JP7043989B2 - A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery. - Google Patents

A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery. Download PDF

Info

Publication number
JP7043989B2
JP7043989B2 JP2018117726A JP2018117726A JP7043989B2 JP 7043989 B2 JP7043989 B2 JP 7043989B2 JP 2018117726 A JP2018117726 A JP 2018117726A JP 2018117726 A JP2018117726 A JP 2018117726A JP 7043989 B2 JP7043989 B2 JP 7043989B2
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
secondary battery
active material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018117726A
Other languages
Japanese (ja)
Other versions
JP2019220375A (en
Inventor
眞也 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2018117726A priority Critical patent/JP7043989B2/en
Priority to EP19821775.4A priority patent/EP3813163A4/en
Priority to CN201980041784.3A priority patent/CN112771695B/en
Priority to US17/252,765 priority patent/US20210257665A1/en
Priority to PCT/JP2019/024375 priority patent/WO2019244955A1/en
Publication of JP2019220375A publication Critical patent/JP2019220375A/en
Application granted granted Critical
Publication of JP7043989B2 publication Critical patent/JP7043989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、非水電解質二次電池用正極活物質、その製造方法、前記活物質を含有する正極、及び前記正極を備えた非水電解質二次電池、及び前記非水電解質二次電池の製造方法に関する。 The present invention comprises a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and the non-aqueous electrolyte secondary battery. Regarding the method.

近年、ハイブリット自動車等の車載用途では、高エネルギー密度、高出力性能なリチウムイオン電池に代表される非水電解質二次電池が強く求められている。
従来、非水電解質二次電池用正極活物質として、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物が検討され、LiCoOを用いた非水電解質二次電池が広く実用化されている。LiCoOの放電容量は120~130mAh/g程度である。前記リチウム遷移金属複合酸化物を構成する遷移金属(Me)として、地球資源として豊富なMnを用い、前記リチウム遷移金属複合酸化物を構成する遷移金属に対するLiのモル比Li/Meがほぼ1であり、遷移金属中のMnのモル比Mn/Meが0.5以下であるいわゆる「LiMeO型」活物質を用いた非水電解質二次電池も実用化されている。例えば、LiNi1/2Mn1/2やLiNi1/3Co1/3Mn1/3を含有する正極活物質の放電容量は150~180mAh/gである。
In recent years, non-aqueous electrolyte secondary batteries typified by lithium ion batteries having high energy density and high output performance have been strongly demanded for in-vehicle applications such as hybrid automobiles.
Conventionally, as a positive electrode active material for a non-aqueous electrolyte secondary battery, a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure has been studied, and a non-aqueous electrolyte secondary battery using LiCoO 2 has been widely put into practical use. There is. The discharge capacity of LiCoO 2 is about 120 to 130 mAh / g. Mn, which is abundant as an earth resource, is used as the transition metal (Me) constituting the lithium transition metal composite oxide, and the molar ratio of Li to the transition metal constituting the lithium transition metal composite oxide is approximately 1. There is also a non-aqueous electrolyte secondary battery using a so-called "LiMeO type 2 " active material in which the molar ratio Mn / Me of Mn in the transition metal is 0.5 or less. For example, the discharge capacity of the positive electrode active material containing LiNi 1/2 Mn 1/2 O 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 is 150 to 180 mAh / g.

一方、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の中でも、遷移金属(Me)中のMnのモル比が大きく、遷移金属(Me)に対するLiのモル比Li/Meが1を超えるいわゆる「リチウム過剰型」活物質が知られている。この活物質は、電池を組立てて、最初に行う充電過程において、4.5~5.0V(vs.Li/Li)の電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察されるという特徴があり、上記平坦な領域に至る初期充電を行うことにより、以降の充電電位をそれほど貴としなくても、「LiMeO型」活物質に比べて高い放電容量を有することから、注目されている(特許文献1参照)。 On the other hand, among the lithium transition metal composite oxides having an α-NaFeO type 2 crystal structure, the molar ratio of Mn in the transition metal (Me) is large, and the molar ratio of Li to the transition metal (Me), Li / Me, is 1. So-called "lithium-rich" active materials that exceed are known. In this active material, in the initial charging process after assembling the battery, the potential change is relatively flat with respect to the amount of charged electricity within the potential range of 4.5 to 5.0 V (vs. Li / Li + ). By performing the initial charge to reach the flat region, the discharge capacity is higher than that of the "LiMeO type 2 " active material, even if the subsequent charging potential is not so precious. Since it has, it is attracting attention (see Patent Document 1).

特許文献1には、「α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の固溶体を含むリチウム二次電池用活物質であって、前記固溶体が含有するLi,Co,Ni及びMnの組成比が、Li1+(1/3)xCo1-x-yNi(1/2)yMn(2/3)x+(1/2)y(x+y≦1、0≦y、1-x-y=z)を満たし、・・・で表され、かつ、X線回折測定による(003)面と(104)面の回折ピークの強度比が、充放電前においてI(003)/I(104)≧1.56であり、放電末においてI(003)/I(104)>1であり、4.3V(vs.Li/Li)を超え4.8V以下(vs.Li/Li)の正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域に少なくとも至る初期充電を行う工程を経た場合に、4.3V(vs.Li/Li)以下の電位領域において放電可能な電気量が177mAh/g以上となることを特徴とするリチウム二次電池用活物質。」(請求項3)が記載されている。 Patent Document 1 describes "an active material for a lithium secondary battery containing a solid solution of a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure, and Li, Co, Ni and Mn contained in the solid solution. The composition ratio is Li 1+ (1/3) x Co 1-x-y Ni (1/2) y Mn (2/3) x + (1/2) y (x + y ≦ 1, 0 ≦ y, 1-x). -Y = z) is satisfied, and the intensity ratio of the diffraction peaks of the (003) plane and the (104) plane by the X-ray diffraction measurement is I (003) / I ( before charging / discharging). 104) ≧ 1.56, I (003) / I (104) > 1 at the end of discharge, exceeding 4.3V (vs.Li / Li + ) and 4.8V or less (vs.Li / Li + ). ), A potential region of 4.3 V (vs. Li / Li + ) or less when the initial charge is performed so that the potential change appearing with respect to the amount of charging electricity reaches at least a relatively flat region in the positive potential range of). The active material for a lithium secondary battery, characterized in that the amount of electricity that can be discharged is 177 mAh / g or more. ”(Claim 3).

そして、段落[0062]には、「本発明に係るリチウム二次電池用活物質を用い、使用時において、充電時の正極の最大到達電位が4.3V(vs.Li/Li)以下となるような充電方法を採用しても、充分な放電容量を取り出すことのできるリチウム二次電池を製造するためには、次に述べる、本発明に係るリチウム二次電池用活物質に特徴的な挙動を考慮した充電工程を該リチウム二次電池の製造工程中に設けることが重要である。即ち、本発明に係るリチウム二次電池用活物質を正極に用いて定電流充電を続けると、正極電位4.3V~4.8Vの範囲に、電位変化が比較的平坦な領域が比較的長い期間に亘って観察される。・・・ここで採用した充電条件は、電流0.1ItA、電圧(正極電位)4.5V(vs.Li/Li)の定電流定電圧充電であるが、充電電圧をさらに高く設定しても、この比較的長い期間に亘る電位平坦領域は、xの値が1/3以下の材料を用いた場合にはほとんど観察されない。逆に、xの値が2/3を超える材料では、電位変化が比較的平坦な領域が観察される場合であっても短いものとなる。また、従来のLi[Co1-2xNiMn]O(0≦x≦1/2)系材料でもこの挙動は観察されない。この挙動は、本発明に係るリチウム二次電池用活物質に特徴的なものである。」と記載されている。 Then, in paragraph [0062], "using the active material for a lithium secondary battery according to the present invention, the maximum ultimate potential of the positive electrode at the time of charging is 4.3 V (vs. Li / Li + ) or less at the time of use. In order to manufacture a lithium secondary battery capable of taking out a sufficient discharge capacity even if such a charging method is adopted, the active material for a lithium secondary battery according to the present invention described below is characteristic. It is important to provide a charging process in consideration of the behavior during the manufacturing process of the lithium secondary battery. That is, when the active material for the lithium secondary battery according to the present invention is used for the positive electrode and constant current charging is continued, the positive electrode is used. In the range of potential 4.3V to 4.8V, a region where the potential change is relatively flat is observed over a relatively long period of time .... The charging conditions adopted here are current 0.1ItA, voltage ( Positive potential) 4.5V (vs. Li / Li + ) constant current constant voltage charging, but even if the charging voltage is set higher, the value of x is the value of x in the potential flat region over this relatively long period. It is rarely observed when a material of 1/3 or less is used. On the contrary, in a material having an x value of more than 2/3, even if a region where the potential change is relatively flat is observed, it is short. Further, this behavior is not observed even with the conventional Li [Co 1-2 x Ni x Mn x ] O 2 (0 ≦ x ≦ 1/2) -based material. This behavior is the lithium secondary battery according to the present invention. It is characteristic of active materials. "

一方、「リチウム過剰型」活物質を用いた電池を、4.5V(vs.Li/Li+)以上の初期充電過程を経て使用する場合、「LiMeO型」活物質を用いた電池と比較して、初回クーロン効率が低く、高率放電性能が劣ることが知られている。
そこで、「リチウム過剰型」活物質を用いた電池の初回クーロン効率、高率放電性能を向上させる技術として、正極活物質の酸処理が知られている。(特許文献2~6)
On the other hand, when a battery using a "lithium excess type" active material is used after an initial charging process of 4.5 V (vs. Li / Li + ) or higher, it is compared with a battery using a "LiMeO type 2 " active material. Therefore, it is known that the initial Coulomb efficiency is low and the high rate discharge performance is inferior.
Therefore, acid treatment of a positive electrode active material is known as a technique for improving the initial Coulomb efficiency and high rate discharge performance of a battery using a "lithium excess type" active material. (Patent Documents 2 to 6)

特許文献2には、「一般式:Li1+uNiCoMn2+α(0.1≦u<0.3、0.03≦x≦0.25、0.03≦y≦0.25、0.4≦z<0.6、x+y+z+u+t=1、0≦α<0.3、0≦t<0.1、Aは2価から6価までの価数のいずれかをとる金属元素のうち少なくとも1種)で表され、一次粒子が凝集した二次粒子で構成されたリチウム過剰金属複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法であって、少なくともニッケル、コバルト、マンガンを含む水酸化物、オキシ水酸化物、酸化物、及び炭酸塩の少なくとも1種からなる一次粒子が凝集した二次粒子とリチウム化合物を混合してリチウム混合物を得る混合工程と、前記リチウム混合物を、酸化性雰囲気中にて800~1050℃の温度で焼成して焼成物を得る焼成工程と、酸洗前後での焼成物のリチウム含有量の差を酸洗前の焼成物のリチウム含有量で除したリチウム除去率が10~30%、且つ酸洗終了時の酸洗スラリーの25℃基準におけるpHが1~4となるように制御して酸洗を前記焼成物に施した後、水洗する酸洗工程と、前記酸洗工程を経た焼成物を、酸化性雰囲気中にて200~600℃の温度で熱処理する熱処理工程を含むことを特徴とする非水系電解質二次電池用正極活物質の製造方法。」(請求項5)が記載されている。
そして、「この酸洗に用いる酸は、解離定数の高い強酸性を示す酸が好ましく、塩酸、硝酸、硫酸などの無機酸のいずれかとすることがより好ましく、塩酸、硫酸のいずれかとすることがさらに好ましい。」(段落[0073])、「そこで、強酸を用いない場合、結晶構造からリチウムを引き抜くことが難しく、また一次粒子の表面に微細な凹凸を形成するだけの溶解を引き起こせないため、界面抵抗を下げることが出来ないことがある。」(段落[0074])と記載され、上記正極活物質の評価は、負極にLi金属を用いたコイン型電池を作製し、初期充放電を0.05C、4.8V充電及び2.5V放電で行い、充電容量に対する放電容量の比を初期充放電効率としたこと、電圧範囲2.0~4.55Vにおいて、0.1Cで充放電した際の放電容量を分母に、充電0.1C、放電2Cで充放電を行ったときの放電容量を分子としたときの割合(%)を負荷効率としたことが記載されている(段落[0096]~[0101]、[0103])。
In Patent Document 2, "general formula: Li 1 + u Ni x Coy Mn z At O 2 + α (0.1 ≦ u <0.3, 0.03 ≦ x ≦ 0.25, 0.03 ≦ y ≦ 0) .25, 0.4≤z <0.6, x + y + z + u + t = 1, 0≤α <0.3, 0≤t <0.1, A is a metal having a valence from divalent to hexavalent. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which is represented by at least one of the elements) and is composed of a lithium excess metal composite oxide composed of secondary particles in which primary particles are aggregated, and is at least nickel. , A mixing step of mixing a lithium compound with a secondary particle in which primary particles consisting of at least one of a hydroxide containing cobalt and manganese, an oxyhydroxide, an oxide, and a carbonate are aggregated to obtain a lithium mixture. The difference in the lithium content of the calcined product before and after pickling and the calcining step of calcining the lithium mixture at a temperature of 800 to 1050 ° C. in an oxidizing atmosphere to obtain a calcined product is the difference between the calcined product before pickling. The calcined product was subjected to pickling by controlling the lithium removal rate divided by the lithium content to be 10 to 30% and the pH of the pickled slurry at the end of pickling to be 1 to 4 based on 25 ° C. For non-aqueous electrolyte secondary batteries, which comprises a pickling step of washing with water and a heat treatment step of heat-treating the calcined product that has undergone the pickling step at a temperature of 200 to 600 ° C. in an oxidizing atmosphere. A method for producing a positive electrode active material. ”(Claim 5) is described.
Then, "The acid used for this pickling is preferably an acid having a high dissociation constant and showing strong acidity, more preferably any of inorganic acids such as hydrochloric acid, nitrate and sulfuric acid, and preferably either hydrochloric acid or sulfuric acid. It is more preferable. ”(Paragraph [0073]),“ Therefore, when a strong acid is not used, it is difficult to extract lithium from the crystal structure, and it is not possible to cause dissolution that forms fine irregularities on the surface of the primary particles. , It may not be possible to reduce the interfacial resistance. ”(Paragraph [0074]). The charge and discharge were performed at 0.05 C, 4.8 V charge and 2.5 V discharge, and the ratio of the discharge capacity to the charge capacity was taken as the initial charge / discharge efficiency, and the charge / discharge was performed at 0.1 C in the voltage range of 2.0 to 4.55 V. It is described that the load efficiency is the ratio (%) when the discharge capacity at the time is used as the denominator and the discharge capacity when charging / discharging is performed with charge 0.1C and discharge 2C as the molecule (paragraph [9006). ] To [0101], [0103]).

特許文献3には、「α-NaFeO構造を有するリチウム遷移金属複合酸化物を含むリチウム二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、前記遷移金属(Me)がCo、Ni及びMnを含み、前記遷移金属中のMnのモル比Mn/MeがMn/Me≧0.5であり、CuKα線源を用いたエックス線回折パターンにおける2θ=44±1°の回折ピークの半値幅が0.265°以上で、且つ、P元素を含有することを特徴とするリチウム二次電池用正極活物質。」(請求項1)、「前記リチウム遷移金属複合酸化物は、リン酸処理後の熱処理によりPを含有させたものであることを特徴とする請求項1又は2に記載のリチウム二次電池用正極活物質。」(請求項3)が記載されている。
そして、上記のリン酸処理後に熱処理をされた各実施例に係る活物質を用いたリチウム二次電池を作製し、電流0.1C、電圧4.6Vの定電流定電圧充電、電流0.05C、終止電圧2.0Vの定電流放電を2サイクル行った後、電流0.2C、電圧4.3Vの定電流定電圧充電と、電流0.5C、終止電圧2.0Vの定電流放電の充放電試験を30サイクル行い、30サイクル目の放電容量を30サイクル目0.5C放電容量として記録したことが記載されている(段落[0075]~[0085]、[0123]~[0130])。
Patent Document 3 states that "a positive electrode active material for a lithium secondary battery containing a lithium transition metal composite oxide having an α-NaFeO 2 structure, wherein the transition metal (Me) is used as the lithium transition metal composite oxide. The molar ratio Mn / Me of Mn in the transition metal containing Co, Ni and Mn is Mn / Me ≧ 0.5, and the diffraction peak of 2θ = 44 ± 1 ° in the X-ray diffraction pattern using the CuKα radiation source. (Claim 1), "The lithium transition metal composite oxide is phosphorus, which is characterized by having a half-price range of 0.265 ° or more and containing P element." The positive electrode active material for a lithium secondary battery according to claim 1 or 2, wherein P is contained by heat treatment after the acid treatment ”(claim 3).
Then, a lithium secondary battery using the active material according to each embodiment heat-treated after the above phosphoric acid treatment was produced, and the current was 0.1 C, the constant current constant voltage charge of 4.6 V, and the current was 0.05 C. After performing two cycles of constant current discharge with a cutoff voltage of 2.0 V, charging with a constant current constant current of 0.2 C and a voltage of 4.3 V and charging of a constant current discharge with a current of 0.5 C and a cutoff voltage of 2.0 V. It is described that the discharge test was performed for 30 cycles and the discharge capacity at the 30th cycle was recorded as the 0.5C discharge capacity at the 30th cycle (paragraphs [0075] to [985], [0123] to [0130]).

特許文献4には、「リチウム遷移金属複合酸化物を含有するリチウム二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α-NaFeO構造を有し、遷移金属(Me)がCo、Ni及びMnを含み、前記遷移金属に対するリチウム(Li)のモル比Li/Meが1.2より大きく且つ1.6より小さく、窒素ガス吸着法を用いた吸着等温線からBJH法で求めた微分細孔容積の最大値を示す細孔径が60nmまでの範囲内の細孔領域にて0.055cc/g以上0.08cc/g以下の細孔容積を有し、1000℃において空間群R3-mに帰属される単一相を示す、リチウム二次電池用正極活物質。」(請求項1)、「遷移金属元素としてCo,Ni及びMnを含む前駆体を作製する前駆体作製工程、前記前駆体とLi塩を混合して800℃以上の温度で熱処理して酸化物を作製する焼成工程、及び、前記酸化物を酸処理する酸処理工程を経て、前記リチウム遷移金属複合酸化物を作製する、請求項1~6のいずれかに記載のリチウム二次電池用正極活物質の製造方法。」(請求項9)、「前記酸処理工程は、硫酸を用いる、請求項9~12のいずれかに記載のリチウム二次電池用正極活物質の製造方法。」(請求項13)が記載されている。
また、上記の実施例として、リチウム遷移金属複合酸化物を硫酸処理した後、乾燥して得た活物質を正極に用い、負極に金属リチウムを用いたリチウム二次電池を作製し、初期充放電工程として、電流0.1C、電圧4.6Vの定電流定電圧充電、及び電流0.1C、終止電圧2.0Vの定電流放電を2サイクル行い、次に、電流0.1C、電圧4.3Vの定電流定電圧充電、及び電流1C、終止電圧2.0Vの定電流放電を行い、この放電電気量を1C容量として記録したことが記載されている(段落[0076]~[0087]、[0108]~[0115])。
Patent Document 4 states that "a positive electrode active material for a lithium secondary battery containing a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide has an α-NaFeO 2 structure and is a transition metal (Me). ) Contains Co, Ni and Mn, and the molar ratio Li / Me of lithium (Li) to the transition metal is larger than 1.2 and smaller than 1.6. It has a pore volume of 0.055 cc / g or more and 0.08 cc / g or less in a pore region having a pore diameter within the range of up to 60 nm, which indicates the maximum value of the differential pore volume obtained in 1. Preparation of a precursor for producing a precursor containing Co, Ni and Mn as transition metal elements, showing a single phase belonging to group R3-m and showing a positive electrode active material for a lithium secondary battery (claim 1). The lithium transition metal composite oxidation is carried out through a step, a firing step of mixing the precursor and a Li salt and heat-treating at a temperature of 800 ° C. or higher to produce an oxide, and an acid treatment step of acid-treating the oxide. The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 1 to 6 for producing a product. ”(Claim 9),“ The acid treatment step uses sulfuric acid, claims 9 to 9. 12. A method for producing a positive electrode active material for a lithium secondary battery according to any one of 12 ”(claim 13).
Further, as an example described above, a lithium secondary battery using an active material obtained by treating a lithium transition metal composite oxide with sulfuric acid and then drying it as a positive electrode and using metallic lithium as a negative electrode is produced, and initial charge / discharge is performed. As a step, a constant current constant voltage charge with a current of 0.1 C and a voltage of 4.6 V, and a constant current discharge of a current of 0.1 C and a cutoff voltage of 2.0 V are performed for two cycles, and then a current of 0.1 C and a voltage of 4. It is described that a constant current constant voltage charge of 3 V and a constant current discharge of a current of 1 C and a cutoff voltage of 2.0 V were performed, and this discharge electric amount was recorded as a 1 C capacity (paragraphs [0076] to [0087], [0108] to [0115]).

特許文献5には、「α-NaFeO構造を有するリチウム遷移金属複合酸化物を含む正極活物質であって、前記リチウム遷移金属複合酸化物は、遷移金属(Me)がCo、Ni及びMnを含み、Liと遷移金属(Me)のモル比(Li/Me)が1<Li/Meであり、Mnと遷移金属(Me)のモル比(Mn/Me)が0.5<Mn/Meであり、Ceを含有することを特徴とするリチウム二次電池用正極活物質。」(請求項1)が記載され、実施例1~5として、「出発物質のリチウム遷移金属複合酸化物Li1.18Co0.10Ni0.17Mn0.55」を、pH1.6の硫酸セリウム溶液に投入し、400℃で熱処理することにより、Ceを含むリチウム遷移金属複合酸化物を作製したことが記載されている(段落[0079]~[0082])。そして、これらのリチウム遷移金属複合酸化物を正極活物質とし、負極を金属リチウムとした電池を作製し、0.1C、4.6V-2.0Vの初期充放電工程に供し、放電容量を充電電気量で割った値(%)を初期効率とし、0.2C、4.45Vの定電流定電圧充電、及び0.5C、2.0Vの定電流放電を30サイクル行い、1サイクル目の放電容量に対する30サイクル目の放電容量の比(%)を放電容量維持率として電池の評価を行った結果が表1に示されている(段落[0090]~[0097])。 Patent Document 5 states that "a positive electrode active material containing a lithium transition metal composite oxide having an α-NaFeO 2 structure, wherein the transition metal (Me) is Co, Ni and Mn in the lithium transition metal composite oxide. Including, the molar ratio (Li / Me) of Li and the transition metal (Me) is 1 <Li / Me, and the molar ratio (Mn / Me) of Mn and the transition metal (Me) is 0.5 <Mn / Me. A positive electrode active material for a lithium secondary battery, which is characterized by containing Ce. ”(Claim 1) is described, and as Examples 1 to 5,“ Lithium transition metal composite oxide Li 1. As a starting material. 18 Co 0.10 Ni 0.17 Mn 0.55 O 2 ”was added to a cerium sulfate solution having a pH of 1.6 and heat-treated at 400 ° C. to prepare a lithium transition metal composite oxide containing Ce. Is described (paragraphs [0079] to [0082]). Then, a battery in which these lithium transition metal composite oxides are used as the positive electrode active material and the negative electrode is made of metallic lithium is produced and subjected to an initial charge / discharge step of 0.1C, 4.6V-2.0V to charge the discharge capacity. The initial efficiency is the value (%) divided by the amount of electricity, and 30 cycles of 0.2C, 4.45V constant current constant voltage charging and 0.5C, 2.0V constant current discharge are performed, and the first cycle is discharged. Table 1 shows the results of evaluating the battery with the ratio (%) of the discharge capacity at the 30th cycle to the capacity as the discharge capacity retention rate (paragraphs [0090] to [097]).

特許文献6には、「過リチウム化された金属酸化物を酸処理する段階と、酸処理された前記過リチウム化された金属酸化物を金属陽イオンでドーピング処理する段階と、を含み、前記過リチウム化された金属酸化物は、下記の化学式4で表示される化合物を含む複合正極活物質の製造方法:[化4] xLiMO-(1-x)LiM’O 前記式で、Mは、平均酸化数+4を持つ、4周期及び5周期遷移金属から選択される少なくとも一つの金属であり、M’は、平均酸化数+3を持つ、4周期及び5周期遷移金属から選択される少なくとも一つの金属であり、0<x<1である。」(請求項13)が記載されている。そして、その実施例として、0.55LiMnO-0.45LiNi0.5Co0.2Mn0.3組成の物質をHNO水溶液に添加した後、80℃で乾燥する酸処理を行い、酸処理された前記物質をAl等の硝酸塩水溶液500mLに投入し、300℃で5時間熱処理を行い、金属陽イオンでドーピングされた活物質を得たこと(段落[0137]~[0147])、LiNi0.5Co0.2Mn0.3活物質の場合、該酸処理条件で充放電曲線の変化がなく、酸溶液との反応によってLiイオンが脱離されていないが、LiMnOは、酸処理時に酸溶液のHとLiイオンの置換によって放電曲線が大きく変化したこと(段落[0159])、負極をリチウムメタルとして、初期充放電を0.1C、4.7-2.5Vの定電流充放電で行い初期効率を評価し、0.5C、4.6V定電圧定電流充電、放電電流をそれぞれ0.2,0.33,1,2,及び3C、2.5Vの定電流放電を行ってレート特性を評価したこと(段落[0165]~[0166])が記載されている。 Patent Document 6 includes "a step of acid-treating the hyperlithiated metal oxide and a step of doping the acid-treated superlithiated metal oxide with a metal cation." The perlithiated metal oxide is a method for producing a composite positive electrode active material containing a compound represented by the following chemical formula 4. [Chemical formula 4] xLi 2 MO 3- (1-x) LiM'O 2 By the above formula. , M is at least one metal selected from 4-cycle and 5-cycle transition metals with an average oxidation number of +4, and M'is selected from 4-cycle and 5-cycle transition metals with an average oxidation number of +3. It is at least one metal, and 0 <x <1. ”(Claim 13) is described. Then, as an example thereof, an acid treatment of 0.55Li 2 MnO 3-0.45LiNi 0.5 Co 0.2 Mn 0.3 O 2 composition is added to the HNO 3 aqueous solution and then dried at 80 ° C. Then, the acid-treated substance was put into 500 mL of a nitrate aqueous solution such as Al, and heat-treated at 300 ° C. for 5 hours to obtain an active material doped with metal cations (paragraphs [0137] to [0147]. ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 In the case of the active material, there is no change in the charge / discharge curve under the acid treatment conditions, and Li ions are not desorbed by the reaction with the acid solution. In Li 2 MnO 3 , the discharge curve changed significantly due to the replacement of H + and Li + ions in the acid solution during acid treatment (paragraph [0159]), the negative electrode was lithium metal, and the initial charge / discharge was 0.1C, 4 .7-2.5V constant current charge / discharge to evaluate initial efficiency, 0.5C, 4.6V constant current constant current charge, discharge current 0.2, 0.33, 1, 2, and 3C, respectively. , 2.5 V constant current discharge was performed to evaluate the rate characteristics (paragraphs [0165] to [0166]).

特許第4877660号公報Japanese Patent No. 4877660 特開2015-122235号公報Japanese Unexamined Patent Publication No. 2015-122235 特開2016-15298号公報Japanese Unexamined Patent Publication No. 2016-15298 国際公開2015/083330International release 2015/0833330 特開2016-126935号公報Japanese Unexamined Patent Publication No. 2016-126935 特開2014-170739号公報Japanese Unexamined Patent Publication No. 2014-170739

特許文献2~6に記載されるように、「リチウム過剰型」活物質を正極に用い、正極電位が4.5V(Li/Li+)以上の初期充放電(以下、「過充電化成」ともいう。)を経て使用されることを前提とする非水電解質二次電池において、「リチウム過剰型」活物質を塩酸、リン酸、硫酸、又は硝酸等で酸処理すると、初回クーロン効率や高率放電性能が向上することが知られているが、強酸で処理した場合の効果が示されているだけであり、また、過充電化成をしない場合の効果については不明である。 As described in Patent Documents 2 to 6, an "lithium excess type" active material is used for the positive electrode, and the initial charge / discharge with a positive electrode potential of 4.5 V (Li / Li + ) or more (hereinafter, also referred to as "overcharge chemical formation"). In a non-aqueous electrolyte secondary battery that is supposed to be used after passing through the above), if the "lithium excess type" active material is acid-treated with hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, etc., the initial Coulomb efficiency and high rate will be increased. It is known that the discharge performance is improved, but the effect when treated with a strong acid is only shown, and the effect when not overcharged is not known.

ところで、非水電解質二次電池には、誤って満充電状態(SOC100%)を超えてさらに充電がされた場合に安全性が確保されることが規格(例えば自動車用電池に対して「GB/T(中国勧奨国家標準)」)によって定められている。安全性が向上したことを評価する方法としては、充電制御回路が壊れた場合を想定し、満充電状態を超えてさらに電流を強制的に印加したときに、電池電圧の急上昇が観察されたSOCを記録する方法がある。より高いSOCに至るまで、電池電圧の急上昇が観察されない場合、安全性が向上したと評価される。
ここで、SOCとはState Of Chargeの略で、電池の充電状態をそのときの残存容量と満充電時の容量との比率で表したものであり、満充電状態を「SOC100%」と表記する。また、本明細書中の「初回」充放電とは、非水電解質を注液後に行われる、1回目の充電及び放電をさす。「初期」充放電とは、非水電解質を注液後、電池の出荷前製造工程にて行われる1回または複数回の充電及び放電をさす。
特許文献1に記載された「4.3V(vs.Li/Li)を超え4.8V以下(vs.Li/Li)の正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域」は「リチウム過剰型」活物質に特徴的に観察される。上記の電位変化が比較的平坦な領域が観察される充電を一度でも行うと、次に4.8Vに至る充電を行っても、上記平坦な領域は観察されることがない。したがって、正極に「リチウム過剰型」活物質を含み、上記の電位変化が比較的平坦な領域が観察される初期充放電を行わず、通常使用の満充電(SOC100%)を上記の電位変化が平坦な領域が観察されない正極電位とする非水電解質二次電池を提案した。この電池は、SOC100%を超えて、さらに充電された場合、上記電位変化が比較的平坦な領域が初めて観察され、より高いSOCに至るまで電池電圧の急上昇が観察されない。
By the way, it is a standard for non-aqueous electrolyte secondary batteries to ensure safety if they are accidentally charged beyond the fully charged state (SOC 100%) (for example, "GB / GB / for automobile batteries". T (China Recommended National Standard) ”). As a method of evaluating the improvement in safety, assuming that the charge control circuit is broken, the SOC in which a sudden rise in battery voltage is observed when a current is forcibly applied beyond the fully charged state is observed. There is a way to record. If no spike in battery voltage is observed up to a higher SOC, then safety is assessed as improved.
Here, SOC is an abbreviation for System of Charge, and the state of charge of the battery is expressed by the ratio of the remaining capacity at that time to the capacity at the time of full charge, and the fully charged state is expressed as "SOC 100%". .. Further, the "first time" charging / discharging in the present specification refers to the first charging / discharging performed after injecting a non-aqueous electrolyte. "Initial" charging and discharging refers to one or more charging and discharging performed in the pre-shipment manufacturing process of a battery after injecting a non-aqueous electrolyte.
Comparison of potential changes appearing with respect to the amount of charging electricity in the positive electrode potential range of "4.3 V (vs. Li / Li + ) and 4.8 V or less (vs. Li / Li + )" described in Patent Document 1. A "flat region" is characteristically observed in "lithium-rich" active materials. Once the charging in which the region where the potential change is relatively flat is observed is performed even once, the flat region is not observed even if the charging up to 4.8V is performed next. Therefore, the positive electrode contains a "lithium-excessive" active material, and the above-mentioned potential change is not performed in the initial charge / discharge where the above-mentioned potential change is observed in a relatively flat region, and the above-mentioned potential change is carried out in the normal use full charge (SOC 100%). We have proposed a non-aqueous electrolyte secondary battery with a positive electrode potential in which a flat region is not observed. When this battery exceeds 100% SOC and is further charged, the region where the potential change is relatively flat is observed for the first time, and no rapid increase in battery voltage is observed until a higher SOC is reached.

しかし、「リチウム過剰型」活物質を、初期充放電を含めて4.5V(vs.Li/Li+)以上の充電電位を経ることなく使用する場合の初回クーロン効率、及び高率放電性能について、今まで検討されたことはなく、酸処理との関係性も不明であった。
そこで、本発明は、4.5V(vs.Li/Li)未満の電位で使用したとき、優れた初回クーロン効率、及び高率放電性能を示す非水電解質二次電池用正極活物質、その製造方法、前記正極活物質を含有する非水電解質二次電池用正極、前記正極を備えた非水電解質二次電池、及び前記非水電解質二次電池の製造方法を提供することを課題とする。
However, regarding the initial coulomb efficiency and high rate discharge performance when the "lithium excess type" active material is used without passing through a charging potential of 4.5 V (vs. Li / Li + ) or higher including the initial charge / discharge. , It has not been examined so far, and its relationship with acid treatment was unknown.
Therefore, the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery, which exhibits excellent initial Coulomb efficiency and high rate discharge performance when used at a potential of less than 4.5 V (vs. Li / Li + ). It is an object of the present invention to provide a manufacturing method, a positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for manufacturing the non-aqueous electrolyte secondary battery. ..

本発明の一側面は、リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有し、遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、遷移金属(Me)としてNi、Co及びMn、又はNi及びMnを含み、Meに対するMnのモル比Mn/MeがMn/Me≧0.45であり、前記正極活物質は、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である、非水電解質二次電池用正極活物質である。 One aspect of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide has an α-NaFeO type 2 crystal structure. The molar ratio of Li to the transition metal (Me) Li / Me is 1 <Li / Me, and the transition metal (Me) contains Ni, Co and Mn, or Ni and Mn, and the molar ratio of Mn to Me is Mn / Me. Mn / Me ≧ 0.45, and the positive electrode active material has a discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and 3. Non-aqueous electrolyte secondary battery in which the ratio a / b of the discharge capacity (b) from 0 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ) is 17 ≦ a / b ≦ 25. It is a positive electrode active material for use.

本発明の他の一側面は、リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質の製造方法であって、α-NaFeO型結晶構造を有し、遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、遷移金属(Me)としてNi、Co及びMn、又はNi及びMnを含み、Meに対するMnのモル比Mn/MeがMn/Me≧0.45であるリチウム遷移金属複合酸化物を、pKaが3.1以上の酸で処理して、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である正極活物質を製造する、非水電解質二次電池用正極活物質の製造方法である。 Another aspect of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, which has an α-NaFeO type 2 crystal structure and is a transition metal (Me). ), The molar ratio of Li to Li / Me is 1 <Li / Me, the transition metal (Me) contains Ni, Co and Mn, or Ni and Mn, and the molar ratio of Mn to Me is Mn / Me. The lithium transition metal composite oxide having ≧ 0.45 is treated with an acid having pKa 1 of 3.1 or more, and is treated from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ). The ratio a / b of the discharge capacity (a) up to) and the discharge capacity (b) from 3.0 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ) is 17 ≦ a / b. This is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which produces a positive electrode active material having ≦ 25.

本発明のさらに他の一側面は、前記非水電解質二次電池用正極活物質を含有する非水電解質二次電池用正極である。 Yet another aspect of the present invention is a positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material for the non-aqueous electrolyte secondary battery.

本発明のさらに他の一側面は、前記の非水電解質二次電池用正極を備え、前記正極が含有する正極活物質は、CuKα線を用いたエックス線回折図において、20~22°の範囲に回折ピークが観察される、非水電解質二次電池である。又は、前記の非水電解質二次電池用正極を備え、前記正極は正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池である。 Yet another aspect of the present invention includes the positive electrode for the non-aqueous electrolyte secondary battery, and the positive electrode active material contained in the positive electrode is in the range of 20 to 22 ° in an X-ray diffraction diagram using CuKα rays. It is a non-aqueous electrolyte secondary battery in which a diffraction peak is observed. Alternatively, the positive electrode for the non-aqueous electrolyte secondary battery is provided, and when the positive electrode is charged to a positive electrode potential of 5.0 V (vs. Li / Li + ), 4.5 to 5.0 V (vs. It is a non-aqueous electrolyte secondary battery in which a region where the potential change is relatively flat with respect to the amount of charging electricity is observed within the positive electrode potential range of Li / Li + ).

本発明の他の一側面は、前記の非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、前記の非水電解質二次電池の製造方法である。 Another aspect of the present invention is the method for manufacturing a non-aqueous electrolyte secondary battery, wherein the maximum potential of the positive electrode in the initial charge / discharge step is less than 4.5 V (vs. Li / Li + ). This is the method for manufacturing the above-mentioned non-aqueous electrolyte secondary battery.

本発明によれば、4.5V(vs.Li/Li)未満の電位で使用したとき、優れた初回クーロン効率、及び高率放電性能を示す非水電解質二次電池用正極活物質、その製造方法、前記正極活物質を含有する正極、前記正極を備えた非水電解質二次電池、及び前記非水電解質二次電池の製造方法を提供することができる。 According to the present invention, a positive electrode active material for a non-aqueous electrolyte secondary battery exhibiting excellent initial Coulomb efficiency and high rate discharge performance when used at a potential of less than 4.5 V (vs. Li / Li + ). It is possible to provide a manufacturing method, a positive electrode containing the positive electrode active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for manufacturing the non-aqueous electrolyte secondary battery.

非水電解質二次電池に用いたリチウム過剰型正極活物質のエックス線回折測定において「20~22°の範囲に回折ピークが観察される」ことを説明する図The figure explaining that "diffraction peak is observed in the range of 20-22 °" in the X-ray diffraction measurement of the lithium excess type positive electrode active material used for the non-aqueous electrolyte secondary battery. 非水電解質二次電池に用いたリチウム過剰型正極活物質のエックス線回折測定において「20~22°の範囲に回折ピークが観察され」ないことを説明する図The figure explaining that "diffraction peak is not observed in the range of 20-22 °" in the X-ray diffraction measurement of the lithium excess type positive electrode active material used for the non-aqueous electrolyte secondary battery. リチウム過剰型正極活物質の充電電気量に対する電位変化を示す図The figure which shows the potential change with respect to the charge electric energy of a lithium excess type positive electrode active material 「充電電気量に対して電位変化が比較的平坦な領域」を説明する図The figure explaining "the region where the potential change is relatively flat with respect to the charge electric energy" 本実施形態に係る非水電解液二次電池の外観斜視図External perspective view of the non-aqueous electrolyte secondary battery according to this embodiment 本実施形態に係る非水電解液二次電池を複数個備えた蓄電装置の概略図Schematic diagram of a power storage device including a plurality of non-aqueous electrolyte secondary batteries according to this embodiment.

本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その本質又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施形態又は実施例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。 The configuration and action / effect of the present invention will be described with reference to technical ideas. However, the mechanism of action includes estimation, and its correctness does not limit the present invention. It should be noted that the present invention can be carried out in various other forms without departing from its essence or main features. Therefore, the embodiments or examples described below are merely examples in all respects and should not be construed in a limited manner. Further, all modifications and modifications that fall within the equivalent scope of the claims are within the scope of the present invention.

本発明の一実施形態は、リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有し、遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、遷移金属(Me)としてNi、Co及びMn、又はNi及びMnを含み、Meに対するMnのモル比Mn/MeがMn/Me≧0.45であり、前記正極活物質は、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である、非水電解質二次電池用正極活物質である。 One embodiment of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, and the lithium transition metal composite oxide has an α-NaFeO type 2 crystal structure. , The molar ratio of Li to the transition metal (Me) Li / Me is 1 <Li / Me, and the transition metal (Me) contains Ni, Co and Mn, or Ni and Mn, and the molar ratio of Mn to Me is Mn /. Me is Mn / Me ≧ 0.45, and the positive electrode active material has a discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and 3. Non-aqueous electrolyte secondary in which the ratio a / b of the discharge capacity (b) from 0.0 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ) is 17 ≦ a / b ≦ 25. It is a positive electrode active material for batteries.

本発明の他の一実施形態は、非水電解質二次電池用正極活物質の製造方法であって、α-NaFeO型結晶構造を有し、遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、遷移金属(Me)としてNi、Co及びMn、又はNi及びMnを含み、Meに対するMnのモル比Mn/MeがMn/Me≧0.45であるリチウム遷移金属複合酸化物を、pKaが3.1以上の酸で処理して、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である正極活物質を製造する、非水電解質二次電池用正極活物質の製造方法である。 Another embodiment of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which has an α-NaFeO type 2 crystal structure and has a molar ratio of Li to a transition metal (Me) Li /. Lithium transition in which Me is 1 <Li / Me, the transition metal (Me) contains Ni, Co and Mn, or Ni and Mn, and the molar ratio of Mn to Me is Mn / Me ≧ 0.45. The metal composite oxide is treated with an acid having a pKa 1 of 3.1 or more, and the discharge capacity (a) is from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ). And a positive electrode active material in which the ratio a / b of the discharge capacity (b) from 3.0 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ) is 17 ≦ a / b ≦ 25. This is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.

本発明のさらに他の一実施形態は、前記非水電解質二次電池用正極活物質を含有する非水電解質二次電池用正極である。 Yet another embodiment of the present invention is a positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material for the non-aqueous electrolyte secondary battery.

本発明のさらに他の一実施形態は、前記の非水電解質二次電池用正極を備え、前記正極が含有する正極活物質は、CuKα線を用いたエックス線回折図において、20~22°の範囲に回折ピークが観察される、非水電解質二次電池である。 Yet another embodiment of the present invention comprises the positive electrode for the non-aqueous electrolyte secondary battery, and the positive electrode active material contained in the positive electrode is in the range of 20 to 22 ° in an X-ray diffraction diagram using CuKα rays. It is a non-aqueous electrolyte secondary battery in which a diffraction peak is observed.

本発明のさらに他の一実施形態は、前記の非水電解質二次電池用正極を備え、前記正極は正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池である。
上記の非水電解質二次電は、4.5V(vs.Li/Li)未満の電位で使用されることが好ましい。
Yet another embodiment of the present invention includes the positive electrode for the non-aqueous electrolyte secondary battery, and when the positive electrode is charged to a positive electrode potential of 5.0 V (vs. Li / Li + ), 4 It is a non-aqueous electrolyte secondary battery in which a region where the potential change is relatively flat with respect to the amount of charging electricity is observed within the positive electrode potential range of .5 to 5.0 V (vs. Li / Li + ).
The above-mentioned non-aqueous electrolyte secondary electricity is preferably used at a potential of less than 4.5 V (vs. Li / Li + ).

本発明のさらに他の一実施形態は、前記の非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、前記の非水電解質二次電池の製造方法である。 Yet another embodiment of the present invention is the method for manufacturing the non-aqueous electrolyte secondary battery, wherein the maximum potential of the positive electrode in the initial charge / discharge step is less than 4.5 V (vs. Li / Li + ). This is the method for manufacturing the above-mentioned non-aqueous electrolyte secondary battery.

上記した本発明の一実施形態に係る非水電解質二次電池用正極活物質(以下、「本実施形態に係る正極活物質」という。)、本発明の他の一実施形態に係る非水電解質二次電池用正極活物質の製造方法(以下、「本実施形態に係る正極活物質の製造方法」という。)、本発明のさらに他の一実施形態に係る非水電解質二次電池用正極(以下、「本実施形態に係る非水電解質二次電池用正極」という。)、本発明のさらに他の一実施形態に係る非水電解質二次電池(以下、「本実施形態に係る非水電解質二次電池」という。)、本発明のさらに他の一実施形態に係る非水電解質二次電池の製造方法(以下、「本実施形態に係る非水電解質二次電池の製造方法」という。)について、以下、詳細に説明する。 Non-aqueous electrolyte according to one embodiment of the present invention The positive electrode active material for a secondary battery (hereinafter referred to as “positive electrode active material according to the present embodiment”), the non-aqueous electrolyte according to another embodiment of the present invention. A method for producing a positive electrode active material for a secondary battery (hereinafter referred to as "a method for producing a positive electrode active material according to the present embodiment"), and a positive electrode for a non-aqueous electrolyte secondary battery according to still another embodiment of the present invention (hereinafter referred to as "a method for producing a positive electrode active material according to the present embodiment"). Hereinafter, "positive electrode for non-aqueous electrolyte secondary battery according to the present embodiment"), non-aqueous electrolyte secondary battery according to still another embodiment of the present invention (hereinafter, "non-aqueous electrolyte according to the present embodiment"). "Secondary battery"), a method for manufacturing a non-aqueous electrolyte secondary battery according to still another embodiment of the present invention (hereinafter, referred to as "a method for manufacturing a non-aqueous electrolyte secondary battery according to the present embodiment"). Will be described in detail below.

<リチウム遷移金属複合酸化物の組成>
本実施形態に係る正極活物質に含有されるリチウム遷移金属複合酸化物(以下、「本実施形態に係るリチウム遷移金属複合酸化物」という。)は、一般式Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表される、いわゆる「リチウム過剰型」活物質である。典型的には、Li1+α(NiCoMn1-α(x+y+z=1)と表すことができる。SOC100%を超えて、さらに充電された時により高いSOCに至るまで電池電圧の急上昇が観察されないものとするために遷移金属元素Meに対するLiのモル比Li/Me、すなわち(1+α)/(1-α)は1.05以上であることが好ましく、1.10以上であることがより好ましい。放電容量の低下を抑制するためには、Li/Meは1.4以下であることが好ましく、1.35以下であることがより好ましい。
遷移金属元素Meに対するMnのモル比Mn/Me、すなわちzは、層状構造の安定化の観点から、0.45以上である。また、充放電容量の観点から、Mn/Meは0.65以下であることが好ましく、0.6以下であることがより好ましい。
遷移金属元素Meに対するNiのモル比Ni/Me、すなわちxは、非水電解質二次電池の充放電サイクル性能を向上させるために、0.2以上とすることが好ましく、0.5以下とすることが好ましい。
遷移金属元素Meに対するCoのモル比Co/Me、すなわちyは、活物質粒子の導電性を高めるために0.03以上であることが好ましい。材料コストを削減するためには、0.40以下であることが好ましく、0.30以下とすることがより好ましい。
なお、本実施形態に係るリチウム遷移金属複合酸化物は、本発明の効果を損なわない範囲で、Na,K等のアルカリ金属、Mg,Ca等のアルカリ土類金属、Fe等の3d遷移金属に代表される遷移金属など少量の他の金属を含有することを排除するものではない。
<Composition of Lithium Transition Metal Composite Oxide>
The lithium transition metal composite oxide contained in the positive electrode active material according to the present embodiment (hereinafter referred to as “lithium transition metal composite oxide according to the present embodiment”) is a general formula Li 1 + α Me 1-α O 2 (hereinafter referred to as “lithium transition metal composite oxide according to the present embodiment”). 0 <α, Me is a so-called “lithium-rich” active material represented by Ni and Mn, or a transition metal element containing Ni, Mn and Co). Typically, it can be expressed as Li 1 + α (Ni x Coy Mn z ) 1-α O 2 (x + y + z = 1). The molar ratio of Li to the transition metal element Me, Li / Me, i.e. (1 + α) / (1- α) is preferably 1.05 or more, and more preferably 1.10 or more. In order to suppress the decrease in discharge capacity, Li / Me is preferably 1.4 or less, and more preferably 1.35 or less.
The molar ratio of Mn to the transition metal element Me, Mn / Me, that is, z, is 0.45 or more from the viewpoint of stabilizing the layered structure. Further, from the viewpoint of charge / discharge capacity, Mn / Me is preferably 0.65 or less, and more preferably 0.6 or less.
The molar ratio of Ni to the transition metal element Me, Ni / Me, that is, x, is preferably 0.2 or more, preferably 0.5 or less, in order to improve the charge / discharge cycle performance of the non-aqueous electrolyte secondary battery. Is preferable.
The molar ratio of Co to the transition metal element Me, Co / Me, that is, y, is preferably 0.03 or more in order to enhance the conductivity of the active material particles. In order to reduce the material cost, it is preferably 0.40 or less, and more preferably 0.30 or less.
The lithium transition metal composite oxide according to the present embodiment can be used as an alkali metal such as Na and K, an alkaline earth metal such as Mg and Ca, and a 3d transition metal such as Fe, as long as the effect of the present invention is not impaired. It does not preclude the inclusion of small amounts of other metals such as typified transition metals.

<リチウム遷移金属複合酸化物の結晶構造>
本実施形態に係るリチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有している。上記リチウム遷移金属複合酸化物は、合成後(活物質としての充放電前)、空間群P312に帰属されると共に、CuKα管球を用いたエックス線回折図上、2θ=20~22°の範囲に超格子ピーク(Li[Li1/3Mn2/3]O型の単斜晶に見られるピーク)が確認される。このピークは、4.5V(vs.Li/Li+)以上の電位で充電を行わない限り、消失しない(図1参照)。ところが、一度でも4.5V(vs.Li/Li+)以上の電位で充電を行うと、結晶中のLiの脱離に伴って結晶の対称性が変化することにより、この超格子ピークが消失して、上記リチウム遷移金属複合酸化物は空間群R3-mに帰属されるようになる(図2参照)。ここで、P312は、R3-mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3-mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。なお、「R3-m」は本来「R3m」の「3」の上にバー「-」を施して表記する。
<Crystal structure of lithium transition metal composite oxide>
The lithium transition metal composite oxide according to this embodiment has an α-NaFeO type 2 crystal structure. The lithium transition metal composite oxide is assigned to the space group P3 112 after synthesis (before charging / discharging as an active material), and is 2θ = 20 to 22 ° on an X-ray diffraction diagram using a CuKα tube. A superlattice peak (a peak found in Li [Li 1/3 Mn 2/3 ] O2 type monochromatic crystals) is confirmed in the range. This peak does not disappear unless charging is performed at a potential of 4.5 V (vs. Li / Li + ) or higher (see FIG. 1). However, if charging is performed at a potential of 4.5 V (vs. Li / Li + ) or higher even once, this superlattice peak disappears because the symmetry of the crystal changes with the desorption of Li in the crystal. Then, the lithium transition metal composite oxide is assigned to the space group R3-m (see FIG. 2). Here, P3 1 12 is a crystal structure model in which the atomic positions of 3a, 3b, and 6c sites in R3-m are subdivided, and the P3 1 12 model is when order is recognized in the atomic arrangement in R3-m. Is adopted. In addition, "R3-m" is originally described by adding a bar "-" on "3" of "R3m".

<回折ピークの確認方法>
本実施形態に係る正極活物質が、CuKα線を用いたエックス線回折図において、20~22°の範囲に回折ピークが観察されることの確認は、以下のとおりの手順及び条件により、行う。また、「観察される」とは、回折角17~19°の範囲内の強度の最大値と最小値との差分(I18)に対する回折角20~22°の範囲内の強度の最大値と最小値との差分(I21)の比、すなわち「I21/I18」の値が0.001~0.1の範囲であることをさす。
測定に供する試料は、正極作製前の活物質粉末(充放電前粉末)であれば、そのまま測定に供する。電池を解体して取り出した電極から試料を採取する場合には、電池を解体する前に、当該電池の公称容量(Ah)の10分の1となる電流値(A)で、指定される電圧の下限となる電池電圧に至るまで定電流放電を行い、放電末状態とする。解体した結果、金属リチウム電極を負極に用いた電池であれば、以下に述べる追加作業は行わず、正極板から採取された正極合剤を測定対象とする。金属リチウム電極を負極に用いた電池でない場合は、正極電位を正確に制御するため、電池を解体して電極を取り出した後に、金属リチウム電極を対極とした電池を組立て、正極合剤1gあたり10mAの電流値で、正極の電位が2.0V(vs.Li/Li)となるまで定電流放電を行い、放電末状態に調整した後、再解体する。取り出した正極板は、ジメチルカーボネートを用いて電極に付着した電解液を十分に洗浄し室温にて一昼夜の乾燥後、アルミニウム箔集電体上の合剤を採取する。採取した合剤をめのう乳鉢で軽くほぐし、エックス線回折測定用試料ホルダーに配置して測定に供する。上記の電池の解体から再解体までの作業、及び正極の洗浄、乾燥作業は、露点-60℃以下のアルゴン雰囲気中で行う。
<Diffraction peak confirmation method>
It is confirmed that the positive electrode active material according to the present embodiment has a diffraction peak in the range of 20 to 22 ° in the X-ray diffraction diagram using CuKα rays according to the following procedure and conditions. Further, "observed" means the maximum value of the intensity in the range of the diffraction angle of 20 to 22 ° with respect to the difference (I 18 ) between the maximum value and the minimum value of the intensity in the range of the diffraction angle of 17 to 19 °. It means that the ratio of the difference (I 21 ) from the minimum value, that is, the value of "I 21 / I 18 " is in the range of 0.001 to 0.1.
If the sample to be measured is the active material powder (powder before charging / discharging) before the positive electrode is prepared, it is used as it is for the measurement. When a sample is taken from an electrode taken out by disassembling the battery, the voltage specified by the current value (A), which is 1/10 of the nominal capacity (Ah) of the battery, is used before disassembling the battery. A constant current discharge is performed up to the battery voltage, which is the lower limit of the above, and the state is set to the end of discharge state. As a result of dismantling, if the battery uses a metallic lithium electrode as the negative electrode, the positive electrode mixture collected from the positive electrode plate is targeted for measurement without performing the additional work described below. If the battery does not use a metallic lithium electrode as the negative electrode, in order to accurately control the positive electrode potential, after disassembling the battery and taking out the electrode, assemble a battery with the metallic lithium electrode as the counter electrode, and 10 mA per 1 g of the positive electrode mixture. With the current value of, constant current discharge is performed until the potential of the positive electrode reaches 2.0 V (vs. Li / Li + ), adjusted to the discharge end state, and then disassembled again. The removed positive electrode plate is thoroughly washed with dimethyl carbonate to thoroughly wash the electrolytic solution adhering to the electrode, dried at room temperature for a whole day and night, and then the mixture on the aluminum foil current collector is collected. Lightly loosen the collected mixture in an agate mortar and place it in a sample holder for X-ray diffraction measurement for measurement. The work from dismantling to re-disassembling the battery, and the cleaning and drying work of the positive electrode are performed in an argon atmosphere having a dew point of −60 ° C. or lower.

<エックス線回折測定>
本明細書において、エックス線回折測定は、次の条件にて行う。線源はCuKα、加速電圧は30kV、加速電流は15mAとする。サンプリング幅は0.01deg、スキャンスピードは1.0deg/min、発散スリット幅は0.625deg、受光スリットは開放、散乱スリットは8.0mmとする。
<X-ray diffraction measurement>
In the present specification, the X-ray diffraction measurement is performed under the following conditions. The radioactive source is CuKα, the acceleration voltage is 30 kV, and the acceleration current is 15 mA. The sampling width is 0.01 deg, the scan speed is 1.0 deg / min, the divergent slit width is 0.625 deg, the light receiving slit is open, and the scattering slit is 8.0 mm.

図1は、本実施形態に係る正極活物質(リチウム過剰型正極活物質)を用いた非水電解質二次電池に対して、正極合剤1gあたり10mAの電流値で、充電上限電位を4.35V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として初回の充放電を行った後の放電末状態における本実施形態に係る非水電解質二次電池の正極に含有される活物質粉末について、上記の手順で測定したエックス線回折図である。図1では、20~22°の範囲に回折ピークが観察される。
図2は、上記と同じ正極活物質を用いた非水電解質二次電池に対して、正極合剤1gあたり10mAの電流値で、充電上限電位を4.6V(vs.Li/Li+)、放電下限電位を2.0V(vs.Li/Li)として充放電を行った後の放電末状態における非水電解質二次電池の正極に含有される活物質粉末について、上記の手順で測定したエックス線回折図である。図2では、20~22°の範囲に回折ピークが観察されない。すなわち、4.6V(Li/Li+)で充電を行った電池では、リチウム過剰型正極活物質の20~22°の範囲の回折ピークが消失することがわかる。
上記と同じ正極活物質を用いた非水電解質二次電池に対して、正極合剤1gあたり10mAの電流値で、充電上限電位を4.6V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として、初回の充放電を行った後、さらに充電上限電位4.35V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として充放電を行った放電末状態における非水電解質二次電池の正極に含有される活物質粉末について、上記の手順で測定したところ、図2と同様のエックス線回折図が得られた。すなわち、一度でも4.5V以上の電位まで充電を行うと、20~22°の範囲のピークは消失し、20~22°の範囲の回折ピークが再び現れることはない。
FIG. 1 shows a non-aqueous electrolyte secondary battery using the positive electrode active material (lithium excess type positive electrode active material) according to the present embodiment, with a current value of 10 mA per 1 g of the positive electrode mixture and a charge upper limit potential of 4. The non-aqueous electrolyte secondary battery according to the present embodiment in the discharge end state after the first charge / discharge with 35 V (vs. Li / Li + ) and the lower discharge potential of 2.0 V (vs. Li / Li + ). It is an X-ray discharge chart measured by the above-mentioned procedure about the active material powder contained in the positive electrode of. In FIG. 1, diffraction peaks are observed in the range of 20 to 22 °.
FIG. 2 shows a non-aqueous electrolyte secondary battery using the same positive electrode active material as described above, with a current value of 10 mA per 1 g of the positive electrode mixture and a charge upper limit potential of 4.6 V (vs. Li / Li + ). The active material powder contained in the positive electrode of the non-aqueous electrolyte secondary battery in the discharge end state after charging / discharging with the lower discharge potential of 2.0 V (vs. Li / Li + ) was measured by the above procedure. It is an X-ray diffraction diagram. In FIG. 2, no diffraction peak is observed in the range of 20 to 22 °. That is, it can be seen that in a battery charged with 4.6 V (Li / Li + ), the diffraction peak in the range of 20 to 22 ° of the lithium excess type positive electrode active material disappears.
For a non-aqueous electrolyte secondary battery using the same positive electrode active material as above, the charge upper limit potential is 4.6 V (vs. Li / Li + ) and the discharge lower limit potential is set at a current value of 10 mA per 1 g of the positive electrode mixture. After the first charge and discharge at 2.0 V (vs. Li / Li + ), the charge upper limit potential is 4.35 V (vs. Li / Li + ) and the discharge lower limit potential is 2.0 V (vs. Li / Li /). When the active material powder contained in the positive electrode of the non-aqueous electrolyte secondary battery in the end-discharged state of being charged and discharged as Li + ) was measured by the above procedure, an X-ray diffraction diagram similar to that in FIG. 2 was obtained. .. That is, once the battery is charged to a potential of 4.5 V or higher, the peak in the range of 20 to 22 ° disappears, and the diffraction peak in the range of 20 to 22 ° does not appear again.

<正極活物質の放電容量比>
本実施形態に係る正極活物質は、さらに、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である。
<Discharge capacity ratio of positive electrode active material>
The positive electrode active material according to the present embodiment further has a discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and 3.0 V (vs. Li). The ratio a / b of the discharge capacity (b) from / Li + ) to 2.0 V (vs. Li / Li + ) is 17 ≦ a / b ≦ 25.

放電容量比a/bは、以下のようにして求める。
評価対象が活物質である場合は、N-メチルピロリドンを分散媒とし、活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)を90:5:5の割合の塗布用ペーストを作製し、該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布して、正極板を作製し、金属リチウムを対極として、評価用の非水電解質二次電池を組み立てる。正極合剤1gあたり15mAの電流値で、充電上限電位を4.35V(vs.Li/Li)、充電終止条件は電流値が1/5に減衰した時点とする定電流定電圧充電を行う。10分間の休止を設けた後、同じ電流値で放電下限電位を2.0V(vs.Li/Li)とする、定電流放電を行い、放電開始から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bを求める。
評価対象が二次電池である場合は、当該電池の公称容量(Ah)の10分の1となる電流値(A)で、指定される電圧の下限となる電池電圧に至るまで定電流放電を行い、放電末状態とする。露点-60℃以下のアルゴン雰囲気中で電池を解体し、正極板を取得したのち、金属リチウムを対極とした評価用の非水電解質二次電池を組み立てる。作製した電池は、正極合剤1gあたり15mAの電流値で、2.0V(vs.Li/Li)まで定電流放電する。その後、同じ電流値で充電上限電位を4.35V(vs.Li/Li)、充電終止条件は電流値が1/5に減衰した時点とする定電流定電圧充電を行う。10分間の休止を設けた後、同じ電流で2.0V(vs.Li/Li)まで定電流放電し、同様にa/bを評価する。
後述の実験例によると、この放電容量比a/bが17≦a/b≦25である場合、初回クーロン効率及び高率放電性能に優れた正極活物質、この正極活物質を含有する本実施形態に係る非水電解質二次電池用正極、及びこの正極を備えた本実施形態に係る非水電解質二次電池が得られることがわかった。
The discharge capacity ratio a / b is obtained as follows.
When the evaluation target is an active material, N-methylpyrrolidone is used as a dispersion medium, and the active material, acetylene black (AB) and polyvinylidene fluoride (PVdF) are prepared in a ratio of 90: 5: 5 to prepare a coating paste. The coating paste is applied to one side of an aluminum foil current collector having a thickness of 20 μm to prepare a positive electrode plate, and a non-aqueous electrolyte secondary battery for evaluation is assembled using metallic lithium as a counter electrode. A constant current constant voltage charge is performed with a current value of 15 mA per 1 g of the positive electrode mixture, a charge upper limit potential of 4.35 V (vs. Li / Li + ), and a charge termination condition when the current value is reduced to 1/5. .. After a 10-minute pause, constant current discharge is performed with the same current value and a discharge lower limit potential of 2.0 V (vs. Li / Li + ), and 3.0 V (vs. Li / Li + ) from the start of discharge. ) And the ratio a / b of the discharge capacity (b) from 3.0 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ).
When the evaluation target is a secondary battery, constant current discharge is performed up to the battery voltage, which is the lower limit of the specified voltage, with the current value (A), which is 1/10 of the nominal capacity (Ah) of the battery. This is done, and the state is set to the end of discharge. The battery is disassembled in an argon atmosphere with a dew point of -60 ° C. or lower to obtain a positive electrode plate, and then a non-aqueous electrolyte secondary battery for evaluation is assembled using metallic lithium as a counter electrode. The produced battery is constantly discharged to 2.0 V (vs. Li / Li + ) at a current value of 15 mA per 1 g of the positive electrode mixture. After that, constant current constant voltage charging is performed with the same current value, the upper limit potential of charging is 4.35 V (vs. Li / Li + ), and the charge termination condition is the time when the current value is reduced to 1/5. After a 10-minute pause, a constant current discharge of 2.0 V (vs. Li / Li + ) with the same current is performed, and a / b is evaluated in the same manner.
According to the experimental example described later, when the discharge capacity ratio a / b is 17 ≦ a / b ≦ 25, the present implementation contains a positive electrode active material excellent in initial Coulomb efficiency and high rate discharge performance, and this positive electrode active material. It was found that a positive electrode for a non-aqueous electrolyte secondary battery according to the embodiment and a non-aqueous electrolyte secondary battery according to the present embodiment provided with the positive electrode can be obtained.

<非水電解質二次電池の4.5V(vs.Li/Li+)を超え充電された時の挙動>
本実施形態に係る非水電解質二次電池は、上記の正極活物質を含有する正極を備え、この正極活物質は、CuKα線を用いたエックス線回折図において、20~22°の範囲のピークが観察されるから、本実施形態に係る非水電解質二次電池は、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li+)未満とする、本実施形態に係る非水電解質二次電池の製造方法により製造されている。また、本実施形態に係る非水電解質二次電池は、通常使用時において、4.5V(vs.Li/Li+)以上の充電過程を経ていない。したがって、4.5V(vs.Li/Li+)を超え、5.0V(vs.Li/Li+)に至る充電がされると、前記正極には、「4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域」(以下「電位変化が平坦な領域」ともいう。)が観察される(図3の実線参照)。この平坦な領域の存在により、本実施形態に係る非水電解質二次電池には、より高いSOCに至るまで電池電圧の急上昇が観察されない。
<Behavior when the non-aqueous electrolyte secondary battery is charged to exceed 4.5 V (vs. Li / Li + )>
The non-aqueous electrolyte secondary battery according to the present embodiment includes a positive electrode containing the above-mentioned positive electrode active material, and the positive electrode active material has a peak in the range of 20 to 22 ° in an X-ray diffraction diagram using CuKα rays. As observed, the non-aqueous electrolyte secondary battery according to the present embodiment has a non-hydrolyte secondary battery according to the present embodiment in which the maximum ultimate potential of the positive electrode in the initial charge / discharge step is less than 4.5 V (vs. Li / Li + ). It is manufactured by the manufacturing method of a water electrolyte secondary battery. Further, the non-aqueous electrolyte secondary battery according to the present embodiment has not undergone a charging process of 4.5 V (vs. Li / Li + ) or more in normal use. Therefore, when the charge exceeds 4.5 V (vs. Li / Li + ) and reaches 5.0 V (vs. Li / Li + ), the positive electrode is charged with "4.5 to 5.0 V (vs). Within the positive electrode potential range of Li / Li + ), a region in which the potential change is relatively flat with respect to the amount of charging electricity (hereinafter, also referred to as a “region in which the potential change is flat”) is observed (FIG. 3). See solid line). Due to the presence of this flat region, no spike in battery voltage is observed in the non-aqueous electrolyte secondary battery according to this embodiment until a higher SOC is reached.

図3の実線は、リチウム過剰型活物質を含有する正極を備えた非水電解質二次電池に対して、初回に4.6V(vs.Li/Li+)に至る充電を行った場合の充電カーブの一例を示している。ここでは、充電開始から4.35V(vs.Li/Li+)到達までの容量を基準(SOC100%)として容量をSOCに換算した。SOCが200%付近で正極電位が急激に上昇するまで、比較的平坦な充電カーブを有する。一方、図3の破線は、上述の4.6V(vs.Li/Li+)に至る充電を行った非水電解質二次電池を2.0V(vs.Li/Li+)まで放電した後、再度上限電位を4.6V(vs.Li/Li+)とし、充電を行った場合の充電カーブである。図からわかるように、一度でも4.5V(vs.Li/Li+)以上の充電履歴を経た正極では、電位変化が平坦な領域は現れない。 The solid line in FIG. 3 shows the charge when the non-aqueous electrolyte secondary battery equipped with the positive electrode containing the lithium excess type active material is initially charged to 4.6 V (vs. Li / Li + ). An example of a curve is shown. Here, the capacity is converted into SOC based on the capacity from the start of charging to the arrival of 4.35 V (vs. Li / Li + ) (SOC 100%). It has a relatively flat charge curve until the positive electrode potential rises sharply around 200% SOC. On the other hand, the broken line in FIG. 3 shows the above-mentioned non-aqueous electrolyte secondary battery charged to 4.6 V (vs. Li / Li + ) after being discharged to 2.0 V (vs. Li / Li + ). This is a charging curve when charging is performed with the upper limit potential set to 4.6 V (vs. Li / Li + ) again. As can be seen from the figure, in the positive electrode having a charge history of 4.5 V (vs. Li / Li + ) or more even once, a region where the potential change is flat does not appear.

<電位変化が平坦な領域の確認方法>
ここで、電位変化が平坦な領域が観察されることの確認は、以下の手順による。解体して取り出した正極を作用極、リチウム金属を対極とした試験電池を作製し、前記試験電池を正極合剤1gあたり10mAの電流値で2.0V(vs.Li/Li)まで放電したのち、30分の休止を行う。その後正極合剤1gあたり10mAの電流値で5.0V(vs.Li/Li)まで定電流充電を行う。ここで、充電開始から4.45V(vs.Li/Li)到達時の容量X(mAh)に対する、各電位における容量Y(mAh)との比をZ(=Y/X*100(%))とする。横軸に電位、縦軸に分母を電位変化の差分、分子を容量比変化の差分としたdZ/dVをとり、dZ/dVカーブを得る。
図4の実線は、リチウム過剰型活物質を正極活物質として用いた正極とリチウム金属を用いた負極とを備えた非水電解質二次電池を組み立て、初回の充電を4.5V(vs.Li/Li)未満とした本実施形態に係る非水電解質二次電池について、4.6V(vs.Li/Li)に至る充電を行ったときのdZ/dVカーブの一例である。dZ/dVカーブは計算式からも分かるように、容量比変化に対し、電位変化が小さいときはdZ/dVの値が大きくなり、容量比変化に対し、電位変化が大きいときはdZ/dVの値が小さくなる。リチウム過剰型活物質の4.5V(vs.Li/Li)を超えた電位領域での充電過程では、電位変化が平坦な領域が見え始めたところで、dZ/dVの値は大きくなる。その後、電位変化が平坦な領域が終了し、電位が再び上昇した場合は、dZ/dVの値は小さくなる。すなわち、dZ/dVカーブにおいて、ピークが観察される。ここで、4.5V(vs.Li/Li)から5.0V(vs.Li/Li)の範囲におけるdZ/dVの最大値が150以上を示す場合、電位変化が平坦な領域が観察されると判断する。一方、破線は、上記した非水電解質二次電池と同様の構成の電池で、初回に上限4.6V(vs.Li/Li)、下限2.0V(vs.Li/Li)とした充放電を行い、10分の休止を挟んだのち、2回目の充電を上限4.6V(vs.Li/Li)として充電を行ったときのdZ/dVカーブである。破線では、実線のようなピークは観察されない。すなわち、リチウム過剰型活物質を含有する正極を備えた非水電解質二次電池を一度でも4.5V(vs.Li/Li)の電位変化が平坦な領域が終了するまで充電を行うと、以降の4.5V(vs.Li/Li)以上の電位での充電工程では、dZ/dVカーブにおいてピークが観察されない。なお、本明細書において、通常使用時とは、当該非水電解質二次電池について推奨され、又は指定される充放電条件を採用して当該非水電解質二次電池を使用する場合であり、当該非水電解質二次電池のための充電器が用意されている場合は、その充電器を適用して当該非水電解質二次電池を使用する場合をいう。
<How to check the area where the potential change is flat>
Here, confirmation that a region where the potential change is flat is observed is performed by the following procedure. A test battery was prepared in which the positive electrode taken out by disassembly was used as the working electrode and the lithium metal was used as the counter electrode, and the test battery was discharged to 2.0 V (vs. Li / Li + ) at a current value of 10 mA per 1 g of the positive electrode mixture. After that, a 30-minute rest is performed. After that, constant current charging is performed up to 5.0 V (vs. Li / Li + ) with a current value of 10 mA per 1 g of the positive electrode mixture. Here, the ratio of the capacity X (mAh) at the time of reaching 4.45 V (vs. Li / Li + ) from the start of charging to the capacity Y (mAh) at each potential is Z (= Y / X * 100 (%)). ). The horizontal axis is the potential, the vertical axis is the difference in the potential change, and the numerator is the difference in the volume ratio change, and dZ / dV is taken to obtain a dZ / dV curve.
The solid line in FIG. 4 is an assembly of a non-aqueous electrolyte secondary battery equipped with a positive electrode using a lithium excess type active material as a positive electrode active material and a negative electrode using a lithium metal, and the initial charge is 4.5 V (vs. Li). This is an example of a dZ / dV curve when the non-aqueous electrolyte secondary battery according to the present embodiment having a value of less than / Li + ) is charged to 4.6 V (vs. Li / Li + ). As can be seen from the calculation formula, the dZ / dV curve has a large dZ / dV value when the potential change is small with respect to the capacitance ratio change, and dZ / dV when the potential change is large with respect to the capacitance ratio change. The value becomes smaller. In the charging process of the lithium excess type active material in the potential region exceeding 4.5 V (vs. Li / Li + ), the value of dZ / dV becomes large when the region where the potential change is flat begins to be seen. After that, when the region where the potential change is flat ends and the potential rises again, the value of dZ / dV becomes smaller. That is, a peak is observed in the dZ / dV curve. Here, when the maximum value of dZ / dV in the range of 4.5 V (vs. Li / Li + ) to 5.0 V (vs. Li / Li + ) is 150 or more, a region where the potential change is flat is observed. Judge to be done. On the other hand, the broken line is a battery having the same configuration as the above-mentioned non-aqueous electrolyte secondary battery, with an upper limit of 4.6 V (vs. Li / Li + ) and a lower limit of 2.0 V (vs. Li / Li + ) for the first time. It is a dZ / dV curve when charging and discharging are performed, a pause of 10 minutes is inserted, and then charging is performed with the upper limit of 4.6 V (vs. Li / Li + ) for the second charge. In the broken line, no peak like the solid line is observed. That is, when a non-aqueous electrolyte secondary battery equipped with a positive electrode containing a lithium excess type active material is charged even once until the region where the potential change of 4.5 V (vs. Li / Li + ) is flat is completed, the battery is charged. In the subsequent charging step at a potential of 4.5 V (vs. Li / Li + ) or higher, no peak is observed in the dZ / dV curve. In the present specification, the term "normal use" refers to the case where the non-aqueous electrolyte secondary battery is used by adopting the charge / discharge conditions recommended or specified for the non-aqueous electrolyte secondary battery. When a charger for a non-aqueous electrolyte secondary battery is prepared, it means a case where the charger is applied to use the non-aqueous electrolyte secondary battery.

<リチウム遷移金属複合酸化物の前駆体の製造方法>
本実施形態に係る正極活物質の製造方法は、基本的に、活物質に含まれるリチウム遷移金属複合酸化物を構成する金属元素(Li,Ni,Co,Mn)を、目的とする組成どおりに含有する原料を調製し、これを焼成することによって得ることができる。
目的とする組成のリチウム遷移金属複合酸化物を作製するにあたり、Li,Ni,Co,Mnのそれぞれの化合物の粉末を混合・焼成するいわゆる「固相法」や、あらかじめNi,Co,Mnを一粒子中に存在させた共沈前駆体を作製しておき、これにLi塩を混合・焼成する「共沈法」が知られている。「固相法」による合成過程では、特にMnはNi,Coに対して均一に固溶しにくいため、各元素が一粒子中に均一に分布した試料を得ることは困難である。これまで文献などにおいては、固相法によってNiやCoの一部にMnを固溶(LiNi1-xMnなど)しようという試みが多数なされているが、「共沈法」を選択する方が原子レベルで均一相を得ることが容易である。そこで、後述する実施例においては、「共沈法」を採用した。
<Manufacturing method of precursor of lithium transition metal composite oxide>
The method for producing a positive electrode active material according to the present embodiment basically comprises using metal elements (Li, Ni, Co, Mn) constituting the lithium transition metal composite oxide contained in the active material according to the desired composition. It can be obtained by preparing the raw material to be contained and baking it.
In producing a lithium transition metal composite oxide having the desired composition, the so-called "solid phase method" in which powders of Li, Ni, Co, and Mn compounds are mixed and fired, or Ni, Co, and Mn are used in advance. A "coprecipitation method" is known in which a coprecipitation precursor present in a particle is prepared, and a Li salt is mixed and fired with the coprecipitation precursor. In the synthesis process by the "solid phase method", it is difficult to obtain a sample in which each element is uniformly distributed in one particle, because Mn is particularly difficult to dissolve uniformly in Ni and Co. In the literature, many attempts have been made to dissolve Mn in a part of Ni or Co by the solid phase method (LiNi 1-x Mn x O 2 etc.), but the "coprecipitation method" is selected. It is easier to obtain a uniform phase at the atomic level. Therefore, in the examples described later, the "coprecipitation method" was adopted.

本実施形態に係る正極活物質の製造方法において、リチウム遷移金属複合酸化物の前駆体の製造は、Ni、Co及びMnを含有する原料水溶液を滴下し、溶液中でNi、Co及びMnを含有する化合物を共沈させて前駆体を作製することが好ましい。
共沈前駆体を作製するにあたって、Ni,Co,MnのうちMnは酸化されやすく、Ni,Co,Mnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Ni,Co,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。したがって、本発明においては、共沈前駆体に分布して存在するMnの酸化を抑制するために、溶存酸素を除去することが好ましい。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)等を用いることができる。
In the method for producing a positive electrode active material according to the present embodiment, in the production of a precursor of a lithium transition metal composite oxide, a raw material aqueous solution containing Ni, Co and Mn is dropped, and Ni, Co and Mn are contained in the solution. It is preferable to co-precipitate the compound to prepare a precursor.
In producing a coprecipitation precursor, Mn among Ni, Co, and Mn is easily oxidized, and it is not easy to produce a coprecipitation precursor in which Ni, Co, and Mn are uniformly distributed in a divalent state. , Ni, Co, Mn at the atomic level tends to be inadequate. Therefore, in the present invention, it is preferable to remove dissolved oxygen in order to suppress the oxidation of Mn distributed and present in the coprecipitation precursor. Examples of the method for removing dissolved oxygen include a method of bubbling a gas containing no oxygen. The gas containing no oxygen is not limited, but nitrogen gas, argon gas, carbon dioxide (CO 2 ) and the like can be used.

溶液中でNi、Co及びMnを含有する化合物を共沈させて前駆体を作製する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈水酸化物前駆体として作製しようとする場合には、10.5~14とすることができる。タップ密度を大きくするためには、pHを制御することが好ましい。pHを11.5以下とすることにより、タップ密度を1.00g/cm以上とすることができ、高率放電性能を向上させることができる。さらに、pHを11.0以下とすることにより、粒子成長を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
また、前記共沈前駆体を共沈炭酸塩前駆体として作製しようとする場合には、pHを7.5~11とすることができる。pHを9.4以下とすることにより、タップ密度を1.25g/cc以上とすることができ、高率放電性能を向上させることができる。さらに、pHを8.0以下とすることにより、粒子成長を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
The pH in the step of coprecipitating a compound containing Ni, Co and Mn in a solution to prepare a precursor is not limited, but an attempt is made to prepare the coprecipitated precursor as a coprecipitated hydroxide precursor. If so, it can be 10.5 to 14. In order to increase the tap density, it is preferable to control the pH. By setting the pH to 11.5 or less, the tap density can be set to 1.00 g / cm 3 or more, and the high rate discharge performance can be improved. Further, since the particle growth can be promoted by setting the pH to 11.0 or less, the stirring continuation time after the completion of dropping the raw material aqueous solution can be shortened.
Further, when the coprecipitation precursor is to be prepared as a coprecipitation carbonate precursor, the pH can be 7.5 to 11. By setting the pH to 9.4 or less, the tap density can be 1.25 g / cc or more, and the high rate discharge performance can be improved. Further, since the particle growth can be promoted by setting the pH to 8.0 or less, the stirring continuation time after the completion of dropping the raw material aqueous solution can be shortened.

前記共沈前駆体の原料は、Ni源としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co源としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を、Mn源としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を一例として挙げることができる。 The raw material of the co-precipitation precursor is nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, nickel acetate or the like as the Ni source, and cobalt sulfate, cobalt nitrate, cobalt acetate or the like as the Co source, Mn source. Examples thereof include manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, and manganese acetate.

前記原料水溶液の滴下速度は、生成する共沈前駆体の1粒子内における元素分布の均一性に大きく影響を与える。好ましい滴下速度については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、30mL/min以下が好ましい。放電容量を向上させるためには、滴下速度は10mL/min以下がより好ましく、5mL/min以下が最も好ましい。 The dropping rate of the raw material aqueous solution greatly affects the uniformity of the element distribution within one particle of the produced coprecipitation precursor. The preferable dropping rate is affected by the size of the reaction vessel, stirring conditions, pH, reaction temperature and the like, but is preferably 30 mL / min or less. In order to improve the discharge capacity, the dropping rate is more preferably 10 mL / min or less, and most preferably 5 mL / min or less.

また、反応槽内にNH等の錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転及び攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、共沈前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。したがって、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた共沈前駆体を得ることができる。 In addition, when a complexing agent such as NH 3 is present in the reaction vessel and certain convection conditions are applied, the particles rotate and in the stirring vessel by continuing stirring after the dropping of the raw material aqueous solution is completed. Revolution is promoted, and in this process, the particles gradually grow into convective spheres while colliding with each other. That is, the coprecipitation precursor undergoes a two-step reaction: a metal complex forming reaction when the raw material aqueous solution is dropped into the reaction vessel, and a precipitation forming reaction that occurs while the metal complex stays in the reaction vessel. It is formed. Therefore, a coprecipitation precursor having a target particle size can be obtained by appropriately selecting a time for further stirring after the completion of dropping of the raw material aqueous solution.

原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5時間以上が好ましく、1時間以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が充分でないものとなる虞を低減させるため、30時間以下が好ましく、25時間以下がより好ましく、20時間以下が最も好ましい。 The preferable stirring duration after the completion of dropping the aqueous solution of the raw material is affected by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc., but is 0.5 hours or more in order to grow the particles as uniform spherical particles. Is preferable, and 1 hour or more is more preferable. Further, in order to reduce the possibility that the output performance in the low SOC region of the battery becomes insufficient due to the particle size becoming too large, 30 hours or less is preferable, 25 hours or less is more preferable, and 20 hours or less is most preferable.

<リチウム遷移金属複合酸化物の製造方法>
本実施形態に係る正極活物質の製法方法においては、リチウム遷移金属複合酸化物は、前記共沈前駆体とLi化合物とを混合し、焼成して合成されることが好ましい。
Li化合物として通常使用されている水酸化リチウム、炭酸リチウムと共に、焼結助剤としてLiF、LiSO、又はLiPOを使用してもよい。これらの焼結助剤の添加比率は、Li化合物の総量に対して1~10mol%とすることが好ましい。なお、Li化合物の総量は、焼成中にLi化合物の一部が消失することを見込んで、1~5%程度過剰に仕込むことが好ましい。
<Manufacturing method of lithium transition metal composite oxide>
In the method for producing a positive electrode active material according to the present embodiment, the lithium transition metal composite oxide is preferably synthesized by mixing the coprecipitation precursor and the Li compound and firing them.
LiF, Li 2 SO 4 or Li 3 PO 4 may be used as the sintering aid together with lithium hydroxide and lithium carbonate which are usually used as Li compounds. The addition ratio of these sintering aids is preferably 1 to 10 mol% with respect to the total amount of the Li compound. It is preferable that the total amount of the Li compound is excessively charged by about 1 to 5% in anticipation that a part of the Li compound will disappear during firing.

焼成温度は、活物質の可逆容量に影響を与える。
焼成温度が低すぎると、結晶化が十分に進まず、電極特性が低下する傾向がある。本発明の一態様においては、焼成温度は900℃以上とすることが好ましい。900℃以上とすることにより、焼結度が高い活物質粒子を得ることができ、充放電サイクル性能を向上させることができる。
The firing temperature affects the reversible capacity of the active material.
If the firing temperature is too low, crystallization does not proceed sufficiently and the electrode characteristics tend to deteriorate. In one aspect of the present invention, the firing temperature is preferably 900 ° C. or higher. By setting the temperature to 900 ° C. or higher, active material particles having a high degree of sintering can be obtained, and charge / discharge cycle performance can be improved.

一方、焼成温度が高すぎると層状α-NaFeO型結晶構造から岩塩型立方晶構造へと構造変化がおこり、充放電反応中における活物質中のリチウムイオン移動に不利な状態となり、放電性能が低下する。本発明において、焼成温度は1000℃以下とすることが好ましい。1000℃以下とすることにより、充放電サイクル性能を向上させることができる。
したがって、本実施形態に係る正極活物質の製造方法においては、充放電サイクル性能を向上させるために、焼成温度を900~1000℃とすることが好ましい。
On the other hand, if the firing temperature is too high, the structure changes from the layered α-NaFeO type 2 crystal structure to the rock salt type cubic crystal structure, which is disadvantageous for the movement of lithium ions in the active material during the charge / discharge reaction, resulting in poor discharge performance. descend. In the present invention, the firing temperature is preferably 1000 ° C. or lower. By setting the temperature to 1000 ° C. or lower, the charge / discharge cycle performance can be improved.
Therefore, in the method for producing a positive electrode active material according to the present embodiment, it is preferable to set the firing temperature to 900 to 1000 ° C. in order to improve the charge / discharge cycle performance.

<正極活物質の酸処理>
本実施形態に係る正極活物質の製造方法において、上記の放電容量比a/bを17≦a/b≦25とする正極活物質は、上記の製造方法によって合成されたリチウム遷移金属複合酸化物を、pKaが3.1以上の酸で処理することにより製造することができる。pKaが3.1以上の酸としては、ホウ酸(pKa=9.14)、クエン酸(pKa=3.1)、酒石酸(pKa=3.2)、リンゴ酸(pKa=3.4)、酢酸(pKa=4.74)等が挙げられる。pKaが3.1以上の酸を適切な濃度で用いてリチウム過剰型活物質を表面処理することにより、過充電化成しない条件下で、未処理の活物質と同等又はより向上した放電容量を有しつつ、初回クーロン効率及び高率放電性能が向上させることができる。
<Acid treatment of positive electrode active material>
In the method for producing a positive electrode active material according to the present embodiment, the positive electrode active material having a discharge capacity ratio a / b of 17 ≦ a / b ≦ 25 is a lithium transition metal composite oxide synthesized by the above manufacturing method. Can be produced by treating with an acid having pKa 1 of 3.1 or more. Acids with a pKa 1 of 3.1 or higher include boric acid (pKa 1 = 9.14), citric acid (pKa 1 = 3.1), tartaric acid (pKa 1 = 3.2), and malic acid (pKa 1 =). 3.4), acetic acid (pKa 1 = 4.74) and the like. By surface-treating the lithium-rich active material with an acid having a pKa 1 of 3.1 or higher at an appropriate concentration, the discharge capacity equal to or higher than that of the untreated active material can be obtained under conditions where overcharge formation does not occur. While having it, the initial Coulomb efficiency and high rate discharge performance can be improved.

本実施形態に係る活物質の製造方法における酸処理の詳細な作用機構は不明であるが、上記の酸は、pKaが3.1以上であるから、活物質中のリチウムイオンが水素イオンと置換する可能性は低く、活物質のリチウムと遷移金属のモル比Li/Meが、大きく変動するとは考えにくい。したがって、pKaが小さい塩酸、リン酸、又は硫酸等の強酸で酸処理し、リチウムイオンが水素イオンに置き換わった(Liが除去された)ことで、処理前後での活物質の上記モル比Li/Meが減少した特許文献2の表1、特許文献3の表1に記載された実施例や、特許文献6の段落[0159]の記載事項とは異なるメカニズムが働いていると推察される。
後述の実験例によると、本実施形態による酸処理を施した活物質は、未処理の活物質と比較して、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが減少しており(放電容量bが相対的に増加)、また、比表面積が適度に増加していた。放電容量bは、スピネル構造に特徴的に現れることが知られているから、この酸処理は、リチウム過剰型活物質表面に適度なスピネルライクの結晶構造をもたらすことにより、初回充放電時の不可逆容量を低減させて初回クーロン効率を向上させると推察される。
また、BET比表面積の増加は、粒子表面に適度な凹凸をもたらし、電解質の浸透とリチウムイオンの拡散を促進し、初回クーロン効率の向上とともに、高率放電性能を向上させたものと推察される。BET比表面積は、6m/g以下であることが好ましい。
The detailed mechanism of action of the acid treatment in the method for producing an active substance according to the present embodiment is unknown, but since the above acid has a pKa 1 of 3.1 or more, the lithium ion in the active material is a hydrogen ion. The possibility of substitution is low, and it is unlikely that the molar ratio Li / Me of the active material lithium and the transition metal will fluctuate significantly. Therefore, the acid treatment with a strong acid such as hydrochloric acid, phosphoric acid, or sulfuric acid having a small pKa 1 replaced the lithium ions with hydrogen ions (Li was removed), so that the molar ratio Li of the active material before and after the treatment was Li. It is presumed that a mechanism different from the examples described in Table 1 of Patent Document 2 and Table 1 of Patent Document 3 in which / Me is reduced and the matters described in paragraph [0159] of Patent Document 6 is working.
According to the experimental examples described later, the active material subjected to the acid treatment according to the present embodiment is 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li /) as compared with the untreated active material. The ratio a / b of the discharge capacity (a) up to Li + ) and the discharge capacity (b) from 3.0 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ) decreases. The cage (discharge capacity b increased relatively), and the specific surface area increased moderately. Since the discharge capacity b is known to appear characteristically in the spinel structure, this acid treatment provides an appropriate spinel-like crystal structure on the surface of the lithium-rich active material, so that it is irreversible at the time of initial charge / discharge. It is presumed that the capacity will be reduced and the initial Coulomb efficiency will be improved.
In addition, it is presumed that the increase in the BET specific surface area brings about appropriate unevenness on the particle surface, promotes the permeation of the electrolyte and the diffusion of lithium ions, improves the initial Coulomb efficiency, and improves the high rate discharge performance. .. The BET specific surface area is preferably 6 m 2 / g or less.

具体的な酸処理の手順は以下のとおりである。
リチウム遷移金属複合酸化物5.0gを所定の水素イオン濃度である、所定の酸水溶液200mLに加え、水溶液の温度を50℃に保ち、撹拌子を用いて400rpmで2時間撹拌する。撹拌後、吸引装置を用い、リチウム遷移金属複合酸化物を濾過し、さらにイオン交換水で洗浄をおこなった後、80℃で一晩常圧乾燥する。
The specific acid treatment procedure is as follows.
5.0 g of the lithium transition metal composite oxide is added to 200 mL of a predetermined acid aqueous solution having a predetermined hydrogen ion concentration, the temperature of the aqueous solution is maintained at 50 ° C., and the mixture is stirred at 400 rpm for 2 hours using a stirrer. After stirring, the lithium transition metal composite oxide is filtered using a suction device, further washed with ion-exchanged water, and then dried under atmospheric pressure at 80 ° C. overnight.

<負極材料>
本実施形態に係る非水電解質二次電池用正極と組み合わせる負極の材料としては、限定されるものではなく、リチウムイオンを放出あるいは吸蔵することのできる形態のものを適宜選択できる。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料、リチウム金属、リチウム合金(リチウム-シリコン,リチウム-アルミニウム,リチウム-鉛,リチウム-スズ,リチウム-アルミニウム-スズ,リチウム-ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム-チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト,ハードカーボン,低温焼成炭素,非晶質カーボン等)等が挙げられる。
<Negative electrode material>
The material of the negative electrode to be combined with the positive electrode for the non-aqueous electrolyte secondary battery according to the present embodiment is not limited, and a material capable of releasing or occluding lithium ions can be appropriately selected. For example, titanium-based materials such as lithium titanate having a spinel-type crystal structure represented by Li [Li 1/3 Ti 5/3 ] O4 , alloy-based materials such as Si, Sb, and Sn, lithium metals, and lithium. Alloys (lithium metal-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), lithium composite oxides (lithium-titanium), oxidation In addition to silicon, alloys capable of storing and releasing lithium, carbon materials (for example, graphite, hard carbon, low-temperature calcined carbon, amorphous carbon, etc.) and the like can be mentioned.

<正極・負極>
正極活物質、及び負極材料は、平均粒子サイズが100μm以下の粉体であることが好ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で15μm以下であることが好ましく、充放電サイクル性能を維持するためには10μm以上であることが好ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
<Positive electrode / Negative electrode>
The positive electrode active material and the negative electrode material are preferably powders having an average particle size of 100 μm or less. In particular, the powder of the positive electrode active material is preferably 15 μm or less for the purpose of improving the high output characteristics of the non-aqueous electrolyte battery, and preferably 10 μm or more for maintaining the charge / discharge cycle performance. A crusher or a classifier is used to obtain the powder in a predetermined shape. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counterjet mill, a swirling airflow type jet mill, a sieve, or the like is used. At the time of pulverization, wet pulverization in which water or an organic solvent such as hexane coexists can also be used. The classification method is not particularly limited, and a sieve, a wind power classifier, or the like is used as needed for both dry type and wet type.

前記正極及び負極には、その主要構成成分である正極活物質及び負極材料以外に、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。 In the positive electrode and the negative electrode, in addition to the positive electrode active material and the negative electrode material which are the main constituents thereof, in addition to the main constituents, a conductive agent, a binder, a thickener, a filler and the like are used as other constituents. It may be contained.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種又はそれらの混合物として含ませることができる。 The conductive agent is not limited as long as it is an electronically conductive material that does not adversely affect the battery performance, but is usually natural graphite (scaly graphite, scaly graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, etc. Conductive materials such as Ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, conductive ceramic material, etc. can be contained as one kind or a mixture thereof. ..

これらの中で、導電剤としては、電子伝導性及び塗工性の観点からアセチレンブラックが好ましい。導電剤の添加量は、正極又は負極の総重量に対して0.1重量%~50重量%が好ましく、特に0.5重量%~30重量%が好ましい。特にアセチレンブラックを0.1~0.5μmの超微粒子に粉砕して用いると、必要炭素量を削減できるため好ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。 Among these, acetylene black is preferable as the conductive agent from the viewpoint of electron conductivity and coatability. The amount of the conductive agent added is preferably 0.1% by weight to 50% by weight, particularly preferably 0.5% by weight to 30% by weight, based on the total weight of the positive electrode or the negative electrode. In particular, it is preferable to pulverize acetylene black into ultrafine particles of 0.1 to 0.5 μm and use it because the required carbon amount can be reduced. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, it is possible to mix powder mixers such as V-type mixers, S-type mixers, scouring machines, ball mills, and planetary ball mills in a dry or wet manner.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン-プロピレン-ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR),フッ素ゴム等のゴム弾性を有するポリマーを1種又は2種以上の混合物として用いることができる。結着剤の添加量は、正極又は負極の総重量に対して1~50重量%が好ましく、特に2~30重量%が好ましい。 Examples of the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene and polypropylene, ethylene-propylene-dienter polymer (EPDM), sulfonated EPDM and styrene butadiene. Polymers having rubber elasticity such as rubber (SBR) and fluororubber can be used as one kind or a mixture of two or more kinds. The amount of the binder added is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight, based on the total weight of the positive electrode or the negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば限定されない。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極又は負極の総重量に対して30重量%以下が好ましい。 The filler is not limited as long as it is a material that does not adversely affect the battery performance. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The amount of the filler added is preferably 30% by weight or less with respect to the total weight of the positive electrode or the negative electrode.

正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、及びその他の材料を混練し合剤とし、N-メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、又は圧着して50℃~250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが好ましいが、これらに限定されるものではない。 For the positive and negative electrodes, the main constituents (positive electrode active material for the positive electrode and negative electrode material for the negative electrode) and other materials are kneaded to form a mixture, which is then mixed with an organic solvent such as N-methylpyrrolidone or toluene or water. After that, the obtained mixed solution is preferably applied onto a current collector described in detail below, or pressure-bonded and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours to be suitably produced. .. Regarding the above-mentioned coating method, for example, it is preferable to apply the coating to an arbitrary thickness and an arbitrary shape by using a means such as a roller coating such as an applicator roll, a screen coating, a doctor blade method, a spin coating, and a bar coater. Not limited.

集電体としては、Al箔、Cu箔等の集電箔を用いることができる。正極の集電箔としてはAl箔が好ましく、負極の集電箔としてはCu箔が好ましい。集電箔の厚みは10~30μmが好ましい。また、合剤層の厚みはプレス後において、40~150μm(集電箔厚みを除く)が好ましい。 As the current collector, a current collector foil such as Al foil or Cu foil can be used. Al foil is preferable as the current collector foil of the positive electrode, and Cu foil is preferable as the current collector foil of the negative electrode. The thickness of the current collector foil is preferably 10 to 30 μm. The thickness of the mixture layer is preferably 40 to 150 μm (excluding the thickness of the current collector foil) after pressing.

<非水電解質>
本実施形態に係る非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフラン又はその誘導体;1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソラン又はその誘導体;エチレンスルフィド、スルホラン、スルトン又はその誘導体等の単独又はそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
<Non-water electrolyte>
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery according to the present embodiment is not limited, and those generally proposed for use in lithium batteries and the like can be used. Examples of the non-aqueous solvent used for the non-aqueous electrolyte include cyclic carbonate esters such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, Chain carbonates such as diethyl carbonate and ethylmethyl carbonate; Chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or its derivatives; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane, methyl diglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or its derivatives; ethylene sulfide, sulfolane, sulton or its derivatives, etc. alone or two or more thereof. Mixtures and the like can be mentioned, but the present invention is not limited thereto.

非水電解質に用いる電解質塩としては、例えば、LiClO4,LiBF4,LiAsF6,LiPF6,LiSCN,LiBr,LiI,Li2SO4,Li210Cl10,NaClO4,NaI,NaSCN,NaBr,KClO4,KSCN等のリチウム(Li)、ナトリウム(Na)又はカリウム(K)の1種を含む無機イオン塩、LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,(CH34NBF4,(CH34NBr,(C254NClO4,(C254NI,(C374NBr,(n-C494NClO4,(n-C494NI,(C254N-maleate,(C254N-benzoate,(C254N-phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr. , KClO 4 , KSCN and other inorganic ionic salts containing one of lithium (Li), sodium (Na) or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 ) SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C) 4 H 9 ) 4 NI, (C 2 H 5 ) 4 N-malate, (C 2 H 5 ) 4 N-benzoate, (C 2 H 5 ) 4 N-phthate, lithium stearyl sulfonate, lithium octyl sulfonate, Examples thereof include organic ionic salts such as lithium dodecylbenzenesulfonate, and these ionic compounds can be used alone or in combination of two or more.

さらに、LiPF6又はLiBF4と、LiN(C25SO22のようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より好ましい。 Furthermore, by using a mixture of LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further reduced. It is more preferable because the low temperature characteristics can be further enhanced and self-discharge can be suppressed.

また、非水電解質として常温溶融塩やイオン液体を用いてもよい。 Further, a room temperature molten salt or an ionic liquid may be used as the non-aqueous electrolyte.

非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/L~5mol/Lが好ましく、さらに好ましくは、0.5mol/L~2.5mol/Lである。 The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / L to 5 mol / L, more preferably 0.5 mol / L to 2 in order to surely obtain a non-aqueous electrolyte battery having high battery characteristics. It is .5 mol / L.

<セパレータ>
本実施形態に係る非水電解質二次電池に用いるセパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独使用あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-パーフルオロビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-フルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロアセトン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-プロピレン共重合体、フッ化ビニリデン-トリフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン-テトラフルオロエチレン共重合体等を挙げることができる。
<Separator>
As the separator used in the non-aqueous electrolyte secondary battery according to the present embodiment, it is preferable to use alone or in combination with a porous membrane or a non-woven fabric exhibiting excellent high rate discharge performance. Examples of the material constituting the separator for a non-aqueous electrolyte battery include a polyolefin resin typified by polyethylene and polypropylene, a polyester resin typified by polyethylene terephthalate and polybutylene terephthalate, and vinylidene fluoride and vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, foot Vinylidene-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene Examples thereof include a copolymer, vinylidene fluoride-ethylene-tetrafluoroethylene copolymer and the like.

セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。 The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, from the viewpoint of charge / discharge characteristics, the porosity is preferably 20% by volume or more.

また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。 Further, as the separator, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinylpyrrolidone, polyvinylidene fluoride and the like and an electrolyte may be used. It is preferable to use the non-aqueous electrolyte in the gel state as described above because it has an effect of preventing liquid leakage.

さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため好ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。 Further, it is preferable to use the separator in combination with the above-mentioned porous membrane, non-woven fabric or the like and the polymer gel because the liquid retention property of the electrolyte is improved. That is, the prosolvent polymer is formed by forming a film coated with a prosolvent polymer having a thickness of several μm or less on the surface and the wall surface of the micropores of the polyethylene micropore film and retaining the electrolyte in the micropores of the film. Gells.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。 Examples of the pro-solvent polymer include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group and an ester group, an epoxy monomer, a polymer having a crosslinked monomer such as an isocyanato group, and the like. The monomer can be subjected to a cross-linking reaction by heating or using ultraviolet rays (UV) in combination with a radical initiator, or by using active rays such as an electron beam (EB).

その他の電池の構成要素としては、端子、絶縁板、電池ケース等があるが、これらの部品は従来用いられてきたものをそのまま用いて差し支えない。 Other components of the battery include terminals, insulating plates, battery cases, etc., but these parts may be the same as those conventionally used.

<非水電解質二次電池>
本実施形態に係る非水電解質二次電池の外観の一例を図5に示す。図5は、矩形状の非水電解質二次電池の容器内部を透視した斜視図である。電極群2が収納された電池容器3内に非水電解液を注入することにより非水電解質二次電池1が組み立てられる。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
本実施形態に係る非水電解質二次電池の形状については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が挙げられる。
<Non-water electrolyte secondary battery>
FIG. 5 shows an example of the appearance of the non-aqueous electrolyte secondary battery according to the present embodiment. FIG. 5 is a perspective view of the inside of the container of the rectangular non-aqueous electrolyte secondary battery. The non-aqueous electrolyte secondary battery 1 is assembled by injecting the non-aqueous electrolyte solution into the battery container 3 in which the electrode group 2 is housed. The electrode group 2 is formed by winding a positive electrode having a positive electrode active material and a negative electrode having a negative electrode active material via a separator. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4', and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5'.
The shape of the non-aqueous electrolyte secondary battery according to the present embodiment is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), and a flat battery.

本実施形態に係る非水電解質二次電池は、4.5~5.0V(vs.Li/Li+)の正極電位範囲内に上記電位変化が比較的平坦な領域が観察される充電過程が終了するまでの充電過程を一度も経ないで製造、及び使用される。
本実施形態に係る非水電解質二次電池が、上記電位変化が比較的平坦な領域が観察される充電過程が終了するまでの充電がされた履歴を有しないことは、当該電池の正極活物質が、上記CuKα線を用いたエックス線回折図において、20~22°の範囲に回折ピークが観察されること、又は、当該電池の正極が、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察されることにより確認することができる。これらの確認方法の詳細は、上記したとおりである。
The non-aqueous electrolyte secondary battery according to the present embodiment has a charging process in which a region in which the potential change is relatively flat is observed within the positive electrode potential range of 4.5 to 5.0 V (vs. Li / Li + ). It is manufactured and used without going through a charging process until it is completed.
The fact that the non-aqueous electrolyte secondary battery according to the present embodiment has no history of being charged until the end of the charging process in which the region where the potential change is relatively flat is observed is that the positive electrode active material of the battery is used. However, in the X-ray diffraction diagram using the CuKα ray, a diffraction peak is observed in the range of 20 to 22 °, or the positive electrode of the battery has a positive electrode potential of 5.0 V (vs. Li / Li + ). By observing a region where the potential change is relatively flat with respect to the amount of charged electricity within the positive electrode potential range of 4.5 to 5.0 V (vs. Li / Li + ) when charging up to You can check. The details of these confirmation methods are as described above.

本実施形態の非水電解質二次電池は、電池を複数個集合した蓄電装置としても実現することができる。蓄電装置の一例を図6に示す。図6において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。 The non-aqueous electrolyte secondary battery of the present embodiment can also be realized as a power storage device in which a plurality of batteries are assembled. An example of the power storage device is shown in FIG. In FIG. 6, the power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of non-aqueous electrolyte secondary batteries 1. The power storage device 30 can be mounted as a power source for an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), or the like.

(実施例1)
<リチウム遷移金属複合酸化物の作製>
硫酸ニッケル6水和物284g、硫酸コバルト7水和物303g、硫酸マンガン5水和物443gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が27:27:46となる1.0Mの硫酸塩水溶液を作製した。
次に、5Lの反応槽にイオン交換水2Lを注ぎ、Arガスを30minバブリングさせることにより、イオン交換水中に含まれる酸素を除去した。反応槽の温度は50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を1500rpmの回転速度で攪拌しながら、反応層内に対流が十分おこるように設定した。前記硫酸塩水溶液を3mL/minの速度で反応槽に滴下した。ここで、滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、0.5Mのアンモニア水、及び0.2Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHが常に9.8(±0.1)を保つように制御すると共に、反応液の一部をオーバーフローにより排出することにより、反応液の総量が常に2Lを超えないように制御した。滴下終了後、反応槽内の攪拌をさらに3時間継続した。攪拌の停止後、室温で12時間以上静置した。
次に、吸引ろ過装置を用いて、反応槽内に生成した水酸化物前駆体粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20時間乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、水酸化物前駆体を作製した。
(Example 1)
<Preparation of Lithium Transition Metal Composite Oxide>
284 g of nickel sulfate hexahydrate, 303 g of cobalt sulfate heptahydrate, and 443 g of manganese sulfate pentahydrate were weighed and all of them were dissolved in 4 L of ion-exchanged water, and the molar ratio of Ni: Co: Mn was 27: A 1.0 M sulfate aqueous solution having a ratio of 27:46 was prepared.
Next, 2 L of ion-exchanged water was poured into a 5 L reaction vessel, and Ar gas was bubbled for 30 minutes to remove oxygen contained in the ion-exchanged water. The temperature of the reaction vessel is set to 50 ° C (± 2 ° C), and convection is sufficiently generated in the reaction layer while stirring the inside of the reaction vessel at a rotation speed of 1500 rpm using a paddle blade equipped with a stirring motor. did. The aqueous sulfate solution was added dropwise to the reaction vessel at a rate of 3 mL / min. Here, the pH in the reaction vessel is adjusted by appropriately dropping a mixed alkaline solution consisting of 4.0 M sodium hydroxide, 0.5 M aqueous ammonia, and 0.2 M hydrazine from the start to the end of the dropping. Was controlled to always maintain 9.8 (± 0.1), and a part of the reaction solution was discharged by overflow so that the total amount of the reaction solution did not always exceed 2 L. After the dropping was completed, stirring in the reaction vessel was continued for another 3 hours. After the stirring was stopped, the mixture was allowed to stand at room temperature for 12 hours or more.
Next, the hydroxide precursor particles generated in the reaction vessel are separated using a suction filtration device, and the sodium ions adhering to the particles are washed and removed using ion-exchanged water, and an electric furnace is used. Then, the particles were dried at 80 ° C. for 20 hours under normal pressure in an air atmosphere. Then, in order to make the particle size uniform, it was crushed in an automatic agate mortar for several minutes. In this way, a hydroxide precursor was prepared.

前記水酸化物前駆体1.852gに、水酸化リチウム1水和物0.971gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni,Co,Mn)のモル比が130:100となるように混合粉体を調製した。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から900℃まで10時間かけて昇温し、900℃で5時間焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製乳鉢で軽くほぐした。
このようにして、リチウム遷移金属複合酸化物Li1.13Ni0.235Co0.235Mn0.40を作製した。
To 1.852 g of the hydroxide precursor, 0.971 g of lithium hydroxide monohydrate was added and mixed well using an automatic agate mortar, and the molar ratio of Li :( Ni, Co, Mn) was 130 :. A mixed powder was prepared so as to be 100. It was molded at a pressure of 6 MPa using a pellet molding machine to obtain pellets having a diameter of 25 mm. The amount of the mixed powder used for pellet molding was determined by converting so that the assumed mass of the final product was 2 g. One of the pellets was placed on an alumina boat having a total length of about 100 mm, installed in a box-type electric furnace (model number: AMF20), and heated in an air atmosphere under normal pressure from room temperature to 900 ° C. over 10 hours. It was fired at 900 ° C. for 5 hours. The internal dimensions of the box-type electric furnace are 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction. After firing, the heater was switched off and the alumina boat was allowed to cool naturally while still in the furnace. As a result, the temperature of the furnace drops to about 200 ° C. after 5 hours, but the subsequent temperature decrease rate is rather gradual. After a day and night, after confirming that the temperature of the furnace was 100 ° C. or lower, the pellets were taken out and lightly loosened in an agate mortar to make the particle size uniform.
In this way, a lithium transition metal composite oxide Li 1.13 Ni 0.235 Co 0.235 Mn 0.40 O 2 was produced.

<活物質の酸処理>
上記のリチウム遷移金属複合酸化物5.0gを水素イオン濃度0.05Mのクエン酸水溶液200mLに添加し、水溶液の温度を50℃に保ち、撹拌子を用いて400rpmで2時間撹拌した。撹拌後、吸引装置をもちい、正極活物質を濾過し、さらにイオン交換水で洗浄をおこなった後、80℃で晩常圧乾燥して、酸処理された実施例1に係る活物質を作製した。BET比表面積は5.8m/gであった。
<Acid treatment of active substances>
5.0 g of the above lithium transition metal composite oxide was added to 200 mL of a citric acid aqueous solution having a hydrogen ion concentration of 0.05 M, the temperature of the aqueous solution was maintained at 50 ° C., and the mixture was stirred at 400 rpm for 2 hours using a stirrer. After stirring, the positive electrode active material was filtered using a suction device, further washed with ion-exchanged water, and then dried under normal pressure at 80 ° C. to prepare an acid-treated active material according to Example 1. .. The BET specific surface area was 5.8 m 2 / g.

(実施例2、3)
活物質の酸処理を、クエン酸に代えて水素イオン濃度0.05Mのホウ酸水溶液、又は0.025Mの酒石酸水溶液を用いて行った以外は実施例1と同様にして実施例2、3とした。BET比表面積はそれぞれ4.6m/g、5.5m/gであった。
(Examples 2 and 3)
Examples 2 and 3 are the same as in Example 1 except that the acid treatment of the active material was performed using a boric acid aqueous solution having a hydrogen ion concentration of 0.05 M or a tartaric acid aqueous solution having a hydrogen ion concentration of 0.025 M instead of citric acid. did. The BET specific surface area was 4.6 m 2 / g and 5.5 m 2 / g, respectively.

(比較例1)
活物質に酸処理を施さない以外は、実施例1と同様にして比較例1に係る活物質を作製した。BET比表面積は2.3m/gであった。
(Comparative Example 1)
The active material according to Comparative Example 1 was prepared in the same manner as in Example 1 except that the active material was not subjected to acid treatment. The BET specific surface area was 2.3 m 2 / g.

(比較例2~5)
活物質の酸処理を、それぞれ水素イオン濃度0.05M、0.03M、及び0.01Mの硫酸水溶液を用いて行った以外は、実施例1と同様にして比較例2~4に係る活物質を作製し、酸処理時間を10分とした以外は比較例4と同様にして、比較例5に係る活物質を作製した。比較例2のBET比表面積は7.4m/gであった。
(Comparative Examples 2 to 5)
The active materials according to Comparative Examples 2 to 4 were treated in the same manner as in Example 1 except that the acid treatment of the active material was performed using sulfuric acid aqueous solutions having hydrogen ion concentrations of 0.05 M, 0.03 M, and 0.01 M, respectively. The active material according to Comparative Example 5 was prepared in the same manner as in Comparative Example 4 except that the acid treatment time was set to 10 minutes. The BET specific surface area of Comparative Example 2 was 7.4 m 2 / g.

(比較例6~8)
活物質の酸処理を、それぞれ水素イオン濃度0.1M、及び0.01Mのリン酸水溶液を用いて行った以外は、実施例1と同様にして比較例6,7に係る活物質を作製し、酸処理時間を10分とした以外は比較例7と同様にして、比較例8に係る活物質を作製した。比較例6のBET比表面積は5.7m/gであった。
(Comparative Examples 6 to 8)
The active materials according to Comparative Examples 6 and 7 were prepared in the same manner as in Example 1 except that the acid treatment of the active material was carried out using phosphoric acid aqueous solutions having hydrogen ion concentrations of 0.1 M and 0.01 M, respectively. The active material according to Comparative Example 8 was prepared in the same manner as in Comparative Example 7 except that the acid treatment time was set to 10 minutes. The BET specific surface area of Comparative Example 6 was 5.7 m 2 / g.

(比較例9、10)
活物質の酸処理を、それぞれ水素イオン濃度0.1M、及び0.05Mの酒石酸水溶液を用いて行った以外は、実施例1と同様にして比較例9、10に係る活物質を作製した。BET比表面積はそれぞれ7.1m/g、6.5m/gであった。
(Comparative Examples 9 and 10)
The active materials according to Comparative Examples 9 and 10 were prepared in the same manner as in Example 1 except that the acid treatment of the active material was carried out using a tartaric acid aqueous solution having a hydrogen ion concentration of 0.1 M and 0.05 M, respectively. The BET specific surface areas were 7.1 m 2 / g and 6.5 m 2 / g, respectively.

(実施例4、5及び比較例11)
Ni:Co:Mnのモル比が40:5:55となる水酸化物前駆体を作製し、Li:(Ni,Co,Mn)のモル比が120:100となるように混合粉体を調製した以外は、それぞれ実施例1、2及び比較例1と同様にして実施例4、5及び比較例11に係る活物質を作製した。
(Examples 4 and 5 and Comparative Example 11)
A hydroxide precursor having a Ni: Co: Mn molar ratio of 40: 5: 55 was prepared, and a mixed powder was prepared so that the Li: (Ni, Co, Mn) molar ratio was 120: 100. The active materials according to Examples 4, 5 and 11 were prepared in the same manner as in Examples 1 and 2 and Comparative Example 1, respectively.

(実施例6及び比較例12)
Li:(Ni,Co,Mn)のモル比が130:100となるように混合粉体を調製した以外は、それぞれ実施例4及び比較例11と同様にして実施例6及び比較例12に係る活物質を作製した。
(Example 6 and Comparative Example 12)
The present invention relates to Example 6 and Comparative Example 12 in the same manner as in Example 4 and Comparative Example 11, except that the mixed powder was prepared so that the molar ratio of Li: (Ni, Co, Mn) was 130: 100. The active material was prepared.

(比較例13~15)
Ni:Co:Mnのモル比が35:25:40となる水酸化物前駆体を作製し、Li:(Ni,Co,Mn)のモル比が120:100となるように混合粉体を調製した以外は、それぞれ実施例1、2及び比較例1と同様にして比較例13~15に係る活物質を作製した。
(Comparative Examples 13 to 15)
A hydroxide precursor having a Ni: Co: Mn molar ratio of 35:25:40 was prepared, and a mixed powder was prepared so that the Li: (Ni, Co, Mn) molar ratio was 120: 100. The active materials according to Comparative Examples 13 to 15 were prepared in the same manner as in Examples 1 and 2 and Comparative Example 1, respectively.

(比較例16、17)
実施例4に係る水酸化物前駆体と、水酸化リチウム1水和物とを、Li:(Ni,Co,Mn)のモル比が100:100となるように混合粉体を調製した以外は、それぞれ実施例4及び比較例11と同様にして比較例16、17に係る活物質を作製した。
(Comparative Examples 16 and 17)
Except for preparing a mixed powder of the hydroxide precursor according to Example 4 and lithium hydroxide monohydrate so that the molar ratio of Li: (Ni, Co, Mn) is 100: 100. , The active materials according to Comparative Examples 16 and 17, respectively, were prepared in the same manner as in Example 4 and Comparative Example 11.

(比較例18~20)
Ni:Co:Mnのモル比が33:33:33となる水酸化物前駆体を作製し、前記水酸化物前駆体と、水酸化リチウム1水和物とを、Li:(Ni,Co,Mn)のモル比が100:100となるように混合粉体を調製した以外は、それぞれ実施例1、2及び比較例1と同様にして比較例18~20に係る活物質を作製した。
(Comparative Examples 18 to 20)
A hydroxide precursor having a molar ratio of Ni: Co: Mn of 33:33:33 was prepared, and the hydroxide precursor and lithium hydroxide monohydrate were combined with Li :( Ni, Co, The active materials according to Comparative Examples 18 to 20 were prepared in the same manner as in Examples 1 and 2, respectively, except that the mixed powder was prepared so that the molar ratio of Mn) was 100: 100.

<結晶構造の確認>
上記の実施例及び比較例に係る活物質について、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて粉末エックス線回折測定を行った。すべての実施例及び比較例に係る活物質は、α-NaFeO型結晶構造を有していた。また、比較例16~20を除いたすべての実施例及び比較例に係る活物質(「リチウム過剰型」活物質)は、20~22°の範囲に回折ピークが観察されることを確認した。
<Confirmation of crystal structure>
The active materials according to the above Examples and Comparative Examples were subjected to powder X-ray diffraction measurement using an X-ray diffractometer (manufactured by Rigaku, model name: MiniFlex II). The active material according to all the examples and comparative examples had an α-NaFeO type 2 crystal structure. In addition, it was confirmed that diffraction peaks were observed in the range of 20 to 22 ° in all the active materials (“lithium excess type” active materials) according to all Examples and Comparative Examples except Comparative Examples 16 to 20.

<正極の作製>
N-メチルピロリドンを分散媒とし、上記の実施例及び比較例に係る活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比90:5:5の割合で混練分散されている塗布用ペーストを作製した。該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布し、各実施例及び比較例に係る正極を作製した。なお、後述する全ての実施例、及び比較例に係る非水電解質二次電池同士で試験条件が同一になるように、一定面積あたりに塗布されている活物質の質量及び塗布厚みを統一した。
<Manufacturing of positive electrode>
A coating in which N-methylpyrrolidone is used as a dispersion medium and the active materials according to the above Examples and Comparative Examples, acetylene black (AB) and polyvinylidene fluoride (PVdF), are kneaded and dispersed in a mass ratio of 90: 5: 5. Made a paste for. The coating paste was applied to one surface of an aluminum foil current collector having a thickness of 20 μm to prepare positive electrodes according to each Example and Comparative Example. The mass and coating thickness of the active material applied per fixed area were unified so that the test conditions would be the same for all the non-aqueous electrolyte secondary batteries according to the examples and comparative examples described later.

<負極の作製>
金属リチウム箔をニッケル集電体に配置して、負極を作製した。該金属リチウムの量は、上記正極板と組み合わせたときに電池の容量が負極によって制限されないように調整した。
<Manufacturing of negative electrode>
A negative electrode was prepared by arranging a metallic lithium foil on a nickel current collector. The amount of the metallic lithium was adjusted so that the capacity of the battery was not limited by the negative electrode when combined with the positive electrode plate.

<非水電解質二次電池の組立>
各実施例及び比較例に係る正極を用いて、以下の手順で非水電解質二次電池を組み立てた。
電解液として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)が体積比6:7:7である混合溶媒に濃度が1mol/LとなるようにLiPFを溶解させた溶液を用いた。セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用いた。各実施例及び比較例に係る正極、及び前記負極を、前記セパレータを介して、正極端子及び負極端子の開放端部が外部露出するように前記外装体に収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記電解液を注液後、注液孔を封止して、非水電解質二次電池を組み立てた。
<Assembly of non-aqueous electrolyte secondary battery>
Using the positive electrodes according to each Example and Comparative Example, a non-aqueous electrolyte secondary battery was assembled by the following procedure.
As the electrolytic solution, LiPF 6 was dissolved in a mixed solvent having an ethylene carbonate (EC) / ethylmethyl carbonate (EMC) / dimethyl carbonate (DMC) volume ratio of 6: 7: 7 so as to have a concentration of 1 mol / L. The solution was used. As a separator, a polypropylene micropore membrane surface-modified with polyacrylate was used. For the exterior body, a metal resin composite film made of polyethylene terephthalate (15 μm) / aluminum foil (50 μm) / metal-adhesive polypropylene film (50 μm) was used. The positive electrode and the negative electrode according to each Example and Comparative Example are housed in the exterior body so that the open ends of the positive electrode terminal and the negative electrode terminal are exposed to the outside through the separator, and the inner surface of the metal resin composite film is provided. The fusion allowance facing each other was hermetically sealed except for the portion to be the injection hole, the electrolytic solution was injected, and then the injection hole was sealed to assemble a non-aqueous electrolyte secondary battery.

<初回クーロン効率の確認>
組み立てた非水電解質二次電池を、25℃の下、初回充放電工程に供し、初回クーロン効率の確認を行った。充電は、正極合剤1gあたり15mA(0.1Cに相当)の電流値で、上限電位4.35V(vs.Li/Li+)の定電流定電圧充電とし、充電終止条件は電流値が1/5に減衰した時点とした。放電は、同じ電流値で、下限電位2.85V(vs.Li/Li+)の定電流放電とした。ここで、充電後及び放電後にそれぞれ10分の休止過程を設け、充電容量及び放電容量(0.1C放電容量)を確認し、充電容量に対する放電容量の割合を初回クーロン効率とした。
<Confirmation of initial Coulomb efficiency>
The assembled non-aqueous electrolyte secondary battery was subjected to the initial charge / discharge process at 25 ° C., and the initial Coulomb efficiency was confirmed. Charging is a constant current constant voltage charge with an upper limit potential of 4.35 V (vs. Li / Li + ) with a current value of 15 mA (equivalent to 0.1 C) per 1 g of the positive electrode mixture, and the charge termination condition is a current value of 1. It was set as the time when it was attenuated to / 5. The discharge was a constant current discharge with a lower limit potential of 2.85 V (vs. Li / Li + ) at the same current value. Here, a rest process of 10 minutes was provided after charging and after discharging, and the charging capacity and the discharging capacity (0.1C discharge capacity) were confirmed, and the ratio of the discharging capacity to the charging capacity was defined as the initial coulomb efficiency.

<放電容量比a/bの測定>
次に、放電容量比a/bの測定を行った。充電は、正極合剤1gあたり15mA(0.1Cに相当)の電流値で、上限電位4.35V(vs.Li/Li+)の定電流定電圧充電とし、充電終止条件は電流値が1/5に減衰した時点とした。10分間の休止過程を設け、放電は、同じ電流値で2.0V(vs.Li/Li)の定電流放電とした。ここで、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bを求めた。
なお、本実施例及び比較例においては、上記の放電容量比a/bを評価するにあたり、充放電を0.1Cで行っても、0.02Cで充放電した場合と同様のa/bが得られることを確認した上で、上記測定条件を設定した。
<Measurement of discharge capacity ratio a / b>
Next, the discharge capacity ratio a / b was measured. Charging is a constant current constant voltage charge with an upper limit potential of 4.35 V (vs. Li / Li + ) with a current value of 15 mA (equivalent to 0.1 C) per 1 g of the positive electrode mixture, and the charge termination condition is a current value of 1. It was set as the time when it was attenuated to / 5. A 10-minute pause process was provided, and the discharge was a constant current discharge of 2.0 V (vs. Li / Li + ) at the same current value. Here, the discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and the discharge capacity (a) from 3.0 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li +). The ratio a / b of the discharge capacity (b) up to vs. Li / Li + ) was determined.
In this example and the comparative example, in evaluating the above discharge capacity ratio a / b, even if charging / discharging is performed at 0.1C, the same a / b as in the case of charging / discharging at 0.02C is obtained. After confirming that it was obtained, the above measurement conditions were set.

<高率放電性能の確認>
さらに、高率放電性能の確認を行った。充電は、正極合剤1gあたり15mAの電流値で、上限電位4.35V(vs.Li/Li+)の定電流定電圧充電とし、充電終止条件は電流値が1/5に減衰した時点とした。10分間の休止過程を設け、放電は、正極合剤1gあたり300mA(2Cに相当)の電流にて、終止電圧2.85Vの定電流放電を行った。上記の0.1C放電容量に対するこのときの放電容量(2C放電容量)の割合を高率放電性能(2C/0.1C)とした。
<Confirmation of high rate discharge performance>
Furthermore, the high rate discharge performance was confirmed. Charging is a constant current constant voltage charge with an upper limit potential of 4.35 V (vs. Li / Li + ) with a current value of 15 mA per 1 g of positive electrode mixture, and the charge termination condition is when the current value is reduced to 1/5. did. A 10-minute pause process was provided, and the discharge was a constant current discharge with a final voltage of 2.85 V at a current of 300 mA (corresponding to 2C) per 1 g of the positive electrode mixture. The ratio of the discharge capacity (2C discharge capacity) at this time to the above 0.1C discharge capacity was defined as the high rate discharge performance (2C / 0.1C).

<正極活物質の回折ピークの確認>
前述の回折ピークの確認方法に基づき、放電末状態の実施例に係る非水電解質二次電池を解体して、正極合剤を取り出し、CuKα線を用いたエックス線回折測定を行った。全ての実施例において、20~22°の範囲に回折ピークが確認された。
<Confirmation of diffraction peak of positive electrode active material>
Based on the above-mentioned method for confirming the diffraction peak, the non-aqueous electrolyte secondary battery according to the example in the discharge end state was disassembled, the positive electrode mixture was taken out, and X-ray diffraction measurement using CuKα ray was performed. Diffraction peaks were found in the range of 20-22 ° in all examples.

以上の測定結果を表1に示す。 The above measurement results are shown in Table 1.

Figure 0007043989000001
Figure 0007043989000001

表1からは、実施例1、2と比較例1との対比において、リチウム過剰型活物質をクエン酸(pKa=3.1)、又はホウ酸(pKa=9.14)で酸処理した正極活物質を用い、4.5V(vs.Li/Li)未満の充放電に供した実施例1、2に係る非水電解質二次電池は、酸処理を施さない比較例1に係る電池に比べて、0.1C容量を維持しつつ、初回クーロン効率及び高率放電性能が向上していることがわかる。実施例1、2に係る電池は、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17以上25以下の範囲内であったのに対し、比較例1に係る電池は、a/bが25より大きかった。なお、実施例1、2の活物質は、比較例1の活物質より、比表面積が大きかった。 From Table 1, in comparison with Examples 1 and 2 and Comparative Example 1, the lithium excess type active material was acid-treated with citric acid (pKa 1 = 3.1) or boric acid (pKa 1 = 9.14). The non-aqueous electrolyte secondary battery according to Examples 1 and 2 subjected to charging / discharging of less than 4.5 V (vs. Li / Li + ) using the positive electrode active material according to Comparative Example 1 without acid treatment. It can be seen that the initial Coulomb efficiency and the high rate discharge performance are improved while maintaining the 0.1 C capacity as compared with the battery. The batteries according to Examples 1 and 2 have a discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and 3.0 V (vs. Li / Li). The ratio a / b of the discharge capacity (b) from + ) to 2.0 V (vs. Li / Li + ) was in the range of 17 or more and 25 or less, whereas the battery according to Comparative Example 1 was a. / B was greater than 25. The active materials of Examples 1 and 2 had a larger specific surface area than the active materials of Comparative Example 1.

比較例2~5では、酸種を硫酸(pKa=-3)に変更し、種々の水素イオン濃度及び/又は処理時間で酸処理した場合の電池の特性を示しており、0.1C容量はいずれも酸処理を施さない比較例1を下回り、初回クーロン効率と高率放電性能の両方が比較例1を上回ることはなかった。放電容量比a/bは17より小さいか、25より大きかった。 Comparative Examples 2 to 5 show the characteristics of the battery when the acid type is changed to sulfuric acid (pKa 1 = -3) and the acid treatment is performed at various hydrogen ion concentrations and / or treatment times, and the capacity is 0.1 C. Both were lower than Comparative Example 1 without acid treatment, and both the initial Coulomb efficiency and the high rate discharge performance were not higher than those of Comparative Example 1. The discharge capacity ratio a / b was less than 17 or greater than 25.

比較例6~8では、酸種をリン酸(pKa=2.12)に変更し、リチウム過剰型活物質を水素イオン濃度及び/又は処理時間を変えて酸処理した正極活物質を用いた場合の電池の特性を示している。やはり、0.1C容量はいずれも酸処理を施さない比較例1を下回り、初回クーロン効率と高率放電性能の両方が比較例1を上回ることはなかった。放電容量比a/bは17より小さいか、25より大きかった。 In Comparative Examples 6 to 8, a positive acid active material in which the acid type was changed to phosphoric acid (pKa 1 = 2.12) and the lithium excess type active material was acid-treated by changing the hydrogen ion concentration and / or the treatment time was used. The characteristics of the battery in the case are shown. Again, the 0.1C capacity was lower than that of Comparative Example 1 which was not subjected to the acid treatment, and both the initial Coulomb efficiency and the high rate discharge performance were not higher than those of Comparative Example 1. The discharge capacity ratio a / b was less than 17 or greater than 25.

実施例3、及び比較例9、10は、異なる水素イオン濃度の酒石酸(pKa=3.2)で酸処理した正極活物質を有する電池に係る例である。
実施例3では、酸未処理の比較例1とほぼ同等の0.1C容量を示し、初回クーロン効率及び高率放電性能が向上したのに対して、比較例9、10に係る電池は、初回クーロン効率は実施例3より改善されたが、比較例1が示す0.1C容量を維持することができず、高率放電性能も比較例1からの改善が見られなかった。また、放電容量比a/bは、水素イオン濃度の低い酒石酸で酸処理した正極活物質を有する実施例3の電池では17以上25以下の範囲内であったのに対して、水素イオン濃度の高い酒石酸で酸処理した正極を有する比較例9、10の電池では17より小さかった。なお、実施例3の活物質は、比較例9、10の活物質より、比表面積が小さかった。
以上から、pKaが3.1以上の酸処理を行う場合でも、酸溶液の水素イオン濃度を適宜選択し、所定の放電容量比a/bを満たす必要があることがわかる。
Example 3 and Comparative Examples 9 and 10 are examples relating to a battery having a positive electrode active material acid-treated with tartaric acid (pKa 1 = 3.2) having a different hydrogen ion concentration.
In Example 3, the acid-untreated Comparative Example 1 showed a capacity of 0.1 C, which was almost the same as that of Comparative Example 1, and the initial coulomb efficiency and high-rate discharge performance were improved. Although the Coulomb efficiency was improved from Example 3, the 0.1 C capacity shown in Comparative Example 1 could not be maintained, and the high rate discharge performance was not improved from Comparative Example 1. Further, the discharge capacity ratio a / b was in the range of 17 or more and 25 or less in the battery of Example 3 having the positive electrode active material acid-treated with tartrate acid having a low hydrogen ion concentration, whereas the hydrogen ion concentration was high. The batteries of Comparative Examples 9 and 10 having a positive electrode acid-treated with high tartrate acid were smaller than 17. The active material of Example 3 had a smaller specific surface area than the active materials of Comparative Examples 9 and 10.
From the above, it can be seen that even when pKa 1 is subjected to acid treatment of 3.1 or more, it is necessary to appropriately select the hydrogen ion concentration of the acid solution and satisfy a predetermined discharge capacity ratio a / b.

実施例4、5及び比較例11は、実施例1、2及び比較例1に係るリチウム過剰型活物質の組成(Li/Me=1.3、Mn/Me=0.48)を、Mnの組成比がより大きい他の組成(Li/Me=1.2、Mn/Me=0.55)に変更した例に相当し、実施例6、比較例12は、実施例4及び比較例11に係る上記の組成のMn/Meを変更せず、Li比を変更した(Li/Me=1.3、Mn/Me=0.55)例に相当する。
実施例4、5に係る電池の特性は、活物質が同一組成であって、酸処理を施さない比較例11よりも、0.1C放電容量、初回クーロン効率、及び高率放電性能のいずれも上回っており、放電容量比a/bが17以上25以下の範囲内であることがわかる。実施例6に係る電池の特性も、活物質が同一組成であって、酸処理を施さない比較例12よりも、前記の各電池特性が上回っており、放電容量比a/bが17以上25以下の範囲内であることがわかる。したがって、Mn/Meがより大きい組成範囲の活物質においても、a/bの特定が、電池特性の向上に関係していることがわかる。
In Examples 4, 5 and Comparative Example 11, the composition (Li / Me = 1.3, Mn / Me = 0.48) of the lithium excess type active material according to Examples 1, 2 and Comparative Example 1 was determined by Mn. Corresponding to an example in which the composition ratio was changed to another composition (Li / Me = 1.2, Mn / Me = 0.55) having a larger composition ratio, Example 6 and Comparative Example 12 corresponded to Example 4 and Comparative Example 11. This corresponds to an example in which the Li ratio was changed (Li / Me = 1.3, Mn / Me = 0.55) without changing the Mn / Me of the above composition.
The characteristics of the batteries according to Examples 4 and 5 are 0.1C discharge capacity, initial Coulomb efficiency, and high rate discharge performance, as compared with Comparative Example 11 in which the active materials have the same composition and are not subjected to acid treatment. It can be seen that the discharge capacity ratio a / b is in the range of 17 or more and 25 or less. The characteristics of the batteries according to Example 6 are also higher than those of Comparative Example 12 in which the active materials have the same composition and are not subjected to the acid treatment, and the discharge capacity ratio a / b is 17 or more and 25. It can be seen that it is within the following range. Therefore, it can be seen that the identification of a / b is related to the improvement of the battery characteristics even in the active material having a composition range in which Mn / Me is larger.

比較例13~15は、実施例1、2及び比較例1に係るリチウム過剰型活物質の組成(Li/Me=1.3、Mn/Me=0.48)を、Mnの組成比がより小さい他の組成(Li/Me=1.2、Mn/Me=0.40)に変更した例に相当する。
酸処理を施した比較例13、14に係る電池の特性は、酸処理を施さない比較例15と比べて、初回クーロン効率に改善が見られるだけで、高率放電性能は改善されていない。
したがって、比較例13に係る活物質のように、放電容量比a/bが17以上25以下を満たしている場合でも、Mn/Meが小さすぎる場合、本発明の効果は奏されないことがわかる。
In Comparative Examples 13 to 15, the composition ratio of Mn is higher than the composition of the lithium excess type active material (Li / Me = 1.3, Mn / Me = 0.48) according to Examples 1 and 2 and Comparative Example 1. It corresponds to the example of changing to another small composition (Li / Me = 1.2, Mn / Me = 0.40).
The characteristics of the batteries according to Comparative Examples 13 and 14 subjected to the acid treatment show only an improvement in the initial coulomb efficiency as compared with Comparative Example 15 not subjected to the acid treatment, but the high rate discharge performance is not improved.
Therefore, it can be seen that even when the discharge capacity ratio a / b is 17 or more and 25 or less as in the active material according to Comparative Example 13, if Mn / Me is too small, the effect of the present invention is not exhibited.

比較例16、17は、リチウムが遷移金属に対して過剰となるようなリチウム過剰型の組成の活物質ではないが、Mnの組成比を大きくした(Li/Me=1、Mn/Me=0.55)例であり、ともに0.1C容量、高率放電性能が低く、放電容量比a/bも本発明の範囲を外れている。 Comparative Examples 16 and 17 are not active materials having a lithium-rich composition in which lithium is excessive with respect to the transition metal, but the composition ratio of Mn is increased (Li / Me = 1, Mn / Me = 0). .55) This is an example, both of which have a low 0.1C capacity and high rate discharge performance, and the discharge capacity ratio a / b is also outside the scope of the present invention.

比較例18~20は、既に実用化されているLi/Me=1、Ni:Co:Me=33:33:33のリチウム遷移金属複合酸化物を正極活物質に用いた例である。ホウ酸処理を施した比較例19は、酸未処理の比較例20より各電池特性が向上しているが、クエン酸処理を施した比較例18は、0.1C放電容量及び高率放電性能が低下しており、各電池特性と放電容量比a/bとの相関は見られない。 Comparative Examples 18 to 20 are examples in which a lithium transition metal composite oxide having Li / Me = 1 and Ni: Co: Me = 33: 33: 33, which has already been put into practical use, is used as the positive electrode active material. The boric acid-treated Comparative Example 19 has improved battery characteristics as compared with the acid-untreated Comparative Example 20, but the citric acid-treated Comparative Example 18 has a 0.1 C discharge capacity and a high rate discharge performance. There is no correlation between each battery characteristic and the discharge capacity ratio a / b.

本発明に係る非水電解質二次電池用活物質は、4.5V(vs.Li/Li)未満の電位範囲での使用において優れた初回クーロン効率及び高率放電性能を示す。したがって、この非水電解質二次電池は、高い安全性、効率性、及び高出力が要求されるハイブリッド自動車(HEV)用、プラグインハイブリッド自動車(PHEV)用、電気自動車(EV)用の電池として、有用性が高い。 The active material for a non-aqueous electrolyte secondary battery according to the present invention exhibits excellent initial Coulomb efficiency and high rate discharge performance when used in a potential range of less than 4.5 V (vs. Li / Li + ). Therefore, this non-aqueous electrolyte secondary battery can be used as a battery for hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs) that require high safety, efficiency, and high output. , Highly useful.

1 非水電解質二次電池
2 電極群
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
20 蓄電ユニット
30 蓄電装置
1 Non-aqueous electrolyte secondary battery 2 Electrode group 3 Battery container 4 Positive terminal 4'Positive lead 5 Negative terminal 5'Negative lead 20 Power storage unit 30 Power storage device

Claims (7)

リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、
前記リチウム遷移金属複合酸化物は、
α-NaFeO型結晶構造を有し、
遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、
遷移金属(Me)としてNi、Co及びMn、又はNi及びMnを含み、Meに対するMnのモル比Mn/MeがMn/Me≧0.45であり、
前記正極活物質は、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である、
非水電解質二次電池用正極活物質。
A positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide.
The lithium transition metal composite oxide is
It has an α-NaFeO type 2 crystal structure and has an α-NaFeO type 2 crystal structure.
The molar ratio of Li to the transition metal (Me), Li / Me, is 1 <Li / Me.
The transition metal (Me) contains Ni, Co and Mn, or Ni and Mn, and the molar ratio of Mn to Me, Mn / Me, is Mn / Me ≧ 0.45.
The positive electrode active material has a discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and a discharge capacity (a) from 3.0 V (vs. Li / Li + ) to 2. The ratio a / b of the discharge capacity (b) up to 0.0 V (vs. Li / Li + ) is 17 ≦ a / b ≦ 25.
Non-aqueous electrolyte Positive electrode active material for secondary batteries.
リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質の製造方法であって、
α-NaFeO型結晶構造を有し、
遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、
遷移金属(Me)としてNi、Co及びMn、又はNi及びMnを含み、Meに対するMnのモル比Mn/MeがMn/Me≧0.45であるリチウム遷移金属複合酸化物を、pKaが3.1以上の酸で処理して、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である正極活物質を製造する、非水電解質二次電池用正極活物質の製造方法。
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide.
It has an α-NaFeO type 2 crystal structure and has an α-NaFeO type 2 crystal structure.
The molar ratio of Li to the transition metal (Me), Li / Me, is 1 <Li / Me.
Lithium transition metal composite oxide containing Ni, Co and Mn, or Ni and Mn as the transition metal (Me) and having a molar ratio of Mn to Me of Mn / Me of Mn / Me ≧ 0.45, pKa 1 of 3 . Discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and 3.0 V (vs. Li / Li) treated with 1 or more acids. For non-aqueous electrolyte secondary batteries that produce positive electrode active materials with a ratio a / b of discharge capacity (b) from + ) to 2.0 V (vs. Li / Li + ) of 17 ≦ a / b ≦ 25. A method for producing a positive electrode active material.
請求項1に記載の非水電解質二次電池用正極活物質を含有する非水電解質二次電池用正極。 The positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1. 請求項3に記載の非水電解質二次電池用正極を備え、前記正極が含有する正極活物質は、CuKα線を用いたエックス線回折図において、20~22°の範囲に回折ピークが観察される、非水電解質二次電池。 The positive electrode for a non-aqueous electrolyte secondary battery according to claim 3 is provided, and a diffraction peak is observed in the range of 20 to 22 ° in an X-ray diffraction diagram using CuKα rays for the positive electrode active material contained in the positive electrode. , Non-aqueous electrolyte secondary battery. 請求項3に記載の非水電解質二次電池用正極を備え、前記正極は正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池。 The positive electrode for a non-aqueous electrolyte secondary battery according to claim 3 is provided, and the positive electrode is charged to 4.5 V (vs. Li / Li + ) with a positive electrode potential of 4.5 to 5.0 V (vs. Li / Li +). A non-aqueous electrolyte secondary battery in which a region in which the potential change is relatively flat with respect to the amount of charging electricity is observed within the positive electrode potential range of vs. Li / Li + ). 4.5V(vs.Li/Li)未満の電位で使用される、請求項4又は5に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 4 or 5, which is used at a potential of less than 4.5 V (vs. Li / Li + ). 請求項4~6のいずれかに記載の非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、非水電解質二次電池の製造方法。

The method for manufacturing a non-aqueous electrolyte secondary battery according to any one of claims 4 to 6, wherein the maximum potential of the positive electrode in the initial charge / discharge step is less than 4.5 V (vs. Li / Li + ). A method for manufacturing a non-aqueous electrolyte secondary battery.

JP2018117726A 2018-06-21 2018-06-21 A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery. Active JP7043989B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018117726A JP7043989B2 (en) 2018-06-21 2018-06-21 A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery.
EP19821775.4A EP3813163A4 (en) 2018-06-21 2019-06-19 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method for producing non-aqueous electrolyte secondary battery, and method for use of non-aqueous electrolyte secondary battery
CN201980041784.3A CN112771695B (en) 2018-06-21 2019-06-19 Positive electrode active material, positive electrode, nonaqueous electrolyte secondary battery, and method for using same
US17/252,765 US20210257665A1 (en) 2018-06-21 2019-06-19 Positive active material for nonaqueous electrolyte secondary battery, method for producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery
PCT/JP2019/024375 WO2019244955A1 (en) 2018-06-21 2019-06-19 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method for producing non-aqueous electrolyte secondary battery, and method for use of non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018117726A JP7043989B2 (en) 2018-06-21 2018-06-21 A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery.

Publications (2)

Publication Number Publication Date
JP2019220375A JP2019220375A (en) 2019-12-26
JP7043989B2 true JP7043989B2 (en) 2022-03-30

Family

ID=69096913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018117726A Active JP7043989B2 (en) 2018-06-21 2018-06-21 A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery.

Country Status (1)

Country Link
JP (1) JP7043989B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117223128A (en) * 2021-04-01 2023-12-12 株式会社杰士汤浅国际 Positive electrode active material for nonaqueous electrolyte power storage element, positive electrode for nonaqueous electrolyte power storage element, power storage unit, and power storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (en) 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP4877660B2 (en) 2008-09-30 2012-02-15 株式会社Gsユアサ Active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2016190419A1 (en) 2015-05-28 2016-12-01 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary batteries and method for producing same, electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5430920B2 (en) * 2008-03-17 2014-03-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (en) 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP4877660B2 (en) 2008-09-30 2012-02-15 株式会社Gsユアサ Active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2016190419A1 (en) 2015-05-28 2016-12-01 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary batteries and method for producing same, electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2019220375A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP6825559B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6197939B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery active material manufacturing method, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP6848333B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, its manufacturing method, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary batteries
JP6809263B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, its manufacturing method, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary batteries
CN109565045B (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP7296044B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6471693B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP5871187B2 (en) Non-aqueous electrolyte secondary battery active material, method for producing the active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
WO2018012385A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device
JP7205051B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP6583662B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7004959B2 (en) Lithium transition metal composite oxide, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing lithium transition metal composite oxide, positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte Electrodes for secondary batteries, non-aqueous electrolyte secondary batteries and power storage devices
WO2020090678A1 (en) Rechargeable battery with nonaqueous electrolyte, method for producing rechargeable battery with nonaqueous electrolyte, and method for using rechargeable battery with nonaqueous electrolyte
JP6460575B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6834629B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and positive electrode active material for non-aqueous electrolyte secondary battery
WO2021039120A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device
JP6910595B2 (en) Non-aqueous electrolyte secondary battery
JP6834363B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP2018073752A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7043989B2 (en) A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery.
JP6474033B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6746099B2 (en) Non-aqueous electrolyte secondary battery active material, method for producing non-aqueous electrolyte secondary battery active material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN113646928A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2019149371A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method of precursor used for manufacturing of positive electrode active material, manufacturing method of positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2020188863A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7043989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150