成した試料においては格子内にひずみが残存しており、750℃以上の温度で合成することで顕著にひずみを除去することができることを確認した。また、結晶子のサイズは合成温度が上昇するに比例して大きくなるものであった。よって、本発明活物質の組成においても、系内に格子のひずみがほとんどなく、かつ結晶子サイズが十分成長した粒子を志向することで良好な放電容量を得られるものであった。具体的には、格子定数に及ぼすひずみ量が2%以下、かつ結晶子サイズが50nm以上に成長しているような合成温度(焼成温度)及びLi/Me比組成を採用することが好ましいことがわかった。これらを電極として成型して充放電をおこなうことで膨張収縮による変化も見られるが、充放電過程においても結晶子サイズは30nm以上を保っていることが得られる効果として好ましい。
On the other hand, if the firing temperature is too low, crystallization does not proceed sufficiently and the electrode characteristics tend to deteriorate. In the present invention, when coprecipitated hydroxide is used as a precursor, the firing temperature is preferably at least 700 ° C. or higher. When coprecipitated carbonate is used as a precursor, the firing temperature is preferably at least 800 ° C. or higher. In particular, when the precursor is a coprecipitated carbonate, the optimum firing temperature tends to be lower as the amount of Co contained in the precursor is larger. Thus, by sufficiently crystallizing the crystallites constituting the primary particles, the resistance of the crystal grain boundaries can be reduced and smooth lithium ion transport can be promoted.
The present inventors analyzed the half width of the diffraction peak of the active material of the present invention in detail, and in the case where the precursor is a coprecipitated hydroxide, in the sample synthesized at a temperature of less than 650 ° C. Strain remains in the lattice and can be remarkably removed by synthesizing at a temperature of 650 ° C. or higher, and when the precursor is a coprecipitated carbonate, the firing temperature is 750. In the sample synthesized at a temperature of less than 0 ° C., strain remained in the lattice, and it was confirmed that the strain could be remarkably removed by synthesis at a temperature of 750 ° C. or higher. The crystallite size was increased in proportion to the increase in the synthesis temperature. Therefore, even in the composition of the active material of the present invention, a favorable discharge capacity can be obtained by aiming at a particle having almost no lattice distortion in the system and having a sufficiently grown crystallite size. Specifically, it is preferable to employ a synthesis temperature (firing temperature) and a Li / Me ratio composition in which the strain amount affecting the lattice constant is 2% or less and the crystallite size is grown to 50 nm or more. all right. Although changes due to expansion and contraction are observed by charging and discharging by molding these as electrodes, it is preferable as an effect that the crystallite size is maintained at 30 nm or more in the charging and discharging process.

上記のように、焼成温度は、活物質の酸素放出温度に関係するが、活物質から酸素が放出される焼成温度に至らずとも、900℃以上において一次粒子が大きく成長することによる結晶化現象が見られる。これは、焼成後の活物質を走査型電子顕微鏡(SEM)で観察することにより確認できる。900℃を超えた合成温度を経て合成した活物質は一次粒子が0.5μm以上に成長しており、充放電反応中における活物質中のLi移動に不利な状態となり、高率放電性能が低下する。一次粒子の大きさは0.5μm未満であることが好ましく、0.3μm以下であることがより好ましい。 As described above, the firing temperature is related to the oxygen release temperature of the active material, but the crystallization phenomenon is caused by the primary particles growing greatly at 900 ° C. or higher without reaching the firing temperature at which oxygen is released from the active material. Is seen. This can be confirmed by observing the fired active material with a scanning electron microscope (SEM). The active material synthesized through a synthesis temperature exceeding 900 ° C. has primary particles grown to 0.5 μm or more, which is disadvantageous for Li + movement in the active material during the charge / discharge reaction, and has a high rate discharge performance. descend. The size of the primary particles is preferably less than 0.5 μm, and more preferably 0.3 μm or less.

以上のことからみて、リチウム遷移金属複合酸化物において、Li/Meのモル比(1+α)/(1−α)が1.2<(1+α)/(1−α)<1.6である場合、焼成温度は、750〜900℃とすることが好ましく、800〜900℃とすることがより好ましい。   In view of the above, in the lithium transition metal composite oxide, when the Li / Me molar ratio (1 + α) / (1-α) is 1.2 <(1 + α) / (1-α) <1.6 The firing temperature is preferably 750 to 900 ° C, more preferably 800 to 900 ° C.

以上の工程により、例えば以下のリチウム遷移金属複合酸化物が作製される。
Li1.18Co0.10Ni0.17Mn0.55
(Li/Me=1.44、Mn/Me=0.67)
Li1.13Co0.21Ni0.17Mn0.49
(Li/Me=1.30、Mn/Me=0.56)
Li1.18Co0.17Ni0.17Mn0.49
(Li/Me=1.44、Mn/Me=0.60)
Li1.20Co0.10Ni0.15Mn0.55
(Li/Me=1.50、Mn/Me=0.69)
Through the above steps, for example, the following lithium transition metal composite oxide is produced.
Li 1.18 Co 0.10 Ni 0.17 Mn 0.55 O 2
(Li / Me = 1.44, Mn / Me = 0.67)
Li 1.13 Co 0.21 Ni 0.17 Mn 0.49 O 2
(Li / Me = 1.30, Mn / Me = 0.56)
Li 1.18 Co 0.17 Ni 0.17 Mn 0.49 O 2
(Li / Me = 1.44, Mn / Me = 0.60)
Li 1.20 Co 0.10 Ni 0.15 Mn 0.55 O 2
(Li / Me = 1.50, Mn / Me = 0.69)

(負極材料)
負極材料としては、限定されるものではなく、リチウムイオンを放出あるいは吸蔵することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料リチウム金属、リチウム合金(リチウム−シリコン、リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム−チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。
(Negative electrode material)
The negative electrode material is not limited, and any negative electrode material may be selected as long as it can release or occlude lithium ions. For example, titanium-based materials such as lithium titanate having a spinel crystal structure represented by Li [Li 1/3 Ti 5/3 ] O 4 , alloy-based materials such as Si, Sb, and Sn-based lithium metal, lithium alloys (Lithium metal-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), lithium composite oxide (lithium-titanium), silicon oxide In addition, an alloy capable of inserting and extracting lithium, a carbon material (for example, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.) can be used.

(正極板・負極板)
前記正極活物質、及び負極材料が本発明の正極及び負極の主要成分であるが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。
(Positive plate / Negative plate)
The positive electrode active material and the negative electrode material are main components of the positive electrode and the negative electrode of the present invention. In addition to the main components, the positive electrode and the negative electrode include a conductive agent, a binder, a thickener, a filler, and the like. However, it may be contained as another component.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, Conductive materials such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material can be included as one kind or a mixture thereof. .

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。導電剤の添加量は、正極または負極の総質量に対して0.1質量%〜50質量%が好ましく、特に0.5質量%〜30質量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため望ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。   Among these, as the conductive agent, acetylene black is desirable from the viewpoints of electron conductivity and coatability. The addition amount of the conductive agent is preferably 0.1% by mass to 50% by mass, and particularly preferably 0.5% by mass to 30% by mass with respect to the total mass of the positive electrode or the negative electrode. In particular, it is desirable to use acetylene black by pulverizing into ultrafine particles of 0.1 to 0.5 μm because the required carbon amount can be reduced. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, powder mixers such as V-type mixers, S-type mixers, crackers, ball mills, and planetary ball mills can be mixed dry or wet.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総質量に対して1〜50質量%が好ましく、特に2〜30質量%が好ましい。   The binder is usually a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene. Polymers having rubber elasticity such as rubber (SBR) and fluororubber can be used as one kind or a mixture of two or more kinds. The addition amount of the binder is preferably 1 to 50% by mass, and particularly preferably 2 to 30% by mass with respect to the total mass of the positive electrode or the negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総質量に対して添加量は30質量%以下が好ましい。   As the filler, any material that does not adversely affect the battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 30% by mass or less with respect to the total mass of the positive electrode or the negative electrode.

正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、およびその他の材料を混練して正極合材及び負極合材とし、N−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を集電体の上に塗布し、または圧着して50℃〜250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。
集電体としては、アルミニウム箔、銅箔等の集電箔を用いることができる。正極の集電箔としてはアルミニウム箔が好ましい。集電箔の厚みは10〜30μmが好ましい。また、合材層の厚みはプレス後において、40〜150μm(集電箔厚みを除く)が好ましい。
The positive electrode and the negative electrode are obtained by kneading the main constituents (positive electrode active material in the positive electrode, negative electrode material in the negative electrode) and other materials to form a positive electrode mixture and a negative electrode mixture, and organic materials such as N-methylpyrrolidone and toluene After mixing with a solvent or water, the resulting mixture is applied on a current collector or pressed and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. The About the application method, for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.
As the current collector, a current collector foil such as an aluminum foil or a copper foil can be used. As the current collector foil of the positive electrode, an aluminum foil is preferable. The thickness of the current collector foil is preferably 10 to 30 μm. The thickness of the composite material layer is preferably 40 to 150 μm (excluding the current collector foil thickness) after pressing.

(非水電解質)
本発明に係る非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
(Nonaqueous electrolyte)
The nonaqueous electrolyte used for the nonaqueous electrolyte secondary battery according to the present invention is not limited, and those generally proposed for use in lithium batteries and the like can be used. Examples of the nonaqueous solvent used for the nonaqueous electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane and methyldiglyme; Nitriles such as acetonitrile and benzonitrile; Dioxolane or derivatives thereof; Ethylene sulfide, sulfolane, sultone or derivatives thereof Examples thereof include a conductor alone or a mixture of two or more thereof, but are not limited thereto.

非水電解質に用いる電解質塩としては、例えば、LiClO,LiBF,LiAsF,LiPF,LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−CNClO,(n−CNI,(CN−maleate,(CN−benzoate,(CN−phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, and NaBr. , KClO 4 , KSCN, and other inorganic ion salts containing one of lithium (Li), sodium (Na), or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 (SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (nC 4 H 9 ) 4 NI, (C 2 H 5 ) 4 N-maleate, (C 2 H 5 ) 4 N-benzoate, (C 2 H 5 ) 4 N-phthalate, Examples thereof include organic ionic salts such as lithium stearyl sulfonate, lithium octyl sulfonate, and lithium dodecylbenzene sulfonate. These ionic compounds can be used alone or in admixture of two or more.

さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より望ましい。 Further, by using a mixture of LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further reduced, The low temperature characteristics can be further improved, and self-discharge can be suppressed, which is more desirable.

また、非水電解質として常温溶融塩やイオン液体を用いてもよい。   Moreover, you may use normal temperature molten salt and an ionic liquid as a nonaqueous electrolyte.

非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/l〜5mol/Lが好ましく、さらに好ましくは、0.5mol/l〜2.5mol/Lである。   The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / L, more preferably 0.5 mol / l to 2 in order to reliably obtain a non-aqueous electrolyte battery having high battery characteristics. 0.5 mol / L.

(セパレータ)
セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。
(Separator)
As the separator, it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the material constituting the separator for a nonaqueous electrolyte battery include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.

セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。   The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.

また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。   The separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte. Use of the non-aqueous electrolyte in the gel state as described above is preferable in that it has an effect of preventing leakage.

さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため望ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。   Furthermore, it is desirable that the separator be used in combination with the above-described porous film, non-woven fabric, or the like and a polymer gel because the liquid retention of the electrolyte is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the microporous wall are coated with a solvophilic polymer having a thickness of several μm or less, and holding the electrolyte in the micropores of the film, Gels.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。   Examples of the solvophilic polymer include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked. The monomer can be subjected to a crosslinking reaction using a radical initiator in combination with heating or ultraviolet rays (UV), or using an actinic ray such as an electron beam (EB).

(非水電解質二次電池の構成)
本発明の非水電解質二次電池の構成については特に限定されるものではなく、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池、扁平型電池等が一例として挙げられる。
図2に角型電池の一例を示す。セパレータを挟んで巻回された正極及び負極よりなる電極群2が角型の電池容器3に収納され、正極リード4’を介して正極端子4が、負極リード5’を介して負極端子5が電池容器外に導出されている。
(Configuration of non-aqueous electrolyte secondary battery)
The configuration of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and examples thereof include a cylindrical battery having a positive electrode, a negative electrode, and a roll separator, a square battery, and a flat battery.
FIG. 2 shows an example of a prismatic battery. An electrode group 2 composed of a positive electrode and a negative electrode wound with a separator interposed therebetween is housed in a rectangular battery container 3. A positive electrode terminal 4 is connected via a positive electrode lead 4 ′, and a negative electrode terminal 5 is connected via a negative electrode lead 5 ′. It is led out of the battery container.

(蓄電装置の構成)
本発明の非水電解質二次電池は、特に電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)などの自動車用電源として用いる場合に、複数の非水電解質二次電池を集合して構成した蓄電装置(バッテリーモジュール)として搭載することができる。
図3に、非水電解質二次電池1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。
(Configuration of power storage device)
The non-aqueous electrolyte secondary battery according to the present invention includes a plurality of non-aqueous electrolyte secondary batteries, particularly when used as a power source for an automobile such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV). It can be mounted as a power storage device (battery module) configured as a group.
FIG. 3 shows an example of a power storage device 30 in which the power storage units 20 in which the nonaqueous electrolyte secondary batteries 1 are assembled are further assembled.

(実施例1)
<正極活物質の合成>
硫酸コバルト7水和物14.08g、硫酸ニッケル6水和物21.00g及び硫酸マンガン5水和物65.27gを秤量し、これらの全量をイオン交換水200mlに溶解させ、Co:Ni:Mnのモル比が10:17:55となる2.0Mの硫酸塩水溶液を作製した。一方、2Lの反応槽に750mlのイオン交換水を注ぎ、COガスを30minバブリングさせることにより、イオン交換水中にCOを溶解させた。反応槽の温度を50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を700rpmの回転速度で攪拌しながら、前記硫酸塩水溶液を3ml/minの速度で滴下した。ここで、滴下の開始から終了までの間、2.0Mの炭酸ナトリウム、及び0.4Mのアンモニアを含有する水溶液を適宜滴下することにより、反応槽中のpHが常に7.9(±0.05)を保つように制御した。滴下終了後、反応槽内の攪拌をさらに5h継続した。攪拌の停止後、12h以上静置した。
Example 1
<Synthesis of positive electrode active material>
Cobalt sulfate heptahydrate (14.08 g), nickel sulfate hexahydrate (21.00 g) and manganese sulfate pentahydrate (65.27 g) were weighed, and all of these were dissolved in 200 ml of ion-exchanged water, and Co: Ni: Mn A 2.0 M sulfate aqueous solution with a molar ratio of 10:17:55 was prepared. On the other hand, 750 ml of ion exchange water was poured into a 2 L reaction tank, and CO 2 gas was bubbled for 30 minutes to dissolve CO 2 in the ion exchange water. The temperature of the reaction vessel was set to 50 ° C. (± 2 ° C.), and the aqueous sulfate solution was stirred at a rate of 3 ml / min while stirring the inside of the reaction vessel at a rotational speed of 700 rpm using a paddle blade equipped with a stirring motor. It was dripped. Here, during the period from the start to the end of the dropwise addition, an aqueous solution containing 2.0 M sodium carbonate and 0.4 M ammonia is appropriately dropped, so that the pH in the reaction tank is always 7.9 (± 0. 05). After completion of the dropping, stirring in the reaction vessel was further continued for 5 hours. After the stirring was stopped, the mixture was allowed to stand for 12 hours or more.

次に、吸引ろ過装置を用いて、反応槽内に生成した共沈炭酸塩の粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、100℃にて20h乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、共沈炭酸塩前駆体を作製した。   Next, using a suction filtration device, the coprecipitated carbonate particles produced in the reaction vessel are separated, and sodium ions adhering to the particles are washed away using ion-exchanged water, and an electric furnace is used. Then, it was dried at 100 ° C. for 20 hours in an air atmosphere under normal pressure. Then, in order to arrange | equalize a particle size, it grind | pulverized for several minutes with the smoked automatic mortar. In this way, a coprecipitated carbonate precursor was produced.

前記共沈炭酸塩前駆体2.278gに、炭酸リチウムをLi:(Co,Ni,Mn)のモル比が1.44:1となるように加え、瑪瑙製自動乳鉢を用いてよく混合し、混合粉体を調製した。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から900℃の温度まで10時間かけて昇温し、昇温後温度で10h焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、Naを2100ppm含み、D50が13μmであるリチウム遷移金属複合酸化物A:Li1.18Co0.10Ni0.17Mn0.55(Li/Me=1.44、Mn/Me=0.67)を作製した。 Lithium carbonate was added to 2.278 g of the coprecipitated carbonate precursor so that the molar ratio of Li: (Co, Ni, Mn) was 1.44: 1, and mixed well using a smoked automatic mortar, A mixed powder was prepared. Using a pellet molding machine, molding was performed at a pressure of 6 MPa to obtain pellets having a diameter of 25 mm. The amount of the mixed powder subjected to pellet molding was determined by conversion so that the mass of the assumed final product was 2 g. One pellet was placed on an alumina boat having a total length of about 100 mm, placed in a box-type electric furnace (model number: AMF20), and heated in an air atmosphere at normal pressure to a temperature of 900 ° C. over 10 hours. And calcined for 10 hours at the temperature after the temperature elevation. The box-type electric furnace has internal dimensions of 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction. After firing, the heater was turned off and allowed to cool naturally with the alumina boat placed in the furnace. As a result, the temperature of the furnace decreases to about 200 ° C. after 5 hours, but the subsequent temperature decrease rate is somewhat moderate. After the passage of day and night, it was confirmed that the furnace temperature was 100 ° C. or lower, and then the pellets were taken out and pulverized for several minutes in a smoked automatic mortar in order to make the particle diameter uniform. In this way, lithium transition metal composite oxide A containing 2100 ppm Na and having a D50 of 13 μm: Li 1.18 Co 0.10 Ni 0.17 Mn 0.55 O 2 (Li / Me = 1.44, Mn / Me = 0.67) was produced.

<正極板の作製>
N−メチルピロリドンを分散媒とし、正極活物質として上記のリチウム遷移金属複合酸化物A、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が92.5:5:2.5の質量比率で含有している塗布用ペーストを作製した。該塗布ペーストを厚さ15μmのアルミニウム箔集電体の片方の面に塗布した。なお、塗布面積は12cmであり、単位面積当たりに塗布されている活物質の質量を15mg/cmとした。次に、ロールプレスを用いて電極の多孔度が35%となるようにプレスを行い,100℃で真空乾燥を実施した。このようにして正極板を作製した。
得られた正極板の正極合材密度は2.434g/ccであり、正極合材質量は0.200gであった。
<Preparation of positive electrode plate>
N-methylpyrrolidone is used as a dispersion medium, and the above lithium transition metal composite oxide A, acetylene black (AB) and polyvinylidene fluoride (PVdF) are contained in a mass ratio of 92.5: 5: 2.5 as a positive electrode active material. A coating paste was prepared. The coating paste was applied to one surface of a 15 μm thick aluminum foil current collector. The application area was 12 cm 2 , and the mass of the active material applied per unit area was 15 mg / cm 2 . Next, pressing was performed using a roll press so that the porosity of the electrode was 35%, and vacuum drying was performed at 100 ° C. In this way, a positive electrode plate was produced.
The positive electrode mixture obtained had a positive electrode mixture density of 2.434 g / cc and a positive electrode mixture mass of 0.200 g.

<正極単極試験用電池の作製>
正極の単極挙動を正確に確認する目的のため、対極、すなわち負極には金属リチウムをニッケル集電体に密着させて試験電池を作製した。
試験電池においては、非水電解質二次電池の容量が負極によって制限されないよう、負極には十分な量の金属リチウムを配置した。
非水電解質として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)の体積比が3:7である混合溶媒に濃度が1mol/LとなるようにLiPFを溶解させた溶液を用いた。セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用い、正極端子、負極端子の開放端部が外部露出するように電極を収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記電解液を注液後、注液孔を封止した。
<Preparation of positive electrode single electrode test battery>
For the purpose of accurately confirming the unipolar behavior of the positive electrode, a test battery was prepared by bringing metallic lithium into close contact with the nickel current collector at the counter electrode, that is, the negative electrode.
In the test battery, a sufficient amount of metallic lithium was placed on the negative electrode so that the capacity of the nonaqueous electrolyte secondary battery was not limited by the negative electrode.
As the non-aqueous electrolyte, a solution in which LiPF 6 was dissolved in a mixed solvent having a volume ratio of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) of 3: 7 to a concentration of 1 mol / L was used. As the separator, a polypropylene microporous film whose surface was modified with polyacrylate was used. A metal resin composite film made of polyethylene terephthalate (15 μm) / aluminum foil (50 μm) / metal-adhesive polypropylene film (50 μm) is used for the exterior body, and the electrodes are exposed so that the open ends of the positive terminal and the negative terminal are exposed to the outside. The metal resin composite film was hermetically sealed with the fusion allowance where the inner surfaces of the metal resin composite films faced each other except for the portion serving as the injection hole, and the injection hole was sealed after the electrolyte solution was injected.

<初回充放電>
試験電池の初回充放電を、25℃で、4.50V(vs.Li/Li)まで0.1CmAの定電流で、その後、0.02CmAになるまで定電圧で充電し、0.1CmAの定電流で2.0Vまで放電することにより行った。なお、1CmAは40mA(3.33mA/cm)であった。
<First charge / discharge>
The initial charge / discharge of the test battery was charged at a constant current of 0.1 CmA up to 4.50 V (vs. Li / Li + ) at 25 ° C., and then at a constant voltage of 0.02 CmA. It was performed by discharging to 2.0 V with a constant current. 1 CmA was 40 mA (3.33 mA / cm 2 ).

<正極容量>
続いて、以下の充放電条件により正極容量を確認したところ、41.9mAhであった。
温度:25℃
充電:0.1CmAの定電流(CC)で、4.45V(vs.Li/Li)まで、その後、定電圧(CV)で0.02CmAになるまで
放電:0.1CmAの定電流CCで2.・0Vまで
1CmA=40mA(200mA/g)
<Positive electrode capacity>
Subsequently, when the positive electrode capacity was confirmed under the following charge / discharge conditions, it was 41.9 mAh.
Temperature: 25 ° C
Charge: Constant current (CC) of 0.1 CmA up to 4.45 V (vs. Li / Li + ), then 0.02 CmA at constant voltage (CV) Discharge: With constant current CC of 0.1 CmA 2.・ To 0V 1CmA = 40mA (200mA / g)

<充放電サイクル試験>
正極容量を確認した試験電池を、以下の条件で初回容量確認試験及び充放電サイクル試験を行ったところ、サイクル後の容量維持率は98%であった。
まず、初回放電容量確認試験を行い、このときの放電容量を「初回放電容量」とする。
温度:25℃
充電:0.1CmAの定電流で4.45V(vs.Li/Li)まで、その後、定電圧で0.02CmAになるまで
放電:1.0CmAの定電流で2.0Vまで
1CmAは40mA(200mA/g)
さらに、充放電サイクル試験を行い、10サイクル目の放電容量を「サイクル後の放電容量」とした。
充電:1.0CmAの定電流でそれぞれ4.45V(vs.Li/Li)まで、その後、定電圧で0.05CmAになるまで
放電:1.0CmAの定電流で2.0Vまで
サイクル後の容量維持率は、初回放電容量に対するサイクル後の放電容量比で算出する。
<Charge / discharge cycle test>
When the initial capacity confirmation test and the charge / discharge cycle test were performed on the test battery in which the positive electrode capacity was confirmed under the following conditions, the capacity retention rate after the cycle was 98%.
First, an initial discharge capacity confirmation test is performed, and the discharge capacity at this time is defined as “initial discharge capacity”.
Temperature: 25 ° C
Charge: 4.45 V (vs. Li / Li + ) at a constant current of 0.1 CmA, and then 0.02 CmA at a constant voltage. Discharge: Up to 2.0 V at a constant current of 1.0 CmA 1 CmA is 40 mA ( 200mA / g)
Further, a charge / discharge cycle test was conducted, and the discharge capacity at the 10th cycle was defined as “discharge capacity after cycle”.
Charge: 1.0CmA constant current to 4.45V (vs. Li / Li + ) respectively, then constant voltage to 0.05CmA Discharge: 1.0CmA constant current to 2.0V The capacity maintenance rate is calculated by the discharge capacity ratio after the cycle with respect to the initial discharge capacity.

<サイクリックボルタモグラム(CV)>
以下の測定装置を用い、以下の条件で電位走査を行うことにより、CV測定を行った。なお、CV測定には、サイクル試験を行った後の上記試験電池を解体せずそのまま用いた。即ち、測定装置の作用極(WE)ケーブルは電池の正極端子に、対極(CE)ケーブル及び参照極(RE)ケーブル電池の負極端子に接続した。
装置名: Solartron社製、マルチスタット1470E型
走査電位範囲: 2.0−4.45V(vs.Li/Li
走査速度: 0.05mV/sec
サイクル: 3サイクル
試験温度: 25℃
極板面積(作用極): 12cm
極板面積(対極): 12.6cm
<Cyclic voltammogram (CV)>
CV measurement was performed by performing potential scanning under the following conditions using the following measuring apparatus. In the CV measurement, the test battery after the cycle test was used without being disassembled. That is, the working electrode (WE) cable of the measuring device was connected to the positive terminal of the battery, and the negative terminal of the counter electrode (CE) cable and the reference electrode (RE) cable battery.
Device name: Solartron, Multistat 1470E type
Scanning potential range: 2.0-4.45 V (vs. Li / Li + )
Scanning speed: 0.05mV / sec
Cycle: 3 cycles Test temperature: 25 ° C
Electrode plate area (working electrode): 12 cm 2
Electrode plate area (counter electrode): 12.6 cm 2

CV測定により得られた3サイクル目の酸化側の走査曲線に対して、2.0Vから3.6V(vs.Li/Li)までの電位範囲について(1)の領域の積分値を求め、3.6Vから4.45V(vs.Li/Li)までの電位範囲について(2)の領域の積分値を求める。還元側の走査曲線は積分値の計算に考慮しない。
(1)の領域の積分値は12.7mJ/g、(2)の領域の積分値は26.3mJ/gであったので、酸化側のCVにおける(1)/(2)は0.48であった。
With respect to the scanning curve on the oxidation side in the third cycle obtained by the CV measurement, an integral value in the region (1) is obtained for a potential range from 2.0 V to 3.6 V (vs. Li / Li + ), For the potential range from 3.6 V to 4.45 V (vs. Li / Li + ), the integral value in the region (2) is obtained. The scanning curve on the reduction side is not considered in the calculation of the integral value.
Since the integral value in the region (1) was 12.7 mJ / g and the integral value in the region (2) was 26.3 mJ / g, (1) / (2) in the oxidation side CV was 0.48. Met.

<負極板の作製>
プラネタリーミキサーを用いて、水を分散媒とし、黒鉛質炭素材料、スチレンブタジエンゴム及びカルボキシメチルセルロースを97:2:1の質量比率で含有している負極ペーストを作製した。この負極ペーストをCu箔の片面に塗布し、乾燥およびプレスを実施して、負極板を作製した。負極ペーストの塗布量は、負極合剤質量が正極との関係で表1に示す所定の各質量比となるように調整した。実施例1においては、得られた負極板の合材密度は1.517g/ccであり、負極合材質量は0.133gであった。
<Preparation of negative electrode plate>
A planetary mixer was used to produce a negative electrode paste containing water as a dispersion medium and containing a graphitic carbon material, styrene butadiene rubber and carboxymethyl cellulose in a mass ratio of 97: 2: 1. This negative electrode paste was applied to one side of a Cu foil, dried and pressed to produce a negative electrode plate. The coating amount of the negative electrode paste was adjusted so that the mass of the negative electrode mixture became a predetermined mass ratio shown in Table 1 in relation to the positive electrode. In Example 1, the mixture density of the obtained negative electrode plate was 1.517 g / cc, and the mass of the negative electrode mixture was 0.133 g.

<負極容量>
前記試験電池の正極板に代えて前記負極板を用い、対極には金属リチウムをニッケル集電体に密着させて試験電池を作製した以外は、前記の正極単極試験用電池と同様の手順で試験電池を作製し、以下の充放電条件により負極容量を確認したところ、45.4mAhであった。
温度:25℃
充電:0.1CmAの定電流で、それぞれ0.02V(vs.Li/Li)まで、その後、定電圧で0.02CmAになるまで
放電:0.1CmAの定電流で2.0Vまで
1CmA=40mA(200mA/g)
<Negative electrode capacity>
The same procedure as for the positive electrode single electrode test battery described above was used, except that the negative electrode plate was used instead of the positive electrode plate of the test battery, and the test battery was prepared by bringing metallic lithium into close contact with the nickel current collector as the counter electrode. When a test battery was prepared and the negative electrode capacity was confirmed under the following charge / discharge conditions, it was 45.4 mAh.
Temperature: 25 ° C
Charging: 0.02 V (vs. Li / Li + ) at a constant current of 0.1 CmA, and then 0.02 CmA at a constant voltage. Discharging: up to 2.0 V at a constant current of 0.1 CmA 1 CmA = 40 mA (200 mA / g)

<電池容量>
実際に正極及び負極が備えられた非水電解質二次電池を作製する場合は、改めて作製した前記正極板と改めて作製した負極板とを組み合わせ(正極/負極質量比:1.50、正極/負極容量比:0.92)、それ以外は前記の正極単極試験用電池と同様の手順で電池を作成し、初回充放電を、25℃で、電圧4.40Vまで0.1CmAの定電流で、その後、0.02CmAになるまで定電圧で充電し、0.1CmAの定電流で電圧2.0Vまで放電することにより行う。続いて、以下の条件で測定した1CmAでの電池容量は、38.2mAhである。なお、電圧4.40Vは4.50V(vs.Li/Li)の電位を想定したものである。
充電:電流1CmA、電圧4.35Vの定電流定電圧充電、電流値が1/6に減衰した時点で充電終止
放電:電流1CmA、終止電圧2.0Vの定電流放電
<Battery capacity>
When a non-aqueous electrolyte secondary battery actually provided with a positive electrode and a negative electrode is produced, the newly produced positive electrode plate is combined with the newly produced negative electrode plate (positive electrode / negative electrode mass ratio: 1.50, positive electrode / negative electrode). Capacity ratio: 0.92), otherwise, a battery was prepared in the same procedure as the positive electrode single electrode test battery, and the initial charge / discharge was performed at 25 ° C. with a constant current of 0.1 CmA up to a voltage of 4.40 V. Thereafter, the battery is charged at a constant voltage until 0.02 CmA, and discharged to a voltage of 2.0 V with a constant current of 0.1 CmA. Subsequently, the battery capacity at 1 CmA measured under the following conditions is 38.2 mAh. Note that the voltage of 4.40 V assumes a potential of 4.50 V (vs. Li / Li + ).
Charge: constant current and constant voltage charge with current of 1 CmA and voltage of 4.35 V, charge termination when current value decays to 1/6 discharge: constant current discharge with current of 1 CmA and end voltage of 2.0 V

<体積当たりの容量密度>
以下の式により求めた前記の非水電解質二次電池の体積当たりの容量密度は、225mAh/ccである。
体積当たりの容量密度=電池の容量/(正極の体積+負極の体積)
正極の体積=正極合材質量/正極合剤密度
負極の体積=負極合材質量/負極合材密度
<Capacity density per volume>
The capacity density per volume of the non-aqueous electrolyte secondary battery obtained by the following formula is 225 mAh / cc.
Capacity density per volume = battery capacity / (positive electrode volume + negative electrode volume)
Volume of positive electrode = mass of positive electrode mixture / density of positive electrode mixture Volume of negative electrode = mass of negative electrode mixture / density of negative electrode mixture

(実施例2)
正極活物質として前記リチウム遷移金属複合酸化物Aを用い、合材質量が0.188g、容量が42.6mAhの正極板と、合材質量が0.141g、容量48.0mAhの負極板とを組み合わせ、正極/負極質量比を1.33、正極/負極容量比を0.89とした以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.45V(4.55V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。この非水電解質二次電池の体積当たりの容量密度は、226mAh/ccである。
なお、以下の実施例において、正極板の容量及び負極板の容量は、実施例1と同様に改めて作製した正極及び負極を用いて正極単極試験及び負極単極試験を行って求めた。正極単極試験における初回充放電時の充電電位は、それぞれの実施例で採用した初回充放電の充電電位と同じとした。
実施例2で用いた正極単極試験の結果、サイクル後の容量維持率は94%であり、CVにおける(1)/(2)が0.51であった。
(Example 2)
Using the lithium transition metal composite oxide A as a positive electrode active material, a positive electrode plate having a composite material mass of 0.188 g and a capacity of 42.6 mAh, and a negative electrode plate having a composite material mass of 0.141 g and a capacity of 48.0 mAh A battery was prepared in the same manner as in Example 1 except that the positive electrode / negative electrode mass ratio was 1.33 and the positive electrode / negative electrode capacity ratio was 0.89, and the charge voltage of the first charge / discharge was 4.45V (4. The same test as in Example 1 is performed except that the potential is 55 V (assuming a potential of vs. Li / Li + ). The capacity density per volume of this nonaqueous electrolyte secondary battery is 226 mAh / cc.
In the following examples, the capacity of the positive electrode plate and the capacity of the negative electrode plate were determined by conducting a positive electrode single electrode test and a negative electrode single electrode test using the positive electrode and negative electrode newly produced in the same manner as in Example 1. The charge potential at the first charge / discharge in the positive electrode single electrode test was the same as the charge potential at the first charge / discharge adopted in each example.
As a result of the positive electrode single electrode test used in Example 2, the capacity retention after the cycle was 94%, and (1) / (2) in CV was 0.51.

(実施例3)
合材質量が0.203g、容量が42.5mAh/gの正極板と、合材質量が0.132g、容量が44.8mAh/gの負極板とを、正極/負極容量比が0.95となるように組み合わせた以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.40V(4.50V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。この非水電解質二次電池の体積当たりの容量密度は、227mAh/ccである。
正極単極試験の結果、CVにおける(1)/(2)が0.48であった。
(Example 3)
A positive electrode plate having a composite material mass of 0.203 g and a capacity of 42.5 mAh / g, a negative electrode plate having a composite material mass of 0.132 g and a capacity of 44.8 mAh / g, and a positive electrode / negative electrode capacity ratio of 0.95 A battery similar to that of Example 1 was manufactured except that the combinations were made so that the charge voltage of the first charge / discharge was 4.40 V (assuming a potential of 4.50 V (vs. Li / Li + )). Except for, the same test as in Example 1 is performed. The capacity density per volume of this nonaqueous electrolyte secondary battery is 227 mAh / cc.
As a result of the positive electrode single electrode test, (1) / (2) in CV was 0.48.

(比較例1)
合材質量が0.250g、容量が34.2mAhの正極板と、合材質量が0.103g、容量が34.9mAh/gの負極板とを、正極/負極容量比が0.98となるように組み合わせた以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.35V(4.45V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。この非水電解質二次電池の体積当たりの容量密度は、177mAh/ccである。
正極単極試験の結果、サイクル後の容量維持率は107%であり、CVにおける(1)/(2)が0.24であった。
(Comparative Example 1)
A positive electrode plate having a composite material mass of 0.250 g and a capacity of 34.2 mAh, and a negative electrode plate having a composite material mass of 0.103 g and a capacity of 34.9 mAh / g, the positive electrode / negative electrode capacity ratio is 0.98. A battery similar to that of Example 1 was prepared except that the combinations were made as described above, except that the charge voltage of the first charge / discharge was 4.35 V (assuming a potential of 4.45 V (vs. Li / Li + )). Then, the same test as in Example 1 is performed. The capacity density per volume of this nonaqueous electrolyte secondary battery is 177 mAh / cc.
As a result of the positive electrode single electrode test, the capacity retention rate after cycling was 107%, and (1) / (2) in CV was 0.24.

(比較例2)
合材質量が0.183g、容量が38.2mAhの正極板と、合材質量が0.144g、容量が49.1mAhの負極板とを組み合わせ、正極/負極質量比を1.27、正極/負極容量比を0.78とした以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.40V(4.50V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。この非水電解質二次電池の体積当たりの容量密度は、203mAh/ccである。
正極単極試験の結果、CVにおける(1)/(2)が0.48であった。
(Comparative Example 2)
A positive electrode plate having a composite material mass of 0.183 g and a capacity of 38.2 mAh and a negative electrode plate having a composite material mass of 0.144 g and a capacity of 49.1 mAh were combined, and the positive electrode / negative electrode mass ratio was 1.27. A battery similar to that of Example 1 was prepared except that the negative electrode capacity ratio was set to 0.78, and the initial charge / discharge charge voltage was 4.40 V (assuming a potential of 4.50 V (vs. Li / Li + )). Except for the above, the same test as in Example 1 is performed. The capacity density per volume of this nonaqueous electrolyte secondary battery is 203 mAh / cc.
As a result of the positive electrode single electrode test, (1) / (2) in CV was 0.48.

(比較例3)
比較例2と同じ合剤重量の正極板と負極板とを、正極の容量が41.4mAh、正極/負極容量比が0.84となるように組み合わせた以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.45V(4.55V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。この非水電解質二次電池の体積当たりの容量密度は、220mAh/ccである。
正極単極試験の結果、CVにおける(1)/(2)が0.51であった。
(Comparative Example 3)
A battery similar to that of Example 1 except that the positive electrode plate and the negative electrode plate having the same mixture weight as Comparative Example 2 were combined so that the positive electrode capacity was 41.4 mAh and the positive electrode / negative electrode capacity ratio was 0.84. The same test as in Example 1 is performed except that the charge voltage of the first charge / discharge is 4.45 V (assuming a potential of 4.55 V (vs. Li / Li + )). The capacity density per volume of this nonaqueous electrolyte secondary battery is 220 mAh / cc.
As a result of the positive electrode single electrode test, (1) / (2) in CV was 0.51.

(比較例4)
比較例2と同じ合剤重量の正極板と負極板とを、正極の容量が49.1mAh、正極/負極容量比が0.86となるように組み合わせた以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.50V(4.60V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。この非水電解質二次電池の体積当たりの容量密度は、223mAh/ccである。
正極単極試験の結果、サイクル後の容量維持率は94%であり、CVにおける(1)/(2)が0.52であった。
(Comparative Example 4)
A battery similar to that of Example 1 except that the positive electrode plate and the negative electrode plate having the same mixture weight as Comparative Example 2 were combined so that the positive electrode capacity was 49.1 mAh and the positive electrode / negative electrode capacity ratio was 0.86. The same test as in Example 1 is performed except that the charge voltage of the first charge / discharge is 4.50 V (assuming a potential of 4.60 V (vs. Li / Li + )). The capacity density per volume of this nonaqueous electrolyte secondary battery is 223 mAh / cc.
As a result of the positive electrode single electrode test, the capacity retention rate after cycling was 94%, and (1) / (2) in CV was 0.52 .

(実施例4)
硫酸コバルト7水和物、硫酸ニッケル6水和物及び硫酸マンガン5水和物をCo:Ni:Mnのモル比が17:17:49となる硫酸塩水溶液から共沈炭酸塩前駆体を作製し、これに炭酸リチウムをLi:(Co,Ni,Mn)のモル比が1.44:1となるように加え、実施例1と同様の方法により、リチウム遷移金属複合酸化物B:Li1.18Co0.17Ni0.17Mn0.49(Mn/Me=0.60)を作製した。
合材質量が0.202g、容量が40.5mAhの正極板を作成し、この正極板と、合材質量が0.132g、容量が45.1mAhの負極板とを組み合わせ、正極/負極質量比を1.52、正極/負極容量比を0.90とした以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.40V(4.50V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。この非水電解質二次電池の体積当たりの容量密度は、213mAh/ccである。
正極単極試験の結果、サイクル後の容量維持率は100%であり、CVにおける(1)/(2)が0.37であった。
(Example 4)
A coprecipitated carbonate precursor was prepared from cobalt sulfate heptahydrate, nickel sulfate hexahydrate and manganese sulfate pentahydrate from a sulfate aqueous solution having a Co: Ni: Mn molar ratio of 17:17:49. To this, lithium carbonate was added so that the molar ratio of Li: (Co, Ni, Mn) was 1.44: 1, and lithium transition metal composite oxide B: Li 1 was added in the same manner as in Example 1. 18 Co 0.17 Ni 0.17 Mn 0.49 O 2 (Mn / Me = 0.60) was produced.
A positive electrode plate having a composite material mass of 0.202 g and a capacity of 40.5 mAh was prepared, and this positive electrode plate was combined with a negative electrode plate having a composite material mass of 0.132 g and a capacity of 45.1 mAh to obtain a positive electrode / negative electrode mass ratio. The battery was prepared in the same manner as in Example 1 except that the positive electrode / negative electrode capacity ratio was 0.90, and the charge voltage of the initial charge / discharge was 4.40 V (4.50 V (vs. Li / Li The same test as in Example 1 is performed except that the potential of + ) is assumed). The capacity density per volume of this nonaqueous electrolyte secondary battery is 213 mAh / cc.
As a result of the positive electrode single electrode test, the capacity retention rate after cycling was 100%, and (1) / (2) in CV was 0.37.

(実施例5)
正極活物質として前記リチウム遷移金属複合酸化物Bを用い、合材質量が0.191g、容量が40.9mAhの正極板と、合材質量が0.139g、容量47.4mAhの負極板とを組み合わせ、正極/負極質量比を1.37、正極/負極容量比を0.86とした以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.45V(4.55V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。この非水電解質二次電池の体積当たりの容量密度は、212mAh/ccである。
正極単極試験の結果、サイクル後の容量維持率は98%であり、CVにおける(1)/(2)が0.41であった。
(Example 5)
Using the lithium transition metal composite oxide B as a positive electrode active material, a positive electrode plate having a composite material mass of 0.191 g and a capacity of 40.9 mAh, and a negative electrode plate having a composite material mass of 0.139 g and a capacity of 47.4 mAh A battery was prepared in the same manner as in Example 1 except that the positive electrode / negative electrode mass ratio was 1.37 and the positive electrode / negative electrode capacity ratio was 0.86, and the charge voltage of the first charge / discharge was 4.45V (4. The same test as in Example 1 is performed except that the potential is 55 V (assuming a potential of vs. Li / Li + ). The capacity density per volume of this nonaqueous electrolyte secondary battery is 212 mAh / cc.
As a result of the positive electrode single electrode test, the capacity retention rate after cycling was 98%, and (1) / (2) in CV was 0.41.

(比較例5)
正極活物質として前記リチウム遷移金属複合酸化物Bを用い、合材質量が0.236g、容量が38.0mAhである正極板と、合材質量が0.111g、容量が37.9mAhの負極板とを組み合わせ、正極/負極質量比を2.12、正極/負極容量比を1.00とした以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.35V(4.45V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。この非水電解質二次電池の体積当たりの容量密度は、192mAh/ccである。
正極単極試験の結果、サイクル後の容量維持率は105%であり、CVにおける(1)/(2)が0.23であった。
(Comparative Example 5)
Using the lithium transition metal composite oxide B as a positive electrode active material, a positive electrode plate having a composite material mass of 0.236 g and a capacity of 38.0 mAh, and a negative electrode plate having a composite material mass of 0.111 g and a capacity of 37.9 mAh Except that the positive electrode / negative electrode mass ratio was 2.12 and the positive electrode / negative electrode capacity ratio was 1.00. The same test as in Example 1 is performed except that 4.45 V (vs. Li / Li + ) is assumed. The capacity density per volume of this nonaqueous electrolyte secondary battery is 192 mAh / cc.
As a result of the positive electrode single electrode test, the capacity retention rate after cycling was 105%, and (1) / (2) in CV was 0.23.

(比較例6)
正極活物質として前記リチウム遷移金属複合酸化物Bを用い、合材質量が0.185g、容量が40.8mAhである正極板と、合材質量が0.143g、容量が48.6mAhの負極板とを組み合わせ、正極/負極質量比を1.30、正極/負極容量比を0.84とした以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.50V(4.60V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。
この非水電解質二次電池の体積当たりの容量密度は、211mAh/ccである。
正極単極試験の結果、サイクル後の容量維持率は98%であり、CVにおける(1)/(2)が0.42であった。
(Comparative Example 6)
Using the lithium transition metal composite oxide B as a positive electrode active material, a positive electrode plate having a composite material mass of 0.185 g and a capacity of 40.8 mAh, and a negative electrode plate having a composite material mass of 0.143 g and a capacity of 48.6 mAh Except that the positive electrode / negative electrode mass ratio was 1.30 and the positive electrode / negative electrode capacity ratio was 0.84, and a charge voltage for initial charge / discharge was 4.50 V ( The same test as in Example 1 is performed except that 4.60 V (assuming a potential of vs. Li / Li + ) is used.
The capacity density per volume of this nonaqueous electrolyte secondary battery is 211 mAh / cc.
As a result of the positive electrode single electrode test, the capacity retention rate after cycling was 98%, and (1) / (2) in CV was 0.42.

(比較例7)
硫酸コバルト7水和物、硫酸ニッケル6水和物及び硫酸マンガン5水和物をCo:Ni:Mnのモル比が21:17:49となる硫酸塩水溶液から共沈炭酸塩前駆体を作製し、これに炭酸リチウムをLi:(Co,Ni,Mn)のモル比が1.30:1となるように加え、実施例1と同様の方法により、リチウム遷移金属複合酸化物C:Li1.13Co0.21Ni0.17Mn0.49(Mn/Me=0.56)を作製した。
合材質量が0.243g、容量が35.5mAhの正極板を作成し、この正極板と、合材質量が0.107g、容量が36.4mAhの前記の負極板とを組み合わせ、正極/負極質量比を2.27、正極/負極容量比を0.98とした電池を作製し、初回充放電の充電電圧を4.35V(4.45V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。この非水電解質二次電池の体積当たりの容量密度は、174mAh/ccである。
正極単極試験の結果、サイクル後の容量維持率は100%であり、CVにおける(1)/(2)が0.17であった。
(Comparative Example 7)
A coprecipitated carbonate precursor was prepared from cobalt sulfate heptahydrate, nickel sulfate hexahydrate and manganese sulfate pentahydrate from a sulfate aqueous solution having a Co: Ni: Mn molar ratio of 21:17:49. To this, lithium carbonate was added so that the molar ratio of Li: (Co, Ni, Mn) was 1.30: 1, and lithium transition metal composite oxide C: Li 1 was obtained in the same manner as in Example 1. 13 Co 0.21 Ni 0.17 Mn 0.49 O 2 (Mn / Me = 0.56) was produced.
A positive electrode plate having a composite material mass of 0.243 g and a capacity of 35.5 mAh was prepared, and this positive electrode plate was combined with the negative electrode plate having a composite material mass of 0.107 g and a capacity of 36.4 mAh to obtain a positive electrode / negative electrode A battery having a mass ratio of 2.27 and a positive / negative electrode capacity ratio of 0.98 was prepared, and the charge voltage of the initial charge / discharge was 4.35 V (assuming a potential of 4.45 V (vs. Li / Li + )). Except for the above, the same test as in Example 1 is performed. The capacity density per volume of this nonaqueous electrolyte secondary battery is 174 mAh / cc.
As a result of the positive electrode single electrode test, the capacity retention ratio after cycling was 100%, and (1) / (2) in CV was 0.17.

(比較例8)
正極活物質として前記リチウム遷移金属複合酸化物Cを用い、合材質量が0.211g、容量が38.6mAhの正極板と、合材質量が0.127g、容量が43.2mAhの負極板とを組み合わせ、正極/負極質量比を1.66、正極/負極容量比0.89としたとした以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.40V(4.50V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。
この非水電解質二次電池の体積当たりの容量密度は、190mAh/ccである。
正極単極試験の結果、サイクル後の容量維持率は99%であり、CVにおける(1)/(2)が0.28であった。
(Comparative Example 8)
Using the lithium transition metal composite oxide C as a positive electrode active material, a positive electrode plate with a composite material mass of 0.211 g and a capacity of 38.6 mAh, a negative electrode plate with a composite material mass of 0.127 g and a capacity of 43.2 mAh, Except that the positive electrode / negative electrode mass ratio was 1.66 and the positive electrode / negative electrode capacity ratio was 0.89, and the same charge as that of Example 1 was prepared. The same test as in Example 1 is performed except that the potential is 4.50 V (assuming a potential of vs. Li / Li + ).
The capacity density per volume of this nonaqueous electrolyte secondary battery is 190 mAh / cc.
As a result of the positive electrode single electrode test, the capacity retention rate after cycling was 99%, and (1) / (2) in CV was 0.28.

(比較例9)
正極活物質として前記リチウム遷移金属複合酸化物Cを用い、合材質量が0.203g、容量が39.3mAhの正極板と、合材質量が0.131g、容量が44.8mAhの負極板とを組み合わせ、正極/負極質量比を1.55、正極/負極容量比0.88としたとした以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.425V(4.525V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。この非水電解質二次電池の体積当たりの容量密度は、193mAh/ccである。
正極単極試験の結果、サイクル後の容量維持率は98%であり、CVにおける(1)/(2)が0.31であった。
(Comparative Example 9)
Using the lithium transition metal composite oxide C as a positive electrode active material, a positive electrode plate having a composite material mass of 0.203 g and a capacity of 39.3 mAh, a negative electrode plate having a composite material mass of 0.131 g and a capacity of 44.8 mAh, Except that the positive electrode / negative electrode mass ratio was 1.55 and the positive electrode / negative electrode capacity ratio was 0.88. A battery similar to that of Example 1 was prepared, and the charge voltage for the initial charge / discharge was 4.425V ( A test similar to that of Example 1 is performed except that the potential is 4.525 V (assuming a potential of vs. Li / Li + ). The capacity density per volume of this nonaqueous electrolyte secondary battery is 193 mAh / cc.
As a result of the positive electrode single electrode test, the capacity retention rate after cycling was 98%, and (1) / (2) in CV was 0.31.

(比較例10)
正極活物質として前記リチウム遷移金属複合酸化物Cを用い、合材質量が0.199g、容量が39.0mAhの正極板と、合材質量が0.134g、容量が45.7mAhの前記の負極板とを組み合わせ、正極/負極質量比を1.48、正極/負極容量比を0.85とした以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.45V(4.55V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。この非水電解質二次電池の体積当たりの容量密度は、192mAh/ccである。
正極単極試験の結果、サイクル後の容量維持率は97%であり、CVにおける(1)/(2)が0.33であった。
(Comparative Example 10)
Using the lithium transition metal composite oxide C as a positive electrode active material, a positive electrode plate having a composite material mass of 0.199 g and a capacity of 39.0 mAh, and a negative electrode having a composite material mass of 0.134 g and a capacity of 45.7 mAh A battery was prepared in the same manner as in Example 1 except that the positive electrode / negative electrode mass ratio was 1.48 and the positive electrode / negative electrode capacity ratio was 0.85, and the charge voltage for the first charge / discharge was 4.45V. A test similar to that of Example 1 is performed except that the potential is 4.55 V (assuming a potential of 4.55 V (vs. Li / Li + )). The capacity density per volume of this nonaqueous electrolyte secondary battery is 192 mAh / cc.
As a result of the positive electrode single electrode test, the capacity retention rate after cycling was 97%, and (1) / (2) in CV was 0.33.

(比較例11)
正極活物質として前記リチウム遷移金属複合酸化物Cを用い、合材質量が0.193g、容量が39.0mAhの正極板と、合材質量が0.138g、容量が47.0mAhの前記の負極板とを組み合わせ、正極/負極質量比を1.40、正極/負極容量比を0.83とした以外は、実施例1と同様の電池を作製し、初回充放電の充電電圧を4.50V(4.60V(vs.Li/Li)の電位を想定)としたことを除いては、実施例1と同様の試験を行う。この非水電解質二次電池の体積当たりの容量密度は、190mAh/ccである。
正極単極試験の結果、サイクル後の容量維持率は96%であり、CVにおける(1)/(2)が0.36であった。
(Comparative Example 11)
Using the lithium transition metal composite oxide C as a positive electrode active material, a positive electrode plate having a composite material mass of 0.193 g and a capacity of 39.0 mAh, and a negative electrode having a composite material mass of 0.138 g and a capacity of 47.0 mAh A battery was prepared in the same manner as in Example 1 except that the positive electrode / negative electrode mass ratio was 1.40 and the positive electrode / negative electrode capacity ratio was 0.83, and the charge voltage for the first charge / discharge was 4.50 V. A test similar to that of Example 1 is performed except that the potential is 4.60 V (assuming a potential of vs. Li / Li + ). The capacity density per volume of this nonaqueous electrolyte secondary battery is 190 mAh / cc.
As a result of the positive electrode single electrode test, the capacity retention rate after cycling was 96%, and (1) / (2) in CV was 0.36.

表1は、以上の結果をまとめたものである。実施例1〜5、比較例1〜11の電池について、体積当たりの容量密度、10サイクル後の正極容量維持率を以下の表1に示す。   Table 1 summarizes the above results. For the batteries of Examples 1 to 5 and Comparative Examples 1 to 11, the capacity density per volume and the positive electrode capacity retention rate after 10 cycles are shown in Table 1 below.

実施例1〜5は、Mn/Meが0.60以上のリチウム遷移金属複合酸化物を正極活物質とし、初回充電電位を4.50V、4.55Vと適度に高くすることによって、(1)/(2)が0.37から0.51の範囲とし正極の容量密度の増加が大きい。それとともに、正極/負極容量比が0.86から0.95の範囲に設定することによって、初回充放電のみに必要な負極容量が適量であるから、電池の体積当たりの容量密度を高めることができた。   In Examples 1 to 5, a lithium transition metal composite oxide having Mn / Me of 0.60 or more is used as a positive electrode active material, and initial charge potentials are appropriately increased to 4.50 V and 4.55 V, respectively (1) / (2) is in the range of 0.37 to 0.51, and the capacity density of the positive electrode is greatly increased. At the same time, by setting the positive electrode / negative electrode capacity ratio in the range of 0.86 to 0.95, the negative electrode capacity required only for the first charge / discharge is appropriate, so that the capacity density per volume of the battery can be increased. did it.

比較例1,5は、Mn/Meが0.6以上の前記リチウム遷移金属複合酸化物を正極活物質としているが、初回充電電位が4.45Vであって、(1)/(2)が小さく、正極容量密度の増加効果が小さい。したがって、初回充放電のみに必要な負極容量が小さく、正極/負極容量比を1に近づけることはできるが、電池の体積あたりの容量密度は小さかった。   In Comparative Examples 1 and 5, the lithium transition metal composite oxide having Mn / Me of 0.6 or more is used as the positive electrode active material, but the initial charge potential is 4.45 V, and (1) / (2) is The effect of increasing the positive electrode capacity density is small. Therefore, the negative electrode capacity required only for the first charge / discharge is small and the positive electrode / negative electrode capacity ratio can be close to 1, but the capacity density per volume of the battery is small.

比較例2,3は、Mn/Meが0.6以上の前記リチウム遷移金属複合酸化物を正極活物質とし、初回充電電位が4.50V、4.55Vと適度に高く、(1)/(2)が大きいから、正極容量密度の増加効果が大きい。しかし、初回充放電のみに必要な負極容量を超える量の負極材料を含む(正極/負極容量比が小さい)ため、負極体積が大きい。したがって、電池の体積当たりの容量密度が小さかった。   In Comparative Examples 2 and 3, the lithium transition metal composite oxide having Mn / Me of 0.6 or more was used as the positive electrode active material, and the initial charge potential was moderately high at 4.50 V and 4.55 V. (1) / ( Since 2) is large, the effect of increasing the positive electrode capacity density is large. However, since the negative electrode material is included in an amount exceeding the negative electrode capacity necessary only for the first charge / discharge (the positive electrode / negative electrode capacity ratio is small), the negative electrode volume is large. Therefore, the capacity density per volume of the battery was small.

比較例4,6は、Mn/Meが0.6以上の前記リチウム遷移金属複合酸化物を正極活物質とし、初回充電電位が4.60Vであって、(1)/(2)が大きいから、初回充電電位を高く設定することによる正極容量密度の増加効果が大きい。しかし、この増加に対応して初回充放電のみに必要な負極容量も増やす必要がある。したがって、この容量を供給する負極材料の体積が大きくなり、電池の体積当たりの容量密度が小さかった。   In Comparative Examples 4 and 6, the lithium transition metal composite oxide having Mn / Me of 0.6 or more was used as the positive electrode active material, the initial charge potential was 4.60 V, and (1) / (2) was large. The effect of increasing the positive electrode capacity density by setting the initial charge potential high is great. However, it is necessary to increase the negative electrode capacity required only for the first charge / discharge in response to this increase. Therefore, the volume of the negative electrode material that supplies this capacity is increased, and the capacity density per volume of the battery is small.

比較例7〜11の電池は、Mn/Meが0.60未満の前記リチウム遷移金属複合酸化物Cを正極活物質として用いているので、初回充電電位を高く設定しても(1)/(2)が小さく、正極容量密度の増加が相対的に小さい。したがって、正極/負極容量比を1に近づけたとしても、電池の体積当たりの容量密度は低い。   Since the batteries of Comparative Examples 7 to 11 use the lithium transition metal composite oxide C having a Mn / Me of less than 0.60 as the positive electrode active material, even if the initial charge potential is set high, (1) / ( 2) is small, and the increase in positive electrode capacity density is relatively small. Therefore, even if the positive electrode / negative electrode capacity ratio is close to 1, the capacity density per volume of the battery is low.

なお、実施例の中でも、初回充電電位が低く、(1)/(2)が0.37〜0.48の範囲であると、サイクル後容量維持率が高かった。   In addition, among the examples, the initial charge potential was low, and the capacity retention rate after cycling was high when (1) / (2) was in the range of 0.37 to 0.48.

(符号の説明)
1 非水電解質二次電池
2 電極群
3 電池容器
4 正極端子
4’正極リード
5 負極端子
5’負極リード
20 蓄電ユニット
30 蓄電装置
(Explanation of symbols)
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Electrode group 3 Battery container 4 Positive electrode terminal 4 'Positive electrode lead 5 Negative electrode terminal 5' Negative electrode lead 20 Power storage unit 30 Power storage device

本発明によれば、初回充電で生じる正極の余剰容量を適正化し、正極容量と負極容量のバランスが取れた体積容量密度が高い非水電解質二次電池を提供することができるから、携帯機器用はもちろんのこと、ハイブリッド自動車用、電気自動車用として利用が可能である。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery with a high volume capacity density in which the excess capacity of the positive electrode generated by the initial charge is optimized and the positive electrode capacity and the negative electrode capacity are balanced. Of course, it can be used for hybrid vehicles and electric vehicles.

Claims (2)

正極と負極と非水電解質を備えた非水電解質二次電池であって、
前記正極は、α−NaFeO型結晶構造を有するリチウム遷移金属複合酸化物を含有する正極活物質を有し、
前記リチウム遷移金属複合酸化物は、遷移金属(Me)に対するリチウム(Li)のモル比Li/Meが1より大きく、前記遷移金属(Me)として、Mn並びに、Ni及び/又はCoを含み、前記遷移金属(Me)に対するMnのモル比Mn/MeがMn/Me≧0.60であり、
サイクリックボルタモグラム(CV)を、走査電位範囲:2.0−4.45V(vs.Li/Li )、走査速度:0.05mV/secで行ったとき、前記正極のCVにおける酸化側に、2つのピークを有し、
前記正極の酸化側のCVにおける3.6V(vs.Li/Li)より高い電位の領域の積分値に対する3.6V(vs.Li/Li)より低い電位の領域の積分値の比が0.37〜0.51の範囲であり、
前記負極の容量に対する前記正極の容量の比が0.86〜0.95の範囲であることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte,
The positive electrode has a positive electrode active material containing a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure,
The lithium transition metal composite oxide has a molar ratio Li / Me of lithium (Li) to transition metal (Me) larger than 1 , and includes Mn and Ni and / or Co as the transition metal (Me), molar ratio Mn / Me of Mn to the transition metal (Me) is Mn / Me ≧ 0.60,
The cyclic voltammogram (CV), the scanning potential range: 2.0-4.45V (vs.Li/Li +), scanning speed: When performed in 0.05 mV / sec, the oxidation side in the CV of the positive electrode, Has two peaks,
The ratio of the integral value of the region having a potential lower than 3.6 V (vs. Li / Li + ) to the integral value of the region having a potential higher than 3.6 V (vs. Li / Li + ) in the CV on the oxidation side of the positive electrode is In the range of 0.37 to 0.51,
The nonaqueous electrolyte secondary battery, wherein a ratio of a capacity of the positive electrode to a capacity of the negative electrode is in a range of 0.86 to 0.95.
前記正極の酸化側のCVにおける前記の積分値の比が0.37〜0.48であることを特徴とする請求項1に記載の非水電解質二次電池。   2. The nonaqueous electrolyte secondary battery according to claim 1, wherein a ratio of the integral value in CV on the oxidation side of the positive electrode is 0.37 to 0.48.
JP2014201579A 2014-09-30 2014-09-30 Nonaqueous electrolyte secondary battery Active JP6394956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201579A JP6394956B2 (en) 2014-09-30 2014-09-30 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201579A JP6394956B2 (en) 2014-09-30 2014-09-30 Nonaqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2016072129A JP2016072129A (en) 2016-05-09
JP2016072129A5 JP2016072129A5 (en) 2017-08-03
JP6394956B2 true JP6394956B2 (en) 2018-09-26

Family

ID=55864881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201579A Active JP6394956B2 (en) 2014-09-30 2014-09-30 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6394956B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075383B (en) * 2016-06-08 2021-12-17 株式会社钟化 Lithium ion secondary battery and battery pack
JP7317758B2 (en) * 2020-03-27 2023-07-31 Jx金属株式会社 Precursor of oxide-based cathode active material for all-solid-state lithium-ion battery, oxide-based cathode active material for all-solid-state lithium-ion battery, cathode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, oxidation for all-solid-state lithium-ion battery Method for producing precursor of solid-state positive electrode active material and method for producing oxide-based positive electrode active material for all-solid-state lithium-ion battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8067118B2 (en) * 2006-12-27 2011-11-29 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP5256816B2 (en) * 2007-03-27 2013-08-07 学校法人神奈川大学 Cathode material for lithium-ion batteries
JP5672113B2 (en) * 2010-03-31 2015-02-18 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP5686060B2 (en) * 2011-07-07 2015-03-18 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JP2013058451A (en) * 2011-09-09 2013-03-28 Mitsubishi Chemicals Corp Positive electrode for lithium secondary battery and lithium secondary battery
JP5853662B2 (en) * 2011-12-15 2016-02-09 株式会社Gsユアサ Method of using nonaqueous electrolyte battery and plug-in hybrid vehicle equipped with nonaqueous electrolyte battery
JP6032457B2 (en) * 2012-02-03 2016-11-30 日産自動車株式会社 Solid solution lithium-containing transition metal oxide and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2016072129A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP6600944B2 (en) Lithium secondary battery
JP6428996B2 (en) Mixed active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6044809B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP6471693B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JPWO2016190419A1 (en) Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP2014044928A (en) Positive electrode active material for lithium secondary battery, method of producing the same, electrode for lithium secondary battery, and lithium secondary battery
JP5757138B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, lithium transition metal composite oxide, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5946011B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP5757139B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, lithium transition metal composite oxide, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2014029828A (en) Positive-electrode active material for lithium secondary battery, method for manufacturing the same, lithium secondary battery electrode, and lithium secondary battery
JP6274536B2 (en) Method for producing mixed active material for lithium secondary battery, method for producing electrode for lithium secondary battery, and method for producing lithium secondary battery
JP2018107118A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP6611074B2 (en) Mixed active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6036168B2 (en) Nonaqueous electrolyte secondary battery
JP6460575B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP2016015298A (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and power storage device
JP6834629B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and positive electrode active material for non-aqueous electrolyte secondary battery
JP5757140B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, lithium transition metal composite oxide, method for producing the positive electrode active material, etc., and non-aqueous electrolyte secondary battery
JP2018206609A (en) Nonaqueous electrolyte secondary battery
JP2015115244A (en) Positive electrode for lithium secondary battery, lithium secondary battery, battery module, and automobile mounting battery module
JP6394956B2 (en) Nonaqueous electrolyte secondary battery
JP6354964B2 (en) Nonaqueous electrolyte secondary battery
JP6474033B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6323797B2 (en) Nonaqueous electrolyte secondary battery
JP6024869B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180815

R150 Certificate of patent or registration of utility model

Ref document number: 6394956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150