JP6834629B2 - Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and positive electrode active material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6834629B2
JP6834629B2 JP2017047959A JP2017047959A JP6834629B2 JP 6834629 B2 JP6834629 B2 JP 6834629B2 JP 2017047959 A JP2017047959 A JP 2017047959A JP 2017047959 A JP2017047959 A JP 2017047959A JP 6834629 B2 JP6834629 B2 JP 6834629B2
Authority
JP
Japan
Prior art keywords
oxide
active material
positive electrode
aqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017047959A
Other languages
Japanese (ja)
Other versions
JP2018152256A (en
Inventor
弘将 村松
弘将 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2017047959A priority Critical patent/JP6834629B2/en
Publication of JP2018152256A publication Critical patent/JP2018152256A/en
Application granted granted Critical
Publication of JP6834629B2 publication Critical patent/JP6834629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法に関する。 The present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, a positive electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a positive electrode active material for a non-aqueous electrolyte secondary battery.

従来、リチウム二次電池に代表される非水電解質二次電池用の正極活物質として、α−NaFeO型結晶構造を有する「LiMeO型」活物質(Meは遷移金属元素)が検討され、LiCoOを用いた非水電解質二次電池が広く実用化されていた。しかし、LiCoOの放電容量は120〜130mAh/g程度であった。前記Meとして、地球資源として豊富なMnを用いることが望まれてきた。しかし、MeとしてMnを含有させた「LiMeO型」活物質は、Meに対するMnのモル比Mn/Meが0.5を超える場合には、充電をするとスピネル型へと構造変化が起こり、結晶構造が維持できないため、充放電サイクル性能が著しく劣るという問題があった。 Conventionally, as a positive electrode active material for a non-aqueous electrolyte secondary battery represented by a lithium secondary battery, a "LiMeO type 2 " active material having an α-NaFeO type 2 crystal structure (Me is a transition metal element) has been studied. Non-aqueous electrolyte secondary batteries using LiCoO 2 have been widely put into practical use. However, the discharge capacity of LiCoO 2 was about 120 to 130 mAh / g. It has been desired to use abundant Mn as an earth resource as the Me. However, when the molar ratio of Mn to Me to Mn / Me exceeds 0.5, the "LiMeO type 2 " active material containing Mn as Me undergoes a structural change to a spinel type when charged, resulting in crystals. Since the structure cannot be maintained, there is a problem that the charge / discharge cycle performance is significantly inferior.

そこで、Meに対するMnのモル比Mn/Meが0.5以下であり、充放電サイクル性能の点でも優れる「LiMeO型」活物質が種々提案され、一部実用化されている。例えば、リチウム遷移金属複合酸化物であるLiNi1/2Mn1/2やLiNi1/3Co1/3Mn1/3を含有する正極活物質は150〜180mAh/gの放電容量を有する。 Therefore, various "LiMeO type 2 " active materials having a molar ratio of Mn to Me of Mn / Me of 0.5 or less and excellent in charge / discharge cycle performance have been proposed and partially put into practical use. For example, a positive electrode active material containing LiNi 1/2 Mn 1/2 O 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 which are lithium transition metal composite oxides has a discharge capacity of 150 to 180 mAh / g. Has.

一方、上記のようないわゆる「LiMeO型」活物質に対し、Meに対するMnのモル比Mn/Meが0.5を超え、Meに対するリチウム(Li)のモル比Li/Meが1より大きい、いわゆる「リチウム過剰型」活物質は、「LiMeO型」活物質に比べて高い放電容量を有することから、その実用化に向けて、検討が行われている。 On the other hand, with respect to the so-called "LiMeO type 2 " active material as described above, the molar ratio of Mn to Me, Mn / Me, exceeds 0.5, and the molar ratio of lithium (Li) to Me, Li / Me, is greater than 1. Since the so-called "lithium excess type" active material has a higher discharge capacity than the "LiMeO type 2 " active material, studies are being conducted toward its practical use.

特許文献1には、「式Li1+x1−x2−z(Mは、非リチウム金属元素またはそれらの組み合わせであり、0.01≦x≦0.3であり、0≦z≦0.2である)で近似的に表されるリチウム金属酸化物を含み、約0.1〜約0.75重量パーセントの金属/半金属酸化物でコーティングされた、リチウムイオン電池正極材料。」(請求項1)が記載され、この正極材料のサンプル1について、xLiMnO・(1−x)LiMO中のxが0.5で、Mn%遷移金属が65.63であることが表3に記載されている。 Patent Document 1 states that "formula Li 1 + x M 1-x O 2-z F z (M is a non-lithium metal element or a combination thereof, 0.01 ≦ x ≦ 0.3, 0 ≦ z). A lithium ion battery positive electrode material comprising a lithium metal oxide approximately represented by (≤0.2) and coated with about 0.1 to about 0.75 weight percent metal / semimetal oxide. (Claim 1), and for sample 1 of this positive electrode material, x in xLi 2 MnO 3 · (1-x) LiMO 2 is 0.5 and the Mn% transition metal is 65.63. Is listed in Table 3.

そして、実施例5として、「実施例5−酸化ビスマスによるコーティング この実施例では、表3のサンプル1の式で表され、実施例1に記載のように形成される、高容量のリチウムに富む金属酸化物上の酸化ビスマスコーティングの形成を説明する。高容量カソード材料上の酸化ビスマスのコーティングは、硝酸ビスマスを活性リチウム金属酸化物上で乾燥させ、続いて焼成ステップを行うことで実施した。具体的には、硝酸ビスマスを選択された量の水中に溶解させ、Biでコーティングすべきカソード材料を硝酸ビスマス溶液中に分散させた。次に、この混合物を、乾燥するまで80〜100℃で約2時間加熱した。得られた乾燥粉末を回収し、従来のマッフル炉中、乾燥空気中、300〜400℃で2時間焼成して、酸化ビスマスコーティングを形成した。」(段落[0091]〜[0092])、「酸化ビスマスでコーティングされた材料をX線回折で調べる。コーティングされていない材料とともに、同じ材料の酸化ビスマスコーティング量が異なる4サンプルのX線回折図を図12に示している。サンプルは、約0.1、0.5.2.0および5.0重量パーセントのコーティング材料を使用して調製した。図12の回折図から分かるように、コーティングが材料の結晶構造を大きく変化させることはなかった。」(段落[0093])と記載されている。 Then, as Example 5, "Example 5-Coating with bismuth oxide. In this example, it is represented by the formula of Sample 1 in Table 3 and is formed as described in Example 1 and is rich in high capacity lithium. The formation of a bismuth oxide coating on a metal oxide will be described. The coating of bismuth oxide on a high volume cathode material was carried out by drying bismuth nitrate on an active lithium metal oxide followed by a firing step. Specifically, bismuth nitrate was dissolved in a selected amount of water and the cathode material to be coated with Bi 2 O 3 was dispersed in the bismuth nitrate solution. The mixture was then dried from 80 to 80 to dry. It was heated at 100 ° C. for about 2 hours. The resulting dry powder was recovered and fired in a conventional muffle furnace, in dry air, at 300-400 ° C. for 2 hours to form a bismuth oxide coating. " 0091] to [0092]), "Examine the material coated with bismuth oxide by X-ray diffraction. An X-ray diffraction diagram of four samples having different amounts of bismuth oxide coating of the same material together with the uncoated material is shown in FIG. Shown. Samples were prepared using about 0.1, 0.5.2.0 and 5.0 weight percent coating material. As can be seen from the diffraction diagram of FIG. 12, the coating is a crystal of the material. It did not significantly change the structure. ”(Paragraph [093]).

特許文献2には、「Li元素と、Ni、CoおよびMnから選ばれる少なくとも一種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物の表面に、Zr、Ti、Sn、Mg、Ba、Pb、Bi、Nb、Ta、Zn、Y、La、Sr、Ce、InおよびAlから選ばれる少なくとも一種の金属元素の酸化物(I)の微粒子が付着する粒子(II)からなることを特徴とするリチウムイオン二次電池用の正極活物質。」(請求項1)が記載されている。 Patent Document 2 includes "Li element and at least one transition metal element selected from Ni, Co and Mn (however, the molar amount of Li element is 1.) with respect to the total molar amount of the transition metal element. It is more than twice.) The surface of the lithium-containing composite oxide is selected from Zr, Ti, Sn, Mg, Ba, Pb, Bi, Nb, Ta, Zn, Y, La, Sr, Ce, In and Al. A positive electrode active material for a lithium ion secondary battery, characterized in that it is composed of particles (II) to which fine particles of an oxide (I) of at least one metal element are attached. ”(Claim 1) is described.

この正極活物質の実施例として、組成が「Li(Li0.2Ni0.137Co0.125Mn0.538)O」のリチウム含有複合酸化物を得(段落[0049]〜[0052])、「撹拌している実施例のリチウム含有複合酸化物(15g)に対して、調製したZrO分散液(2.4g)を噴霧して添加し、実施例のリチウム含有複合酸化物とZrO分散液とを混合させながら接触させた。次いで、得られた混合物を、酸素含有雰囲気下300℃で1時間加熱し、リチウム含有複合酸化物の表面にZr元素の酸化物(I)の微粒子が付着する粒子(II)からなる実施例1の正極活物質(A)を得た。」(段落[0053])と記載されている。 As an example of this positive electrode active material, a lithium-containing composite oxide having a composition of "Li (Li 0.2 Ni 0.137 Co 0.125 Mn 0.538 ) O 2 " was obtained (paragraphs [0049] to [0052] to [0052]. ]), lithium-containing composite oxide of the embodiment is "stirred against (15 g), was added by spraying ZrO 2 dispersion (2.4 g), prepared, lithium-containing composite oxide of example The ZrO 2 dispersion was brought into contact with each other while being mixed. Then, the obtained mixture was heated at 300 ° C. for 1 hour in an oxygen-containing atmosphere, and the surface of the lithium-containing composite oxide was coated with the oxide (I) of the Zr element. A positive electrode active material (A) of Example 1 composed of particles (II) to which fine particles adhere was obtained. ”(Paragraph [0053]).

特許文献3には、「母体活物質表面に平均粒径が1μm以下の酸化物粒子およびカーボン粒子の少なくとも一方が付着していることを特徴とする正極活物質。」(請求項1)、「前記母体活物質表面に付着している酸化物粒子が、SiO,SnO,Al,TiO,MgO,Fe,Bi,SbおよびZrOから選択される少なくとも1種の酸化物粒子であることを特徴とする請求項1記載の正極活物質。」(請求項4)が記載されている。 Patent Document 3 states, "A positive electrode active material characterized in that at least one of oxide particles and carbon particles having an average particle size of 1 μm or less is attached to the surface of the parent active material." (Claim 1), ". The oxide particles adhering to the surface of the matrix active material are selected from SiO 2 , SnO 2 , Al 2 O 3 , TiO 2 , MgO, Fe 2 O 3 , Bi 2 O 3 , Sb 2 O 3 and ZrO 2. The positive electrode active material according to claim 1, wherein the positive electrode active material is at least one kind of oxide particles. ”(Claim 4).

そして母材活物質(複合酸化物)がLiCoOであり、酸化物がBiである実施例10及び11について、「この複合酸化物を純水中に分散せしめて活物質分散液を調製する一方、表1に示す平均粒径を有する各酸化物粒子および/またはカーボン粒子を分散させて各種酸化物分散液を調製した。次に、活物質分散液に対して表1に示す付着量となるように酸化物分散液および/またはカーボン分散液を投入し、均一に混合した各分散液を調製した後に、各分散液を濃縮乾燥させることにより、母体活物質粒子表面に酸化物粒子および/またはカーボン粒子が付着した各実施例に係る正極活物質を製造した。」(段落[0069]〜[0074]、表1)と記載されている。 Then, regarding Examples 10 and 11 in which the base material active material (composite oxide) is LiCoO 2 and the oxide is Bi 2 O 3 , "this composite oxide is dispersed in pure water to prepare an active material dispersion liquid. On the other hand, various oxide dispersions were prepared by dispersing each oxide particle and / or carbon particles having the average particle size shown in Table 1. Next, adhesion shown in Table 1 to the active material dispersion. Oxide dispersions and / or carbon dispersions are added in an amount so as to prepare each dispersion that is uniformly mixed, and then each dispersion is concentrated and dried to obtain oxide particles on the surface of the matrix active material particles. And / or produced the positive electrode active material according to each example to which carbon particles were attached ”(paragraphs [0069] to [0074], Table 1).

特表2013−503449号公報Japanese Patent Application Laid-Open No. 2013-503449 特開2012−138197号公報Japanese Unexamined Patent Publication No. 2012-138197 特開2003−109599号公報Japanese Unexamined Patent Publication No. 2003-109599

リチウム過剰型活物質においては、高い放電容量を有するものの、充放電サイクルに伴う容量低下が見られ、充放電サイクル性能に課題がある。この課題は、充放電中に正極活物質からMnが溶出することと関連があると考えられる。リチウム過剰型活物質は、LiMeO型活物質に比べてMnが溶出しやすい。その原因は、リチウム過剰型活物質では、Meに対するMnのモル比Mn/Meが0.5を超え、LiMeO型活物質に比べて高いこと、及び、LiMeO型活物質では、充放電を行ってもMnは基本的にMn4+を維持しMn3+の溶出が起こりにくいのに対して、リチウム過剰型活物質は、LiMnO構造部分を有するため、前記LiMnO構造部分のMnが充放電に伴ってMn3+となり、Mn3+の溶出が起こり易いためと考えられる。 Although the lithium excess type active material has a high discharge capacity, the capacity decreases with the charge / discharge cycle, and there is a problem in the charge / discharge cycle performance. This problem is considered to be related to the elution of Mn from the positive electrode active material during charging and discharging. In the lithium excess type active material, Mn is more easily eluted than in the LiMeO type 2 active material. The cause, in a lithium-excess type active material, than the molar ratio Mn / Me 0.5 of Mn relative to Me, higher than the LiMeO 2 Katakatsu material, and, in LiMeO 2 Katakatsu material, the charge and discharge Even if Mn is carried out, Mn basically maintains Mn 4+ and elution of Mn 3+ is unlikely to occur, whereas the lithium excess type active material has a Li 2 MnO 3 structural portion, so that the Li 2 MnO 3 structural portion has a Li 2 MnO 3 structural portion. It is considered that Mn becomes Mn 3+ with charging and discharging, and Mn 3+ is likely to be eluted.

特許文献1には、リチウム金属酸化物を硝酸ビスマス水溶液中に分散、混合した後、加熱乾燥し、空気中、300〜400℃で焼成して得たカソード材料が記載されている。しかし、そのエックス線回折図である図12(図4に掲載)には、5.0wt%のBiを適用した試料ですら、酸化ビスマスに帰属する回折ピークが見当たらない。したがって、硝酸ビスマスに由来するビスマスは、300〜400℃での焼成工程を経ることにより、正極活物質の表面に酸化ビスマスとしては存在していないことが判る。 Patent Document 1 describes a cathode material obtained by dispersing a lithium metal oxide in an aqueous solution of bismuth nitrate, mixing it, drying it by heating, and firing it in air at 300 to 400 ° C. However, in FIG. 12 (shown in FIG. 4), which is an X-ray diffraction diagram, no diffraction peak attributed to bismuth oxide is found even in the sample to which 5.0 wt% Bi 2 O 3 is applied. Therefore, it can be seen that the bismuth derived from bismuth nitrate does not exist as bismuth oxide on the surface of the positive electrode active material after undergoing the firing step at 300 to 400 ° C.

特許文献2には、リチウム含有複合酸化物の表面にZr等の金属元素の酸化物の微粒子が付着した正極活物質について記載されている、しかし、具体的には、リチウム含有複合酸化物に対してZrO分散液を噴霧して添加、混合し、酸素含有雰囲気下300℃で加熱し、リチウム含有複合酸化物の表面にZr元素の酸化物の微粒子が付着する粒子を得たことしか記載されていない。 Patent Document 2 describes a positive electrode active material in which fine particles of an oxide of a metal element such as Zr are attached to the surface of a lithium-containing composite oxide, but specifically, for a lithium-containing composite oxide. It is only described that the ZrO 2 dispersion was sprayed, added and mixed, and heated at 300 ° C. in an oxygen-containing atmosphere to obtain particles in which fine particles of the oxide of the Zr element adhered to the surface of the lithium-containing composite oxide. Not.

特許文献3には、母体活物質表面に平均粒径が1μm以下のBi等の酸化物粒子が付着している正極活物質について記載されている。しかし、Bi粒子については、LiCoOの分散液とBiの分散液とを混合し、濃縮乾燥して、LiCoO表面にBi粒子を付着させることしか記載されていない。 Patent Document 3 describes a positive electrode active material in which oxide particles such as Bi 2 O 3 having an average particle size of 1 μm or less are attached to the surface of the parent active material. However, the Bi 2 O 3 particles, are mixed with the dispersion of the dispersion and Bi 2 O 3 of LiCoO 2, and concentrated to dryness, it has been described only depositing a Bi 2 O 3 particles LiCoO 2 surface Absent.

本発明は、充放電サイクル性能に優れた非水電解質二次電池用正極活物質、前記活物質を含有する非水電解質二次電池用正極、及び前記正極を備えた非水電解質二次電池、及び前記活物質の製造方法を提供することを課題とする。 The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle performance, a positive electrode for a non-aqueous electrolyte secondary battery containing the active material, and a non-aqueous electrolyte secondary battery provided with the positive electrode. An object of the present invention is to provide a method for producing the active material.

本発明の第一の側面は、リチウム遷移金属複合酸化物の粒子を含む非水電解質二次電池用活物質であって、前記リチウム遷移金属複合酸化物は、α−NaFeO構造を有し、遷移金属元素(Me)としてMn及びNi、又はMn、Ni及びCoを含み、Meに対するMnのモル比Mn/Meが0.5<Mn/Meであり、Meに対するLiのモル比Li/Meが1<Li/Meであり、前記粒子の表面に、Be酸化物、Ge酸化物又はBi酸化物が存在し、CuKα線を用いたエックス線回折図において、Be酸化物、Ge酸化物又はBi酸化物に帰属される回折ピークが観察される(但し、La、Pr、Nd、SmおよびEuからなる群から選択される少なくとも一種の金属の酸化物とGeの酸化物との混合物、並びに、La、Pr、Nd、SmおよびEuからなる群から選択される少なくとも一種の金属とGeとの複合酸化物が存在しているものを除く。)、非水電解質二次電池用正極活物質である。 The first aspect of the present invention is an active material for a non-aqueous electrolyte secondary battery containing particles of a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide has an α-NaFeO 2 structure. Mn and Ni or Mn, Ni and Co are contained as transition metal elements (Me), the molar ratio of Mn to Me is 0.5 <Mn / Me, and the molar ratio of Li to Me is Li / Me. 1 <Li / Me, Be oxide , Ge oxide or Bi oxide is present on the surface of the particles, and in an X-ray diffraction diagram using CuKα rays, Be oxide , Ge oxide or Bi oxide A diffraction peak attributed to is observed (provided that a mixture of at least one metal oxide selected from the group consisting of La, Pr, Nd, Sm and Eu and an oxide of Ge, as well as La, Pr. , Nd, Sm and Eu, except for those in which a composite oxide of at least one metal and Ge selected from the group is present), a positive electrode active material for a non-aqueous electrolyte secondary battery.

本発明の第二及び第三の側面は、前記正極活物質を含有する非水電解質二次電池用正極、及び前記正極を備えた非水電解質二次電池である。 The second and third aspects of the present invention are a positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material, and a non-aqueous electrolyte secondary battery provided with the positive electrode.

本発明の第四の側面は、α−NaFeO構造を有し、遷移金属元素(Me)としてMn及びNi、又はMn、Ni及びCoを含み、Meに対するMnのモル比Mn/Meが0.5<Mn/Meであり、Meに対するLiのモル比Li/Meが1<Li/Meであるリチウム遷移金属複合酸化物の粒子とBe酸化物、Ge酸化物又はBi酸化物とを、固相で混合し、前記粒子の表面に、Be酸化物、Ge酸化物又はBi酸化物を付着させる、非水電解質二次電池用正極活物質の製造方法である。 The fourth aspect of the present invention has an α-NaFeO 2 structure, contains Mn and Ni or Mn, Ni and Co as transition metal elements (Me), and has a molar ratio of Mn to Me, Mn / Me of 0. A solid phase of lithium transition metal composite oxide particles having a molar ratio of Li to Me and Li / Me of 1 <Li / Me and Be oxide , Ge oxide, or Bi oxide. This is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery , in which Be oxide , Ge oxide or Bi oxide is adhered to the surface of the particles.

本発明によれば、充放電サイクル性能に優れた非水電解質二次電池用正極活物質、前記正極活物質の製造方法、前記正極活物質を備える非水電解質二次電池用正極、及び前記正極を有する非水電解質二次電池を提供することができる。 According to the present invention, a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle performance, a method for producing the positive electrode active material, a positive electrode for a non-aqueous electrolyte secondary battery including the positive electrode active material, and the positive electrode. A non-aqueous electrolyte secondary battery having the above can be provided.

本発明の一実施形態(実施例1−1)に係る正極活物質のエックス線回折図X-ray diffraction pattern of the positive electrode active material according to one embodiment of the present invention (Example 1-1) 本発明の一実施形態(実施例1−2)に係る正極活物質のエックス線回折図X-ray diffraction pattern of the positive electrode active material according to one embodiment of the present invention (Example 1-2). 本発明の一実施形態(実施例1−5)に係る正極活物質のエックス線回折図X-ray diffraction pattern of the positive electrode active material according to one embodiment of the present invention (Example 1-5). 先行技術に係る正極活物質のエックス線回折図X-ray diffraction pattern of the positive electrode active material according to the prior art 本発明の一側面に係る非水電解質二次電池の一実施形態を示す斜視図A perspective view showing an embodiment of a non-aqueous electrolyte secondary battery according to one aspect of the present invention. 本発明の一側面に係る非水電解質二次電池を複数個備えた蓄電装置を示す概略図Schematic diagram showing a power storage device including a plurality of non-aqueous electrolyte secondary batteries according to one aspect of the present invention.

本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施形態又は実施例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。 The configuration and action / effect of the present invention will be described with technical ideas. However, the mechanism of action includes estimation, and its correctness does not limit the present invention. It should be noted that the present invention can be practiced in various other forms without departing from its spirit or major features. Therefore, the embodiments or examples described below are merely examples in all respects and should not be construed in a limited manner. Furthermore, all modifications and modifications that fall within the equivalent scope of the claims are within the scope of the present invention.

[正極活物質]
本発明の一実施形態(以下、「本実施形態」という。)に係る非水電解質二次電池用正極活物質は、リチウム遷移金属複合酸化物の粒子を含み、前記粒子の表面に、Be化合物、Ge化合物又はBi化合物が存在している正極活物質である。上記それぞれの化合物としては、酸化物、水酸化物、硝酸塩、硫酸塩、炭酸塩、フッ化物、塩化物、臭化物、ヨウ化物、窒化物、水素化物、硫化物等が挙げられるが、酸化物であるBe酸化物(BeO)、Ge酸化物(GeO)又はBi酸化物(Bi)が好ましい。また、上記Be化合物、Ge化合物又はBi化合物は粒子の形態で存在することが好ましい。
[Positive electrode active material]
The positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention (hereinafter referred to as “the present embodiment”) contains particles of a lithium transition metal composite oxide, and a Be compound is formed on the surface of the particles. , Ge compound or Bi compound is present in the positive electrode active material. Examples of each of the above compounds include oxides, hydroxides, nitrates, sulfates, carbonates, fluorides, chlorides, bromides, iodides, nitrides, hydrides, sulfides, etc. A certain Be oxide (BeO), Ge oxide (GeO 2 ) or Bi oxide (Bi 2 O 3 ) is preferable. Further, the Be compound, Ge compound or Bi compound preferably exists in the form of particles.

前記リチウム遷移金属複合酸化物は、高い放電容量が得られる点から、遷移金属元素(Me)としてMn及びNi、又はMn、Ni及びCoを含む。
前記リチウム遷移金属複合酸化物は、放電容量が高い非水電解質二次電池を得るために、遷移金属元素Meに対するMnのモル比Mn/Meは0.5より大きく、Meに対するLiのモル比Li/Meは、1<Li/Meのリチウム過剰型活物質とする。
上記のリチウム過剰型活物質は、組成式Li1+αMe1−α(0<α)、又はLi1+wMeO2+w(0<w)と表され、典型的には、組成式Li1+α(NiCoMn1−α(0<α、0<x、0≦y、0.5<z、x+y+z=1)と表される。
The lithium transition metal composite oxide contains Mn and Ni, or Mn, Ni and Co as transition metal elements (Me) from the viewpoint of obtaining a high discharge capacity.
In order to obtain a non-aqueous electrolyte secondary battery having a high discharge capacity, the lithium transition metal composite oxide has a molar ratio of Mn to the transition metal element Me, which is Mn / Me larger than 0.5, and a molar ratio of Li to Me, Li. / Me is a lithium excess type active material of 1 <Li / Me.
The above lithium-rich active material is represented by the composition formula Li 1 + α Me 1-α O 2 (0 <α) or Li 1 + w MeO 2 + w (0 <w), and is typically composed of the composition formula. li 1 + α (Ni x Co y Mn z) 1-α O 2 expressed (0 <α, 0 <x , 0 ≦ y, 0.5 <z, x + y + z = 1) and.

Meに対するLiのモル比Li/Meは、1.1〜1.45が好ましく、1.1〜1.4がより好ましく、特に1.1〜1.3が好ましい。この範囲であると、放電容量が特に向上する。
Meに対するMnのモル比Mn/Meは、0.51〜0.7が好ましく、0.51〜0.60がより好ましい。この範囲であると、後述する水酸化物前駆体のタップ密度を向上させることが可能であるため、体積当たりの放電容量が向上する。
リチウム遷移金属複合酸化物に含有されるCoは、初期効率を向上させ、高率放電性能を高める効果があるが、前駆体のタップ密度を高くし、もって正極活物質の体積当たりの放電容量を高めるためには、少ない方が好ましい。また、希少資源であることからコスト高である。したがって、遷移金属元素Meに対するCoのモル比Co/Meは、0.20以下とすることが好ましく、0.10以下であることがより好ましく、0でもよい。
Meに対するNiのモル比Ni/Meは、0.2〜0.5であることが好ましく、0.25〜0.4がより好ましい。この範囲であると、水酸化物前駆体のタップ密度を向上させることが可能であるため、体積当たりの放電容量が向上する。
上記のような組成のリチウム遷移金属複合酸化物を用いることによって、体積当たりの放電容量が大きい非水電解質二次電池を得ることができる。
The molar ratio of Li to Me, Li / Me, is preferably 1.1 to 1.45, more preferably 1.1 to 1.4, and particularly preferably 1.1 to 1.3. Within this range, the discharge capacity is particularly improved.
The molar ratio of Mn to Me, Mn / Me, is preferably 0.51 to 0.7, more preferably 0.51 to 0.60. Within this range, the tap density of the hydroxide precursor, which will be described later, can be improved, so that the discharge capacity per volume is improved.
Co contained in the lithium transition metal composite oxide has the effect of improving the initial efficiency and the high rate discharge performance, but increases the tap density of the precursor and thus increases the discharge capacity per volume of the positive electrode active material. In order to increase it, it is preferable that the amount is small. In addition, the cost is high because it is a rare resource. Therefore, the molar ratio of Co to the transition metal element Me, Co / Me, is preferably 0.20 or less, more preferably 0.10 or less, and may be 0.
The molar ratio of Ni to Me, Ni / Me, is preferably 0.2 to 0.5, more preferably 0.25 to 0.4. Within this range, the tap density of the hydroxide precursor can be improved, so that the discharge capacity per volume is improved.
By using the lithium transition metal composite oxide having the above composition, a non-aqueous electrolyte secondary battery having a large discharge capacity per volume can be obtained.

上記の組成式における酸素のモル数は、化学量論的に計算される値であるが、前記リチウム遷移金属複合酸化物がα−NaFeO型結晶構造を有している限り、必ずしも化学量論比どおりの値でなくてよい。
また、前記リチウム遷移金属複合酸化物は、本発明の効果を損なわない範囲で、Na,K等のアルカリ金属、Mg,Ca等のアルカリ土類金属、Fe等の3d遷移金属に代表される遷移金属など少量の他の金属を含有することを排除するものではない。
The number of moles of oxygen in the above composition formula is a value calculated stoichiometrically, but as long as the lithium transition metal composite oxide has an α-NaFeO type 2 crystal structure, it is not necessarily stoichiometric. It does not have to be the ratio.
Further, the lithium transition metal composite oxide is a transition typified by an alkali metal such as Na and K, an alkaline earth metal such as Mg and Ca, and a 3d transition metal such as Fe, as long as the effects of the present invention are not impaired. It does not preclude the inclusion of small amounts of other metals such as metals.

本実施形態に係るリチウム遷移金属複合酸化物は、α−NaFeO構造を有している。合成後(充放電前)の上記リチウム遷移金属複合酸化物は、空間群P312に帰属され、CuKα管球を用いたエックス線回折図上、2θ=21°付近に超格子ピーク(Li[Li1/3Mn2/3]O型の単斜晶に見られるピーク)が確認される。ところが、一度でも4.5V(Li/Li+)付近を超えた充電を行うと、結晶中のLiの脱離に伴って結晶の対称性が変化することにより、この超格子ピークが消失して、上記リチウム遷移金属複合酸化物は空間群R3−mに帰属されるようになる。ここで、P312は、R3−mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3−mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。なお、「R3−m」は本来「R3m」の「3」の上にバー「−」を施して表記する。 The lithium transition metal composite oxide according to this embodiment has an α-NaFeO 2 structure. The lithium transition metal composite oxide after combining (before charge and discharge) is assigned to the space group P3 1 12, drawing X-ray diffraction using a CuKα tube, 2 [Theta] = 21 ° around the superlattice peak (Li [Li 1/3 Mn 2/3] O 2 type peaks seen in monoclinic) is confirmed. However, if charging exceeds 4.5 V (Li / Li + ) even once, this superlattice peak disappears because the symmetry of the crystal changes with the desorption of Li in the crystal. , The lithium transition metal composite oxide will be assigned to the space group R3-m. Here, P3 1 12 is a crystal structure model in which the atomic positions of the 3a, 3b, and 6c sites in R3-m are subdivided, and when order is recognized in the atomic arrangement in R3-m, the P3 1 12 model. Is adopted. In addition, "R3-m" is originally described by adding a bar "-" on "3" of "R3m".

本実施形態に係る正極活物質は、前記リチウム遷移金属複合酸化物の粒子の表面にBe化合物、Ge化合物又はBi化合物が存在している。Be化合物、Ge化合物又はBi化合物の存在により、充放電サイクル性能に優れた正極活物質を提供することができる。その理由は必ずしも明らかではないが、粒子の表面にBe化合物、Ge化合物又はBi化合物という特定の金属化合物が存在することによって、リチウム過剰型のリチウム遷移金属複合酸化物の構成元素であるMnが充放電に伴いMn3+となって非水電解質中に溶出する現象が抑制され、充放電サイクル性能が向上すると推測される。 In the positive electrode active material according to the present embodiment, a Be compound, a Ge compound, or a Bi compound is present on the surface of the particles of the lithium transition metal composite oxide. The presence of the Be compound, the Ge compound, or the Bi compound makes it possible to provide a positive electrode active material having excellent charge / discharge cycle performance. The reason is not always clear, but the presence of a specific metal compound such as Be compound, Ge compound or Bi compound on the surface of the particles fills Mn, which is a constituent element of the lithium excess type lithium transition metal composite oxide. It is presumed that the phenomenon that Mn 3+ becomes Mn 3+ with discharge and elutes into the non-aqueous electrolyte is suppressed, and the charge / discharge cycle performance is improved.

本実施形態に係る正極活物質において、リチウム遷移金属複合酸化物の表面に存在するBe化合物、Ge化合物又はBi化合物は、粒子の表面の少なくとも一部をコートする量で存在することが好ましい。リチウム遷移金属複合酸化物に対して、Be、Ge又はBi元素換算で0.01〜5質量%の添加であることが好ましく、0.1〜1質量%がより好ましい。
0.01質量%以上とすることにより、充放電に伴うMn3+の溶出を抑制することができ、5質量%以下とすることにより正極活物質をコートする化合物由来の抵抗による、放電容量の低下を抑制することができる。
In the positive electrode active material according to the present embodiment, the Be compound, Ge compound or Bi compound present on the surface of the lithium transition metal composite oxide is preferably present in an amount that coats at least a part of the surface of the particles. The addition is preferably 0.01 to 5% by mass, more preferably 0.1 to 1% by mass, in terms of Be, Ge or Bi elements with respect to the lithium transition metal composite oxide.
When it is 0.01% by mass or more , elution of Mn 3+ due to charging and discharging can be suppressed, and when it is 5% by mass or less, the discharge capacity is lowered due to the resistance derived from the compound that coats the positive electrode active material. Can be suppressed.

本実施形態に係る正極活物質において、粒子表面にBe化合物、Ge化合物又はBi化合物が存在することは、エックス線回折測定を行い、BeO等のBe化合物、GeO等のGe化合物又はBi等のBi化合物に帰属される回折ピークが観察されることにより、確認することができる。
前記回折ピークは、充放電サイクルの前後ともに確認することができる。
充放電サイクル前については、電池に組み込まれる前の正極活物質をエックス線回折測定に供すればよい。
充放電サイクル後については、電池を解体して取り出した電極から試料を採取する場合、電池を解体する前に、次の手順によって電池を放電状態とする。まず、0.1Cの電流で、正極の電位が4.3V(vs.Li/Li)となる電池電圧まで定電流充電を行い、同じ電池電圧にて、電流値が0.01Cに減少するまで定電圧充電を行い、充電末状態とする。30分の休止後、0.1Cの電流で、正極の電位が2.0V(vs.Li/Li)となる電池電圧に至るまで定電流放電を行い、放電末状態とする。金属リチウム電極を負極に用いた電池であれば、当該電池を放電末状態又は充電末状態とした後に電池を解体して電極を取り出せばよいが、金属リチウム電極を負極に用いた電池でない場合は、正極電位を正確に制御するため、電池を解体して電極を取り出した後に、金属リチウム電極を対極とした電池を組立ててから、上記の手順に沿って、放電末状態に調整する。電池の解体から測定までの作業は露点−60℃以下のアルゴン雰囲気中で行う。取り出した正極板は、ジメチルカーボネートを用いて電極に付着した電解質を十分に洗浄し室温にて一昼夜の乾燥後、アルミニウム箔集電体上の合剤を採取する。採取した合剤をめのう乳鉢で軽くほぐし、エックス線回折測定用試料ホルダーに配置して測定に供する。
In the positive electrode active material according to the present embodiment, the presence of Be compound, Ge compound or Bi compound on the particle surface is determined by performing X-ray diffraction measurement, and performing X-ray diffraction measurement, Be compound such as BeO, Ge compound such as GeO 2 or Bi 2 O 3 It can be confirmed by observing the diffraction peak attributed to the Bi compound such as.
The diffraction peak can be confirmed both before and after the charge / discharge cycle.
Before the charge / discharge cycle, the positive electrode active material before being incorporated into the battery may be subjected to X-ray diffraction measurement.
After the charge / discharge cycle, when collecting a sample from the electrode taken out by disassembling the battery, the battery is discharged by the following procedure before disassembling the battery. First, with a current of 0.1 C, constant current charging is performed up to a battery voltage at which the potential of the positive electrode becomes 4.3 V (vs. Li / Li +), and at the same battery voltage, the current value decreases to 0.01 C. It is charged at a constant voltage until it reaches the end of charging. After a 30-minute rest, constant current discharge is performed with a current of 0.1 C until the potential of the positive electrode reaches a battery voltage of 2.0 V (vs. Li / Li +), and the state is at the end of discharge. If the battery uses a metallic lithium electrode as the negative electrode, the battery may be disassembled and the electrode may be taken out after the battery is in the end-discharged state or the end-of-charge state. In order to accurately control the positive electrode potential, after disassembling the battery and taking out the electrode, the battery with the metal lithium electrode as the counter electrode is assembled, and then the battery is adjusted to the end-discharge state according to the above procedure. The work from battery disassembly to measurement is performed in an argon atmosphere with a dew point of -60 ° C or lower. The removed positive electrode plate is thoroughly washed with dimethyl carbonate to thoroughly wash the electrolyte adhering to the electrodes, dried at room temperature for a whole day and night, and then the mixture on the aluminum foil current collector is collected. Lightly loosen the collected mixture in an agate mortar and place it in a sample holder for X-ray diffraction measurement for measurement.

本願明細書において、エックス線回折測定及びこれを用いた半値幅の測定は、次の条件にて行う。線源はCuKα、印加電圧は30kV、印加電流は15mAとする。サンプリング幅は0.01deg、走査時間は14分(スキャンスピードは5.0deg/min)、発散スリット幅は0.625deg、受光スリット幅は開放、散乱スリットは8.0mmとする。解析ソフトはエックス線回折装置に付属の「PDXL」を用いる。 In the specification of the present application, the X-ray diffraction measurement and the measurement of the half width using the same are performed under the following conditions. The radiation source is CuKα, the applied voltage is 30 kV, and the applied current is 15 mA. The sampling width is 0.01 deg, the scanning time is 14 minutes (scan speed is 5.0 deg / min), the divergent slit width is 0.625 deg, the light receiving slit width is open, and the scattering slit is 8.0 mm. The analysis software uses "PDXL" attached to the X-ray diffractometer.

[正極活物質の製造方法]
次に、本実施形態に係るリチウム遷移金属複合酸化物の粒子を含む正極活物質の製造方法について説明する。
本実施形態に係るリチウム遷移金属複合酸化物は、基本的に、目的とする酸化物の組成に基づく量比となるように金属元素(Li,Ni,Co,Mn等)を含有する原料を調整し、これを焼成することによって得ることができる。ただし、Li原料の量については、焼成中にLi原料の一部が消失することを見込んで、1〜5%程度過剰に仕込むことが好ましい。
目的とする組成の酸化物を作製するにあたり、Li,Ni,Co,Mnのそれぞれの塩を混合・焼成するいわゆる「固相法」や、あらかじめNi,Co,Mnを一粒子中に存在させた共沈前駆体を作製しておき、これにLi化合物を混合・焼成する「共沈法」が知られている。「固相法」による合成過程では、特にMnはNi,Coに対して均一に固溶しにくいため、各元素が一粒子中に均一に分布した試料を得ることは困難である。これまで文献などにおいては、固相法によってNiやCoの一部にMnを固溶(LiNi1−xMnなど)しようという試みが多数なされているが、「共沈法」を選択する方が原子レベルで均一相を得ることが容易である。そこで、後述する実施例においては、「共沈法」を採用した。
[Manufacturing method of positive electrode active material]
Next, a method for producing a positive electrode active material containing particles of a lithium transition metal composite oxide according to the present embodiment will be described.
The lithium transition metal composite oxide according to the present embodiment is basically prepared with a raw material containing a metal element (Li, Ni, Co, Mn, etc.) so as to have an amount ratio based on the composition of the target oxide. It can be obtained by firing this. However, regarding the amount of the Li raw material, it is preferable to add an excess of about 1 to 5% in anticipation that a part of the Li raw material will disappear during firing.
In producing an oxide having the desired composition, the so-called "solid phase method" in which salts of Li, Ni, Co, and Mn are mixed and fired, or Ni, Co, and Mn are present in one particle in advance. A "coprecipitation method" is known in which a coprecipitation precursor is prepared, and a Li compound is mixed and calcined therein. In the synthesis process by the "solid phase method", it is difficult to obtain a sample in which each element is uniformly distributed in one particle, because Mn is particularly difficult to dissolve uniformly in Ni and Co. In the literature, many attempts have been made to dissolve Mn in a part of Ni or Co by the solid phase method (LiNi 1-x Mn x O 2 etc.), but the "coprecipitation method" is selected. It is easier to obtain a uniform phase at the atomic level. Therefore, in the examples described later, the "coprecipitation method" was adopted.

共沈前駆体を作製するにあたって、Co,Ni,MnのうちMnは酸化されやすく、Co,Ni,Mnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Co,Ni,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。特に本発明の組成範囲においては、Mn比率がCo,Ni比率に比べて高いので、水溶液中の溶存酸素を除去することが重要である。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)等を用いることができる。また、水溶液中にヒドラジン等の還元剤を含有させておいてもよい。 In producing a coprecipitation precursor, Mn among Co, Ni, and Mn is easily oxidized, and it is not easy to produce a coprecipitation precursor in which Co, Ni, and Mn are uniformly distributed in a divalent state. , Co, Ni, Mn at the atomic level tends to be inadequate. In particular, in the composition range of the present invention, the Mn ratio is higher than the Co and Ni ratios, so it is important to remove the dissolved oxygen in the aqueous solution. Examples of the method for removing dissolved oxygen include a method of bubbling a gas containing no oxygen. The gas containing no oxygen is not limited, but nitrogen gas, argon gas, carbon dioxide (CO 2 ) and the like can be used. Further, a reducing agent such as hydrazine may be contained in the aqueous solution.

溶液中でCo、Ni及びMnを含有する化合物を共沈させて前駆体を製造する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈水酸化物前駆体として作製する場合には、8〜14とすることができる。タップ密度を大きくするためには、pHを制御することが好ましい。pHを11.5以下とすることにより、タップ密度を1.00g/cm以上とすることができ、体積当たりの放電容量を向上させることができる。さらに、pHを11.0以下とすることにより、粒子成長速度を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。 The pH in the step of coprecipitating a compound containing Co, Ni and Mn in a solution to produce a precursor is not limited, but when the coprecipitated precursor is produced as a coprecipitated hydroxide precursor. Can be 8-14. In order to increase the tap density, it is preferable to control the pH. By setting the pH to 11.5 or less, the tap density can be set to 1.00 g / cm 3 or more, and the discharge capacity per volume can be improved. Further, by setting the pH to 11.0 or less, the particle growth rate can be promoted, so that the stirring duration after the completion of dropping the raw material aqueous solution can be shortened.

前記共沈前駆体は、Mn及びNi、又はMn、Ni及びCoが均一に混合された化合物であることが好ましい。本実施形態においては、正極活物質内部を密にするために、共沈前駆体を水酸化物とすることが好ましい。また、錯化剤を用いた晶析反応等を用いることによって、より嵩密度の大きな前駆体を作製することもできる。この場合、Li源と混合・焼成することでより高密度の活物質を得ることができるので、電極の体積当たりのエネルギー密度を向上させることができる。 The coprecipitation precursor is preferably a compound in which Mn and Ni or Mn, Ni and Co are uniformly mixed. In the present embodiment, the coprecipitation precursor is preferably a hydroxide in order to make the inside of the positive electrode active material dense. Further, a precursor having a larger bulk density can be produced by using a crystallization reaction using a complexing agent or the like. In this case, since a higher density active material can be obtained by mixing and firing with the Li source, the energy density per volume of the electrode can be improved.

前記共沈前駆体の原料は、Mn化合物としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を、Ni化合物としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co化合物としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を一例として挙げることができる。 The raw material of the co-precipitation precursor is manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, manganese acetate or the like as the Mn compound, and nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, nickel acetate as the Ni compound. As examples of the Co compound, cobalt sulfate, cobalt nitrate, cobalt acetate and the like can be mentioned.

本実施形態においては、アルカリ性を保った反応槽に前記共沈前駆体の原料水溶液を滴下供給して共沈水酸化物前駆体を得る反応晶析法を採用することが好ましい。ここで、中和剤には水酸化ナトリウム、水酸化リチウム、又は水酸化カリウムを使用することができる。 In the present embodiment, it is preferable to adopt a reaction crystallization method in which an aqueous solution of a raw material for the coprecipitation precursor is dropped and supplied to a reaction vessel maintained alkaline to obtain a coprecipitation hydroxide precursor. Here, sodium hydroxide, lithium hydroxide, or potassium hydroxide can be used as the neutralizing agent.

前記原料水溶液の滴下速度は、生成する共沈前駆体の1粒子内における元素分布の均一性に大きく影響を与える。特にMnは、CoやNiと均一な元素分布を形成しにくいので注意が必要である。好ましい滴下速度については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、30mL/min以下が好ましい。放電容量を向上させるためには、滴下速度は10mL/min以下がより好ましく、5mL/min以下が最も好ましい。 The dropping rate of the raw material aqueous solution greatly affects the uniformity of the element distribution within one particle of the produced coprecipitation precursor. In particular, it is necessary to note that Mn does not easily form a uniform element distribution with Co and Ni. The preferable dropping rate is affected by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc., but is preferably 30 mL / min or less. In order to improve the discharge capacity, the dropping rate is more preferably 10 mL / min or less, and most preferably 5 mL / min or less.

また、反応槽内に錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転及び攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、共沈前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。従って、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた共沈前駆体を得ることができる。 Further, when a complexing agent is present in the reaction vessel and certain convection conditions are applied, the rotation of the particles and the revolution in the stirring vessel are promoted by further stirring after the completion of dropping the raw material aqueous solution. In this process, the particles gradually grow into convective spheres while colliding with each other. That is, the coprecipitation precursor undergoes a two-step reaction of a metal complex formation reaction when the raw material aqueous solution is dropped into the reaction vessel and a precipitation formation reaction that occurs while the metal complex is retained in the reaction vessel. It is formed. Therefore, a coprecipitation precursor having a target particle size can be obtained by appropriately selecting a time for continuing stirring after the completion of dropping of the raw material aqueous solution.

原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5時間以上が好ましく、1時間以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が充分でないものとなる虞を低減させるため、15時間以下が好ましく、10時間以下がより好ましく、5時間以下が最も好ましい。 The preferable stirring duration after the completion of dropping the aqueous solution of the raw material is affected by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc., but is 0.5 hours or more in order to grow the particles as uniform spherical particles. Is preferable, and 1 hour or more is more preferable. Further, in order to reduce the possibility that the output performance in the low SOC region of the battery becomes insufficient due to the particle size becoming too large, 15 hours or less is preferable, 10 hours or less is more preferable, and 5 hours or less is most preferable.

また、水酸化物前駆体及びリチウム遷移金属複合酸化物の2次粒子の粒径を好適なものとするための好ましい攪拌継続時間は、制御するpHによって異なる。例えば、pHを8〜14に制御した場合には、撹拌継続時間は0.5〜5時間が好ましく、pHを8〜11.5に制御した場合には、撹拌継続時間は0.5〜3時間が好ましい。 Further, the preferable stirring duration for making the particle size of the secondary particles of the hydroxide precursor and the lithium transition metal composite oxide suitable depends on the pH to be controlled. For example, when the pH is controlled to 8 to 14, the stirring duration is preferably 0.5 to 5 hours, and when the pH is controlled to 8 to 11.5, the stirring duration is 0.5 to 3 Time is preferred.

水酸化物前駆体の粒子を、中和剤として水酸化ナトリウム等のナトリウム化合物を使用して作製した場合、その後の洗浄工程において粒子に付着しているナトリウムイオンを洗浄除去する。例えば、作製した水酸化物前駆体を吸引ろ過して取り出す際に、イオン交換水100mLによる洗浄回数を5回以上とするような条件を採用することができる。 When the particles of the hydroxide precursor are prepared by using a sodium compound such as sodium hydroxide as a neutralizing agent, sodium ions adhering to the particles are washed and removed in the subsequent washing step. For example, when the produced hydroxide precursor is suction-filtered and taken out, a condition can be adopted such that the number of washings with 100 mL of ion-exchanged water is 5 times or more.

本実施形態に係るリチウム遷移金属複合酸化物の粒子は、前記水酸化物前駆体とLi化合物とを混合した後、熱処理することで好適に作製することができる。Li化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム等を用いることで好適に製造することができる。但し、Li化合物の量については、焼成中にLi化合物の一部が消失することを見込んで、1〜5%程度過剰に仕込むことが好ましい。 The particles of the lithium transition metal composite oxide according to the present embodiment can be suitably produced by mixing the hydroxide precursor and the Li compound and then heat-treating the particles. As the Li compound, lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate and the like can be suitably produced. However, regarding the amount of the Li compound, it is preferable to add an excess of about 1 to 5% in anticipation that a part of the Li compound will disappear during firing.

焼成温度は、リチウム遷移金属複合酸化物の粒子を含む活物質の可逆容量に影響を与える。
焼成温度が高すぎると、得られた活物質が酸素放出反応を伴って崩壊すると共に、主相の六方晶に加えて単斜晶のLi[Li1/3Mn2/3]O型に規定される相が、固溶相としてではなく、分相して観察される傾向がある。このような分相が多く含まれすぎると、活物質の可逆容量の減少を導くので好ましくない。このような材料では、X線回折図上35°付近及び45°付近に不純物ピークが観察される。従って、焼成温度は、活物質の酸素放出反応の影響する温度未満とすることが好ましい。活物質の酸素放出温度は、本実施形態に係るリチウム遷移金属複合酸化物の組成範囲においては、概ね1000℃以上であるが、組成によって酸素放出温度に若干の差があるので、あらかじめ活物質の酸素放出温度を確認しておくことが好ましい。特に試料に含まれるCo量が多いほど前駆体の酸素放出温度は低温側にシフトすることが確認されているので注意が必要である。活物質の酸素放出温度を確認する方法としては、焼成反応過程をシミュレートするために、共沈前駆体とリチウム化合物を混合したものを熱重量分析(DTA−TG測定)に供してもよいが、この方法では測定機器の試料室に用いている白金が揮発したLi成分により腐食されて機器を傷めるおそれがあるので、あらかじめ500℃程度の焼成温度を採用してある程度結晶化を進行させた組成物を熱重量分析に供することが好ましい。
また、焼成温度が高すぎると、活物質に分相が確認されない場合においても、活物質中のリチウム遷移金属複合酸化物の結晶化が進みすぎて結晶子が大きくなり、Liイオンの拡散が十分に行われないため、体積あたりの放電容量が低下する。
The calcination temperature affects the reversible capacity of the active material containing the particles of the lithium transition metal composite oxide.
If the firing temperature is too high, the obtained active material will disintegrate with an oxygen release reaction, and in addition to the hexagonal crystals of the main phase, the monoclinic Li [Li 1/3 Mn 2/3 ] O 2 type will be formed. The defined phase tends to be observed as a phase split rather than as a solid solution phase. If too much of such a phase separation is contained, it leads to a decrease in the reversible capacity of the active material, which is not preferable. In such a material, impurity peaks are observed near 35 ° and around 45 ° on the X-ray diffraction pattern. Therefore, the firing temperature is preferably lower than the temperature affected by the oxygen release reaction of the active material. The oxygen release temperature of the active material is approximately 1000 ° C. or higher in the composition range of the lithium transition metal composite oxide according to the present embodiment, but since there is a slight difference in the oxygen release temperature depending on the composition, the oxygen release temperature of the active material is preliminarily used. It is preferable to check the oxygen release temperature. In particular, it has been confirmed that the oxygen release temperature of the precursor shifts to the lower temperature side as the amount of Co contained in the sample increases, so caution is required. As a method for confirming the oxygen release temperature of the active material, a mixture of a co-precipitation precursor and a lithium compound may be subjected to thermogravimetric analysis (DTA-TG measurement) in order to simulate the firing reaction process. In this method, the platinum used in the sample chamber of the measuring instrument may be corroded by the volatilized Li component and damage the instrument. Therefore, a firing temperature of about 500 ° C. is adopted in advance to promote crystallization to some extent. It is preferable to subject the object to thermogravimetric analysis.
Further, if the firing temperature is too high, even if phase separation is not confirmed in the active material, the crystallization of the lithium transition metal composite oxide in the active material proceeds too much, the crystallites become large, and the diffusion of Li ions is sufficient. Since this is not done, the discharge capacity per volume decreases.

一方、焼成温度が低すぎると、結晶化が十分に進まず、電極特性が低下する傾向がある。本実施形態に係るリチウム遷移金属複合酸化物においては、焼成温度は少なくとも700℃以上とすることが好ましい。十分に結晶化させることにより、結晶粒界の抵抗を軽減し、円滑なリチウムイオン輸送を促すことができる。 On the other hand, if the firing temperature is too low, crystallization does not proceed sufficiently and the electrode characteristics tend to deteriorate. In the lithium transition metal composite oxide according to the present embodiment, the firing temperature is preferably at least 700 ° C. or higher. Sufficient crystallization can reduce the resistance of grain boundaries and promote smooth lithium ion transport.

上記のように、好ましい焼成温度は、活物質の酸素放出温度により異なるから、一概に焼成温度の好ましい範囲を設定することは難しいが、モル比Li/Meが1.1〜1.4である場合に体積当たりの放電容量を充分なものとするために、焼成温度を700〜900℃とすることが好ましい。 As described above, since the preferable firing temperature differs depending on the oxygen release temperature of the active material, it is difficult to generally set a preferable range of the firing temperature, but the molar ratio Li / Me is 1.1 to 1.4. In some cases, the firing temperature is preferably 700 to 900 ° C. in order to make the discharge capacity per volume sufficient.

本実施形態に係る活物質は、上記の製法により得られたリチウム遷移金属複合酸化物の粒子の表面にBe化合物、Ge化合物又はBi化合物を存在させる手段として、前記粒子とBe化合物、Ge化合物又はBi化合物とを固相混合することが好ましい。 The active material according to the present embodiment is a means for allowing the Be compound, Ge compound or Bi compound to exist on the surface of the particles of the lithium transition metal composite oxide obtained by the above production method, and the particles and the Be compound, Ge compound or It is preferable to mix the Bi compound in a solid phase.

固相混合は、具体的にはボールミル装置を用いて行うことができる。
リチウム遷移金属複合酸化物の粒子とBeO等のBe化合物、GeO等のGe化合物又はBi等のBi化合物の各粉末とをZrO等のセラミックボールとともにポットに投入し、回転させることにより乾式混合を行うことが好ましい。トルエン等を添加して湿式混合を行ってもよいが、乾式混合を選択することにより、大きな剪断力がかかって粒子の割れが生じるおそれを低減できるため、好ましい。また、混合時の回転速度および回転時間を大きくしすぎないことにより、粒子の割れが生じるおそれを低減できるため、回転速度は50〜300rpmが好ましく、回転時間は5〜120分が好ましい。
上記のような固相混合を行うことにより、リチウム遷移金属複合酸化物の粒子の表面にBe化合物、Ge化合物又はBi化合物が粒子の形態で付着していると推定される。
本実施形態においては、リチウム遷移金属複合酸化物の粒子とBe化合物、Ge化合物又はBi化合物を固相混合した後、焼成しないで、そのまま正極活物質とする。
Specifically, solid phase mixing can be performed using a ball mill device.
Particles of lithium transition metal composite oxide and powders of Be compound such as BeO , Ge compound such as GeO 2 or Bi compound such as Bi 2 O 3 are put into a pot together with a ceramic ball such as ZrO 2 and rotated. It is preferable to carry out dry mixing. Wet mixing may be performed by adding toluene or the like, but it is preferable to select dry mixing because a large shearing force can be applied to reduce the possibility of particle cracking. Further, since the risk of particle cracking can be reduced by not increasing the rotation speed and the rotation time at the time of mixing too much, the rotation speed is preferably 50 to 300 rpm, and the rotation time is preferably 5 to 120 minutes.
It is presumed that the Be compound, Ge compound, or Bi compound is attached to the surface of the particles of the lithium transition metal composite oxide in the form of particles by performing the solid phase mixing as described above.
In the present embodiment, the particles of the lithium transition metal composite oxide are mixed in a solid phase with a Be compound, a Ge compound or a Bi compound, and then the positive electrode active material is used as it is without firing.

[負極活物質]
負極活物質としては、限定されるものではなく、リチウムイオンを析出あるいは吸蔵することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb、Sn系などの合金系材料、リチウム金属、リチウム合金(リチウム−シリコン、リチウム−アルミニウム、リチウム−鉛、リチウム−スズ、リチウム−アルミニウム−スズ、リチウム−ガリウム、及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム−チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。
[Negative electrode active material]
The negative electrode active material is not limited, and any material may be selected as long as it is in a form capable of precipitating or occluding lithium ions. For example, Li [Li 1/3 Ti 5/3] O 4 titanium-based material of lithium titanate having a spinel type crystal structure typified by, Si and Sb, the alloy-based material such as Sn-based, lithium metal, lithium Alloys (lithium metal-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), lithium composite oxides (lithium-titanium), oxidation In addition to silicon, alloys capable of storing and releasing lithium, carbon materials (for example, graphite, hard carbon, low-temperature calcined carbon, amorphous carbon, etc.) and the like can be mentioned.

負極活物質の粉体は、平均粒子サイズ100μm以下であることが好ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。 The powder of the negative electrode active material preferably has an average particle size of 100 μm or less. A crusher or a classifier is used to obtain the powder in a predetermined shape. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve, or the like is used. At the time of pulverization, wet pulverization in which water or an organic solvent such as hexane coexists can also be used. The classification method is not particularly limited, and a sieve, a wind power classifier, or the like is used as needed for both dry and wet types.

[その他の電極構成成分]
以上、正極及び負極の主要構成成分である正極活物質及び負極活物質について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。
[Other electrode components]
The positive electrode active material and the negative electrode active material, which are the main constituents of the positive electrode and the negative electrode, have been described in detail above. A filler or the like may be contained as another constituent component.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。 The conductive agent is not limited as long as it is an electronically conductive material that does not adversely affect the battery performance, but is usually natural graphite (scaly graphite, scaly graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, etc. Conductive materials such as Ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, conductive ceramic material, etc. can be included as one kind or a mixture thereof. ..

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが好ましい。導電剤の添加量は、正極または負極の総重量に対して0.1重量%〜50重量%が好ましく、特に0.5重量%〜30重量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため好ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。 Among these, acetylene black is preferable as the conductive agent from the viewpoint of electron conductivity and coatability. The amount of the conductive agent added is preferably 0.1% by weight to 50% by weight, particularly preferably 0.5% by weight to 30% by weight, based on the total weight of the positive electrode or the negative electrode. In particular, it is preferable to use acetylene black pulverized into ultrafine particles of 0.1 to 0.5 μm because the required carbon amount can be reduced. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, it is possible to mix powder mixers such as V-type mixers, S-type mixers, scouring machines, ball mills, and planetary ball mills in a dry or wet manner.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR),フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して1〜50重量%が好ましく、特に2〜30重量%が好ましい。 Examples of the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene and polypropylene, ethylene-propylene-dienter polymer (EPDM), sulfonated EPDM and styrene butadiene. A polymer having rubber elasticity such as rubber (SBR) and fluororubber can be used as one kind or a mixture of two or more kinds. The amount of the binder added is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight, based on the total weight of the positive electrode or the negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料を使用することができる。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総重量に対して添加量は30重量%以下が好ましい。 As the filler, a material that does not adversely affect the battery performance can be used. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The amount of the filler added is preferably 30% by weight or less with respect to the total weight of the positive electrode or the negative electrode.

正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、およびその他の材料を混練し合剤とし、N−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、または圧着して50℃〜250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが好ましいが、これらに限定されるものではない。 For the positive electrode and the negative electrode, the main components (positive electrode active material for the positive electrode, negative electrode material for the negative electrode) and other materials are kneaded to form a mixture, which is mixed with an organic solvent such as N-methylpyrrolidone or toluene or water. After that, the obtained mixed solution is coated on a current collector described in detail below, or crimped and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours to be suitably produced. .. Regarding the coating method, for example, it is preferable to apply the coating to an arbitrary thickness and an arbitrary shape by using a means such as a roller coating such as an applicator roll, a screen coating, a doctor blade method, a spin coating, or a bar coater. It is not limited.

[非水電解質]
本実施形態に係る非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトン又はその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
[Non-aqueous electrolyte]
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery according to the present embodiment is not limited, and those generally proposed for use in lithium batteries and the like can be used. Examples of the non-aqueous solvent used for the non-aqueous electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate and vinylene carbonate; cyclic esters such as γ-butylolactone and γ-valerolactone; dimethyl carbonate, Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; Chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane, methyl diglime; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfolane, sulton or derivatives thereof, etc. alone or two or more thereof Examples thereof include, but are not limited to, mixtures.

非水電解質に用いる電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF、LiSCN、LiBr、LiI、LiSO、Li10Cl10、NaClO、NaI、NaSCN、NaBr、KClO、KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、(CHNBF、(CHNBr、(CNClO、(CNI、(CNBr、(n−CNClO、(n−CNI、(CN−maleate、(CN−benzoate、(CN−phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr. , KClO 4 , KSCN and other inorganic ionic salts containing one of lithium (Li), sodium (Na) or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5) SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C) 4 H 9 ) 4 NI, (C 2 H 5 ) 4 N-maleate, (C 2 H 5 ) 4 N-benzoate, (C 2 H 5 ) 4 N-phthate, lithium stearyl sulfonate, lithium octyl sulfonate, Examples thereof include organic ionic salts such as lithium dodecylbenzenesulfonate, and these ionic compounds can be used alone or in combination of two or more.

さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩を混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より好ましい。
また、非水電解質として常温溶融塩やイオン液体を用いてもよい。
Further, by using a mixture of LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further lowered, so that the temperature is low. It is more preferable because the characteristics can be further enhanced and self-discharge can be suppressed.
Further, a room temperature molten salt or an ionic liquid may be used as the non-aqueous electrolyte.

非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、0.5mol/l〜2.5mol/lである。 The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l, more preferably 0.5 mol / l to 2 in order to surely obtain a non-aqueous electrolyte battery having high battery characteristics. It is .5 mol / l.

[セパレータ]
セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。
[Separator]
As the separator, it is preferable to use a porous membrane, a non-woven fabric, or the like exhibiting excellent high-rate discharge performance alone or in combination. Examples of the material constituting the separator for a non-aqueous electrolyte battery include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, foot Vinylidene-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene Examples thereof include a copolymer, a vinylidene fluoride-ethylene-tetrafluoroethylene copolymer and the like.

セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。 The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, from the viewpoint of charge / discharge characteristics, the porosity is preferably 20% by volume or more.

また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。 Further, as the separator, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinylpyrrolidone, polyvinylidene fluoride and the like and an electrolyte may be used. It is preferable to use the non-aqueous electrolyte in the gel state as described above because it has an effect of preventing liquid leakage.

さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため好ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。 Further, it is preferable to use the separator in combination with the above-mentioned porous membrane, non-woven fabric or the like and the polymer gel because the liquid retention property of the electrolyte is improved. That is, the pro-solvent polymer is formed by forming a film coated with a pro-solvent polymer having a thickness of several μm or less on the surface of the polyethylene micropore membrane and the micropore wall surface, and retaining the electrolyte in the micropores of the film. Gells.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。 Examples of the prosolve polymer include, in addition to polyvinylidene fluoride, a polymer in which an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a monomer having an isocyanato group or the like is crosslinked. The monomer can be subjected to a cross-linking reaction by heating or using ultraviolet rays (UV) in combination with a radical initiator, or by using active rays such as an electron beam (EB).

[非水電解質二次電池の構成]
本実施形態に係る非水電解質二次電池の構成については特に限定されるものではなく、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。
図5に、本発明に係る非水電解質二次電池の一実施形態である矩形状のリチウム二次電池1の外観斜視図を示す。なお、同図は、容器内部を透視した図としている。図1に示す非水電解質二次電池1は、電極群2が電池容器3に収納されている。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
[Structure of non-aqueous electrolyte secondary battery]
The configuration of the non-aqueous electrolyte secondary battery according to the present embodiment is not particularly limited, and is a cylindrical battery having a positive electrode, a negative electrode, and a roll-shaped separator, a square battery (rectangular battery), and a flat battery. Etc. are given as an example.
FIG. 5 shows an external perspective view of a rectangular lithium secondary battery 1, which is an embodiment of the non-aqueous electrolyte secondary battery according to the present invention. The figure is a perspective view of the inside of the container. In the non-aqueous electrolyte secondary battery 1 shown in FIG. 1, the electrode group 2 is housed in the battery container 3. The electrode group 2 is formed by winding a positive electrode having a positive electrode active material and a negative electrode having a negative electrode active material through a separator. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4', and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5'.

[蓄電装置の構成]
本発明は、上記の非水電解質二次電池を複数個集合した蓄電装置としても実現することができる。蓄電装置の一実施形態を図6に示す。図6において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
[Configuration of power storage device]
The present invention can also be realized as a power storage device in which a plurality of the above-mentioned non-aqueous electrolyte secondary batteries are assembled. An embodiment of the power storage device is shown in FIG. In FIG. 6, the power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of non-aqueous electrolyte secondary batteries 1. The power storage device 30 can be mounted as a power source for automobiles such as electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid vehicles (PHEV).

<正極活物質の作製>
(実施例1−1)
≪前駆体の作製≫
正極活物質の作製にあたって、反応晶析法を用いて水酸化物前駆体を作製した。まず、硫酸ニッケル6水和物315.4g、硫酸コバルト7水和物168.6g、及び硫酸マンガン5水和物530.4gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が30:15:55となる1.0Mの硫酸塩水溶液を作製した。次に、5Lの反応槽に2Lのイオン交換水を注ぎ、イオン交換水中に含まれる酸素濃度を低減させるため、Nガスを30分間バブリングさせた。反応槽の温度は50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を1500rpmの回転速度で攪拌しながら、反応層内に対流が十分おこるように設定した。前記硫酸塩原液を1.3mL/minの速度で反応槽に50時間滴下した。ここで、滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、1.25Mのアンモニア、及び0.1Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHが常に9.8(±0.1)を保つように制御するとともに、反応液の一部をオーバーフローにより排出することにより、反応液の総量が常に2Lを超えないように制御した。滴下終了後、反応槽内の攪拌をさらに1時間継続した。攪拌の停止後、室温で12時間以上静置した。次に、吸引ろ過装置を用いて、反応槽内に生成した水酸化物前駆体粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20時間乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、水酸化物前駆体を作製した。
<Preparation of positive electrode active material>
(Example 1-1)
≪Preparation of precursor≫
In preparing the positive electrode active material, a hydroxide precursor was prepared using a reaction crystallization method. First, 315.4 g of nickel sulfate hexahydrate, 168.6 g of cobalt sulfate heptahydrate, and 530.4 g of manganese sulfate pentahydrate were weighed, and all of these were dissolved in 4 L of ion-exchanged water. A 1.0 M sulfate aqueous solution having a Co: Mn molar ratio of 30:15:55 was prepared. Next, 2 L of ion-exchanged water was poured into a 5 L reaction vessel, and N 2 gas was bubbled for 30 minutes in order to reduce the oxygen concentration contained in the ion-exchanged water. The temperature of the reaction vessel is set to 50 ° C. (± 2 ° C.), and the inside of the reaction vessel is stirred at a rotation speed of 1500 rpm using a paddle blade equipped with a stirring motor so that convection occurs sufficiently in the reaction layer. did. The sulfate stock solution was added dropwise to the reaction vessel at a rate of 1.3 mL / min for 50 hours. Here, from the start to the end of the dropping, the pH in the reaction vessel is adjusted by appropriately dropping a mixed alkaline solution consisting of 4.0 M sodium hydroxide, 1.25 M ammonia, and 0.1 M hydrazine. It was controlled so as to always maintain 9.8 (± 0.1), and a part of the reaction solution was discharged by overflow so that the total amount of the reaction solution did not always exceed 2 L. After completion of the dropping, stirring in the reaction vessel was continued for another 1 hour. After stopping the stirring, the mixture was allowed to stand at room temperature for 12 hours or more. Next, the hydroxide precursor particles generated in the reaction vessel are separated using a suction filtration device, and the sodium ions adhering to the particles are washed and removed using ion-exchanged water, and an electric furnace is used. Then, the particles were dried at 80 ° C. for 20 hours under normal pressure in an air atmosphere. Then, in order to make the particle size uniform, it was crushed in an agate automatic mortar for several minutes. In this way, a hydroxide precursor was prepared.

≪リチウム遷移金属複合酸化物の粒子の作製(焼成工程)≫
前記水酸化物前駆体2.262gに、水酸化リチウム1水和物1.294gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni,Co,Mn)のモル比が120:100である混合粉体を調製した。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2.5gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から800℃まで10時間かけて昇温し、800℃で4時間焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、リチウム遷移金属複合酸化物Li1.09Ni0.27Co0.14Mn0.50の粒子を作製した。
≪Preparation of particles of lithium transition metal composite oxide (firing process) ≫
To 2.262 g of the hydroxide precursor, 1.294 g of lithium hydroxide monohydrate was added and mixed well using an automatic agate mortar, and the molar ratio of Li :( Ni, Co, Mn) was 120 :. A mixed powder of 100 was prepared. It was molded at a pressure of 6 MPa using a pellet molding machine to obtain pellets having a diameter of 25 mm. The amount of the mixed powder used for pellet molding was determined by converting so that the assumed mass of the final product was 2.5 g. One of the pellets was placed on an alumina boat having a total length of about 100 mm, installed in a box-type electric furnace (model number: AMF20), and heated in an air atmosphere under normal pressure from room temperature to 800 ° C. over 10 hours. It was fired at 800 ° C. for 4 hours. The internal dimensions of the box-type electric furnace are 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction. After firing, the heater was switched off and the alumina boat was allowed to cool naturally while still in the furnace. As a result, the temperature of the furnace drops to about 200 ° C. after 5 hours, but the subsequent temperature lowering rate is rather slow. After a day and night, after confirming that the temperature of the furnace was 100 ° C. or lower, the pellets were taken out and crushed in an agate automatic mortar for several minutes in order to make the particle size uniform. In this way, particles of lithium transition metal composite oxide Li 1.09 Ni 0.27 Co 0.14 Mn 0.50 O 2 were prepared.

≪表面コート≫
前記リチウム遷移金属複合酸化物4.500gに、添加化合物として酸化ベリリウム0.034gを添加し、直径が5mmのZrO製のボール87.3gとともに、ZrO製の80mlのポットに投入した。前記ポットをボールミル装置(FRITSCH製pulverisette6)に設置し、空気雰囲気中、常圧下、常温、回転速度100rpmの条件において15分間ボールミル処理を行った。その後、前記ポットから粉末を取り出し、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、実施例1−1に係る、粒子表面にBeOが存在するリチウム遷移金属複合酸化物の粒子を作製した。リチウム遷移金属複合酸化物に対するBe元素の添加量は、0.3質量%に相当する。
粒子表面にBeOが存在することは、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて上記条件にて粉末エックス線回折測定を行い、α−NaFeO構造に特有の回折ピークとともに、BeOに帰属される回折ピークが観察されることにより確認した(図1参照)。
≪Surface coat≫
0.034 g of beryllium oxide as an additive compound was added to 4.500 g of the lithium transition metal composite oxide, and the mixture was charged into an 80 ml pot made of ZrO 2 together with 87.3 g of balls made of ZrO 2 having a diameter of 5 mm. The pot was installed in a ball mill device (pulversette 6 manufactured by FRITSCH), and ball mill treatment was performed in an air atmosphere under normal pressure, at room temperature, and at a rotation speed of 100 rpm for 15 minutes. Then, the powder was taken out from the pot and crushed in an agate automatic mortar for several minutes in order to make the particle size uniform. In this way, the particles of the lithium transition metal composite oxide in which BeO is present on the particle surface according to Example 1-1 were produced. The amount of Be element added to the lithium transition metal composite oxide corresponds to 0.3% by mass.
The presence of BeO on the particle surface is determined by performing powder X-ray diffraction measurement under the above conditions using an X-ray diffractometer (manufactured by Rigaku, model name: MiniFlex II), together with a diffraction peak peculiar to the α-NaFeO 2 structure. It was confirmed by observing the diffraction peak attributed to BeO (see FIG. 1).

(実施例1−2)
酸化ベリリウムに代えて、二酸化ゲルマニウム0.019g(リチウム遷移金属複合酸化物に対するGe元素の添加量は0.3質量%に相当)を用いたことを除いては実施例1−1と同様にして、実施例1−2に係るリチウム遷移金属複合酸化物の粒子を作製した。上記の同様の粉末エックス線回折測定により、この粒子の表面にGeOが存在することを確認した(図2参照)。
(Example 1-2)
The same as in Example 1-1 except that 0.019 g of germanium dioxide (the amount of Ge element added to the lithium transition metal composite oxide corresponds to 0.3% by mass) was used instead of beryllium oxide. , Particles of the lithium transition metal composite oxide according to Example 1-2 were prepared. By the same powder X-ray diffraction measurement as described above, it was confirmed that GeO 2 was present on the surface of the particles (see FIG. 2).

(実施例1−3〜1−5)
酸化ベリリウムに代えて、三酸化二ビスマス0.005g、0.015g、及び0.050g(リチウム遷移金属複合酸化物に対するBi元素の添加量はそれぞれ0.1、0.3、及び1.0質量%に相当)をそれぞれ用いたことを除いては実施例1−1と同様にして、実施例1−3、実施例1−4、及び実施例1−5に係るリチウム遷移金属複合酸化物の粒子を作製した。上記の同様の粉末エックス線回折測定により、実施例1−5の粒子の表面にBiが存在することを確認した(図3参照)。
(Examples 1-3 to 1-5)
Instead of berylium oxide, dibismuth trioxide 0.005 g, 0.015 g, and 0.050 g (the amount of Bi element added to the lithium transition metal composite oxide is 0.1, 0.3, and 1.0 mass, respectively. In the same manner as in Example 1-1, except that (corresponding to%) was used, the lithium transition metal composite oxides according to Examples 1-3, 1-4, and 1-5. Particles were made. By the same powder X-ray diffraction measurement as described above, it was confirmed that Bi 2 O 3 was present on the surface of the particles of Example 1-5 (see FIG. 3).

(比較例1−1)
実施例1−1で作製したリチウム遷移金属複合酸化物を、そのまま比較例1−1に係るリチウム遷移金属複合酸化物の粒子(コートなし)とした。
(Comparative Example 1-1)
The lithium transition metal composite oxide produced in Example 1-1 was used as it was as particles (without coating) of the lithium transition metal composite oxide according to Comparative Example 1-1.

(比較例1−2)
酸化ベリリウムを添加しなかったことを除いては実施例1−1と同様の操作を行って、比較例1−2に係るリチウム遷移金属複合酸化物の粒子(コートなし)を作製した。
(Comparative Example 1-2)
The same operation as in Example 1-1 was carried out except that beryllium oxide was not added, and particles (without coating) of the lithium transition metal composite oxide according to Comparative Example 1-2 were prepared.

(比較例1−3)
酸化ベリリウムに代えて、炭酸カリウム0.027gを用いたことを除いては実施例1−1と同様にして、比較例1−3に係るKを含むコートがされたリチウム遷移金属複合酸化物の粒子を作製した。
(Comparative Example 1-3)
The lithium transition metal composite oxide coated with K according to Comparative Example 1-3 in the same manner as in Example 1-1 except that 0.027 g of potassium carbonate was used instead of beryllium oxide. Particles were made.

<非水電解質二次電池用正極の作製>
前記の実施例及び比較例に係るリチウム遷移金属複合酸化物の粒子をそれぞれ非水電解質二次電池用正極活物質として用いて、以下の手順で非水電解質二次電池用正極を作製した。N−メチルピロリドンを分散媒とし、正極活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比90:5:5の割合で混練分散されている塗布用ペーストを作製した。該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布し、正極を作製した。なお、全ての実施例及び比較例に係る非水電解質二次電池同士で試験条件が同一になるように、一定面積当たりに塗布されている活物質の質量及び塗布厚みを統一した。
<Manufacturing positive electrodes for non-aqueous electrolyte secondary batteries>
Using the particles of the lithium transition metal composite oxide according to the above Examples and Comparative Examples as the positive electrode active material for the non-aqueous electrolyte secondary battery, a positive electrode for the non-aqueous electrolyte secondary battery was prepared by the following procedure. Using N-methylpyrrolidone as a dispersion medium, a coating paste in which the positive electrode active material, acetylene black (AB) and polyvinylidene fluoride (PVdF) were kneaded and dispersed at a mass ratio of 90: 5: 5 was prepared. The coating paste was applied to one surface of an aluminum foil current collector having a thickness of 20 μm to prepare a positive electrode. The mass and coating thickness of the active material applied per fixed area were unified so that the test conditions would be the same for the non-aqueous electrolyte secondary batteries according to all the examples and comparative examples.

<非水電解質二次電池の作製>
前記正極に対して、正極の単独挙動を正確に観察する目的のため、対極、即ち負極には金属リチウムをニッケル箔集電体に密着させて用いた。ここで、非水電解質二次電池の容量が負極によって制限されないよう、負極には十分な量の金属リチウムを配置した。
<Manufacturing of non-aqueous electrolyte secondary battery>
For the purpose of accurately observing the single behavior of the positive electrode with respect to the positive electrode, metallic lithium was used in close contact with the nickel foil current collector for the counter electrode, that is, the negative electrode. Here, a sufficient amount of metallic lithium was arranged on the negative electrode so that the capacity of the non-aqueous electrolyte secondary battery was not limited by the negative electrode.

非水電解質(電解液)として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)が体積比6:7:7である混合溶媒に濃度が1mol/lとなるようにLiPFを溶解させた溶液を用いた。セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用い、正極端子及び負極端子の開放端部が外部露出するように電極を収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記電解液を注液後、注液孔を封止した。 As a non-aqueous electrolyte (electrolyte solution), LiPF is added to a mixed solvent in which ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) has a volume ratio of 6: 7: 7 so that the concentration is 1 mol / l. A solution in which 6 was dissolved was used. As a separator, a polypropylene microporous membrane surface-modified with polyacrylate was used. For the exterior body, a metal resin composite film made of polyethylene terephthalate (15 μm) / aluminum foil (50 μm) / metal adhesive polypropylene film (50 μm) is used, and electrodes are used so that the open ends of the positive electrode terminal and the negative electrode terminal are exposed to the outside. Was sealed, and the fusion allowance in which the inner surfaces of the metal resin composite film faced each other was hermetically sealed except for the portion to be the liquid injection hole. After the electrolytic solution was injected, the liquid injection hole was sealed.

以上の手順にて作製された非水電解質二次電池(以下、それぞれ実施例1−1電池、比較例1−1電池等という。)は、25℃の下、初期充放電工程に供した。充電は、電流0.1C、電圧4.6Vの定電流定電圧充電とし、充電終止条件は電流値が0.02Cに減衰した時点とした。放電は、電流0.1C、終止電圧2.0Vの定電流放電とした。この充放電を2サイクル行った。ここで、充電後及び放電後にそれぞれ30分の休止過程を設け、初期放電容量を確認した。 The non-aqueous electrolyte secondary battery (hereinafter, referred to as Example 1-1 battery, Comparative Example 1-1 battery, etc.) produced by the above procedure was subjected to an initial charge / discharge step at 25 ° C. Charging was a constant current constant voltage charge with a current of 0.1 C and a voltage of 4.6 V, and the charge termination condition was the time when the current value was attenuated to 0.02 C. The discharge was a constant current discharge with a current of 0.1 C and a final voltage of 2.0 V. This charge / discharge was performed for 2 cycles. Here, a pause process of 30 minutes was provided after charging and after discharging, and the initial discharge capacity was confirmed.

[充放電サイクル試験]
次に、30サイクルの充放電試験を行った。充電は、電流0.5C、電圧4.45Vの定電流定電圧充電とし、充電終止条件は電流値が0.02Cに減衰した時点とした。放電は、電流0.5C、終止電圧2.0Vの定電流放電とした。ここで、充電後及び放電後にそれぞれ10分の休止過程を設けた。上記充放電サイクル試験における1サイクル目の放電容量に対する30サイクル目の放電容量の百分率を算出し、「容量維持率」とした。
以上の結果を表1に示す。
[Charge / discharge cycle test]
Next, a 30-cycle charge / discharge test was performed. Charging was a constant current constant voltage charge with a current of 0.5 C and a voltage of 4.45 V, and the charge termination condition was the time when the current value was attenuated to 0.02 C. The discharge was a constant current discharge with a current of 0.5 C and a final voltage of 2.0 V. Here, a rest process of 10 minutes was provided after charging and after discharging. The percentage of the discharge capacity in the 30th cycle to the discharge capacity in the 1st cycle in the charge / discharge cycle test was calculated and used as the "capacity retention rate".
The above results are shown in Table 1.

表1によると、リチウム遷移金属複合酸化物の粒子とBe化合物、Ge化合物又はBi化合物をボールミル装置で固相混合して作製した正極活物質を有する実施例1−1〜1−5電池は、コート原料となる化合物を添加せず、ボールミル処理を行わない活物質を有する比較例1−1電池、及びコート原料となる化合物を添加せず、ボールミル処理を行った活物質を有する比較例1−2電池と比べて30サイクル後の容量維持率が高いことがわかる。
コート原料として炭酸カリウムを添加し、ボールミル処理を行った活物質を有する比較例1−3電池では、この効果は見られなかった。
According to Table 1, the batteries of Examples 1-1 to 1-5 having a positive electrode active material prepared by solid-phase mixing the particles of the lithium transition metal composite oxide with the Be compound, the Ge compound or the Bi compound in a ball mill device are available. Comparative Example 1-1 having an active material without adding a compound as a coating raw material and not performing ball milling, and Comparative Example 1- having an active material having been subjected to ball milling without adding a compound as a coating material. It can be seen that the capacity retention rate after 30 cycles is higher than that of the two batteries.
This effect was not observed in Comparative Example 1-3 batteries having an active material to which potassium carbonate was added as a coating raw material and subjected to ball mill treatment.

[エックス線回折測定]
実施例1−1、1−2及び1−5電池について、充放電サイクル試験後の正極活物質を放電末状態で取り出し、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて上記条件にて粉末エックス線回折測定を行った。
結果を図1〜3に示す。前記の実施例に係る活物質において、α−NaFeO構造に特有の回折ピークとともに、それぞれ、BeO、GeO又はBiに帰属される回折ピークが観察された。
[X-ray diffraction measurement]
With respect to the batteries of Examples 1-1, 1-2 and 1-5, the positive electrode active material after the charge / discharge cycle test was taken out in the discharged state, and the above was used using an X-ray diffractometer (manufactured by Rigaku, model name: MiniFlex II). Powder X-ray diffraction measurement was performed under the conditions.
The results are shown in FIGS. In the active material according to the above-mentioned example, a diffraction peak peculiar to the α-NaFeO 2 structure and a diffraction peak attributed to BeO, Geo 2 or Bi 2 O 3 were observed, respectively.

(実施例2−1)
硫酸ニッケル6水和物473.1g、及び硫酸マンガン5水和物530.4gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Mnのモル比が45:55となる1.0Mの硫酸塩水溶液を作製した。前記硫酸塩水溶液を反応槽に滴下する開始から終了までの間、反応槽中のpHを常に10.2(±0.1)を保つように制御した以外は実施例1−1と同様にして、水酸化物前駆体を作製した。
前記水酸化物前駆体2.211gに、水酸化リチウム1水和物1.371gを加え、Li:(Ni,Mn)のモル比が130:100である混合粉体を調製した。以上の点を除いては、実施例1−1と同様にして、リチウム遷移金属複合酸化物Li1.13Ni0.39Mn0.48を作製した。
前記リチウム遷移金属複合酸化物4.500gに、二酸化ゲルマニウム0.019gを添加したことを除いては実施例1−1と同様にして、実施例2−1に係る表面にGeOが存在するリチウム遷移金属複合酸化物の粒子を作製した。
(Example 2-1)
Weighing 473.1 g of nickel sulfate hexahydrate and 530.4 g of manganese sulfate pentahydrate, and dissolving all of them in 4 L of ion-exchanged water, the molar ratio of Ni: Mn becomes 45:55. A 0M aqueous sulfate solution was prepared. The same as in Example 1-1 except that the pH in the reaction vessel was controlled to be always maintained at 10.2 (± 0.1) from the start to the end of dropping the aqueous sulfate solution into the reaction vessel. , A hydroxide precursor was prepared.
1.371 g of lithium hydroxide monohydrate was added to 2.211 g of the hydroxide precursor to prepare a mixed powder having a molar ratio of Li :( Ni, Mn) of 130: 100. Except for the above points, a lithium transition metal composite oxide Li 1.13 Ni 0.39 Mn 0.48 O 2 was prepared in the same manner as in Example 1-1.
Lithium in which GeO 2 is present on the surface according to Example 2-1 in the same manner as in Example 1-1 except that 0.019 g of germanium dioxide is added to 4.500 g of the lithium transition metal composite oxide. Particles of transition metal composite oxide were prepared.

(実施例2−2)
二酸化ゲルマニウムに代えて、三酸化二ビスマス0.015gを用いたことを除いては実施例2−1と同様にして、実施例2−2に係る表面にBiが存在するリチウム遷移金属複合酸化物の粒子を作製した。
(Example 2-2)
A lithium transition metal in which Bi 2 O 3 is present on the surface according to Example 2-2 in the same manner as in Example 2-1 except that 0.015 g of bismuth trioxide was used instead of germanium dioxide. Particles of composite oxide were prepared.

(実施例2−3)
硫酸ニッケル6水和物315.4g、硫酸コバルト112.4g、及び硫酸マンガン5水和物578.6gを秤量し、Ni:Co:Mnのモル比が30:10:60となる1.0Mの硫酸塩水溶液を作製した。前記硫酸塩水溶液を反応槽に滴下する開始から終了までの間、4.0Mの水酸化ナトリウム、0.6Mのアンモニア、及び0.3Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHを常に9.55(±0.1)を保つように制御した。以上の点を除いては実施例1−1と同様にして、水酸化物前駆体を作製した。
前記水酸化物前駆体2.211gに、水酸化リチウム1水和物1.373gを加え、Li:(Ni,Co,Mn)のモル比が130:100である混合粉体を調製した以外は、実施例1−1と同様にして、リチウム遷移金属複合酸化物Li1.13Ni0.26Co0.09Mn0.52を作製した。
前記リチウム遷移金属複合酸化物4.500gに対して、二酸化ゲルマニウム0.019gを用いたことを除いては、実施例1−1と同様のボールミル処理を行い、実施例2−3に係る表面にGeOが存在するリチウム遷移金属複合酸化物の粒子を作製した。
(Example 2-3)
Weighing 315.4 g of nickel sulfate hexahydrate, 112.4 g of cobalt sulfate, and 578.6 g of manganese sulfate pentahydrate, the molar ratio of Ni: Co: Mn is 1.0 M at 30:10:60. An aqueous sulfate solution was prepared. From the start to the end of dropping the aqueous sulfate solution into the reaction vessel, a mixed alkaline solution consisting of 4.0 M sodium hydroxide, 0.6 M ammonia, and 0.3 M hydrazine is appropriately dropped to react. The pH in the tank was controlled to always be maintained at 9.55 (± 0.1). A hydroxide precursor was prepared in the same manner as in Example 1-1 except for the above points.
A mixed powder having a Li: (Ni, Co, Mn) molar ratio of 130: 100 was prepared by adding 1.373 g of lithium hydroxide monohydrate to 2.211 g of the hydroxide precursor. , Lithium transition metal composite oxide Li 1.13 Ni 0.26 Co 0.09 Mn 0.52 O 2 was prepared in the same manner as in Example 1-1.
The same ball mill treatment as in Example 1-1 was performed on the surface according to Example 2-3, except that 0.019 g of germanium dioxide was used for 4.500 g of the lithium transition metal composite oxide. Particles of a lithium transition metal composite oxide in which GeO 2 is present were prepared.

(実施例2−4)
二酸化ゲルマニウムに代えて、三酸化二ビスマス0.015gを用いたことを除いては実施例2−3と同様にして、実施例2−4に係る表面にBiが存在するリチウム遷移金属複合酸化物の粒子を作製した。
(Example 2-4)
A lithium transition metal in which Bi 2 O 3 is present on the surface according to Example 2-4 in the same manner as in Example 2-3 except that 0.015 g of bismuth trioxide was used instead of germanium dioxide. Particles of composite oxide were prepared.

(実施例2−5)
硫酸ニッケル6水和物262.8g、硫酸コバルト224.9g、及び硫酸マンガン5水和物530.4gを秤量し、Ni:Co:Mnのモル比が25:20:55となる1.0Mの硫酸塩水溶液を作製した。前記硫酸塩水溶液を反応槽に滴下する開始から終了までの間、4.0Mの水酸化ナトリウム、1.5Mのアンモニア、及び0.2Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHを常に9.8(±0.1)を保つように制御した以外は実施例1−1と同様にして、水酸化物前駆体を作製した。
前記水酸化物前駆体2.262gに、水酸化リチウム1水和物1.294gを加え、Li:(Ni,Co,Mn)のモル比が120:100である混合粉体を調製した。以上の点を除いては、実施例1−1と同様にして、リチウム遷移金属複合酸化物Li1.09Ni0.23Co0.18Mn0.50を作製した。
前記リチウム遷移金属複合酸化物4.500gに対して、二酸化ゲルマニウム0.019gを用いたことを除いては実施例1−1と同様のボールミル処理を行い、実施例2−5に係る表面にGeOが存在するリチウム遷移金属複合酸化物の粒子を作製した。
(Example 2-5)
Weighing 262.8 g of nickel sulfate hexahydrate, 224.9 g of cobalt sulfate, and 530.4 g of manganese sulfate pentahydrate, the molar ratio of Ni: Co: Mn is 25:20:55 at 1.0 M. An aqueous sulfate solution was prepared. The reaction is carried out by appropriately dropping a mixed alkaline solution consisting of 4.0 M sodium hydroxide, 1.5 M ammonia, and 0.2 M hydrazine from the start to the end of dropping the sulfate aqueous solution into the reaction vessel. A hydroxide precursor was prepared in the same manner as in Example 1-1 except that the pH in the tank was controlled to always be maintained at 9.8 (± 0.1).
1.294 g of lithium hydroxide monohydrate was added to 2.262 g of the hydroxide precursor to prepare a mixed powder having a molar ratio of Li: (Ni, Co, Mn) of 120: 100. Except for the above points, a lithium transition metal composite oxide Li 1.09 Ni 0.23 Co 0.18 Mn 0.50 O 2 was prepared in the same manner as in Example 1-1.
The same ball mill treatment as in Example 1-1 was performed with respect to 4.500 g of the lithium transition metal composite oxide except that 0.019 g of germanium dioxide was used, and GeO was applied to the surface according to Example 2-5. Particles of a lithium transition metal composite oxide in which 2 is present were prepared.

(実施例2−6)
二酸化ゲルマニウムに代えて、三酸化二ビスマス0.015gを用いたことを除いては実施例2−5と同様にして、実施例2−6に係る表面にBiが存在するリチウム遷移金属複合酸化物の粒子を作製した。
(Example 2-6)
A lithium transition metal in which Bi 2 O 3 is present on the surface according to Example 2-6 in the same manner as in Example 2-5 except that 0.015 g of bismuth trioxide was used instead of germanium dioxide. Particles of composite oxide were prepared.

(比較例2−1)
実施例2−1において作製したリチウム遷移金属複合酸化物Li1.13Ni0.39Mn0.48をそのまま比較例2−1に係るリチウム遷移金属複合酸化物の粒子(コートなし)とした。
(Comparative Example 2-1)
The lithium transition metal composite oxide Li 1.13 Ni 0.39 Mn 0.48 O 2 produced in Example 2-1 was used as it was with the particles (without coating) of the lithium transition metal composite oxide according to Comparative Example 2-1. did.

実施例2−1〜2−6、及び比較例2−1に係る粒子をそれぞれ正極活物質として用いた以外は、実施例1−1電池と同様にして、非水電解質二次電池を作製し、実施例1−1電池と同様の充放電サイクル試験を行って30サイクル後の容量維持率を測定した。結果を以下の表2に示す。 A non-aqueous electrolyte secondary battery was produced in the same manner as in the battery of Example 1-1 except that the particles according to Examples 2-1 to 2-6 and Comparative Example 2-1 were used as the positive electrode active materials. , Example 1-1 A charge / discharge cycle test similar to that of the battery was performed, and the capacity retention rate after 30 cycles was measured. The results are shown in Table 2 below.

表2によると、粒子表面にGe化合物又はBi化合物が存在するリチウム過剰型活物質を有する実施例2−1〜2−6電池は、実施例1−1〜1−5電池とはリチウム遷移金属複合酸化物の組成が異なるが、容量維持率が高く、充放電サイクル性能が向上したことがわかる。 According to Table 2, the batteries of Examples 2-1 to 2-6 having a lithium excess type active material in which a Ge compound or a Bi compound is present on the particle surface are lithium transition metal with the batteries of Examples 1-1 to 1-5. Although the composition of the composite oxide is different, it can be seen that the capacity retention rate is high and the charge / discharge cycle performance is improved.

(比較例3−1)
硫酸銅5水和物0.060gをイオン交換水100mLに溶解させた。300mLビーカーに実施例1−1で作製したリチウム遷移金属複合酸化物4.500gを加えて、溶液の温度を25℃に設定し、マグネッティックスターラーを用いて400rpmの回転速度で撹拌した。そこに前記硫酸銅5水和物の水溶液を1.3mL/minの速度で反応槽に100mL滴下した。滴下終了後、溶液のpHが11.0となるまで0.2Mの水酸化ナトリウム水溶液を滴下した。次に、吸引ろ過装置を用いて、反応槽内の粉末を分離し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20時間乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、比較例3−1に係る、Cuを表面にコートしたリチウム遷移金属複合酸化物の粒子を作製した。
(Comparative Example 3-1)
0.060 g of copper sulfate pentahydrate was dissolved in 100 mL of ion-exchanged water. 4.500 g of the lithium transition metal composite oxide prepared in Example 1-1 was added to a 300 mL beaker, the temperature of the solution was set to 25 ° C., and the mixture was stirred using a magnetic stirrer at a rotation speed of 400 rpm. 100 mL of the aqueous solution of copper sulfate pentahydrate was added dropwise to the reaction vessel at a rate of 1.3 mL / min. After completion of the dropping, a 0.2 M aqueous sodium hydroxide solution was added dropwise until the pH of the solution reached 11.0. Next, the powder in the reaction vessel was separated using a suction filtration device, and dried in an air atmosphere under normal pressure at 80 ° C. for 20 hours using an electric furnace. Then, in order to make the particle size uniform, it was crushed in an agate automatic mortar for several minutes. In this way, particles of the lithium transition metal composite oxide having a surface coated with Cu according to Comparative Example 3-1 were produced.

(比較例3−2〜3−4)
硫酸鉄7水和物0.076g、硫酸セリウム4水和物0.044g、及び硫酸ジルコニウム4水和物0.059gを各々イオン交換水100mLに溶解させた水溶液を作製した。硫酸銅5水和物の水溶液に代えて、前記の水溶液をそれぞれ用いたことを除いては、比較例3−1と同様にして、比較例3−2、比較例3−3、及び比較例3−4に係る、Fe、Ce,又はZrを表面にコートしたリチウム遷移金属複合酸化物の粒子を作製した。
(Comparative Example 3-2-3-4)
An aqueous solution was prepared by dissolving 0.076 g of iron sulfate heptahydrate, 0.044 g of cerium sulfate tetrahydrate, and 0.059 g of zirconium sulfate tetrahydrate in 100 mL of ion-exchanged water. Comparative Example 3-2, Comparative Example 3-3, and Comparative Example in the same manner as in Comparative Example 3-1 except that the above aqueous solution was used instead of the aqueous solution of copper sulfate pentahydrate. Particles of a lithium transition metal composite oxide whose surface was coated with Fe, Ce, or Zr according to 3-4 were prepared.

(比較例3−5)
実施例1−1で作製したリチウム遷移金属複合酸化物の粒子に対して、特表2013−503449号公報の段落[0092]に記載の方法に準拠し、添加量が0.1質量%となる硝酸ビスマス5水和物を用いて、液相処理を行った。具体的には、0.0045gの硝酸ビスマスを45mlのイオン交換水に溶解させた硝酸ビスマス水溶液に、実施例1−1で作製したリチウム遷移金属複合酸化物の粒子4.500gを分散させた。次に、この分散液をマグネッティックスターラーを用いて400rpmの回転速度で撹拌しながら100℃で約2時間加熱し、乾燥させた。得られた乾燥粉末を箱型電気炉(型番:AMF20)内に設置し、乾燥空気雰囲気中、常圧下、400℃で2時間焼成して、比較例3−5に係るリチウム遷移金属複合酸化物の粒子(コートなし)を作製した。
(Comparative Example 3-5)
The amount of the lithium transition metal composite oxide particles produced in Example 1-1 is 0.1% by mass according to the method described in paragraph [0092] of Japanese Patent Application Laid-Open No. 2013-503449. Liquid phase treatment was performed using bismuth nitrate pentahydrate. Specifically, 4.500 g of the lithium transition metal composite oxide particles prepared in Example 1-1 was dispersed in an aqueous solution of bismuth nitrate in which 0.0045 g of bismuth nitrate was dissolved in 45 ml of ion-exchanged water. Next, this dispersion was heated at 100 ° C. for about 2 hours while stirring at a rotation speed of 400 rpm using a magnetic stirrer, and dried. The obtained dry powder was placed in a box-type electric furnace (model number: AMF20) and fired in a dry air atmosphere under normal pressure at 400 ° C. for 2 hours to obtain a lithium transition metal composite oxide according to Comparative Example 3-5. Particles (without coating) were prepared.

(比較例3−6)
硫酸銅5水和物の水溶液に代えて、イオン交換水を用いたことを除いては比較例3−1と同様の処理を行って、比較例3−6に係るリチウム遷移金属複合酸化物の粒子(コートなし)を作製した。
(Comparative Example 3-6)
The same treatment as in Comparative Example 3-1 was carried out except that ion-exchanged water was used instead of the aqueous solution of copper sulfate pentahydrate to obtain the lithium transition metal composite oxide according to Comparative Example 3-6. Particles (without coating) were prepared.

比較例3−1〜3−6に係るリチウム遷移金属複合酸化物の粒子を正極活物質に用いた以外は、実施例1−1電池と同様にして、比較例3−1〜3−6に係る非水電解質二次電池を作製し、実施例1−1電池と同様の充放電サイクル試験を行って30サイクル後の容量維持率を測定した。結果を以下の表3に実施例1−3電池、及び比較例1−1電池とともに示す。 In the same manner as in the battery of Example 1-1 except that the particles of the lithium transition metal composite oxide according to Comparative Examples 3-1 to 3-6 were used as the positive electrode active material, Comparative Examples 3-1 to 3-6 The non-aqueous electrolyte secondary battery was prepared, and the same charge / discharge cycle test as that of the battery of Example 1-1 was performed to measure the capacity retention rate after 30 cycles. The results are shown in Table 3 below together with the batteries of Example 1-3 and Comparative Example 1-1.

表3によると、リチウム遷移金属複合酸化物の粒子に対してCu,Fe,Ce又はZrの硫酸塩水和物を添加して液相処理を行った比較例3−1〜比較例3−4電池、及び先に挙げた特許文献1(特表2013−503449号公報)の実施例5における酸化ビスマスのコーティング手法を、Li/Meが1.2のリチウム遷移金属複合酸化物に適用して液相処理した例である比較例3−5電池は、Biを添加してボールミル処理を行った実施例1−3電池より容量維持率が低いばかりでなく、何も処理を行わない粒子を用いた比較例1−1電池や、化合物を添加することなく液相処理のみを行った比較例3−6電池よりもさらに容量維持率が低いことがわかる。 According to Table 3, Comparative Examples 3-1 to 3-4 batteries in which the particles of the lithium transition metal composite oxide were subjected to liquid phase treatment by adding Cu, Fe, Ce or Zr sulfate hydrate. , And the liquid phase by applying the coating method of bismuth oxide in Example 5 of Patent Document 1 (Japanese Patent Laid-Open No. 2013-503449) mentioned above to a lithium transition metal composite oxide having a Li / Me of 1.2. The treated Comparative Example 3-5 battery not only has a lower capacity retention rate than the battery of Example 1-3 in which Bi 2 O 3 is added and ball milled, but also contains particles that are not treated at all. It can be seen that the capacity retention rate is even lower than that of the Comparative Example 1-1 battery used and the Comparative Example 3-6 battery in which only the liquid phase treatment was performed without adding the compound.

(比較例4−1)
実施例1−1で作製した水酸化物前駆体2.227gに、水酸化リチウム1水和物1.312gと、酸化ベリリウム0.021gとを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni,Co,Mn,Be)のモル比が120:100、(Ni,Co,Mn):Beのモル比が100:3(リチウム遷移金属複合酸化物に対するBe元素の添加量は0.3質量%に相当)である混合粉体を調製した以外は実施例1−1と同様にして焼成工程を行い、比較例4−1に係るBeを含むリチウム遷移金属複合酸化物の粒子を作製した。
(Comparative Example 4-1)
To 2.227 g of the hydroxide precursor prepared in Example 1-1, 1.312 g of lithium hydroxide monohydrate and 0.021 g of beryllium oxide were added and mixed well using an automatic aquarium dairy pot. The molar ratio of Li: (Ni, Co, Mn, Be) is 120: 100, and the molar ratio of (Ni, Co, Mn): Be is 100: 3 (the amount of Be element added to the lithium transition metal composite oxide is 0. The firing step was carried out in the same manner as in Example 1-1 except that the mixed powder (corresponding to 3% by mass) was prepared, and the particles of the lithium transition metal composite oxide containing Be according to Comparative Example 4-1 were obtained. Made.

(比較例4−2)
実施例1−1で作製した水酸化物前駆体2.186gに、水酸化リチウム1水和物1.288gと、二酸化ゲルマニウム0.032gとを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni,Co,Mn,Ge)のモル比が120:100、(Ni,Co,Mn):Geのモル比が100:0.6(リチウム遷移金属複合酸化物に対するGe元素の添加量は0.5質量%に相当)である混合粉体を調製した以外は実施例1−1と同様にして焼成工程を行い、比較例4−2に係るGeを含むリチウム遷移金属複合酸化物の粒子を作製した。
(Comparative Example 4-2)
To 2.186 g of the hydroxide precursor prepared in Example 1-1, 1.288 g of lithium hydroxide monohydrate and 0.032 g of germanium dioxide were added, and the mixture was well mixed using an automatic dairy pot made of amber. The molar ratio of Li: (Ni, Co, Mn, Ge) is 120: 100, and the molar ratio of (Ni, Co, Mn): Ge is 100: 0.6 (the amount of Ge element added to the lithium transition metal composite oxide). The firing step was carried out in the same manner as in Example 1-1 except that the mixed powder was prepared in the same manner as in Example 1-1, and the Lithium transition metal composite oxide containing Ge according to Comparative Example 4-2 was prepared. Particles were made.

(比較例4−3)
実施例1−1で作製した水酸化物前駆体2.103gに、水酸化リチウム1水和物1.239gと、三酸化二ビスマス0.035gとを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni,Co,Mn,Bi)のモル比が120:100、(Ni,Co,Mn):Biのモル比が100:1.2(リチウム遷移金属複合酸化物に対するBi元素の添加量は0.7質量%に相当)である混合粉体を調製した以外は実施例1−1と同様にして焼成工程を行い、比較例4−3に係るBiを含むリチウム遷移金属複合酸化物の粒子を作製した。
(Comparative Example 4-3)
To 2.103 g of the hydroxide precursor prepared in Example 1-1, 1.239 g of lithium hydroxide monohydrate and 0.035 g of dibismuth trioxide were added and mixed well using an automatic dairy pot made of amber. The molar ratio of Li: (Ni, Co, Mn, Bi) is 120: 100, and the molar ratio of (Ni, Co, Mn): Bi is 100: 1.2 (the Bi element to the lithium transition metal composite oxide). The firing step was carried out in the same manner as in Example 1-1 except that the mixed powder (the amount of addition was equivalent to 0.7% by mass) was prepared, and the lithium transition metal composite oxidation containing Bi according to Comparative Example 4-3 was carried out. A particle of an object was produced.

比較例4−1〜4−3に係るリチウム遷移金属複合酸化物の粒子を正極活物質に用いた以外は、実施例1−1電池と同様にして、非水電解質二次電池を作製し、実施例1−1電池と同様の充放電サイクル試験を行って30サイクル後の容量維持率を測定した。結果を以下の表4に実施例1−1〜1−3電池、及び比較例1−1電池とともに示す。 A non-aqueous electrolyte secondary battery was produced in the same manner as in the battery of Example 1-1 except that the particles of the lithium transition metal composite oxide according to Comparative Examples 4-1 to 4-3 were used as the positive electrode active material. Example 1-1 A charge / discharge cycle test similar to that of the battery was performed, and the capacity retention rate after 30 cycles was measured. The results are shown in Table 4 below together with the batteries of Examples 1-1 to 1-3 and the batteries of Comparative Example 1-1.

比較例4−1〜4−3電池は、実施例1−1〜1−3電池と同じ添加化合物を用いて活物質を作製しているが、添加化合物を前駆体とリチウム化合物に混合した状態で焼成しているから、添加化合物は活物質の結晶構造中に取り込まれている。
比較例4−1〜4−3電池は、粒子の表面にBe化合物、Ge化合物又はBi化合物が存在している実施例1−1〜1−3電池に比べて容量維持率が低く、添加化合物処理を行わない比較例1−1電池よりもさらに容量維持率が低かった。
In Comparative Examples 4-1 to 4-3 batteries, the active material is prepared using the same additive compounds as in Examples 1-1 to 1-3, but the additive compounds are mixed with the precursor and the lithium compound. Since it is fired in, the added compound is incorporated into the crystal structure of the active material.
The comparative example 4-1 to 4-3 battery has a lower capacity retention rate than the battery of Examples 1-1 to 1-3 in which a Be compound, a Ge compound or a Bi compound is present on the surface of the particles, and the added compound. The capacity retention rate was even lower than that of the untreated Comparative Example 1-1 battery.

(比較例5−1)
リチウム遷移金属複合酸化物として、LiCoO(住友金属鉱山社製)4.500gを用いた以外は実施例1−3と同様にして、比較例5−1に係るリチウム遷移金属複合酸化物の粒子を作製した。
(Comparative Example 5-1)
Particles of the lithium transition metal composite oxide according to Comparative Example 5-1 in the same manner as in Examples 1-3 except that 4.500 g of LiCoO 2 (manufactured by Sumitomo Metal Mining Co., Ltd.) was used as the lithium transition metal composite oxide. Was produced.

(比較例5−2)
特許文献3(特開2003−109599号公報)の実施例10についての記載に準拠し、リチウム遷移金属複合酸化物としてLiCoO(住友金属鉱山社製)をイオン交換水に分散した分散液を調整する一方、前記リチウム遷移金属複合酸化物に対して0.1質量%に相当するBiをイオン交換水に分散した分散液を調製した、次に、各分散液の全量を混合し、マグネッティックスターラーを用いて400rpmの回転速度で撹拌しながら100℃で濃縮乾燥した。このようにして、比較例5−2に係るリチウム遷移金属複合酸化物の粒子を作製した。
(Comparative Example 5-2)
A dispersion in which LiCoO 2 (manufactured by Sumitomo Metal Mining Co., Ltd.) is dispersed as a lithium transition metal composite oxide in ion-exchanged water is prepared in accordance with the description of Example 10 of Patent Document 3 (Japanese Unexamined Patent Publication No. 2003-109599). On the other hand, a dispersion liquid in which Bi 2 O 3 corresponding to 0.1% by mass based on the lithium transition metal composite oxide was dispersed in ion-exchanged water was prepared, and then the entire amount of each dispersion liquid was mixed. It was concentrated and dried at 100 ° C. with stirring at a rotation speed of 400 rpm using a magnetic stirrer. In this way, particles of the lithium transition metal composite oxide according to Comparative Example 5-2 were prepared.

(比較例5−3)
比較例5−1で用いたLiCoOを、そのまま比較例5−3に係るリチウム遷移金属複合酸化物の粒子(コートなし)とした。
(Comparative Example 5-3)
The LiCoO 2 used in Comparative Example 5-1 was used as it was as particles (without coating) of the lithium transition metal composite oxide according to Comparative Example 5-3.

比較例5−1〜5−3に係るリチウム遷移金属複合酸化物の粒子を正極活物質に用いた以外は、実施例1−1電池と同様にして、比較例5−1〜5−3に係る非水電解質二次電池を作製した。比較例5−1〜5−3に係る非水電解質二次電池は、充電電位を高くしすぎると、LiCoOが不活性化してしまうため、初期充放電工程における充電電圧を4.45Vとした。この点を除いては実施例1−1電池と同様の充放電サイクル試験を行って30サイクル後の容量維持率を測定した。結果を以下の表5に実施例1−3電池とともに示す。 Comparative Examples 5-1 to 5-3 are described in the same manner as in the battery of Example 1-1 except that the particles of the lithium transition metal composite oxide according to Comparative Examples 5-1 to 5-3 were used as the positive electrode active material. Such a non-aqueous electrolyte secondary battery was manufactured. In the non-aqueous electrolyte secondary batteries according to Comparative Examples 5-1 to 5-3, LiCoO 2 is inactivated if the charging potential is set too high, so the charging voltage in the initial charge / discharge step is set to 4.45 V. .. Except for this point, a charge / discharge cycle test similar to that of the battery of Example 1-1 was performed, and the capacity retention rate after 30 cycles was measured. The results are shown in Table 5 below together with the batteries of Example 1-3.

実施例1−3電池と比較例5−1電池とを対比すると、Biを添加し、同じボールミル処理を行って活物質を作製していても、リチウム遷移金属複合酸化物の粒子がLiCoOである比較例5−1電池は、リチウム過剰型活物質を用いた実施例1−3電池と比べて、容量維持率が低いことがわかる。また、比較例5−1電池と比較例5−3電池とを対比すると、リチウム遷移金属複合酸化物の粒子がLiCoOである場合、ボールミル処理の有無は、容量維持率の向上に寄与しないことがわかる。
比較例5−2電池は、LiCoOの粒子に対して、Biの粒子を湿式で固相混合しており、容量維持率が大きく低下することがわかる。
以上の結果からみて、活物質の表面にBi化合物を存在させることにより、容量維持率が向上するのは、リチウム過剰型活物質に特有の効果であることがわかる。
Comparing the battery of Example 1-3 and the battery of Comparative Example 5-1, even if Bi 2 O 3 was added and the same ball milling treatment was performed to prepare an active material, particles of the lithium transition metal composite oxide were formed. It can be seen that the Comparative Example 5-1 battery, which is LiCoO 2 , has a lower capacity retention rate than the Example 1-3 battery using the lithium excess active material. Further, comparing the battery of Comparative Example 5-1 and the battery of Comparative Example 5-3, when the particles of the lithium transition metal composite oxide are LiCoO 2 , the presence or absence of the ball mill treatment does not contribute to the improvement of the capacity retention rate. I understand.
Comparative Example 5-2 cells, with respect to the LiCoO 2 particles, the particles of Bi 2 O 3 are solid-phase mixing in the wet, it can be seen that the capacity retention ratio decreased significantly.
From the above results, it can be seen that the improvement of the capacity retention rate by the presence of the Bi compound on the surface of the active material is an effect peculiar to the lithium excess type active material.

電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等では、充放電サイクル性能が優れることが求められる。本発明に係るリチウム遷移金属複合酸化物を含有する正極活物質を用いることにより、充放電サイクル性能が向上した非水電解質二次電池を提供することができるので、この非水電解質二次電池は、特に、電気自動車(EV)用、ハイブリッド自動車(HEV)用、プラグインハイブリッド自動車(PHEV)用の非水電解質二次電池として有用である。 Electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid vehicles (PHEVs), and the like are required to have excellent charge / discharge cycle performance. By using the positive electrode active material containing the lithium transition metal composite oxide according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having improved charge / discharge cycle performance. Therefore, this non-aqueous electrolyte secondary battery can be used. In particular, it is useful as a non-aqueous electrolyte secondary battery for electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid electric vehicles (PHEV).

1 非水電解質二次電池
2 電極群
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
20 蓄電ユニット
30 蓄電装置
1 Non-aqueous electrolyte secondary battery 2 Electrode group 3 Battery container 4 Positive terminal 4'Positive lead 5 Negative terminal 5'Negative lead 20 Power storage unit 30 Power storage device

Claims (4)

リチウム遷移金属複合酸化物の粒子を含む非水電解質二次電池用活物質であって、
前記リチウム遷移金属複合酸化物は、α−NaFeO構造を有し、
遷移金属元素(Me)としてMn及びNi、又はMn、Ni及びCoを含み、Meに対するMnのモル比Mn/Meが0.5<Mn/Meであり、
Meに対するLiのモル比Li/Meが1<Li/Meであり、
前記粒子の表面に、Be酸化物、Ge酸化物又はBi酸化物が存在し、CuKα線を用いたエックス線回折図において、Be酸化物、Ge酸化物又はBi酸化物に帰属される回折ピークが観察される(但し、La、Pr、Nd、SmおよびEuからなる群から選択される少なくとも一種の金属の酸化物とGeの酸化物との混合物、並びに、La、Pr、Nd、SmおよびEuからなる群から選択される少なくとも一種の金属とGeとの複合酸化物が存在しているものを除く。)、非水電解質二次電池用正極活物質。
An active material for non-aqueous electrolyte secondary batteries containing particles of lithium transition metal composite oxide.
The lithium transition metal composite oxide has an α-NaFeO 2 structure and has an α-NaFeO 2 structure.
Mn and Ni or Mn, Ni and Co are contained as transition metal elements (Me), and the molar ratio of Mn to Me is Mn / Me of 0.5 <Mn / Me.
The molar ratio of Li to Me, Li / Me, is 1 <Li / Me.
Be oxide , Ge oxide or Bi oxide is present on the surface of the particles, and a diffraction peak attributed to Be oxide , Ge oxide or Bi oxide is observed in an X-ray diffraction diagram using CuKα rays. (However, it consists of a mixture of an oxide of at least one metal selected from the group consisting of La, Pr, Nd, Sm and Eu and an oxide of Ge, and La, Pr, Nd, Sm and Eu. Except for those in which a composite oxide of at least one metal selected from the group and Ge is present.), Positive active material for non-aqueous electrolyte secondary batteries.
請求項1に記載の正極活物質を含有する、非水電解質二次電池用正極。 A positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material according to claim 1. 請求項2に記載の正極を備えた、非水電解質二次電池。 A non-aqueous electrolyte secondary battery provided with the positive electrode according to claim 2. α−NaFeO構造を有し、遷移金属元素(Me)としてMn及びNi、又はMn、Ni及びCoを含み、Meに対するMnのモル比Mn/Meが0.5<Mn/Meであり、Meに対するLiのモル比Li/Meが1<Li/Meであるリチウム遷移金属複合酸化物の粒子と、
Be酸化物、Ge酸化物又はBi酸化物とを、固相で混合し、前記粒子の表面に、Be酸化物、Ge酸化物又はBi酸化物を付着させる、非水電解質二次電池用正極活物質の製造方法。
It has an α-NaFeO 2 structure, contains Mn and Ni or Mn, Ni and Co as transition metal elements (Me), and the molar ratio of Mn to Me is 0.5 <Mn / Me, and Me. Particles of a lithium transition metal composite oxide in which the molar ratio of Li to Li / Me is 1 <Li / Me,
A positive electrode activity for a non-aqueous electrolyte secondary battery in which Be oxide , Ge oxide or Bi oxide is mixed in a solid phase and Be oxide , Ge oxide or Bi oxide is adhered to the surface of the particles. Method of manufacturing the substance.
JP2017047959A 2017-03-14 2017-03-14 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and positive electrode active material for non-aqueous electrolyte secondary battery Active JP6834629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017047959A JP6834629B2 (en) 2017-03-14 2017-03-14 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017047959A JP6834629B2 (en) 2017-03-14 2017-03-14 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2018152256A JP2018152256A (en) 2018-09-27
JP6834629B2 true JP6834629B2 (en) 2021-02-24

Family

ID=63681798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017047959A Active JP6834629B2 (en) 2017-03-14 2017-03-14 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6834629B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039239A1 (en) * 2019-08-30 2021-03-04 パナソニック株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2021065860A1 (en) * 2019-09-30 2021-04-08
EP4113663A4 (en) * 2020-02-28 2023-08-30 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655453B2 (en) * 2002-03-28 2011-03-23 三菱化学株式会社 Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP6088923B2 (en) * 2012-09-04 2017-03-01 日本碍子株式会社 Method for producing positive electrode active material for lithium secondary battery or precursor thereof
US10847788B2 (en) * 2015-02-20 2020-11-24 Nec Corporation Lithium-iron-manganese-based composite oxide and lithium-ion secondary battery using same

Also Published As

Publication number Publication date
JP2018152256A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6825559B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6369471B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP5871186B2 (en) Non-aqueous electrolyte secondary battery active material, method for producing the active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP6044809B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP6848333B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, its manufacturing method, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary batteries
JP5871187B2 (en) Non-aqueous electrolyte secondary battery active material, method for producing the active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JPWO2013084923A1 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery active material manufacturing method, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
KR20190012214A (en) Cathode active material for lithium secondary battery, production method thereof, and lithium secondary battery
JP6583662B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2019117282A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6834629B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and positive electrode active material for non-aqueous electrolyte secondary battery
JP6460575B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6910595B2 (en) Non-aqueous electrolyte secondary battery
JP6834363B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
WO2021039120A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device
JP6052643B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP5757140B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, lithium transition metal composite oxide, method for producing the positive electrode active material, etc., and non-aqueous electrolyte secondary battery
JP2018073752A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6766319B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method, electrode for lithium secondary battery and lithium secondary battery
JP6474033B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP7043989B2 (en) A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery.
JP6746099B2 (en) Non-aqueous electrolyte secondary battery active material, method for producing non-aqueous electrolyte secondary battery active material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6387054B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2021051909A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, production of positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2019149371A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method of precursor used for manufacturing of positive electrode active material, manufacturing method of positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6834629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150