WO2018012385A1 - Positive electrode active material for nonaqueous electrolyte secondary batteries, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary batteries, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device Download PDF

Info

Publication number
WO2018012385A1
WO2018012385A1 PCT/JP2017/024741 JP2017024741W WO2018012385A1 WO 2018012385 A1 WO2018012385 A1 WO 2018012385A1 JP 2017024741 W JP2017024741 W JP 2017024741W WO 2018012385 A1 WO2018012385 A1 WO 2018012385A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
active material
positive electrode
electrolyte secondary
electrode active
Prior art date
Application number
PCT/JP2017/024741
Other languages
French (fr)
Japanese (ja)
Inventor
弘将 村松
遠藤 大輔
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2018012385A1 publication Critical patent/WO2018012385A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a transition metal hydroxide precursor used for manufacturing a lithium transition metal composite contained in the positive electrode active material, and a method for manufacturing the transition metal hydroxide precursor
  • the present invention also relates to a method for producing a positive electrode active material using the transition metal precursor, a nonaqueous electrolyte secondary battery electrode containing the positive electrode active material, a nonaqueous electrolyte secondary battery, and a power storage device.
  • LiMeO 2 type active material Li is a transition metal
  • LiCoO Non-aqueous electrolyte secondary batteries using 2 have been widely put into practical use.
  • the discharge capacity of LiCoO 2 was about 120 to 130 mAh / g.
  • the “LiMeO 2 type” active material containing Mn as Me when the molar ratio Mn / Mn in Me exceeds 0.5, the structural change occurs to the spinel type when charged, Since the crystal structure cannot be maintained, the charge / discharge cycle performance is remarkably inferior.
  • LiMeO 2 type active materials having a Mn molar ratio Mn / Me in Me of 0.5 or less and excellent in charge / discharge cycle performance have been proposed and partially put into practical use.
  • a positive electrode active material containing LiNi 1/2 Mn 1/2 O 2 or LiNi 1/3 Co 1/3 Mn 1/3 O 2 which is a lithium transition metal composite oxide has a discharge capacity of 150 to 180 mAh / g.
  • LiMeO 2 type active material As described above, the composition ratio Li / Me of lithium (Li) with respect to the ratio of transition metal (Me) is larger than 1, for example, Li / Me is 1.2 to 1
  • Li / Me is 1.2 to 1
  • lithium-excess type active material which includes a lithium transition metal composite oxide having a composition formula of Li 1 + ⁇ Me 1- ⁇ O 2 ( ⁇ > 0). It is also known to produce the above lithium transition metal composite oxide from a hydroxide precursor (see, for example, Patent Documents 1 to 4).
  • Patent Document 1 discloses lithium having an ⁇ -NaFeO 2 type crystal structure and represented by a composition formula Li 1 + ⁇ Me 1- ⁇ O 2 (Me is a transition metal containing Co, Ni, and Mn, ⁇ > 0).
  • (Claim 2) "The method for producing a positive electrode active material for a lithium secondary battery according to claim 1 or 2, wherein precursors for the synthesis of the lithium transition metal composite oxide are Co, Ni and Mn Lithium secondary, characterized by being a transition metal hydroxide containing The manufacturing method of the positive electrode active material for batteries "(Claim 3) is described.
  • the pH in the step of producing a precursor by coprecipitation of a compound containing Co, Ni and Mn in a solution is not limited, but the coprecipitation precursor is used as a coprecipitation hydroxide precursor. In the case of production, it can be set to 10.5 to 14.
  • the tap density In order to increase the tap density, it is preferable to control the pH, and by setting the pH to 11.5 or less, the tap density can be reduced. 1.00 g / cm 3 or more can improve the high rate discharge performance, and further, by adjusting the pH to 11.0 or less, the particle growth rate can be accelerated, so It is possible to shorten the stirring time of “(paragraph [0032])”.
  • Patent Document 2 discloses that “a method for producing an active material for a lithium secondary battery according to claim 1 or 2, wherein a compound of a transition metal element Me containing Co, Ni, and Mn is coprecipitated in a solution.
  • An active material for a lithium secondary battery comprising a step of mixing so that a molar ratio of Li is 1 ⁇ (1 + ⁇ ) / (1- ⁇ ) ⁇ 1.5 and firing at 700 to 800 ° C. Manufacturing method "(Claim 3) is described.
  • the pH in the step of producing a precursor by coprecipitation of a compound containing Co, Ni and Mn in a solution is not limited, but the coprecipitation precursor is used as a coprecipitation hydroxide precursor. If it is to be produced, it can be 10-14, and if it is intended to produce the coprecipitated precursor as a coprecipitated carbonate precursor, it can be 7.5-11.
  • the pH, and for the coprecipitated carbonate precursor the tap density can be increased to 1.25 g / cc or higher by setting the pH to 9.4 or lower.
  • the high-rate discharge performance can be improved "(paragraph [0035]).
  • a lithium-containing composite oxide having an integral intensity (I 020 ) ratio (I 020 / I 003 ) of 0.02 to 0.3 and a tap density of
  • Patent Document 3 discloses that “(Example 1)... As a complexing agent, ammonium sulfate was dissolved in distilled water so as to have a concentration of 1.5 mol / kg” to obtain an aqueous ammonium sulfate solution (paragraph). [0088]), “Distilled water was put into a 2 L baffled glass reaction vessel and heated with a mantle heater to 50 ° C.
  • Example 3 is a lithium with a high tap density without crushing by increasing the tap density of the hydroxide.
  • the specific surface area of the lithium-containing composite oxide is small, the discharge capacity of the lithium secondary battery per unit mass of the positive electrode active material is low, and as a result, the positive electrode active material The discharge capacity of the lithium secondary battery per unit volume is also low ”(paragraph [0106]).
  • a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide that defines the half-value width of diffraction peaks on the (003) plane and the (104) plane by X-ray diffraction measurement is known (for example, And Patent Documents 4 to 6).
  • Patent Document 4 discloses that “a current collector and an active material layer including active material particles held by the current collector are provided, and the active material particles are a collection of a plurality of primary particles of a lithium transition metal oxide.
  • the secondary particle has a hollow structure having a hollow part formed inside the secondary particle and a shell part surrounding the hollow part, and the secondary particle includes the hollow part from the outside.
  • the lithium transition metal oxide is: General formula of: Li 1 + x Ni y Co z Mn (1-yz) W ⁇ M ⁇ O 2 (X, y, z, ⁇ and ⁇ in the formula (1) are 0 ⁇ x ⁇ 0.2, 0.1 ⁇ y ⁇ 0.9, 0.1 ⁇ z ⁇ 0.4, 0.0005 ⁇ It is a real number that satisfies all ⁇ ⁇ 0.01 and 0 ⁇ ⁇ ⁇ 0.01, and M is absent or Zr, Mg, Ca, Na, Fe, Cr, Zn, Si, Sn, Al, B and One or more elements selected from the group consisting of F.)
  • the lithium secondary battery according to claim 1 The lithium secondary battery according to claim 1,
  • the W addition amount is 0.5 mol% with respect to 100 mol% of the raw material having a Ni: Co: Mn molar ratio of 0.33: 0.33: 0.33.
  • the composite hydroxide particles obtained by adjusting so as to become lithium carbonate and lithium carbonate are mixed and fired so that Li / Me is about 1.15, thereby comprising a lithium transition metal composite oxide. It describes that an active material particle having a hollow structure or a solid structure was produced.
  • Patent Document 5 “Having a layered structure and having a composition represented by the following formula (1), the half-value width FWHM 003 of the (003) plane and the half-value width of the (104) plane in the powder X-ray diffraction diagram.
  • the element M is at least one element selected from the group consisting of Al, Si, Zr, Ti, Fe, Mg, Nb, Ba and V, and 1.9 ⁇ (a + b + c + d + y) ⁇ 2.1, 1.0 ⁇ y ⁇ 1.3, 0 ⁇ a ⁇ 0.3, 0 ⁇ b ⁇ 0.25, 0.3 ⁇ c ⁇ 0.7, 0 ⁇ d ⁇ 0.1, 9 ⁇ x ⁇ 2.1. ] FWHM 003 / FWHM 104 ⁇ 0.57 (2) ”(Claim 1).
  • citric acid was added to an aqueous solution of a raw material mixture such as lithium acetate dihydrate, cobalt acetate tetrahydrate, manganese acetate tetrahydrate, nickel acetate tetrahydrate, etc., and reacted.
  • a raw material mixture such as lithium acetate dihydrate, cobalt acetate tetrahydrate, manganese acetate tetrahydrate, nickel acetate tetrahydrate, etc.
  • the chemical composition formula of the solid solution is Li 1 + x ⁇ y Na y Co a Ni b Mn c O 2 + d (0 ⁇ y ⁇ 0.1, 0.4 ⁇ c ⁇ 0.7
  • the active material for a lithium secondary battery is characterized in that the half-width of the diffraction peak of the (114) plane is 0.50 ° or less ”(Claim 1).
  • paragraph [0052] has “half-value width of the X-ray diffraction peak described above as indicating the degree of crystallization.
  • the space group P3 1 12 In the X-ray diffraction pattern attributed to (3) it is necessary that the half width of the (003) plane diffraction peak is 0.30 ° or less and the half width of the (114) plane diffraction peak is 0.50 ° or less.
  • the half-value width of the (003) plane diffraction peak is preferably 0.17 ° to 0.30 °, and the half-value width of the (114) plane diffraction peak is preferably 0.35 ° to 0.50 °. It is described.
  • an active material obtained by mixing a coprecipitated hydroxide precursor of a transition metal, lithium hydroxide monohydrate, and sodium carbonate so as to have various compositions and firing at 1000 ° C.
  • the half-value width of the (003) plane diffraction peak was “0.19 to 0.21 °” and the half-value width of the (114) plane diffraction peak was “0.39 to 0.41”.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide having a defined pore volume is known (see, for example, Patent Documents 7 to 9).
  • Patent Document 7 states that “porous particles made of a lithium composite oxide mainly composed of one or more elements selected from the group consisting of Co, Ni, and Mn and lithium, and having pores formed by mercury porosimetry.
  • Non-aqueous system comprising particles having an average pore diameter in the range of 0.1 to 1 ⁇ m in distribution measurement and a total volume of pores having a diameter of 0.01 to 1 ⁇ m of 0.01 cm 3 / g or more
  • the positive electrode active material for secondary batteries “(Claim 1) is described.
  • Patent Document 7 states that “[Example 1] obtained by mixing and pulverizing lithium hydroxide, nickel hydroxide, and cobalt hydroxide in a ball mill at a molar ratio of each metal of 105: 90: 10.
  • the mixed powder was pressure-molded under a pressure of 1 ton / cm 2 , and this molded body was used as a raw material for firing, which was fired (calcined) in an air stream at 770 ° C. for 10 hours.
  • the granulated powder was fired at 800 ° C. for 2 hours in an oxygen stream (main firing), pulverized with a mortar-type pulverizer, and then sized with a screen classifier.
  • the product was porous spherical secondary particles having a pore average diameter of 0.363 ⁇ m and a total volume of pores having a diameter of 0.01 to 1 ⁇ m and a total volume of 8.4 ⁇ 10 ⁇ 2 cm 3 / g ”(paragraph [0026]. ] ”,“ The calcination temperature was changed to 650 ° C. with respect to Example 1. Compared to Example 1, the calcination temperature was lowered to lower the crystallinity of the primary particles. Sintering between primary particles was promoted and the pore volume was controlled. The lithium composite oxide thus obtained had a pore average diameter of 0.137 ⁇ m and a total volume of pores having a diameter of 0.01 to 1 ⁇ m. Was a porous spherical secondary particle having a density of 1.8 ⁇ 10 ⁇ 2 cm 3 / g ”.
  • Patent Document 8 states that “(Example 1)... Nickel sulfate aqueous solution, cobalt sulfate aqueous solution and manganese sulfate aqueous solution has an atomic ratio of nickel atom, cobalt atom and manganese atom of 0.33: 0.33: The mixed raw material solution was adjusted by mixing to 0.33 .... Next, the mixed raw material solution and the aqueous ammonium sulfate solution were continuously added as a complexing agent to the reaction vessel with stirring.
  • a sodium hydroxide aqueous solution was added dropwise as needed so that the pH of the solution in the reaction vessel was 11.7 to obtain nickel cobalt manganese composite hydroxide particles, which were filtered, washed with water, and dried at 100 ° C. In this way, a dry powder of nickel cobalt manganese composite hydroxide was obtained ....
  • Patent Document 8 discloses that the positive electrode active material 2 has a Li: Ni: Co: Mn molar ratio of 1.10: 0.34: 0.33: 0.33 (paragraph [0151]). It was described that the pore volume was 0.030 cm 3 / g (paragraph [0154]), and the positive electrode active material 3 had a molar ratio of Li: Ni: Co: Mn of 1.05: 0.34: 0.
  • the positive electrode active material 5 has a molar ratio of Li: Ni: Co: Mn of 1.09: 0.33: 0.3. : 0.33 (paragraph [0170]), it pore volume was 0.030 cm 3 / g (paragraph [0173]) have been described.
  • Patent Document 9 states that “as the positive electrode active material 1 and the positive electrode active material 2, lithium-containing transition metal oxides having the following chemical formulas were synthesized using a composite carbonate method.
  • the starting materials include nickel, cobalt, and manganese.
  • a sulfate a 2 mol / L nickel sulfate aqueous solution, a cobalt sulfate aqueous solution and a manganese sulfate aqueous solution were prepared, a 2 mol / L sodium carbonate aqueous solution was used as a precipitating agent, and a pH adjusting agent was adjusted to a concentration of 0.8.
  • Patent Document 9 states that “the positive electrode active material 3 is composed of lithium carbonate, nickel sulfate aqueous solution, cobalt sulfate aqueous solution, and manganese sulfate so that lithium, nickel, cobalt, and manganese have the following chemical formula ratios. It was prepared in the same manner as the positive electrode active material 1 except that the aqueous solution was mixed. "(Paragraph [0248])," ⁇ Composition and physical properties of the positive electrode active material 3> Chemical formula: Li 1.5 [Ni 0.25 Co 0.
  • the positive electrode active material 4 is also mixed with lithium carbonate, nickel sulfate aqueous solution, and manganese sulfate aqueous solution so that lithium, nickel, and manganese have the following chemical formula ratios.
  • the discharge capacity of the so-called “lithium-rich” active material is generally larger than that of the so-called “LiMeO 2 type” active material, as described in Patent Documents 1-9.
  • hydroxide precursors and carbonate precursors are known as precursors of “lithium-rich” positive electrode active materials.
  • the present invention seeks to solve the above problems by using a hydroxide precursor as a precursor of a “lithium-rich” positive electrode active material.
  • a hydroxide precursor as a precursor of a “lithium-rich” positive electrode active material.
  • the hydroxide precursor has been usually produced by a method of adjusting the pH to 10 to 14 when coprecipitating from an aqueous solution of a transition metal compound.
  • the tap density is 1.25 g / cm 3 or more by a method in which the pH when coprecipitating from the aqueous solution of the transition metal compound is 9.4 or less.
  • the hydroxide precursor if the synthesis pH is lowered, the high rate discharge performance of the positive electrode active material tends to be lowered. It was not done to increase the density. Therefore, it is difficult to increase the discharge capacity per volume of the positive electrode active material.
  • Patent Documents 4 to 6 describe a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide that defines a half-value width of diffraction peaks on the (003) plane and the (104) plane. However, it has not been shown to increase the discharge capacity per volume of the positive electrode active material.
  • Patent Documents 7 to 9 describe a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide having a defined pore volume. The discharge capacity per volume of the positive electrode active material is described as follows. It is not shown to be high.
  • the present invention relates to a positive electrode active material having a large discharge capacity per volume, a high-density hydroxide precursor for producing the positive electrode active material, a nonaqueous electrolyte secondary battery electrode using the positive electrode active material, and It is an object to provide a non-aqueous electrolyte secondary battery.
  • one aspect of the present invention is “a positive electrode active material for a non-aqueous electrolyte battery including a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide is ⁇ -NaFeO 2 type.
  • the molar ratio (Li / Me) of Li and transition metal (Me) constituting the lithium transition metal composite oxide having a crystal structure is greater than 1, and the transition metal (Me) is Mn and Ni, or Mn, X-rays using CuK ⁇ rays, which contain Ni and Co, have a Mn molar ratio Mn / Me in the transition metal (Me) greater than 0.5, have an X-ray diffraction pattern that can be assigned to R3-m
  • the lithium transition metal composite oxide pore volume determined by the BJH method from an adsorption isotherm using a nitrogen gas adsorption method of the particles is less than 0.05 cm 3 / g, a non-aqueous electrolyte secondary battery
  • the positive electrode active material is used.
  • transition metal hydroxide precursor used for producing a lithium transition metal composite oxide contained in the positive electrode active material for a nonaqueous electrolyte secondary battery, wherein the transition metal (Me ) Contains Mn and Ni, or Mn, Ni and Co, the molar ratio of Mn in the transition metal (Me) is Mn / Me larger than 0.5, and the tap density is 1.3 g / cm 3 or more. Transition metal hydroxide precursor.
  • Another aspect of the present invention is “a method for producing the transition metal hydroxide precursor, wherein a reaction vessel contains a transition metal (Me) -containing solution, an alkali metal hydroxide, a complexing agent, And a method for producing a transition metal hydroxide precursor, wherein an alkaline solution containing a reducing agent is added to adjust the pH of the solution in the reaction vessel to less than 9 to 9.8 to coprecipitate the transition metal hydroxide. It is.
  • Another aspect of the present invention is “having an ⁇ -NaFeO 2 type crystal structure in which the transition metal hydroxide precursor and a lithium compound are mixed and fired at 750 to 900 ° C.
  • Another aspect of the present invention is a nonaqueous electrolyte secondary battery electrode containing the positive electrode active material, and is a nonaqueous electrolyte secondary battery including the electrode.
  • a positive electrode active material having a large discharge capacity (energy density) per volume a high-density hydroxide precursor for producing the positive electrode active material, and a nonaqueous electrolyte containing the positive electrode active material.
  • a secondary battery electrode and a non-aqueous electrolyte secondary battery including the electrode can be provided.
  • the figure which shows the total pore volume of the positive electrode active material of an Example and a comparative example Figure showing the relationship between the total pore volume of the positive electrode active material and the discharge capacity per volume 1 is an external perspective view showing a nonaqueous electrolyte secondary battery according to one embodiment of the present invention.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention is a positive electrode active material containing a lithium transition metal composite oxide.
  • the composition of the lithium transition metal composite oxide contains Mn and Ni, or a transition metal element Me containing Mn, Ni and Co, and Li, and Li 1 + ⁇ Me 1- ⁇ from the viewpoint of obtaining a high discharge capacity. This is a so-called “lithium-excess type” which can be expressed as O 2 ( ⁇ > 0).
  • the transition metal element Me represented by (1 + ⁇ ) / (1- ⁇ )
  • the molar ratio Li / Me to Li is preferably 1.1 or more and less than 1.4, more preferably 1.1 or more and 1.3 or less, and 1.1 or more and 1.2 or less. Is particularly preferred. Within this range, the discharge capacity per volume of the positive electrode active material is improved.
  • the molar ratio Mn / Me of the transition metal element Me is greater than 0.5. It is preferably 0.51 or more and less than 0.7, and more preferably 0.51 to 0.60. Within this range, the tap density of the hydroxide precursor can be improved and the discharge capacity per volume is improved.
  • Co contained in the lithium transition metal composite oxide has an effect of improving the initial efficiency.
  • the tap density of the precursor is lowered and the peak differential pore volume is increased.
  • the molar ratio Co / Me of Co to the transition metal element Me is preferably 0.20 or less, and may be 0.
  • the molar ratio Ni / Me of Ni to the transition metal element Me is preferably 0.2 to 0.5, more preferably 0.25 to 0.4. Within this range, the tap density of the hydroxide precursor can be improved and the discharge capacity per volume is improved.
  • the lithium transition metal composite oxide according to this embodiment has an ⁇ -NaFeO 2 structure.
  • the lithium transition metal composite oxide after synthesis (before charge and discharge) is attributed to the space group P3 1 12 or R3-m.
  • the charge is performed and Li in the crystal is desorbed, the symmetry of the crystal changes, whereby the superlattice peak disappears and the lithium transition metal composite oxide belongs to the space group R3-m. Will come to be.
  • P3 1 12 is a crystal structure model in which the atomic positions of the 3a, 3b, and 6c sites in R3-m are subdivided, and when ordering is recognized in the atomic arrangement in R3-m, the P3 1 12 model Is adopted. Note that “R3-m” is originally represented by adding a bar “-” on “3” of “R3m”.
  • the lithium transition metal composite oxide according to the present embodiment is (003) relative to the half-value width of the diffraction peak attributed to the (104) plane.
  • the ratio of the half width of the diffraction peak attributed to the plane, that is, the value of FWHM (003) / FWHM (104) is 0.6 or less.
  • the FWHM (104) is an index of crystallinity from all directions. If it is too small, crystallization proceeds too much, the crystallite becomes large, and Li ions are not sufficiently diffused. If it is too large, the crystallinity is low, and the transport efficiency of Li ions is reduced. Therefore, the FWHM (104) is preferably in the range of 0.21 ° to 0.55 °.
  • the FWMH ratio is an index of crystallinity along the c-axis direction with respect to crystallinity from all directions in the crystal structure. If FWHM (003) / FWHM (104) is too large, the degree of crystal growth in the c-axis direction will be small, and Li ions will not be smoothly inserted and removed from the interlayer. Therefore, FWHM (003) / FWHM (104) is set to 0.6 or less. In addition, when FWHM (003) / FWHM (104) is not too small, elution of Mn due to an increase in the contact area between the crystal grain boundary and the electrolytic solution can be suppressed. Therefore, FWHM (003) / FWHM (104) is preferably set to 0.4 or more.
  • the half width of the lithium transition metal composite oxide is measured using an X-ray diffractometer (manufactured by Rigaku, model name: MiniFlex II). Specifically, it is performed according to the following conditions and procedures.
  • the radiation source is CuK ⁇ , and the acceleration voltage and current are 30 kV and 15 mA, respectively.
  • the sampling width is 0.01 deg, the scanning time is 14 minutes (scanning speed is 5.0), the divergence slit width is 0.625 deg, the light receiving slit width is open, and the scattering slit is 8.0 mm.
  • the obtained X-ray diffraction data is indexed to the (003) plane in the space group R3-m using “PDXL” which is the software attached to the X-ray diffractometer without removing the peak derived from K ⁇ 2.
  • the half-width FWHM (104) for the existing diffraction peak is determined.
  • the total pore volume determined by the BJH method from the adsorption isotherm using the nitrogen gas adsorption method is 0.05 cm 3 / g or less.
  • the total pore volume is preferably 0.04 cm 3 / g or less.
  • the peak differential pore volume is preferably 0.2mm 3 / (g ⁇ nm) or less, more preferably 0.18mm 3 / (g ⁇ nm) or less, 0.12mm 3 / (g ⁇ nm ) or less is particularly preferable.
  • Such a high-density active material can be obtained by firing a high-density transition metal hydroxide precursor and a lithium compound. In FIG.
  • the total pore volume of the lithium transition metal complex oxide particle of an Example and a comparative example is shown. Specifically, based on the measurement results of the pore distribution for lithium transition metal composite oxide particles according to Example 1, Comparative Example 1, and Comparative Example 3 described later, the horizontal axis represents the pore diameter, and the vertical axis represents the fine particle. It is the figure which plotted the total pore volume corresponding to the pore below a pore diameter.
  • the lithium transition metal composite oxide particles of Example 1 obtained from the high density hydroxide precursor were the same as the lithium transition metal composite oxide particles of Comparative Example 1 obtained from the low density hydroxide precursor, carbonic acid. Compared with the lithium transition metal composite oxide particles of Comparative Example 3 obtained from the salt precursor, the total pore volume is remarkably reduced.
  • FIG. 1 The lithium transition metal composite oxide particles of Example 1 obtained from the high density hydroxide precursor were the same as the lithium transition metal composite oxide particles of Comparative Example 1 obtained from the low density hydroxide precursor, carbonic acid. Compared with the lithium transition metal composite oxide
  • the total pore volume and the peak differential pore volume of the lithium transition metal composite oxide particles are measured by the following method.
  • P0 about 770 mmHg
  • the lithium transition metal composite oxide particles according to this embodiment preferably have a tap density of 1.6 g / cm 3 or more, and more preferably 1.7 g / cm 3 or more.
  • the tap density of the lithium transition metal composite oxide is measured by the following method. 2 g ⁇ 0.2 g of the powder of the sample to be measured is put into a 10 ⁇ 2 dm 3 graduated cylinder, and REI ELECTRIC CO. LTD. A value obtained by dividing the volume of the sample to be measured after counting 300 times by the input mass using a tapping device manufactured by the company is adopted.
  • the sample used for the above various measurements is an active material powder before electrode preparation, it is used for measurement as it is.
  • the battery is put into a discharged state by the following procedure before disassembling the battery.
  • constant current charging is performed up to a battery voltage at which the positive electrode potential becomes 4.3 V (vs. Li / Li + ) with a current of 0.1 C, and the current value decreases to 0.01 C at the same battery voltage.
  • constant current discharge is performed at a current of 0.1 C until the battery voltage reaches a positive electrode potential of 2.0 V (vs. Li / Li + ), and a discharge end state is obtained.
  • the battery may be disassembled after the battery is brought into the end-of-discharge state or the end-of-charge state, and the electrode may be taken out.
  • the battery is adjusted to the end of discharge state according to the above procedure.
  • the work from disassembly of the battery to measurement is performed in an argon atmosphere with a dew point of -60 ° C or lower.
  • the taken-out positive electrode plate uses dimethyl carbonate to sufficiently wash the electrolytic solution adhering to the electrode, and after drying at room temperature for a whole day and night, the mixture on the aluminum foil current collector is collected. This mixture is fired at 600 ° C. for 4 hours using a small electric furnace to remove the carbon as the conductive agent and the PVdF binder as the binder, and take out the lithium transition metal composite oxide particles.
  • the transition metal hydroxide precursor used for producing the lithium transition metal composite oxide includes a transition metal (Me) containing Mn and Ni, or Mn, Ni and Co, and a mole of Mn in the transition metal (Me).
  • the ratio Mn / Me is larger than 0.5
  • the crystal form is a high-density granule
  • the tap density is 1.3 g / cm 3 or more.
  • the tap density is preferably 1.4 g / cm 3 or more.
  • a hydroxide precursor having a tap density of up to 1.7 g / cm 3 can be obtained.
  • the tap density of the hydroxide precursor and the carbonate precursor is measured by the same method as the tap density of the lithium transition metal composite oxide.
  • the lithium transition metal composite oxide produced using the transition metal hydroxide precursor according to this embodiment is a “lithium-excess” active material
  • Mn of the transition metal element Me in the hydroxide precursor The molar ratio Mn / Me is greater than 0.5. Within this range, it is possible to improve the tap density of the hydroxide precursor. Further, the molar ratio Co / Me of Co to the transition metal element Me in the hydroxide precursor is preferably 0.2 or less, may be 0, but is preferably 0.1 or more. The molar ratio Ni / Me is preferably 0.2 to 0.5. Within this range, it is possible to improve the tap density of the hydroxide precursor.
  • alkali metal hydroxide sodium hydroxide, lithium hydroxide, etc.
  • complexation together with a solution containing transition metal (Me), in a reaction tank that maintains alkalinity
  • an alkali solution containing an agent and a reducing agent ammonia, ammonium sulfate, ammonium nitrate or the like can be used, and ammonia is preferable.
  • a precursor having a higher tap density can be produced by a crystallization reaction using a complexing agent.
  • a reducing agent hydrazine, sodium borohydride and the like can be used, and hydrazine is preferable.
  • sodium hydroxide or lithium hydroxide can be used for the alkali metal hydroxide (neutralizing agent).
  • Mn is easily oxidized among Ni, Co, and Mn, and Ni, Mn, or a coprecipitation precursor in which Ni, Co, and Mn are uniformly distributed in a divalent state is produced. Therefore, uniform mixing at the atomic level of Ni, Mn, or Ni, Co, and Mn tends to be insufficient.
  • the Mn ratio is higher than the Ni and Co ratios, it is particularly important to remove dissolved oxygen in the aqueous solution.
  • the method for removing dissolved oxygen include a method of bubbling a gas not containing oxygen.
  • the gas not containing oxygen is not limited, but nitrogen gas, argon gas, carbon dioxide (CO 2 ), or the like can be used.
  • the pH in the step of producing a hydroxide precursor by coprecipitation of a compound containing Ni, Mn or Ni, Co, Mn in the solution is 8 Is preferably less than 9.8, and more preferably less than 9-9.8 (9.7 or less).
  • the tap density can be 1.3 g / cm 3 or more.
  • the stirring continuation time after the raw material aqueous solution dropping is completed can be shortened.
  • the raw material of the hydroxide precursor is manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, manganese acetate, etc. as the Mn compound, and nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, acetic acid as the Ni compound.
  • the Co compound such as nickel and the like include cobalt sulfate, cobalt nitrate, and cobalt acetate.
  • an alkali metal hydroxide such as sodium hydroxide (neutralizing agent), a complexing agent such as ammonia, hydrazine, etc.
  • a method in which a mixed alkaline solution containing the reducing agent is appropriately dropped is preferable.
  • the concentration of the alkali metal hydroxide to be dropped is preferably 1.0 to 8.0M.
  • the concentration of the complexing agent is preferably 0.4M or more, and more preferably 0.6M or more. Moreover, it is preferable that it is 2.0M or less, It is more preferable that it is 1.6M or less, It is further more preferable to set it as 1.5M or less.
  • the concentration of the reducing agent is preferably 0.05 to 1.0M, and more preferably 0.1 to 0.5M.
  • the tap density of the hydroxide precursor can be increased by lowering the pH of the reaction vessel and setting the concentration of ammonia (complexing agent) to 0.6 M or more.
  • the manufacturing method or the manufacturing conditions described characteristically above may be combined with a configuration in which the precursor Co / Me is 0, but by combining with a configuration in which Co / Me is 0.02 or more, high density The effect
  • the Co / Me ratio is more preferably 0.05 or more, and further preferably 0.1 or more.
  • the dropping speed of the raw material aqueous solution greatly affects the uniformity of element distribution within one particle of the hydroxide precursor to be produced.
  • Mn is difficult to form a uniform element distribution with Ni or Co, so care must be taken.
  • the preferred dropping rate is influenced by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc., but is preferably 30 mL / min or less. In order to improve the discharge capacity, the dropping rate is more preferably 10 mL / min or less, and most preferably 5 mL / min or less.
  • the particles are rotated and revolved in the stirring tank by continuing the stirring after the dropwise addition of the raw material aqueous solution.
  • a complexing agent such as ammonia
  • the particles collide with each other, and the particles grow concentrically in stages. That is, the hydroxide precursor undergoes two stages of reaction: a metal complex formation reaction when the raw material aqueous solution is dropped into the reaction tank, and a precipitation formation reaction that occurs while the metal complex is retained in the reaction tank. Formed through. Therefore, a hydroxide precursor having a target particle diameter can be obtained by appropriately selecting a time for continuing stirring after the dropping of the raw material aqueous solution.
  • the preferable stirring duration after completion of dropping of the raw material aqueous solution is influenced by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc., but 0.5 h or more is required to grow the particles as uniform spherical particles. Preferably, 1 h or more is more preferable. Further, in order to reduce the possibility that the output performance in the low SOC region of the battery is not sufficient due to the particle size becoming too large, it is preferably 15 h or less, more preferably 10 h or less, and most preferably 5 h or less.
  • the preferable stirring duration time for controlling D50 which is a particle diameter at which the cumulative volume in the particle size distribution of the secondary particles of the hydroxide precursor and the lithium transition metal composite oxide is 50%, to 13 ⁇ m or less is the pH to be controlled. It depends on. For example, when the pH is controlled to 8 to 9.7, the stirring duration is preferably 0.5 to 3 h, and when the pH is controlled to 9 to 9.7, the stirring duration is 1 to 5 h. preferable.
  • the hydroxide precursor particles are prepared using a sodium compound such as sodium hydroxide as a neutralizing agent, sodium ions adhering to the particles are removed by washing in the subsequent washing step.
  • a condition that the number of washings with 100 mL of ion-exchanged water is 5 times or more can be employed.
  • the lithium transition metal composite oxide of the present embodiment can be suitably produced by a method of firing after mixing the hydroxide precursor and a lithium compound (Li compound).
  • the lithium transition metal composite oxide produced by this method has an ⁇ -NaFeO 2 type crystal structure, and the molar ratio of Li to transition metal (Me) constituting the lithium transition metal composite oxide (Li / Me) Is greater than 1, the transition metal (Me) contains Mn and Ni, or Mn, Ni and Co, and the molar ratio of Mn in the transition metal (Me) Mn / Me is greater than 0.5.
  • Li compound lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, or the like can be used.
  • the amount of the Li compound it is preferable to add an excess of about 1 to 5% in view of the disappearance of a part of the Li compound during firing.
  • the firing temperature affects the reversible capacity of the active material.
  • the firing temperature is preferably less than the temperature at which the oxygen release reaction of the active material affects.
  • the oxygen release temperature of the active material is approximately 1000 ° C. or higher in the composition range according to the present embodiment, but there is a slight difference in the oxygen release temperature depending on the composition of the active material. It is preferable to confirm. In particular, it is confirmed that the oxygen release temperature of the hydroxide precursor shifts to a lower temperature side as the amount of Co contained in the sample increases.
  • a mixture of a hydroxide precursor and a lithium compound may be subjected to thermogravimetric analysis (DTA-TG measurement) in order to simulate the firing reaction process.
  • the platinum used in the sample chamber of the measuring instrument may be corroded by the Li component volatilized, and the instrument may be damaged, so a crystallization temperature is advanced to some extent by adopting a firing temperature of about 500 ° C. in advance.
  • the composition may be subjected to thermogravimetric analysis.
  • the firing temperature is preferably higher than 700 ° C.
  • the resistance of the crystal grain boundary can be reduced and smooth lithium ion transport can be promoted.
  • the inventors have found that strain remains in the lattice in the sample synthesized at a temperature lower than 750 ° C. It was found that almost all strains can be removed by synthesis at the above temperature. It was also found that the crystallite size increased in proportion to the increase in the synthesis temperature.
  • the composition of the active material according to the present embodiment particles having almost no lattice distortion in the system and having a sufficiently grown crystallite size can be obtained, and a favorable discharge capacity can be obtained.
  • a synthesis temperature (firing temperature) and a Li / Me ratio composition in which the amount of strain affecting the lattice constant is 2% or less and the crystallite size grows to 50 nm or more.
  • the crystallite size was maintained at 30 nm or more in the charging / discharging process, although it changed due to expansion / contraction. That is, an active material having a remarkably large reversible capacity can be obtained only by selecting the firing temperature as close as possible to the oxygen release temperature of the active material.
  • the firing temperature is preferably 750 to 940 ° C., more preferably 750 to 900 ° C., in order to ensure a sufficient discharge capacity per volume.
  • the lithium transition metal composite oxide used as the positive electrode active material of the present embodiment is manufactured.
  • the negative electrode active material is not limited. Any form that can deposit or occlude lithium ions may be selected.
  • titanium-based materials such as lithium titanate having a spinel crystal structure represented by Li [Li 1/3 Ti 5/3 ] O 4 , alloy-based materials such as Si, Sb, and Sn-based lithium metal, lithium alloys (Lithium metal-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), lithium composite oxide (lithium-titanium), silicon oxide
  • an alloy capable of inserting and extracting lithium a carbon material (for example, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.) can be used.
  • the positive electrode active material powder and the negative electrode active material powder preferably have an average particle size of 100 ⁇ m or less.
  • the positive electrode active material powder is preferably 15 ⁇ m or less for the purpose of improving the high output characteristics of the nonaqueous electrolyte battery.
  • a method for producing a precursor having a predetermined size a method using a pulverizer, a classifier, and the like.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill, a sieve, or the like is used.
  • wet pulverization in the presence of water or an organic solvent such as hexane may be used.
  • an organic solvent such as hexane
  • the positive electrode active material and the negative electrode active material which are main components of the positive electrode and the negative electrode have been described in detail.
  • the positive electrode and the negative electrode include a conductive agent, a binder, a thickener, A filler etc. may be contained as another structural component.
  • the conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance.
  • natural graphite such as scaly graphite, scaly graphite, earthy graphite
  • artificial graphite carbon black, acetylene black
  • Conductive materials such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material can be included as one kind or a mixture thereof. .
  • acetylene black is preferable from the viewpoints of electronic conductivity and coatability.
  • the addition amount of the conductive agent is preferably 0.1% by weight to 50% by weight, and particularly preferably 0.5% by weight to 30% by weight with respect to the total weight of the positive electrode or the negative electrode.
  • acetylene black is preferably used after being pulverized into ultrafine particles of 0.1 to 0.5 ⁇ m because the necessary carbon amount can be reduced.
  • These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, it is possible to mix by a dry type or a wet type using a powder mixer such as a V-type mixer, an S-type mixer, a grinding machine, a ball mill, or a planetary ball mill.
  • the binder is usually a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene terpolymer
  • SBR rubber
  • the amount of the binder added is preferably 1 to 50% by weight, particularly 2 to 30% by weight, based on the total weight of the positive electrode or the negative electrode.
  • any material that does not adversely affect battery performance may be used.
  • olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used.
  • the addition amount of the filler is preferably 30% by weight or less with respect to the total weight of the positive electrode or the negative electrode.
  • the main components positive electrode active material for the positive electrode, negative electrode material for the negative electrode
  • an organic solvent such as N-methylpyrrolidone or toluene or water.
  • the obtained liquid mixture is applied on a current collector described in detail below, or is pressed and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
  • roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.
  • a current collector foil such as an Al foil or a Cu foil can be used.
  • the positive electrode current collector foil is preferably an Al foil
  • the negative electrode current collector foil is preferably a Cu foil.
  • the thickness of the current collector foil is preferably 10 to 30 ⁇ m.
  • the thickness of the mixture layer is preferably 40 to 150 ⁇ m (excluding the thickness of the current collector foil) after pressing.
  • Nonaqueous electrolyte used for the nonaqueous electrolyte secondary battery according to the present embodiment is not limited, and those generally proposed for use in lithium batteries and the like can be used.
  • Nonaqueous solvents used for the nonaqueous electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate; cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; dimethyl carbonate, Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane and methyldiglyme; Nitri
  • electrolyte salt used for the non-aqueous electrolyte examples include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, and NaBr.
  • LiCF 3 SO 3 LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 (SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (nC 4 H 9 ) 4 NI, (C 2 H 5 ) 4 N-maleate, (C 2 H 5 ) 4 N-benzoate, (C 2 H 5 ) 4 N-phthalate, Examples thereof include organic ionic salts
  • the viscosity of the electrolyte can be further reduced, Low temperature characteristics can be further improved, and self-discharge can be suppressed, which is more preferable.
  • the concentration of the electrolyte salt in the nonaqueous electrolyte is preferably from 0.1 mol / L to 5 mol / L, more preferably from 0.5 mol / L to 2 in order to reliably obtain a nonaqueous electrolyte battery having high battery characteristics. 0.5 mol / L.
  • separator it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination.
  • the material constituting the separator for a nonaqueous electrolyte battery include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexa.
  • Fluoropropylene copolymer vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.
  • the porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.
  • the separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte.
  • a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte.
  • the separator is used in combination with the above-described porous film, nonwoven fabric, or the like and a polymer gel because the liquid retention of the electrolyte is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the microporous wall are coated with a solvophilic polymer having a thickness of several ⁇ m or less, and holding the electrolyte in the micropores of the film, Gels.
  • solvophilic polymer examples include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked.
  • the monomer can be subjected to a crosslinking reaction by irradiation with an electron beam (EB) or heating or ultraviolet (UV) irradiation with a radical initiator added.
  • EB electron beam
  • UV ultraviolet
  • FIG. 3 is an external perspective view of a rectangular lithium secondary battery 1 which is a nonaqueous electrolyte secondary battery according to one embodiment of the present invention. In the figure, the inside of the container is seen through. In the nonaqueous electrolyte secondary battery 1 shown in FIG. 3, an electrode group 2 is housed in a battery container 3.
  • the electrode group 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material via a separator.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ′
  • the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5 ′.
  • This embodiment can also be realized as a power storage device in which a plurality of the nonaqueous electrolyte secondary batteries are assembled.
  • a power storage device according to one embodiment of the present invention is illustrated in FIG.
  • the power storage device 30 includes a plurality of power storage units 20.
  • Each power storage unit 20 includes a plurality of nonaqueous electrolyte secondary batteries 1.
  • the power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • Example 1 ⁇ Production process of hydroxide precursor>
  • a hydroxide precursor was prepared using a reaction crystallization method. First, 315.4 g of nickel sulfate hexahydrate, 168.6 g of cobalt sulfate heptahydrate, and 530.4 g of manganese sulfate pentahydrate were weighed, and all of these were dissolved in 4 L of ion-exchanged water, and Ni: Co A 1.0 M aqueous sulfate solution having a molar ratio of: Mn of 30:15:55 was prepared.
  • reaction vessel 2 L was poured into a 5 L reaction tank, and N 2 gas was bubbled for 30 minutes to remove oxygen contained in the ion exchange water.
  • the temperature of the reaction vessel is set to 50 ° C. ( ⁇ 2 ° C.) and the reaction vessel is stirred at a rotational speed of 1500 rpm using a paddle blade equipped with a stirring motor, so that sufficient convection occurs in the reaction vessel. did.
  • the sulfate aqueous solution was dropped into the reaction vessel at a rate of 1.3 mL / min for 50 hr.
  • the pH of the aqueous solution in the reaction vessel was appropriately dropped by adding a mixed alkaline solution consisting of 4.0 M sodium hydroxide, 1.25 M ammonia, and 0.1 M hydrazine from the start to the end of the dropping.
  • a mixed alkaline solution consisting of 4.0 M sodium hydroxide, 1.25 M ammonia, and 0.1 M hydrazine from the start to the end of the dropping.
  • stirring in the reaction vessel was continued for 1 hour. After stopping stirring, the mixture was allowed to stand at room temperature for 12 hours or longer.
  • the hydroxide precursor particles generated in the reaction tank are separated, and further, sodium ions adhering to the particles are washed and removed using ion exchange water, and an electric furnace is used. Then, it was dried in an air atmosphere at 80 ° C. under normal pressure for 20 hours. Then, in order to arrange
  • the molar ratio of Li: (Ni, Co, Mn) is 120:
  • a mixed powder of 100 was prepared. Using a pellet molding machine, molding was performed at a pressure of 6 MPa to obtain pellets having a diameter of 25 mm. The amount of the mixed powder subjected to pellet molding was determined by conversion so that the mass of the assumed final product was 2.5 g.
  • One pellet was placed on an alumina boat having a total length of about 100 mm, placed in a box-type electric furnace (model number: AMF20), heated in air atmosphere at normal pressure from room temperature to 800 ° C.
  • the box-type electric furnace has internal dimensions of 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction. After firing, the heater was turned off and allowed to cool naturally with the alumina boat placed in the furnace. As a result, the temperature of the furnace decreases to about 200 ° C. after 5 hours, but the subsequent temperature decrease rate is somewhat moderate. After the passage of day and night, it was confirmed that the furnace temperature was 100 ° C. or lower, and then the pellets were taken out and pulverized for several minutes in a smoked automatic mortar in order to make the particle diameter uniform. In this way, lithium transition metal composite oxide Li 1.09 Ni 0.27 Co 0.14 Mn 0.50 O 2 according to Example 1 was produced.
  • Example 2 In the firing step, 1.214 g of lithium hydroxide monohydrate is added to 2.315 g of the hydroxide precursor, and a mixed powder having a molar ratio of Li: (Ni, Co, Mn) of 110: 100 is obtained.
  • a lithium transition metal composite oxide according to Example 2 was produced in the same manner as Example 1 except that it was prepared.
  • Examples 3 and 4 Lithium transition metal composite oxides according to Examples 3 and 4 were produced in the same manner as in Example 1, except that in the firing step, the firing temperature was changed from 800 ° C. to 750 ° C. and 900 ° C., respectively.
  • Example 5 In the step of preparing the hydroxide precursor, 315.4 g of nickel sulfate hexahydrate, 112.4 g of cobalt sulfate heptahydrate, and 578.6 g of manganese sulfate pentahydrate were weighed, and all of these were ion-exchanged water.
  • a 1.0M sulfate aqueous solution having a Ni: Co: Mn molar ratio of 30:10:60 was prepared by dissolving in 4 L, and 4.0 M
  • the pH of the aqueous solution in the reaction vessel was controlled to be constantly maintained at 9.3 by appropriately dropping a mixed alkaline solution composed of sodium hydroxide, 0.6M ammonia, and 0.3M hydrazine.
  • 1.373 g of lithium hydroxide monohydrate were added to 2.211 g of the hydroxide precursor to prepare a mixed powder having a molar ratio of Li: (Ni, Co, Mn) of 130: 100 Outside, in the same manner as in Example 1 to prepare a lithium transition metal composite oxide according to Example 5.
  • Example 6 In the step of preparing the hydroxide precursor, 262.8 g of nickel sulfate hexahydrate, 224.8 g of cobalt sulfate heptahydrate, and 530.4 g of manganese sulfate pentahydrate were weighed, and all of these were ion-exchanged water.
  • a 1.0M sulfate aqueous solution having a Ni: Co: Mn molar ratio of 25:20:55 is prepared by dissolving in 4 L, and 4.0 M
  • a mixed alkaline solution consisting of sodium hydroxide, 1.5M ammonia, and 0.2M hydrazine the pH of the aqueous solution in the reaction vessel is always controlled to be 9.5 ( ⁇ 0.1).
  • a lithium transition metal composite oxide according to Example 6 was produced in the same manner as Example 1 except for the above.
  • Example 7 In the step of preparing the hydroxide precursor, a mixed alkaline solution composed of 4.0 M sodium hydroxide, 0.8 M ammonia, and 0.3 M hydrazine is added from the start to the end of the dropwise addition of the sulfate aqueous solution.
  • the lithium transition metal composite according to Example 7 was the same as Example 1 except that the pH of the aqueous solution in the reaction vessel was controlled to be always kept at 9.5 ( ⁇ 0.1) by dropping appropriately. An oxide was produced.
  • Example 8 In the step of preparing the hydroxide precursor, a mixed alkaline solution composed of 4.0 M sodium hydroxide, 2 M ammonia, and 0.3 M hydrazine is appropriately dropped from the start to the end of the dropping of the sulfate aqueous solution. Thus, the pH of the aqueous solution in the reaction vessel was controlled so as to always maintain 9.5 ( ⁇ 0.1).
  • 2.212 g of the hydroxide precursor was added to lithium hydroxide monohydrate. Lithium transition according to Example 8 in the same manner as in Example 1 except that 1.371 g of the product was added and a mixed powder having a molar ratio of Li: (Ni, Co, Mn) of 130: 100 was prepared. A metal composite oxide was produced.
  • Comparative Example 1 In the step of preparing the hydroxide precursor, a mixed alkaline solution composed of 4.0 M sodium hydroxide, 0.5 M ammonia, and 0.3 M hydrazine was added from the start to the end of the dropwise addition of the sulfate aqueous solution.
  • the lithium transition metal composite according to Comparative Example 1 was used in the same manner as in Example 1 except that the pH of the aqueous solution in the reaction vessel was controlled so as to always maintain 10.55 ( ⁇ 0.1) by dropping appropriately. An oxide was produced.
  • Comparative Example 2 In the step of preparing the hydroxide precursor, a mixed alkaline solution composed of 4.0 M sodium hydroxide, 0.5 M ammonia, and 0.3 M hydrazine was added from the start to the end of the dropwise addition of the sulfate aqueous solution.
  • the lithium transition metal composite according to Comparative Example 2 was prepared in the same manner as in Example 1 except that the pH of the aqueous solution in the reaction vessel was controlled so as to always maintain 9.8 ( ⁇ 0.1) by dropping appropriately. An oxide was produced.
  • the coprecipitated carbonate particles produced in the reaction vessel are separated, and sodium ions adhering to the particles are washed away using ion-exchanged water, and an electric furnace is used. Then, it was dried in an air atmosphere at 80 ° C. under normal pressure for 20 hours. Then, in order to arrange
  • Example 2 instead of the hydroxide precursor prepared in Example 1, the carbonate precursor prepared as described above was used, and in the firing step, 1.047 g of lithium carbonate was added to 2.204 g of the carbonate precursor.
  • the lithium transition metal composite oxide according to Comparative Example 3 was the same as Example 1 except that a mixed powder having a molar ratio of 145: 100 was prepared and fired. Was made.
  • Comparative Example 4 A lithium transition metal composite oxide according to Comparative Example 4 was produced in the same manner as in Example 2 except that the firing temperature was 1000 ° C.
  • Example 9 to 15 In the step of preparing the hydroxide precursor, the concentration of ammonia in the mixed alkali solution added from the start to the end of the dropwise addition of the sulfate aqueous solution is changed from 1.25 M to 0.4 M and 0.6 M, respectively. , 0.8M, 1M, 1.4M, 1.6M, and 2M, hydroxide precursors according to Examples 9 to 15 were produced in the same manner as in Example 1.
  • Example 16 In the step of preparing the hydroxide precursor, 473.4 g of nickel sulfate hexahydrate and 530.6 g of manganese sulfate pentahydrate were weighed, and all of these were dissolved in 4 L of ion-exchanged water, and Ni: Co: Mn A hydroxide precursor according to Example 16 was produced in the same manner as in Example 1 except that a 1.0 M sulfate aqueous solution having a molar ratio of 45: 0: 55 was produced.
  • a coating paste in which the active material, acetylene black (AB) and polyvinylidene fluoride (PVdF) were kneaded and dispersed at a mass ratio of 90: 5: 5 was prepared.
  • the coating paste was applied to one side of an aluminum foil current collector having a thickness of 20 ⁇ m to produce a positive electrode plate.
  • the application thickness of the active material applied per fixed area was unified so that the test conditions for obtaining the discharge capacity per volume between the lithium secondary batteries according to all Examples and Comparative Examples were the same.
  • the nonaqueous electrolyte secondary battery electrode thus produced was partially cut out, a test battery that was a nonaqueous electrolyte secondary battery (lithium secondary battery) was produced by the following procedure, and the battery characteristics were evaluated. .
  • LiPF 6 As an electrolytic solution, LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) had a volume ratio of 6: 7: 7 so that the concentration would be 1 mol / L. The solution was used.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • the separator a polypropylene microporous film whose surface was modified with polyacrylate was used.
  • the electrode is housed so that the open ends of the positive electrode terminal and the negative electrode terminal are exposed to the outside, and the fusion margin where the inner surfaces of the metal resin composite film face each other is hermetically sealed except for the portion serving as a liquid injection hole, After injecting the electrolytic solution, the injection hole was sealed.
  • the lithium secondary battery produced by the above procedure was subjected to an initial charge / discharge process at 25 ° C. Charging was performed at a constant current and a constant voltage with a current of 0.1 C and a voltage of 4.6 V, and the charge termination condition was when the current value was attenuated to 1/6.
  • the discharge was a constant current discharge with a current of 0.1 C and a final voltage of 2.0 V. This charge / discharge was performed for two cycles. Here, a pause process of 30 minutes was provided after charging and after discharging, respectively.
  • a plurality of non-aqueous electrolyte secondary battery electrodes according to Examples 1 to 8 and Comparative Examples 1 to 4 prepared above were cut into a size of 2 cm ⁇ 2 cm, respectively, and a flat plate press (manufactured by RIKEN SEIKI Co. LTD. CDM-20M TYPE P-1B), various post-pressing electrodes having different electrode plate thicknesses were produced by applying various pressing pressures from 1 MPa to 15 MPa.
  • the mixture density (g / cm 3 ) was calculated from the thickness and weight of each post-press electrode.
  • Each pressed electrode was dried under reduced pressure for 12 h under a temperature environment of 120 ° C., and after sufficiently removing the contained water, a line connecting each midpoint of two opposing sides of a 2 cm ⁇ 2 cm square was folded. As described above, nothing was sandwiched between the valleys, and it was folded by hand to make the other two opposite sides coincide. Furthermore, the crest portion of the fold that was curved and formed into a U-shape was pressed to bring the surfaces of the electrodes into contact with each other over the entire surface. Next, the sheet is spread again to the original flat shape, the electrode is directed toward the visible light source, the bent portion is visually observed, and the portion of the mixture layer is determined depending on whether visible light is observed through the bent portion. The presence or absence of damage was confirmed.
  • the electrode which has the smallest thickness among the electrodes by which damage was not recognized was determined, and the said mixture density (g / cm ⁇ 3 >) which concerns on the said electrode is the nonaqueous electrolyte secondary which concerns on the said Example or a comparative example It was defined as “limit mixture density (g / cm 3 )” of the battery electrode.
  • the discharge capacity per unit volume “0.1 C” is obtained by multiplying the value of the discharge capacity (mAh / g) by the value of the limit mixture density (g / cm 3 ).
  • the capacity (mAh / cm 3 ) ” was calculated.
  • Li / Me ratio of lithium transition metal composite oxides according to Examples 1 to 8 and Comparative Examples 1 to 4, firing temperature, FWHM (003) / FWHM (104), total pore volume, peak differential pore volume, Table 1 shows the 0.1 C capacity of a lithium secondary battery using a lithium transition metal composite oxide as a positive electrode active material and the tap density of the lithium transition metal composite oxide (active material).
  • Ni / Me ratio, Co / Me ratio, Mn / Me ratio of precursors according to Examples 1 to 16 and Comparative Examples 1 to 4 types of precursors, pH of the reaction tank, alkaline solution dropped into the reaction tank
  • Table 2 shows the concentrations of ammonia and hydrazine and the tap density of the precursor.
  • the lithium transition according to Examples 1 to 8 having a crystal structure in which FWHM (003) / FWHM (104)) is 0.6 or less and the total pore volume is 0.05 cm 3 / g or less. It can be seen that a lithium secondary battery using a metal composite oxide has a large 0.1 C capacity, which is a discharge capacity per volume. It can also be seen that the peak differential pore volume of the lithium transition metal composite oxide is preferably 0.2 mm 3 / (g ⁇ nm) or less.
  • such crystal structure and microstructure have a composition in which Li / Me is larger than 1 and Mn / Me is larger than 0.5, and the coprecipitation precursor is a hydroxide, It can be seen that the pH of the aqueous solution in the reaction vessel in the production process of the hydroxide precursor is less than 9.8, and the lithium transition metal composite oxide is obtained when calcined at a temperature of 750 to 900 ° C. When the pH of the aqueous solution in the reaction vessel is 9 to less than 9.8, the tap density of the hydroxide precursor is 1.3 g / cm 3 or more.
  • the concentration of ammonia (complexing agent) to be dropped is preferably 0.6 M or more.
  • the tap density of the hydroxide precursor can be 1.4 g / cm 3 or more at 0.6 to 1.6M.
  • the concentration of hydrazine (reducing agent) is preferably 0.1M or higher.
  • the tap density of the hydroxide precursor is 1.3 g / cm 3 or more. do not become.
  • the lithium transition metal composite oxide obtained by firing these hydroxide precursors has a FWHM (003) / FWHM (104) of 0.6 or less, but the total pore volume is 0.05 cm 3. / C and 0.1 C capacity per volume becomes small. Further, such a lithium transition metal composite oxide has a peak differential pore volume larger than 0.2 mm 3 / (g ⁇ nm).
  • Li / Me is larger than 1
  • Mn / Me is larger than 0.5
  • FWHM (003) / FWHM (104)) is 0.6 or less
  • the total pore volume is 0.00.
  • the discharge capacity per volume is increased by using a lithium transition metal composite oxide that satisfies the requirement of not more than 05 cm 3 / g as the positive electrode active material of the nonaqueous electrolyte secondary battery.
  • the pH of the aqueous solution in the reaction vessel in the hydroxide precursor preparation step is less than 9.8, and the lithium transition metal composite oxide is heated at a temperature of 750 to 900 ° C. Obtained when fired.
  • a nonaqueous electrolyte secondary battery having a large discharge capacity per volume can be provided.
  • the battery is useful as a nonaqueous electrolyte secondary battery for hybrid vehicles and electric vehicles.
  • Nonaqueous electrolyte secondary battery lithium secondary battery
  • Electrode group 3
  • Battery container 4 Positive electrode terminal 4 ′
  • Negative electrode lead 20 Power storage unit 30

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

[Problem] To provide: a positive electrode active material which has high discharge capacity per unit volume; a high-density hydroxide precursor for producing this positive electrode active material; an electrode for nonaqueous electrolyte secondary batteries, which uses this positive electrode active material; and a nonaqueous electrolyte secondary battery. [Solution] A positive electrode active material for nonaqueous electrolyte secondary batteries, which contains a lithium transition metal composite oxide, and wherein: the lithium transition metal composite oxide has an α-NaFeO2 type crystal structure; the molar ratio of Li to the transition metal (Me), namely, the molar ratio Li/Me is more than 1; the transition metal (Me) comprises Mn and Ni, or Mn, Ni and Co, and the molar ratio Mn/Me is more than 0.5; the lithium transition metal composite oxide has an X-ray diffraction pattern belonging to R3-m; the ratio of the half width of a diffraction peak of the (003) plane to the half width (FWHM(104)) of a diffraction peak of the (104) plane by the Miller indices hkl as obtained by X-ray diffraction measurement using a CuKα ray, namely, (FWHM(003)/FWHM(104)) is 0.6 or less; and the total pore volume as determined by a BJH method from the adsorption isotherm using a nitrogen gas adsorption method is 0.05 cm3/g or less.

Description

非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用電極、非水電解質二次電池及び蓄電装置Cathode active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery Electrode, non-aqueous electrolyte secondary battery and power storage device
 本発明は、非水電解質二次電池用正極活物質、その正極活物質に含まれるリチウム遷移金属複合体の製造に用いる遷移金属水酸化物前駆体、その遷移金属水酸化物前駆体の製造方法、その遷移金属前駆体を用いた正極活物質の製造方法、その正極活物質を含有する非水電解質二次電池用電極、非水電解質二次電池及び蓄電装置に関する。 The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a transition metal hydroxide precursor used for manufacturing a lithium transition metal composite contained in the positive electrode active material, and a method for manufacturing the transition metal hydroxide precursor The present invention also relates to a method for producing a positive electrode active material using the transition metal precursor, a nonaqueous electrolyte secondary battery electrode containing the positive electrode active material, a nonaqueous electrolyte secondary battery, and a power storage device.
 従来、リチウム二次電池に代表される非水電解質二次電池用の正極活物質として、α-NaFeO型結晶構造を有する「LiMeO型」活物質(Meは遷移金属)が検討され、LiCoOを用いた非水電解質二次電池が広く実用化されていた。しかし、LiCoOの放電容量は120~130mAh/g程度であった。前記Meとして、地球資源として豊富なMnを用いることが望まれてきた。しかし、MeとしてMnを含有させた「LiMeO型」活物質は、Me中のMnのモル比Mn/Meが0.5を超える場合には、充電をするとスピネル型へと構造変化が起こり、結晶構造が維持できないため、充放電サイクル性能が著しく劣るという問題があった。 Conventionally, as a positive electrode active material for a non-aqueous electrolyte secondary battery represented by a lithium secondary battery, a “LiMeO 2 type” active material (Me is a transition metal) having an α-NaFeO 2 type crystal structure has been studied, and LiCoO Non-aqueous electrolyte secondary batteries using 2 have been widely put into practical use. However, the discharge capacity of LiCoO 2 was about 120 to 130 mAh / g. As Me, it has been desired to use abundant Mn as a global resource. However, the “LiMeO 2 type” active material containing Mn as Me, when the molar ratio Mn / Mn in Me exceeds 0.5, the structural change occurs to the spinel type when charged, Since the crystal structure cannot be maintained, the charge / discharge cycle performance is remarkably inferior.
 そこで、Me中のMnのモル比Mn/Meが0.5以下であり、充放電サイクル性能の点でも優れる「LiMeO型」活物質が種々提案され、一部実用化されている。例えば、リチウム遷移金属複合酸化物であるLiNi1/2Mn1/2やLiNi1/3Co1/3Mn1/3を含有する正極活物質は150~180mAh/gの放電容量を有する。 Accordingly, various “LiMeO 2 type” active materials having a Mn molar ratio Mn / Me in Me of 0.5 or less and excellent in charge / discharge cycle performance have been proposed and partially put into practical use. For example, a positive electrode active material containing LiNi 1/2 Mn 1/2 O 2 or LiNi 1/3 Co 1/3 Mn 1/3 O 2 which is a lithium transition metal composite oxide has a discharge capacity of 150 to 180 mAh / g. Have
 一方、上記のようないわゆる「LiMeO型」活物質に対し、遷移金属(Me)の比率に対するリチウム(Li)の組成比率Li/Meが1より大きく、例えばLi/Meが1.2~1.6であり、組成式Li1+αMe1-α(α>0)で表されるリチウム遷移金属複合酸化物を含む、いわゆる「リチウム過剰型」活物質も知られている。上記のリチウム遷移金属複合酸化物を水酸化物前駆体から製造することも知られている(例えば、特許文献1~4参照)。 On the other hand, for the so-called “LiMeO 2 type” active material as described above, the composition ratio Li / Me of lithium (Li) with respect to the ratio of transition metal (Me) is larger than 1, for example, Li / Me is 1.2 to 1 A so-called “lithium-excess type” active material is also known, which includes a lithium transition metal composite oxide having a composition formula of Li 1 + α Me 1-α O 2 (α> 0). It is also known to produce the above lithium transition metal composite oxide from a hydroxide precursor (see, for example, Patent Documents 1 to 4).
 特許文献1には、「α-NaFeO型結晶構造を有し、組成式Li1+αMe1-α(MeはCo、Ni及びMnを含む遷移金属、α>0)で表されるリチウム遷移金属複合酸化物を含有するリチウム二次電池用正極活物質であって、・・・であることを特徴とするリチウム二次電池用正極活物質。」(請求項1)、「(1+α)/(1-α)で表される前記Meに対するLiのモル比Li/Meが1.25~1.5であることを特徴とする請求項1に記載のリチウム二次電池用正極活物質。」(請求項2)、「請求項1又は2に記載のリチウム二次電池用正極活物質の製造方法であって、前記リチウム遷移金属複合酸化物の合成にあたる前駆体は、Co、Ni及びMnを含む遷移金属の水酸化物であることを特徴とするリチウム二次電池用正極活物質の製造方法。」(請求項3)が記載されている。
 また、「溶液中でCo、Ni及びMnを含有する化合物を共沈させて前駆体を製造する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈水酸化物前駆体として作製しようとする場合には、10.5~14とすることができる。タップ密度を大きくするためには、pHを制御することが好ましい。pHを11.5以下とすることにより、タップ密度を1.00g/cm以上とすることができ、高率放電性能を向上させることができる。さらに、pHを11.0以下とすることにより、粒子成長速度を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。」(段落[0032])と記載されている。
Patent Document 1 discloses lithium having an α-NaFeO 2 type crystal structure and represented by a composition formula Li 1 + α Me 1-α O 2 (Me is a transition metal containing Co, Ni, and Mn, α> 0). A positive electrode active material for a lithium secondary battery containing a transition metal composite oxide, wherein the positive electrode active material for a lithium secondary battery is (1), ((1 + α)). The positive electrode active material for a lithium secondary battery according to claim 1, wherein the molar ratio Li / Me of Li to Me represented by / (1-α) is 1.25 to 1.5. (Claim 2), "The method for producing a positive electrode active material for a lithium secondary battery according to claim 1 or 2, wherein precursors for the synthesis of the lithium transition metal composite oxide are Co, Ni and Mn Lithium secondary, characterized by being a transition metal hydroxide containing The manufacturing method of the positive electrode active material for batteries "(Claim 3) is described.
Further, “the pH in the step of producing a precursor by coprecipitation of a compound containing Co, Ni and Mn in a solution is not limited, but the coprecipitation precursor is used as a coprecipitation hydroxide precursor. In the case of production, it can be set to 10.5 to 14. In order to increase the tap density, it is preferable to control the pH, and by setting the pH to 11.5 or less, the tap density can be reduced. 1.00 g / cm 3 or more can improve the high rate discharge performance, and further, by adjusting the pH to 11.0 or less, the particle growth rate can be accelerated, so It is possible to shorten the stirring time of “(paragraph [0032])”.
 特許文献2には、「請求項1又は2に記載のリチウム二次電池用活物質の製造方法であって、溶液中でCo、Ni及びMnを含む遷移金属元素Meの化合物を共沈させて遷移金属水酸化物の共沈前駆体を得る工程、前記共沈前駆体を乾燥する工程、及び、前記共沈前駆体とリチウム化合物とを、前記リチウム遷移金属複合酸化物の遷移金属元素Meに対するLiのモル比が1<(1+α)/(1-α)≦1.5となるように混合し、700~800℃で焼成する工程を含むことを特徴とするリチウム二次電池用活物質の製造方法。」(請求項3)が記載されている。
 また、「溶液中でCo、Ni及びMnを含有する化合物を共沈させて前駆体を製造する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈水酸化物前駆体として作製しようとする場合には、10~14とすることができ、前記共沈前駆体を共沈炭酸塩前駆体として作製しようとする場合には、7.5~11とすることができる。タップ密度を大きくするためには、pHを制御することが好ましい。共沈炭酸塩前駆体については、pHを9.4以下とすることにより、タップ密度を1.25g/cc以上とすることができ、高率放電性能を向上させることができる。」(段落[0035])と記載されている。
Patent Document 2 discloses that “a method for producing an active material for a lithium secondary battery according to claim 1 or 2, wherein a compound of a transition metal element Me containing Co, Ni, and Mn is coprecipitated in a solution. A step of obtaining a coprecipitation precursor of a transition metal hydroxide, a step of drying the coprecipitation precursor, and the coprecipitation precursor and a lithium compound with respect to the transition metal element Me of the lithium transition metal composite oxide An active material for a lithium secondary battery comprising a step of mixing so that a molar ratio of Li is 1 <(1 + α) / (1-α) ≦ 1.5 and firing at 700 to 800 ° C. Manufacturing method "(Claim 3) is described.
Further, “the pH in the step of producing a precursor by coprecipitation of a compound containing Co, Ni and Mn in a solution is not limited, but the coprecipitation precursor is used as a coprecipitation hydroxide precursor. If it is to be produced, it can be 10-14, and if it is intended to produce the coprecipitated precursor as a coprecipitated carbonate precursor, it can be 7.5-11. In order to increase the density, it is preferable to control the pH, and for the coprecipitated carbonate precursor, the tap density can be increased to 1.25 g / cc or higher by setting the pH to 9.4 or lower. The high-rate discharge performance can be improved "(paragraph [0035]).
 特許文献3には、「LiNiCoMn(ただし、xは1.1~1.7であり、aは、0.15~0.5であり、bは、0~0.33であり、cは、0.33~0.85であり、Mは、Li、Ni、CoおよびMn以外の他の金属元素であり、dは、0~0.05であり、a+b+c+d=1であり、yは、Li、Ni、Co、MnおよびMの原子価を満足するのに必要な酸素(O)のモル数である。)で表される化合物であり、
 X線回折パターンにおける、空間群R-3mの結晶構造に帰属する(003)面のピークの積分強度(I003)に対する、空間群C2/mの結晶構造に帰属する(020)面のピークの積分強度(I020)の比(I020/I003)が0.02~0.3であり、かつ
 タップ密度が1.8~2.5g/cmであるリチウム含有複合酸化物を製造する際に、
 NiおよびMnを必須として含み、CoおよびMを任意として含み、比表面積が20~50m/gである水酸化物と、リチウム化合物とを混合し、得られた混合物を焼成し、得られた焼成物を解砕する、リチウム含有複合酸化物の製造方法。」(請求項1)が記載されている。
Patent Document 3 discloses that “Li x Ni a Co b Mn c M d O y (where x is 1.1 to 1.7, a is 0.15 to 0.5, and b is 0 to 0.33, c is 0.33 to 0.85, M is a metal element other than Li, Ni, Co, and Mn, and d is 0 to 0.05 , A + b + c + d = 1, and y is the number of moles of oxygen (O) required to satisfy the valences of Li, Ni, Co, Mn, and M.)
In the X-ray diffraction pattern, the peak of the (020) plane attributed to the crystal structure of the space group C2 / m with respect to the integrated intensity (I 003 ) of the peak of the (003) plane attributed to the crystal structure of the space group R-3m A lithium-containing composite oxide having an integral intensity (I 020 ) ratio (I 020 / I 003 ) of 0.02 to 0.3 and a tap density of 1.8 to 2.5 g / cm 3 is produced. When
A hydroxide containing Ni and Mn as essential components, Co and M optionally including a specific surface area of 20 to 50 m 2 / g, and a lithium compound were mixed, and the resulting mixture was fired. A method for producing a lithium-containing composite oxide, wherein the fired product is crushed. (Claim 1).
 また、特許文献3には、「(例1)・・・錯化剤として、硫酸アンモニウムを、濃度が1.5mol/kgとなるように蒸留水に溶解して硫酸アンモニウム水溶液を得た。」(段落[0088])、「2Lのバッフル付きガラス製反応槽に蒸留水を入れてマントルヒータで50℃に加熱した。反応槽内の溶液をパドル型の撹拌翼で撹拌しながら、硫酸塩水溶液を5.0g/分、硫酸アンモニウム水溶液を0.5g/分の速度で28時間添加し、かつ混合液のpHを10.5に保つようにpH調整液を添加して、NiおよびMnを含む水酸化物(共沈物)を析出させた。原料溶液を添加している間、反応槽内に窒素ガスを流量1.0L/分で流した。また、反応槽内の液量が2Lを超えないようにろ布を用いて連続的に水酸化物を含まない液の抜き出しを行った。得られた水酸化物から不純物イオンを取り除くため、加圧ろ過と蒸留水への分散を繰り返し、洗浄を行った。ろ液の電気伝導度が20mS/mとなった時点で洗浄を終了し、水酸化物を120℃で15時間乾燥させた。」(段落[0089])、「(例3)・・・硫酸アンモニウム水溶液の代わりにアンモニア水溶液を用いた以外は、例1と同様にして水酸化物を得た。」(段落[0093])と記載されている。
 そして、表2には、例3として、Ni:30.0mol%、Mn:70.0mol%、錯化剤:アンモニア、D50:6.7μm、タップ密度:1.41g/cm、比表面積:18.0m/gの水酸化物が示され(段落[0103]参照)、「例3は、水酸化物のタップ密度を高くすることによって、解砕することとなくタップ密度の高いリチウム含有複合酸化物を得ている例である。しかし、リチウム含有複合酸化物の比表面積が小さいため、正極活物質の単位質量あたりのリチウム二次電池の放電容量が低く、その結果、正極活物質の単位体積あたりのリチウム二次電池の放電容量も低い。」(段落[0106])と記載されている。
Patent Document 3 discloses that “(Example 1)... As a complexing agent, ammonium sulfate was dissolved in distilled water so as to have a concentration of 1.5 mol / kg” to obtain an aqueous ammonium sulfate solution (paragraph). [0088]), “Distilled water was put into a 2 L baffled glass reaction vessel and heated with a mantle heater to 50 ° C. While stirring the solution in the reaction vessel with a paddle type stirring blade, Hydroxides containing Ni and Mn by adding 0.0 g / min, ammonium sulfate aqueous solution at a rate of 0.5 g / min for 28 hours, and adding a pH adjusting solution so as to keep the pH of the mixed solution at 10.5 Nitrogen gas was allowed to flow into the reaction vessel at a flow rate of 1.0 L / min while the raw material solution was added, and the amount of liquid in the reaction vessel was not allowed to exceed 2 L. Use a non-woven cloth to continuously remove hydroxide. In order to remove impurity ions from the obtained hydroxide, washing was repeated by repeated pressure filtration and dispersion in distilled water, when the electrical conductivity of the filtrate reached 20 mS / m. The hydroxide was dried at 120 ° C. for 15 hours. ”(Paragraph [0089]),“ (Example 3)... Example 1 except that an aqueous ammonia solution was used instead of the aqueous ammonium sulfate solution. In the same manner, a hydroxide was obtained ”(paragraph [0093]).
In Table 2, as Example 3, Ni: 30.0 mol%, Mn: 70.0 mol%, complexing agent: ammonia, D 50 : 6.7 μm, tap density: 1.41 g / cm 3 , specific surface area : 18.0 m 2 / g hydroxide is shown (see paragraph [0103]), “Example 3 is a lithium with a high tap density without crushing by increasing the tap density of the hydroxide. However, since the specific surface area of the lithium-containing composite oxide is small, the discharge capacity of the lithium secondary battery per unit mass of the positive electrode active material is low, and as a result, the positive electrode active material The discharge capacity of the lithium secondary battery per unit volume is also low ”(paragraph [0106]).
 また、X線回折測定による(003)面と(104)面の回折ピークの半値幅を規定したリチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質が公知である(例えば、特許文献4~6参照)。 Further, a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide that defines the half-value width of diffraction peaks on the (003) plane and the (104) plane by X-ray diffraction measurement is known (for example, And Patent Documents 4 to 6).
 特許文献4には、「集電体と、前記集電体に保持された活物質粒子を含む活物質層とを備え、前記活物質粒子は、リチウム遷移金属酸化物の一次粒子が複数集合した二次粒子であって、該二次粒子の内側に形成された中空部と、該中空部を囲む殻部とを有する中空構造を構成しており、前記二次粒子には、外部から前記中空部まで貫通する貫通孔が形成されており、ここで前記活物質粒子の粉末X線回折パターンにおいて、(003)面により得られる回折ピークの半値幅Aと、(104)面により得られる回折ピークの半値幅Bとの比(A/B)が次式:(A/B)≦0.7を満たす、リチウム二次電池。」(請求項1)、「前記リチウム遷移金属酸化物は、以下の一般式:
  Li1+xNiCoMn(1-y-z)αβ2
(式(1)中のx,y,z,αおよびβは、0≦x≦0.2、0.1<y<0.9、0.1<z<0.4、0.0005≦α≦0.01、0≦β≦0.01を全て満足する実数であり、Mは、存在しないか或いはZr、Mg、Ca、Na、Fe、Cr、Zn、Si、Sn、Al、BおよびFから成る群から選択される1種又は2種以上の元素である。)
で示される層状結晶構造の化合物である、請求項1・・・に記載のリチウム二次電池。」(請求項6)が記載されている。
 そして、段落[0073]~[0082]には、Ni:Co:Mnのモル比が0.33:0.33:0.33の原料100モル%に対してW添加量が0.5モル%になるように調節して得られた複合水酸化物粒子と、炭酸リチウムとを、Li/Meが約1.15となるように混合して焼成することにより、リチウム遷移金属複合酸化物よりなる中空構造又は中実構造を備える活物質粒子を製造したことが記載されている。
Patent Document 4 discloses that “a current collector and an active material layer including active material particles held by the current collector are provided, and the active material particles are a collection of a plurality of primary particles of a lithium transition metal oxide. The secondary particle has a hollow structure having a hollow part formed inside the secondary particle and a shell part surrounding the hollow part, and the secondary particle includes the hollow part from the outside. In the powder X-ray diffraction pattern of the active material particles, the half-value width A of the diffraction peak obtained by the (003) plane and the diffraction peak obtained by the (104) plane (A / B) satisfying the following formula: (A / B) ≦ 0.7 ”(Claim 1),“ The lithium transition metal oxide is: General formula of:
Li 1 + x Ni y Co z Mn (1-yz) W α M β O 2
(X, y, z, α and β in the formula (1) are 0 ≦ x ≦ 0.2, 0.1 <y <0.9, 0.1 <z <0.4, 0.0005 ≦ It is a real number that satisfies all α ≦ 0.01 and 0 ≦ β ≦ 0.01, and M is absent or Zr, Mg, Ca, Na, Fe, Cr, Zn, Si, Sn, Al, B and One or more elements selected from the group consisting of F.)
The lithium secondary battery according to claim 1, which is a compound having a layered crystal structure represented by: (Claim 6).
In paragraphs [0073] to [0082], the W addition amount is 0.5 mol% with respect to 100 mol% of the raw material having a Ni: Co: Mn molar ratio of 0.33: 0.33: 0.33. The composite hydroxide particles obtained by adjusting so as to become lithium carbonate and lithium carbonate are mixed and fired so that Li / Me is about 1.15, thereby comprising a lithium transition metal composite oxide. It describes that an active material particle having a hollow structure or a solid structure was produced.
 特許文献5には、「層状構造を有し、下記式(1)で表される組成を有し、粉末X線回折図における(003)面の半値幅FWHM003と(104)面の半値幅FWHM104との比が下記式(2)で表され、かつ、平均一次粒子径が0.2μm~0.5μmであることを特徴とする活物質。
 LiNiCoMn   ・・・(1)
[上記式(1)中、元素MはAl,Si,Zr,Ti,Fe,Mg,Nb,Ba及びVからなる群から選ばれる少なくとも1種の元素であり、1.9≦(a+b+c+d+y)≦2.1、1.0<y≦1.3、0<a≦0.3、0<b≦0.25、0.3≦c≦0.7、0≦d≦0.1、1.9≦x≦2.1である。]
 FWHM003/FWHM104≦0.57   ・・・(2)」(請求項1)が記載されている。
 そして、実施例においては、酢酸リチウム二水和物、酢酸コバルト四水和物、酢酸マンガン四水和物、酢酸ニッケル四水和物等の原料混合物の水溶液にクエン酸を添加して反応させ、前駆体を得た後、この前駆体を焼成して、Li1.2Ni0.17Co0.07Mn0.56等のリチウム化合物(活物質)を得ることが示されている(段落[0050]、[0051]、[0062]参照)。
In Patent Document 5, “Having a layered structure and having a composition represented by the following formula (1), the half-value width FWHM 003 of the (003) plane and the half-value width of the (104) plane in the powder X-ray diffraction diagram. An active material characterized in that the ratio to FWHM 104 is represented by the following formula (2), and the average primary particle diameter is 0.2 μm to 0.5 μm.
Li y Ni a Co b Mn c M d O x ··· (1)
[In the above formula (1), the element M is at least one element selected from the group consisting of Al, Si, Zr, Ti, Fe, Mg, Nb, Ba and V, and 1.9 ≦ (a + b + c + d + y) ≦ 2.1, 1.0 <y ≦ 1.3, 0 <a ≦ 0.3, 0 <b ≦ 0.25, 0.3 ≦ c ≦ 0.7, 0 ≦ d ≦ 0.1, 9 ≦ x ≦ 2.1. ]
FWHM 003 / FWHM 104 ≦ 0.57 (2) ”(Claim 1).
In the examples, citric acid was added to an aqueous solution of a raw material mixture such as lithium acetate dihydrate, cobalt acetate tetrahydrate, manganese acetate tetrahydrate, nickel acetate tetrahydrate, etc., and reacted. After obtaining the precursor, it is shown that this precursor is fired to obtain a lithium compound (active material) such as Li 1.2 Ni 0.17 Co 0.07 Mn 0.56 O 2 ( Paragraphs [0050], [0051], [0062]).
 特許文献6には、「α-NaFeO型結晶構造を有するナトリウム含有リチウム遷移金属複合酸化物の固溶体を含むリチウム二次電池用活物質であって、前記固溶体の化学組成式が、Li1+x-yNaCoNiMn2+d(0<y≦0.1、0.4≦c≦0.7、x+a+b+c=1、0.1≦x≦0.25、-0.2≦d≦0.2)を満たし、かつ、六方晶(空間群P312)に帰属可能なX線回折パターンを有し、ミラー指数hklにおける(003)面の回折ピークの半値幅が0.30°以下であり、かつ、(114)面の回折ピークの半値幅が0.50°以下であることを特徴とするリチウム二次電池用活物質。」(請求項1)が記載されている。
 また、段落[0052]には、「結晶化の度合いを示すものとして先に述べたX線回折ピークの半値幅がある。本発明において、低温特性を改善するためには、空間群P312に帰属されるX線回折パターンにおいて(003)面の回折ピークの半値幅を0.30゜以下とし、かつ、(114)面の回折ピークの半値幅を0.50゜以下とすることが必要である。(003)面の回折ピークの半値幅は0.17°~0.30゜が好ましく、(114)面の回折ピークの半値幅は0.35°~0.50゜が好ましい。」と記載されている。
 そして、実施例1~31には、遷移金属の共沈水酸化物前駆体と、水酸化リチウム1水和物と、炭酸ナトリウムを種々の組成となるように混合し、1000℃で焼成した活物質について結晶構造解析を行ったところ、(003)面の回折ピークの半値幅が「0.19~0.21°」、(114)面の回折ピークの半値幅が「0.39~0.41°」であったことが示されている(段落[0074]~[0078]、[0102]表1参照)。
Patent Document 6 discloses an active material for a lithium secondary battery including a solid solution of a sodium-containing lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure, wherein the chemical composition formula of the solid solution is Li 1 + x− y Na y Co a Ni b Mn c O 2 + d (0 <y ≦ 0.1, 0.4 ≦ c ≦ 0.7, x + a + b + c = 1, 0.1 ≦ x ≦ 0.25, −0.2 ≦ d ≦ 0.2) and an X-ray diffraction pattern that can be assigned to a hexagonal crystal (space group P3 1 12), and the half width of the diffraction peak on the (003) plane at the Miller index hkl is 0.30 °. The active material for a lithium secondary battery is characterized in that the half-width of the diffraction peak of the (114) plane is 0.50 ° or less ”(Claim 1).
In addition, paragraph [0052] has “half-value width of the X-ray diffraction peak described above as indicating the degree of crystallization. In the present invention, in order to improve the low temperature characteristics, the space group P3 1 12 In the X-ray diffraction pattern attributed to (3), it is necessary that the half width of the (003) plane diffraction peak is 0.30 ° or less and the half width of the (114) plane diffraction peak is 0.50 ° or less. The half-value width of the (003) plane diffraction peak is preferably 0.17 ° to 0.30 °, and the half-value width of the (114) plane diffraction peak is preferably 0.35 ° to 0.50 °. It is described.
In Examples 1 to 31, an active material obtained by mixing a coprecipitated hydroxide precursor of a transition metal, lithium hydroxide monohydrate, and sodium carbonate so as to have various compositions and firing at 1000 ° C. As a result of the crystal structure analysis, the half-value width of the (003) plane diffraction peak was “0.19 to 0.21 °” and the half-value width of the (114) plane diffraction peak was “0.39 to 0.41”. (See paragraphs [0074] to [0078], [0102] Table 1).
 また、細孔容積を規定したリチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質も公知である(例えば、特許文献7~9参照)。 Also, a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide having a defined pore volume is known (see, for example, Patent Documents 7 to 9).
 特許文献7には、「Co、Ni、Mn の群から選ばれる1種以上の元素とリチウムとを主成分とするリチウム複合酸化物からなる多孔質の粒子であって、水銀圧入法による細孔分布測定での細孔平均径が0.1~1μmの範囲内であり、0.01~ 1μmの径をもつ細孔の容積の合計が0.01cm3/g以上である粒子からなることを特徴とする非水系二次電池用正極活物質。」(請求項1)が記載されている。 Patent Document 7 states that “porous particles made of a lithium composite oxide mainly composed of one or more elements selected from the group consisting of Co, Ni, and Mn and lithium, and having pores formed by mercury porosimetry. Non-aqueous system comprising particles having an average pore diameter in the range of 0.1 to 1 μm in distribution measurement and a total volume of pores having a diameter of 0.01 to 1 μm of 0.01 cm 3 / g or more The positive electrode active material for secondary batteries "(Claim 1) is described.
 また、特許文献7には、「[実施例1]水酸化リチウム、水酸化ニッケル、水酸化コバルトを各金属のモル比が105:90:10の割合で、ボールミルで混合粉砕し、得られた混合粉末を1ton/cm2の圧力下で加圧成形し、この成型体を焼成用原料とした。この原料を770℃で10時間、空気気流中で焼成(仮焼)した。・・・この造粒粉を、800℃で2時間、酸素気流中で焼成(本焼成)し、臼式解砕機で解粒した後、スクリーン分級機で整粒した。このようにして得られたリチウム複合酸化物は、細孔平均径0.363μm、0.01~1μmの径をもつ細孔の合計容積が8.4×10-2cm3/gである多孔質の球状二次粒子であった。」(段落[0026])、「実施例1に対し、仮焼温度を650℃に条件を変更して行った。実施例1に比べ仮焼温度を下げることで一次粒子の結晶性を低下させ、一次粒子間の焼結を促進させ、細孔容積をコントロールした。このようにして得られたリチウム複合酸化物は、細孔平均径0.137μm、0.01~1μmの径をもつ細孔の合計容積が1.8×10-2cm3/gである多孔質の球状二次粒子であった。」と記載されている。 Patent Document 7 states that “[Example 1] obtained by mixing and pulverizing lithium hydroxide, nickel hydroxide, and cobalt hydroxide in a ball mill at a molar ratio of each metal of 105: 90: 10. The mixed powder was pressure-molded under a pressure of 1 ton / cm 2 , and this molded body was used as a raw material for firing, which was fired (calcined) in an air stream at 770 ° C. for 10 hours. The granulated powder was fired at 800 ° C. for 2 hours in an oxygen stream (main firing), pulverized with a mortar-type pulverizer, and then sized with a screen classifier. The product was porous spherical secondary particles having a pore average diameter of 0.363 μm and a total volume of pores having a diameter of 0.01 to 1 μm and a total volume of 8.4 × 10 −2 cm 3 / g ”(paragraph [0026]. ] ”,“ The calcination temperature was changed to 650 ° C. with respect to Example 1. Compared to Example 1, the calcination temperature was lowered to lower the crystallinity of the primary particles. Sintering between primary particles was promoted and the pore volume was controlled.The lithium composite oxide thus obtained had a pore average diameter of 0.137 μm and a total volume of pores having a diameter of 0.01 to 1 μm. Was a porous spherical secondary particle having a density of 1.8 × 10 −2 cm 3 / g ”.
 特許文献8には、「(実施例1)・・・硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.33:0.33:0.33となるように混合して、混合原料液を調整した。・・・次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、反応槽内の溶液のpHが11.7になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得た。得られた粒子を、濾過後水洗し、100℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物の乾燥粉末を得た。・・・以上のようにして得られたニッケルコバルトマンガン複合水酸化物の乾燥粉末と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.07となるように秤量して混合した後、大気雰囲気下950℃で10時間焼成して、目的の正極活物質1すなわちリチウム-ニッケルコバルトマンガン複合酸化物を得た。」(段落[0141]~[0144])と記載されている。また、「得られた正極活物質1の組成分析を行ったところ、Li:Ni:Co:Mnのモル比は、1.02:0.34:0.33:0.33であった。」(段落[0145])、「正極活物質1の細孔分布測定結果(図2)から、65nmにピークを有し、10nmから200nmの範囲での細孔容積は0.012cm/gであった。」(段落[0148])と記載されている。 Patent Document 8 states that “(Example 1)... Nickel sulfate aqueous solution, cobalt sulfate aqueous solution and manganese sulfate aqueous solution has an atomic ratio of nickel atom, cobalt atom and manganese atom of 0.33: 0.33: The mixed raw material solution was adjusted by mixing to 0.33 .... Next, the mixed raw material solution and the aqueous ammonium sulfate solution were continuously added as a complexing agent to the reaction vessel with stirring. A sodium hydroxide aqueous solution was added dropwise as needed so that the pH of the solution in the reaction vessel was 11.7 to obtain nickel cobalt manganese composite hydroxide particles, which were filtered, washed with water, and dried at 100 ° C. In this way, a dry powder of nickel cobalt manganese composite hydroxide was obtained .... The dry powder of nickel cobalt manganese composite hydroxide obtained as described above and lithium carbonate powder were mixed with Li. It was weighed and mixed so that (Ni + Co + Mn) = 1.07, and then fired at 950 ° C. for 10 hours in an air atmosphere to obtain the target positive electrode active material 1, that is, lithium-nickel cobalt manganese composite oxide. (Paragraphs [0141] to [0144]). Further, “A composition analysis of the obtained positive electrode active material 1 was performed, and the molar ratio of Li: Ni: Co: Mn was 1.02: 0.34: 0.33: 0.33.” (Paragraph [0145]), “From the pore distribution measurement result of the positive electrode active material 1 (FIG. 2), the peak volume is 65 nm, and the pore volume in the range of 10 nm to 200 nm is 0.012 cm 3 / g. (Paragraph [0148]).
 さらに、特許文献8には、正極活物質2は、Li:Ni:Co:Mnのモル比が1.10:0.34:0.33:0.33であり(段落[0151])、細孔容積が0.030cm/gであったこと(段落[0154])が記載され、正極活物質3は、Li:Ni:Co:Mnのモル比が1.05:0.34:0.33:0.33であり(段落[0156])、細孔容積が0.034cm/gであったこと(段落[0159])が記載され、正極活物質4は、Li:Ni:Co:Mnのモル比が1.08:0.33:0.33:0.34であり(段落[0163])、細孔容積が0.025cm/gであったこと(段落[0166])が記載され、正極活物質5は、Li:Ni:Co:Mnのモル比が1.09:0.33:0.34:0.33であり(段落[0170])、細孔容積が0.030cm/gであったこと(段落[0173])が記載されている。 Furthermore, Patent Document 8 discloses that the positive electrode active material 2 has a Li: Ni: Co: Mn molar ratio of 1.10: 0.34: 0.33: 0.33 (paragraph [0151]). It was described that the pore volume was 0.030 cm 3 / g (paragraph [0154]), and the positive electrode active material 3 had a molar ratio of Li: Ni: Co: Mn of 1.05: 0.34: 0. 33: 0.33 (paragraph [0156]) and the pore volume was 0.034 cm 3 / g (paragraph [0159]), and the positive electrode active material 4 was Li: Ni: Co: The molar ratio of Mn was 1.08: 0.33: 0.33: 0.34 (paragraph [0163]), and the pore volume was 0.025 cm 3 / g (paragraph [0166]). The positive electrode active material 5 has a molar ratio of Li: Ni: Co: Mn of 1.09: 0.33: 0.3. : 0.33 (paragraph [0170]), it pore volume was 0.030 cm 3 / g (paragraph [0173]) have been described.
 特許文献9には、「正極活物質1及び正極活物質2として、以下の化学式のリチウム含有遷移金属酸化物を、複合炭酸塩法を用いて合成した。出発物質にはニッケル、コバルト、マンガンの硫酸塩を使用し、2mol/Lのニッケル硫酸塩水溶液、コバルト硫酸塩水溶液及びマンガン硫酸塩水溶液を調製した。沈殿剤には2mol/Lの炭酸ナトリウム水溶液を使用し、pH調整剤には0.2mol/Lのアンモニア水溶液を用いた。」(段落[0231])と記載されている。また、「<正極活物質1の組成及び物性> 化学式:Li1.5[Ni0.2Co0.2Mn0.8[Li]0.3]O(a+b+c+d=1.5、d=0.3、a+b+c=1.2) 細孔容積:0.008cm/g・・・」(段落[0234])、「<正極活物質2の組成及び物性> 化学式:Li1.5[Ni0.2Co0.2Mn0.8[Li]0.3]O(a+b+c+d=1.5、d=0.3、a+b+c=1.2) 細孔容積:0.024cm/g」(段落[0235])と記載されている。 Patent Document 9 states that “as the positive electrode active material 1 and the positive electrode active material 2, lithium-containing transition metal oxides having the following chemical formulas were synthesized using a composite carbonate method. The starting materials include nickel, cobalt, and manganese. Using a sulfate, a 2 mol / L nickel sulfate aqueous solution, a cobalt sulfate aqueous solution and a manganese sulfate aqueous solution were prepared, a 2 mol / L sodium carbonate aqueous solution was used as a precipitating agent, and a pH adjusting agent was adjusted to a concentration of 0.8. A 2 mol / L aqueous ammonia solution was used "(paragraph [0231]). Further, “<Composition and physical properties of positive electrode active material 1> Chemical formula: Li 1.5 [Ni 0.2 Co 0.2 Mn 0.8 [Li] 0.3 ] O 3 (a + b + c + d = 1.5, d = 0.3, a + b + c = 1.2) Pore volume: 0.008 cm 3 / g... (Paragraph [0234]), “<Composition and physical properties of positive electrode active material 2> Chemical formula: Li 1.5 [Ni 0.2 Co 0.2 Mn 0.8 [Li] 0.3 ] O 3 (a + b + c + d = 1.5, d = 0.3, a + b + c = 1.2) Pore volume: 0.024 cm 3 / g ” (Paragraph [0235]).
 さらに、特許文献9には、「正極活物質3は、リチウム、ニッケル、コバルト及びマンガンが以下に示す化学式の割合となるように、炭酸リチウム、ニッケル硫酸塩水溶液、コバルト硫酸塩水溶液及びマンガン硫酸塩水溶液を混合した以外は、正極活物質1と同様に調製した。」(段落[0248])、「<正極活物質3の組成及び物性> 化学式:Li1.5[Ni0.25Co0.25Mn0.73[Li]0.27]O(a+b+c+d=1.5、d=0.27、a+b+c=1.23) 細孔容積:0.007cm/g」(段落[0249])と記載され、「正極活物質4も、リチウム、ニッケル及びマンガンが以下に示す化学式の割合となるように、炭酸リチウム、ニッケル硫酸塩水溶液及びマンガン硫酸塩水溶液を混合した以外は、正極活物質1と同様に調製した。」(段落[0250])、「<正極活物質4の組成及び物性> 化学式:Li1.5[Ni0.46Mn0.86[Li]0.18]O(a+b+c+d=1.5、d=0.18、a+b+c=1.32) 細孔容積:0.015cm/g」(段落[0251])と記載されている。 Further, Patent Document 9 states that “the positive electrode active material 3 is composed of lithium carbonate, nickel sulfate aqueous solution, cobalt sulfate aqueous solution, and manganese sulfate so that lithium, nickel, cobalt, and manganese have the following chemical formula ratios. It was prepared in the same manner as the positive electrode active material 1 except that the aqueous solution was mixed. "(Paragraph [0248]),"<Composition and physical properties of the positive electrode active material 3> Chemical formula: Li 1.5 [Ni 0.25 Co 0. 25 Mn 0.73 [Li] 0.27 ] O 3 (a + b + c + d = 1.5, d = 0.27, a + b + c = 1.23) Pore volume: 0.007 cm 3 / g ”(paragraph [0249]) “The positive electrode active material 4 is also mixed with lithium carbonate, nickel sulfate aqueous solution, and manganese sulfate aqueous solution so that lithium, nickel, and manganese have the following chemical formula ratios. Except for the above, it was prepared in the same manner as the positive electrode active material 1 ”(paragraph [0250]),“ <Composition and physical properties of the positive electrode active material 4> Chemical formula: Li 1.5 [Ni 0.46 Mn 0.86 [ Li] 0.18 ] O 3 (a + b + c + d = 1.5, d = 0.18, a + b + c = 1.32) pore volume: 0.015 cm 3 / g ”(paragraph [0251]).
特開2014-29828号公報JP 2014-29828 A 特開2014-63707号公報JP 2014-63707 A 特開2016-17017号公報Japanese Unexamined Patent Publication No. 2016-17017 特開2013-51172号公報JP 2013-51172 A 特開2013-206552号公報JP 2013-206552 A WO2012/039413WO2012 / 039413 特開2000-323142号公報JP 2000-323142 A 特開2015-118945号公報JP2015-118945A 特開2013-179044号公報JP 2013-179044 A
 上記のいわゆる「リチウム過剰型」活物質の放電容量は、特許文献1~9に記載されるように、概して、いわゆる「LiMeO型」活物質よりも大きい。
 また、「リチウム過剰型」正極活物質の前駆体として、上記のように、水酸化物前駆体と、炭酸塩前駆体が知られている。
 炭酸塩前駆体を用い、特定の遷移金属組成、特定のLi/Me比および特定の焼成温度で焼成することによって、活物質の一次粒子が微細となり、質量あたりの放電容量が高い正極活物質を得ることができる。しかしながら、二次粒子内に多くの細孔を有するために、体積あたりの放電容量が小さいという課題があった。
 そこで、本発明は、「リチウム過剰型」正極活物質の前駆体として、水酸化物前駆体を用いることにより、上記課題を解決しようとするものである。
 しかしながら、水酸化物前駆体の高密度化は、 Mn/Me比率が高いことに由来して、非常に困難である。これは、Ni(OH)やCo(OH)の一次粒子の結晶形態は粒状であるのに対し、Mn(OH)の一次粒子の結晶形態は薄片状であるという特徴と関連する。
The discharge capacity of the so-called “lithium-rich” active material is generally larger than that of the so-called “LiMeO 2 type” active material, as described in Patent Documents 1-9.
Further, as described above, hydroxide precursors and carbonate precursors are known as precursors of “lithium-rich” positive electrode active materials.
By using a carbonate precursor and firing at a specific transition metal composition, a specific Li / Me ratio and a specific firing temperature, the primary particles of the active material become finer, and a positive electrode active material having a high discharge capacity per mass is obtained. Obtainable. However, since there are many pores in the secondary particles, there is a problem that the discharge capacity per volume is small.
Therefore, the present invention seeks to solve the above problems by using a hydroxide precursor as a precursor of a “lithium-rich” positive electrode active material.
However, it is very difficult to increase the density of the hydroxide precursor due to the high Mn / Me ratio. This is related to the feature that the primary particles of Ni (OH) 2 and Co (OH) 2 are granular, whereas the primary particles of Mn (OH) 2 are flaky.
 特許文献1~3に記載されているように、水酸化物前駆体は、通常、遷移金属化合物の水溶液から共沈させる際のpHを10~14とする方法により製造されていた。
 特許文献2に記載されているように、炭酸塩前駆体については、遷移金属化合物の水溶液から共沈させる際のpHを9.4以下とする方法により、タップ密度を1.25g/cm以上にできることが知られているが、水酸化物前駆体については、合成のpHを下げると、正極活物質の高率放電性能が低下する傾向があるため、pHを上記のように下げて、タップ密度を高くすることは行われていなかった。そのため、正極活物質の体積当たりの放電容量を高くすることは難しかった。
As described in Patent Documents 1 to 3, the hydroxide precursor has been usually produced by a method of adjusting the pH to 10 to 14 when coprecipitating from an aqueous solution of a transition metal compound.
As described in Patent Document 2, with respect to the carbonate precursor, the tap density is 1.25 g / cm 3 or more by a method in which the pH when coprecipitating from the aqueous solution of the transition metal compound is 9.4 or less. As for the hydroxide precursor, if the synthesis pH is lowered, the high rate discharge performance of the positive electrode active material tends to be lowered. It was not done to increase the density. Therefore, it is difficult to increase the discharge capacity per volume of the positive electrode active material.
 特許文献4~6には、(003)面と(104)面の回折ピークの半値幅を規定したリチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質が記載されているが、正極活物質の体積当たりの放電容量を高くすることは示されていない。
 特許文献7~9には、細孔容積を規定したリチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質が記載されているが、正極活物質の体積当たりの放電容量を高くすることは示されていない。
Patent Documents 4 to 6 describe a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide that defines a half-value width of diffraction peaks on the (003) plane and the (104) plane. However, it has not been shown to increase the discharge capacity per volume of the positive electrode active material.
Patent Documents 7 to 9 describe a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide having a defined pore volume. The discharge capacity per volume of the positive electrode active material is described as follows. It is not shown to be high.
 本発明は、体積当たりの放電容量が大きい正極活物質、その正極活物質を製造するための高密度な水酸化物前駆体、その正極活物質を用いた非水電解質二次電池用電極、及び非水電解質二次電池を提供することを課題とする。 The present invention relates to a positive electrode active material having a large discharge capacity per volume, a high-density hydroxide precursor for producing the positive electrode active material, a nonaqueous electrolyte secondary battery electrode using the positive electrode active material, and It is an object to provide a non-aqueous electrolyte secondary battery.
 上記課題を解決するために、本発明の一側面は、「リチウム遷移金属複合酸化物を含む非水電解質電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有し、前記リチウム遷移金属複合酸化物を構成するLiと遷移金属(Me)のモル比(Li/Me)が1より大きく、前記遷移金属(Me)がMn及びNi、又はMn、Ni及びCoを含み、前記遷移金属(Me)中のMnのモル比Mn/Meが0.5より大きく、R3-mに帰属可能なX線回折パターンを有し、CuKα線を用いたX線回折測定によるミラー指数hklにおける(104)面の回折ピークの半値幅(FWHM(104))に対する(003)面の回折ピークの半値幅の比(FWHM(003)/FWHM(104))が0.6以下であり、前記リチウム遷移金属複合酸化物の粒子の窒素ガス吸着法を用いた吸着等温線からBJH法で求めた細孔容積が0.05cm/g以下である、非水電解質二次電池用正極活物質。」を採用する。 In order to solve the above problems, one aspect of the present invention is “a positive electrode active material for a non-aqueous electrolyte battery including a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide is α-NaFeO 2 type. The molar ratio (Li / Me) of Li and transition metal (Me) constituting the lithium transition metal composite oxide having a crystal structure is greater than 1, and the transition metal (Me) is Mn and Ni, or Mn, X-rays using CuKα rays, which contain Ni and Co, have a Mn molar ratio Mn / Me in the transition metal (Me) greater than 0.5, have an X-ray diffraction pattern that can be assigned to R3-m The ratio (FWHM (003) / FWHM (104)) of the half value width of the diffraction peak of the (003) plane to the half width of the diffraction peak of the (104) plane (FWHM (104)) at the Miller index hkl by diffraction measurement is 0. 6 Is lower, the lithium transition metal composite oxide pore volume determined by the BJH method from an adsorption isotherm using a nitrogen gas adsorption method of the particles is less than 0.05 cm 3 / g, a non-aqueous electrolyte secondary battery The positive electrode active material is used.
 本発明の他の一側面は、「前記非水電解質二次電池用正極活物質に含まれるリチウム遷移金属複合酸化物の製造に用いる遷移金属水酸化物前駆体であって、前記遷移金属(Me)がMn及びNi、又はMn、Ni及びCoを含み、前記遷移金属(Me)中のMnのモル比Mn/Meが0.5より大きく、タップ密度が1.3g/cm以上である、遷移金属水酸化物前駆体。」である。 Another aspect of the present invention is “a transition metal hydroxide precursor used for producing a lithium transition metal composite oxide contained in the positive electrode active material for a nonaqueous electrolyte secondary battery, wherein the transition metal (Me ) Contains Mn and Ni, or Mn, Ni and Co, the molar ratio of Mn in the transition metal (Me) is Mn / Me larger than 0.5, and the tap density is 1.3 g / cm 3 or more. Transition metal hydroxide precursor. "
 本発明の他の一側面は、「前記遷移金属水酸化物前駆体の製造方法であって、反応槽に、遷移金属(Me)を含有する溶液と共に、アルカリ金属水酸化物、錯化剤、及び、還元剤を含有するアルカリ溶液を加えて、前記反応槽の溶液のpHを9~9.8未満として、遷移金属水酸化物を共沈させる、遷移金属水酸化物前駆体の製造方法。」である。 Another aspect of the present invention is “a method for producing the transition metal hydroxide precursor, wherein a reaction vessel contains a transition metal (Me) -containing solution, an alkali metal hydroxide, a complexing agent, And a method for producing a transition metal hydroxide precursor, wherein an alkaline solution containing a reducing agent is added to adjust the pH of the solution in the reaction vessel to less than 9 to 9.8 to coprecipitate the transition metal hydroxide. It is.
 本発明の他の一側面は、「前記遷移金属水酸化物前駆体と、リチウム化合物とを混合して、750~900℃で焼成する、α-NaFeO型結晶構造を有し、Liと遷移金属(Me)のモル比(Li/Me)が1より大きいリチウム遷移金属複合酸化物を含む非水電解質電池用正極活物質の製造方法。」である。 Another aspect of the present invention is “having an α-NaFeO 2 type crystal structure in which the transition metal hydroxide precursor and a lithium compound are mixed and fired at 750 to 900 ° C. The manufacturing method of the positive electrode active material for nonaqueous electrolyte batteries containing the lithium transition metal complex oxide whose metal (Me) molar ratio (Li / Me) is larger than 1. "
 本発明の他の一側面は、前記正極活物質を含有する非水電解質二次電池用電極であり、前記電極を備えた非水電解質二次電池である。 Another aspect of the present invention is a nonaqueous electrolyte secondary battery electrode containing the positive electrode active material, and is a nonaqueous electrolyte secondary battery including the electrode.
 本発明によれば、体積当たりの放電容量(エネルギー密度)が大きい正極活物質、その正極活物質を製造するための高密度な水酸化物前駆体、その正極活物質を含有する非水電解質二次電池用電極、及びその電極を備えた非水電解質二次電池を提供することができる。 According to the present invention, a positive electrode active material having a large discharge capacity (energy density) per volume, a high-density hydroxide precursor for producing the positive electrode active material, and a nonaqueous electrolyte containing the positive electrode active material. A secondary battery electrode and a non-aqueous electrolyte secondary battery including the electrode can be provided.
実施例と比較例の正極活物質の全細孔容積を示す図The figure which shows the total pore volume of the positive electrode active material of an Example and a comparative example 正極活物質の全細孔容積と体積当たりの放電容量の関係を示す図Figure showing the relationship between the total pore volume of the positive electrode active material and the discharge capacity per volume 本発明の一態様に係る非水電解質二次電池を示す外観斜視図1 is an external perspective view showing a nonaqueous electrolyte secondary battery according to one embodiment of the present invention. 本発明の一態様に係る非水電解質二次電池を複数個集合した蓄電装置を示す概略図Schematic showing a power storage device in which a plurality of nonaqueous electrolyte secondary batteries according to one embodiment of the present invention are assembled.
 [正極活物質及びリチウム遷移金属複合酸化物]
 本発明の一実施形態(以下、「本実施形態」という。)に係る非水電解質二次電池用正極活物質は、リチウム遷移金属複合酸化物を含む正極活物質である。
 前記リチウム遷移金属複合酸化物の組成は、高い放電容量が得られる点から、Mn及びNi、又はMn、Ni及びCoを含む遷移金属元素Me、並びに、Liを含有し、Li1+αMe1-α(α>0)と表記することができる、いわゆる「リチウム過剰型」である。
[Positive electrode active material and lithium transition metal composite oxide]
The positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention (hereinafter referred to as “this embodiment”) is a positive electrode active material containing a lithium transition metal composite oxide.
The composition of the lithium transition metal composite oxide contains Mn and Ni, or a transition metal element Me containing Mn, Ni and Co, and Li, and Li 1 + α Me 1-α from the viewpoint of obtaining a high discharge capacity. This is a so-called “lithium-excess type” which can be expressed as O 2 (α> 0).
 本実施形態においては、組成式Li1+αMe1-α(α>0)で表されるリチウム遷移金属複合酸化物において、(1+α)/(1-α)で表される遷移金属元素Meに対するLiのモル比Li/Meは、1.1以上1.4未満とすることが好ましく、1.1以上1.3以下とすることがより好ましく、1.1以上1.2以下とすることが特に好ましい。この範囲であると、正極活物質の体積当たりの放電容量が向上する。
 遷移金属元素Meに対するMnのモル比Mn/Meは0.5より大きい。0.51以上0.7未満が好ましく、0.51~0.60がより好ましい。この範囲であると、水酸化物前駆体のタップ密度を向上させることが可能であり、体積当たりの放電容量が向上する。
 リチウム遷移金属複合酸化物に含有されるCoは、初期効率を向上させる効果があるが、Coが多すぎると、前駆体のタップ密度が低くなり、ピーク微分細孔容積が大きくなる。また、希少資源であることからコスト高である。したがって、遷移金属元素Meに対するCoのモル比Co/Meは0.20以下とすることが好ましく、0でもよい。
 遷移金属元素Meに対するNiのモル比Ni/Meは0.2~0.5が好ましく、0.25~0.4がより好ましい。この範囲であると、水酸化物前駆体のタップ密度を向上させることが可能であり、体積当たりの放電容量が向上する。
 上記のような組成のリチウム遷移金属複合酸化物を用いることによって、体積当たりの放電容量が大きい非水電解質二次電池を得ることができる。
In this embodiment, in the lithium transition metal composite oxide represented by the composition formula Li 1 + α Me 1-α O 2 (α> 0), the transition metal element Me represented by (1 + α) / (1-α) The molar ratio Li / Me to Li is preferably 1.1 or more and less than 1.4, more preferably 1.1 or more and 1.3 or less, and 1.1 or more and 1.2 or less. Is particularly preferred. Within this range, the discharge capacity per volume of the positive electrode active material is improved.
The molar ratio Mn / Me of the transition metal element Me is greater than 0.5. It is preferably 0.51 or more and less than 0.7, and more preferably 0.51 to 0.60. Within this range, the tap density of the hydroxide precursor can be improved and the discharge capacity per volume is improved.
Co contained in the lithium transition metal composite oxide has an effect of improving the initial efficiency. However, when there is too much Co, the tap density of the precursor is lowered and the peak differential pore volume is increased. Moreover, since it is a scarce resource, it is expensive. Therefore, the molar ratio Co / Me of Co to the transition metal element Me is preferably 0.20 or less, and may be 0.
The molar ratio Ni / Me of Ni to the transition metal element Me is preferably 0.2 to 0.5, more preferably 0.25 to 0.4. Within this range, the tap density of the hydroxide precursor can be improved and the discharge capacity per volume is improved.
By using the lithium transition metal composite oxide having the above composition, a nonaqueous electrolyte secondary battery having a large discharge capacity per volume can be obtained.
 本実施形態に係るリチウム遷移金属複合酸化物は、α-NaFeO構造を有している。合成後(充放電を行う前)の上記リチウム遷移金属複合酸化物は、空間群P312あるいはR3-mに帰属される。このうち、空間群P312に帰属されるものには、CuKα管球を用いたエックス線回折図上、2θ=21°付近に超格子ピーク(Li[Li1/3Mn2/3]O型の単斜晶に見られるピーク)が確認される。ところが、一度でも充電を行い、結晶中のLiが脱離すると結晶の対称性が変化することにより、上記超格子ピークが消滅して、上記リチウム遷移金属複合酸化物は空間群R3-mに帰属されるようになる。ここで、P312は、R3-mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3-mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。なお、「R3-m」は本来「R3m」の「3」の上にバー「-」を施して表記する。 The lithium transition metal composite oxide according to this embodiment has an α-NaFeO 2 structure. The lithium transition metal composite oxide after synthesis (before charge and discharge) is attributed to the space group P3 1 12 or R3-m. Among these, those belonging to the space group P3 1 12 are superlattice peaks (Li [Li 1/3 Mn 2/3 ] O 2 near 2θ = 21 ° on the X-ray diffraction diagram using the CuKα tube. The peak observed in the monoclinic type) is confirmed. However, once the charge is performed and Li in the crystal is desorbed, the symmetry of the crystal changes, whereby the superlattice peak disappears and the lithium transition metal composite oxide belongs to the space group R3-m. Will come to be. Here, P3 1 12 is a crystal structure model in which the atomic positions of the 3a, 3b, and 6c sites in R3-m are subdivided, and when ordering is recognized in the atomic arrangement in R3-m, the P3 1 12 model Is adopted. Note that “R3-m” is originally represented by adding a bar “-” on “3” of “R3m”.
 本実施形態に係るリチウム遷移金属複合酸化物は、エックス線回折パターンを元に空間群R3-mを結晶構造モデルに用いたときに、(104)面に帰属される回折ピークの半値幅に対する(003)面に帰属される回折ピークの半値幅の比、即ち、FWHM(003)/FWHM(104)の値が0.6以下である。このような結晶構造により、体積当たりの放電容量を大きくすることが可能となる。
 なお、2θ=18.6°±1°の回折ピークは、空間群P312及びR3-mではミラー指数hklにおける(003)面に指数付けされ、2θ=44.1°±1°の回折ピークは、空間群P312では(114)面、空間群R3-mでは(104)面に指数付けされる。従って、空間群P312に帰属されるものについては、本明細書において(104)と記載された部分は(114)と読み替えるものとする。
When the space group R3-m is used as a crystal structure model based on the X-ray diffraction pattern, the lithium transition metal composite oxide according to the present embodiment is (003) relative to the half-value width of the diffraction peak attributed to the (104) plane. ) The ratio of the half width of the diffraction peak attributed to the plane, that is, the value of FWHM (003) / FWHM (104) is 0.6 or less. Such a crystal structure makes it possible to increase the discharge capacity per volume.
The diffraction peak at 2θ = 18.6 ° ± 1 ° is indexed to the (003) plane at the Miller index hkl in the space groups P3 1 12 and R3-m, and the diffraction at 2θ = 44.1 ° ± 1 °. peaks, the space group P3 1 12 (114) plane, is indexed to the space group R3-m (104) plane. Therefore, for the part belonging to the space group P3 1 12, the part described as (104) in this specification is read as (114).
 前記FWHM(104)は、全方位からの結晶化度の指標である。小さすぎると、結晶化が進みすぎて結晶子が大きくなり、Liイオンの拡散が十分に行われない。大きすぎると、結晶度が低いから、Liイオンの輸送効率が低下する。したがって、FWHM(104)は、0.21°以上0.55°以下の範囲とすることが好ましい。 The FWHM (104) is an index of crystallinity from all directions. If it is too small, crystallization proceeds too much, the crystallite becomes large, and Li ions are not sufficiently diffused. If it is too large, the crystallinity is low, and the transport efficiency of Li ions is reduced. Therefore, the FWHM (104) is preferably in the range of 0.21 ° to 0.55 °.
 前記FWMH比は、結晶構造における全方位からの結晶化度に対するc軸方向に沿った結晶化度の指標である。FWHM(003)/FWHM(104)が大きすぎると、c軸方向の結晶成長度合いが小さくなり、層間からのLiイオンの脱挿入が円滑に行われない。したがって、FWHM(003)/FWHM(104)は、0.6以下とする。また、FWHM(003)/FWHM(104)が小さすぎない方が、結晶粒界と電解液との接触面積の増加によるMnの溶出を抑制することができる。したがって、FWHM(003)/FWHM(104)は0.4以上とすることが好ましい。 The FWMH ratio is an index of crystallinity along the c-axis direction with respect to crystallinity from all directions in the crystal structure. If FWHM (003) / FWHM (104) is too large, the degree of crystal growth in the c-axis direction will be small, and Li ions will not be smoothly inserted and removed from the interlayer. Therefore, FWHM (003) / FWHM (104) is set to 0.6 or less. In addition, when FWHM (003) / FWHM (104) is not too small, elution of Mn due to an increase in the contact area between the crystal grain boundary and the electrolytic solution can be suppressed. Therefore, FWHM (003) / FWHM (104) is preferably set to 0.4 or more.
 (半値幅の測定)
 リチウム遷移金属複合酸化物の半値幅は、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて測定を行う。具体的には、次の条件及び手順に沿って行う。
 線源はCuKα、加速電圧及び電流はそれぞれ30kV及び15mAとする。サンプリング幅は0.01deg、走査時間は14分(スキャンスピードは5.0)、発散スリット幅は0.625deg、受光スリット幅は開放、散乱スリットは8.0mmとする。得られたエックス線回折データについて、Kα2に由来するピークを除去せず、前記エックス線回折装置の付属ソフトである「PDXL」を用いて、空間群R3-mでは(003)面に指数付けされる、エックス線回折図上2θ=18.6±1°に存在する回折ピークについての半値幅FWHM(003)、及び、(104)面に指数付けされる、エックス線回折図上2θ=44±1°に存在する回折ピークについての半値幅FWHM(104)を決定する。
(Measurement of half width)
The half width of the lithium transition metal composite oxide is measured using an X-ray diffractometer (manufactured by Rigaku, model name: MiniFlex II). Specifically, it is performed according to the following conditions and procedures.
The radiation source is CuKα, and the acceleration voltage and current are 30 kV and 15 mA, respectively. The sampling width is 0.01 deg, the scanning time is 14 minutes (scanning speed is 5.0), the divergence slit width is 0.625 deg, the light receiving slit width is open, and the scattering slit is 8.0 mm. The obtained X-ray diffraction data is indexed to the (003) plane in the space group R3-m using “PDXL” which is the software attached to the X-ray diffractometer without removing the peak derived from K α2. The half-value width FWHM (003) for the diffraction peak existing at 2θ = 18.6 ± 1 ° on the X-ray diffractogram, and indexed to the (104) plane, 2θ = 44 ± 1 ° on the X-ray diffractogram The half-width FWHM (104) for the existing diffraction peak is determined.
 本実施形態に係るリチウム遷移金属複合酸化物粒子は、窒素ガス吸着法を用いた吸着等温線からBJH法で求めた全細孔容積が0.05cm/g以下である。全細孔容積は0.04cm/g以下であることが好ましい。また、ピーク微分細孔容積は0.2mm/(g・nm)以下が好ましく、0.18mm/(g・nm)以下がより好ましく、0.12mm/(g・nm)以下が特に好ましい。このような高密度の活物質は、高密度な遷移金属水酸化物前駆体とリチウム化合物を焼成することによって得ることができる。
 図1に、実施例と比較例のリチウム遷移金属複合酸化物粒子の全細孔容積を示す。具体的には、後述する実施例1、比較例1、及び比較例3に係るリチウム遷移金属複合酸化物粒子に対する細孔分布の測定結果に基づいて、横軸に細孔径、縦軸に当該細孔径以下の細孔に対応する全細孔容積をプロットした図である。高密度な水酸化物前駆体から得られた実施例1のリチウム遷移金属複合酸化物粒子は、低密度な水酸化物前駆体から得られた比較例1のリチウム遷移金属複合酸化物粒子、炭酸塩前駆体から得られた比較例3のリチウム遷移金属複合酸化物粒子と比較して、全細孔容積が著しく小さくなる。
 また、図2に、表1に示した実施例及び比較例に係るリチウム遷移金属複合酸化物粒子の全細孔容積[cm/g]と0.1C放電容量[mAh/cm]の関係をプロットして示す。リチウム遷移金属複合酸化物粒子の全細孔容積を0.05cm/g以下とすることにより、体積当たりの放電容量を高くすることができる。なお、全細孔容積が極めて小さい場合に、体積当たりの放電容量が低くなっているのは、上記のFWHM(003)/FWHM(104)が大きくなりすぎたためである。
In the lithium transition metal composite oxide particles according to the present embodiment, the total pore volume determined by the BJH method from the adsorption isotherm using the nitrogen gas adsorption method is 0.05 cm 3 / g or less. The total pore volume is preferably 0.04 cm 3 / g or less. The peak differential pore volume is preferably 0.2mm 3 / (g · nm) or less, more preferably 0.18mm 3 / (g · nm) or less, 0.12mm 3 / (g · nm ) or less is particularly preferable. Such a high-density active material can be obtained by firing a high-density transition metal hydroxide precursor and a lithium compound.
In FIG. 1, the total pore volume of the lithium transition metal complex oxide particle of an Example and a comparative example is shown. Specifically, based on the measurement results of the pore distribution for lithium transition metal composite oxide particles according to Example 1, Comparative Example 1, and Comparative Example 3 described later, the horizontal axis represents the pore diameter, and the vertical axis represents the fine particle. It is the figure which plotted the total pore volume corresponding to the pore below a pore diameter. The lithium transition metal composite oxide particles of Example 1 obtained from the high density hydroxide precursor were the same as the lithium transition metal composite oxide particles of Comparative Example 1 obtained from the low density hydroxide precursor, carbonic acid. Compared with the lithium transition metal composite oxide particles of Comparative Example 3 obtained from the salt precursor, the total pore volume is remarkably reduced.
FIG. 2 shows the relationship between the total pore volume [cm 3 / g] and the 0.1 C discharge capacity [mAh / cm 3 ] of the lithium transition metal composite oxide particles according to the examples and comparative examples shown in Table 1. Is plotted. By setting the total pore volume of the lithium transition metal composite oxide particles to 0.05 cm 3 / g or less, the discharge capacity per volume can be increased. In addition, when the total pore volume is very small, the discharge capacity per volume is low because the FWHM (003) / FWHM (104) is too large.
 (全細孔容積及びピーク微分細孔容積の測定)
 本明細書において、リチウム遷移金属複合酸化物粒子の全細孔容積及びピーク微分細孔容積は、以下の方法により測定する。被測定試料の粉体1.00gを測定用のサンプル管に入れ、120℃にて12h真空乾燥することで、測定試料中の水分を十分に除去する。次に、液体窒素を用いた窒素ガス吸着法により、相対圧力P/P0(P0=約770mmHg)が0から1の範囲内で吸着側および脱離側の等温線を測定する。そして、脱離側の等温線を用いてBJH法により計算することにより細孔分布を評価し、ピーク微分細孔容積、及び全細孔容積を求める。
(Measurement of total pore volume and peak differential pore volume)
In the present specification, the total pore volume and the peak differential pore volume of the lithium transition metal composite oxide particles are measured by the following method. By putting 1.00 g of the powder of the sample to be measured into a sample tube for measurement and vacuum drying at 120 ° C. for 12 hours, moisture in the measurement sample is sufficiently removed. Next, isotherms on the adsorption side and desorption side are measured within a range of relative pressure P / P0 (P0 = about 770 mmHg) from 0 to 1 by a nitrogen gas adsorption method using liquid nitrogen. Then, the pore distribution is evaluated by calculating by the BJH method using the desorption side isotherm, and the peak differential pore volume and the total pore volume are obtained.
 本実施形態に係るリチウム遷移金属複合酸化物粒子は、タップ密度が1.6g/cm以上であることが好ましく、1.7g/cm以上であることがより好ましい。リチウム遷移金属複合酸化物粒子のタップ密度を高くすることにより、体積当たりの放電容量が大きい非水電解質二次電池を得ることができる。 The lithium transition metal composite oxide particles according to this embodiment preferably have a tap density of 1.6 g / cm 3 or more, and more preferably 1.7 g / cm 3 or more. By increasing the tap density of the lithium transition metal composite oxide particles, a nonaqueous electrolyte secondary battery having a large discharge capacity per volume can be obtained.
 (リチウム遷移金属複合酸化物のタップ密度の測定)
 本明細書において、リチウム遷移金属複合酸化物のタップ密度は、以下の方法により測定する。10-2dmのメスシリンダーに被測定試料の紛体を2g±0.2g投入し、REI ELECTRIC CO.LTD.社製のタッピング装置を用いて、300回カウント後の被測定試料の体積を投入した質量で除した値を採用する。
(Measurement of tap density of lithium transition metal composite oxide)
In this specification, the tap density of the lithium transition metal composite oxide is measured by the following method. 2 g ± 0.2 g of the powder of the sample to be measured is put into a 10 −2 dm 3 graduated cylinder, and REI ELECTRIC CO. LTD. A value obtained by dividing the volume of the sample to be measured after counting 300 times by the input mass using a tapping device manufactured by the company is adopted.
 以上の各種測定に供する試料は、電極作製前の活物質粉末であれば、そのまま測定に供する。電池を解体して取り出した電極から試料を採取する場合には、電池を解体する前に、次の手順によって電池を放電状態とする。まず、0.1Cの電流で、正極の電位が4.3V(vs.Li/Li)となる電池電圧まで定電流充電を行い、同じ電池電圧にて、電流値が0.01Cに減少するまで定電圧充電を行い、充電末状態とする。30分の休止後、0.1Cの電流で、正極の電位が2.0V(vs.Li/Li)となる電池電圧に至るまで定電流放電を行い、放電末状態とする。金属リチウム電極を負極に用いた電池であれば、当該電池を放電末状態又は充電末状態とした後に電池を解体して電極を取り出せばよいが、金属リチウム電極を負極に用いた電池でない場合は、正極電位を正確に制御するため、電池を解体して電極を取り出した後に、金属リチウム電極を対極とした電池を組立ててから、上記の手順に沿って、放電末状態に調整する。 If the sample used for the above various measurements is an active material powder before electrode preparation, it is used for measurement as it is. When a sample is collected from an electrode taken out by disassembling the battery, the battery is put into a discharged state by the following procedure before disassembling the battery. First, constant current charging is performed up to a battery voltage at which the positive electrode potential becomes 4.3 V (vs. Li / Li + ) with a current of 0.1 C, and the current value decreases to 0.01 C at the same battery voltage. Charge the battery at a constant voltage until the end of charge. After a 30-minute pause, constant current discharge is performed at a current of 0.1 C until the battery voltage reaches a positive electrode potential of 2.0 V (vs. Li / Li + ), and a discharge end state is obtained. If the battery uses a metal lithium electrode as the negative electrode, the battery may be disassembled after the battery is brought into the end-of-discharge state or the end-of-charge state, and the electrode may be taken out. In order to accurately control the positive electrode potential, after disassembling the battery and taking out the electrode, after assembling the battery using the metal lithium electrode as a counter electrode, the battery is adjusted to the end of discharge state according to the above procedure.
 電池の解体から測定までの作業は露点-60℃以下のアルゴン雰囲気中で行う。取り出した正極板は、ジメチルカーボネートを用いて電極に付着した電解液を十分に洗浄し室温にて一昼夜の乾燥後、アルミニウム箔集電体上の合剤を採取する。この合剤を小型電気炉を用いて600℃で4時間焼成することで導電剤であるカーボンおよび結着剤であるPVdFバインダーを除去し、リチウム遷移金属複合酸化物粒子を取り出す。 The work from disassembly of the battery to measurement is performed in an argon atmosphere with a dew point of -60 ° C or lower. The taken-out positive electrode plate uses dimethyl carbonate to sufficiently wash the electrolytic solution adhering to the electrode, and after drying at room temperature for a whole day and night, the mixture on the aluminum foil current collector is collected. This mixture is fired at 600 ° C. for 4 hours using a small electric furnace to remove the carbon as the conductive agent and the PVdF binder as the binder, and take out the lithium transition metal composite oxide particles.
 [水酸化物前駆体及びその製造方法]
 前記リチウム遷移金属複合酸化物の製造に用いる遷移金属水酸化物前駆体は、遷移金属(Me)がMn及びNi、又はMn、Ni及びCoを含み、前記遷移金属(Me)中のMnのモル比Mn/Meが0.5より大きく、結晶形態が高密度の粒状であり、タップ密度が1.3g/cm以上である。タップ密度は1.4g/cm以上であることが好ましい。上限は特にないが、1.7g/cmまでのタップ密度の水酸化物前駆体が得られる。
 本明細書において、水酸化物前駆体及び炭酸塩前駆体のタップ密度は、リチウム遷移金属複合酸化物のタップ密度と同様の方法で測定する。
[Hydroxide precursor and production method thereof]
The transition metal hydroxide precursor used for producing the lithium transition metal composite oxide includes a transition metal (Me) containing Mn and Ni, or Mn, Ni and Co, and a mole of Mn in the transition metal (Me). The ratio Mn / Me is larger than 0.5, the crystal form is a high-density granule, and the tap density is 1.3 g / cm 3 or more. The tap density is preferably 1.4 g / cm 3 or more. Although there is no particular upper limit, a hydroxide precursor having a tap density of up to 1.7 g / cm 3 can be obtained.
In this specification, the tap density of the hydroxide precursor and the carbonate precursor is measured by the same method as the tap density of the lithium transition metal composite oxide.
 本実施形態に係る遷移金属水酸化物前駆体を用いて製造されるリチウム遷移金属複合酸化物は「リチウム過剰型」活物質であるから、水酸化物前駆体中の遷移金属元素Meに対するMnのモル比Mn/Meは、0.5より大きい。この範囲であると、水酸化物前駆体のタップ密度を向上させることが可能である。
 また、水酸化物前駆体中の遷移金属元素Meに対するCoのモル比Co/Meは、0.2以下が好ましく、0でもよいが、0.1以上が好ましい。モル比Ni/Meは0.2~0.5が好ましい。この範囲であると、水酸化物前駆体のタップ密度を向上させることが可能である。
Since the lithium transition metal composite oxide produced using the transition metal hydroxide precursor according to this embodiment is a “lithium-excess” active material, Mn of the transition metal element Me in the hydroxide precursor The molar ratio Mn / Me is greater than 0.5. Within this range, it is possible to improve the tap density of the hydroxide precursor.
Further, the molar ratio Co / Me of Co to the transition metal element Me in the hydroxide precursor is preferably 0.2 or less, may be 0, but is preferably 0.1 or more. The molar ratio Ni / Me is preferably 0.2 to 0.5. Within this range, it is possible to improve the tap density of the hydroxide precursor.
 前記遷移金属水酸化物前駆体を製造する場合、アルカリ性を保った反応槽に、遷移金属(Me)を含有する溶液と共に、アルカリ金属水酸化物(水酸化ナトリウム、水酸化リチウム等)、錯化剤、及び、還元剤を含有するアルカリ溶液を加えて、遷移金属水酸化物を共沈させることが好ましい。
 錯化剤としては、アンモニア、硫酸アンモニウム、硝酸アンモニウム等を用いることができ、アンモニアが好ましい。錯化剤を用いた晶析反応によって、よりタップ密度の大きな前駆体を作製することができる。錯化剤と共に還元剤を用いることが好ましい。還元剤としては、ヒドラジン、水素化ホウ素ナトリウム等を用いることができ、ヒドラジンが好ましい。ここで、アルカリ金属水酸化物(中和剤)には、水酸化ナトリウム又は水酸化リチウムを使用することができる。
When producing the transition metal hydroxide precursor, alkali metal hydroxide (sodium hydroxide, lithium hydroxide, etc.), complexation, together with a solution containing transition metal (Me), in a reaction tank that maintains alkalinity It is preferable to coprecipitate the transition metal hydroxide by adding an alkali solution containing an agent and a reducing agent.
As the complexing agent, ammonia, ammonium sulfate, ammonium nitrate or the like can be used, and ammonia is preferable. A precursor having a higher tap density can be produced by a crystallization reaction using a complexing agent. It is preferable to use a reducing agent together with the complexing agent. As the reducing agent, hydrazine, sodium borohydride and the like can be used, and hydrazine is preferable. Here, sodium hydroxide or lithium hydroxide can be used for the alkali metal hydroxide (neutralizing agent).
 水酸化物前駆体を作製するにあたって、Ni,Co,MnのうちMnは酸化されやすく、Ni,Mn、又はNi,Co,Mnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Ni,Mn、又はNi,Co,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。特に本実施形態の組成範囲においては、Mn比率がNi,Co比率に比べて高いので、水溶液中の溶存酸素を除去することが特に重要である。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)等を用いることができる。 In producing a hydroxide precursor, Mn is easily oxidized among Ni, Co, and Mn, and Ni, Mn, or a coprecipitation precursor in which Ni, Co, and Mn are uniformly distributed in a divalent state is produced. Therefore, uniform mixing at the atomic level of Ni, Mn, or Ni, Co, and Mn tends to be insufficient. In particular, in the composition range of the present embodiment, since the Mn ratio is higher than the Ni and Co ratios, it is particularly important to remove dissolved oxygen in the aqueous solution. Examples of the method for removing dissolved oxygen include a method of bubbling a gas not containing oxygen. The gas not containing oxygen is not limited, but nitrogen gas, argon gas, carbon dioxide (CO 2 ), or the like can be used.
 溶液中でNi,Mn、又はNi,Co,Mnを含有する化合物を共沈させて水酸化物前駆体を製造する工程におけるpH(反応槽のpH)は、タップ密度を高くするために、8~9.8未満とすることが好ましく、9~9.8未満(9.7以下)とすることがより好ましい。低いpHで共沈させることにより、タップ密度を1.3g/cm以上とすることができる。また、粒子成長速度を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。 In order to increase the tap density, the pH in the step of producing a hydroxide precursor by coprecipitation of a compound containing Ni, Mn or Ni, Co, Mn in the solution is 8 Is preferably less than 9.8, and more preferably less than 9-9.8 (9.7 or less). By co-precipitation at a low pH, the tap density can be 1.3 g / cm 3 or more. Moreover, since the particle growth rate can be accelerated, the stirring continuation time after the raw material aqueous solution dropping is completed can be shortened.
 前記水酸化物前駆体の原料は、Mn化合物としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を、Ni化合物としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co化合物としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を一例として挙げることができる。 The raw material of the hydroxide precursor is manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, manganese acetate, etc. as the Mn compound, and nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, acetic acid as the Ni compound. Examples of the Co compound such as nickel and the like include cobalt sulfate, cobalt nitrate, and cobalt acetate.
 前記水酸化物前駆体の原料水溶液(遷移金属を含有する水溶液)を滴下供給する間、水酸化ナトリウム等のアルカリ金属水酸化物(中和剤)、アンモニア等の錯化剤、及び、ヒドラジン等の還元剤を含有する混合アルカリ溶液を適宜滴下する方法が好ましい。滴下するアルカリ金属水酸化物の濃度は、1.0~8.0Mであることが好ましい。錯化剤の濃度は、0.4M以上であることが好ましく、0.6M以上であることがより好ましい。また、2.0M以下であることが好ましく、1.6M以下であることがより好ましく、1.5M以下とすることがさらに好ましい。還元剤の濃度は、0.05~1.0Mであることが好ましく、0.1~0.5Mとすることがより好ましい。反応槽のpHを低くすると共に、アンモニア(錯化剤)の濃度を0.6M以上とすることにより、水酸化物前駆体のタップ密度を高くすることができる。
 上記に特徴的に記載した製造方法乃至製造条件は、前駆体のCo/Meが0である構成と組み合わせてもよいが、Co/Meが0.02以上の構成と組み合わせることで、高密度な水酸化物前駆体が得られる作用をより効果的に発揮できる。Co/Me比は0.05以上がより好ましく、0.1以上がさらに好ましい。
While the raw material aqueous solution of the hydroxide precursor (aqueous solution containing a transition metal) is supplied dropwise, an alkali metal hydroxide such as sodium hydroxide (neutralizing agent), a complexing agent such as ammonia, hydrazine, etc. A method in which a mixed alkaline solution containing the reducing agent is appropriately dropped is preferable. The concentration of the alkali metal hydroxide to be dropped is preferably 1.0 to 8.0M. The concentration of the complexing agent is preferably 0.4M or more, and more preferably 0.6M or more. Moreover, it is preferable that it is 2.0M or less, It is more preferable that it is 1.6M or less, It is further more preferable to set it as 1.5M or less. The concentration of the reducing agent is preferably 0.05 to 1.0M, and more preferably 0.1 to 0.5M. The tap density of the hydroxide precursor can be increased by lowering the pH of the reaction vessel and setting the concentration of ammonia (complexing agent) to 0.6 M or more.
The manufacturing method or the manufacturing conditions described characteristically above may be combined with a configuration in which the precursor Co / Me is 0, but by combining with a configuration in which Co / Me is 0.02 or more, high density The effect | action which a hydroxide precursor is obtained can be exhibited more effectively. The Co / Me ratio is more preferably 0.05 or more, and further preferably 0.1 or more.
 前記原料水溶液の滴下速度は、生成する水酸化物前駆体の1粒子内における元素分布の均一性に大きく影響を与える。特にMnは、NiやCoと均一な元素分布を形成しにくいので注意が必要である。好ましい滴下速度については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、30mL/min以下が好ましい。放電容量を向上させるためには、滴下速度は10mL/min以下がより好ましく、5mL/min以下が最も好ましい。 The dropping speed of the raw material aqueous solution greatly affects the uniformity of element distribution within one particle of the hydroxide precursor to be produced. In particular, Mn is difficult to form a uniform element distribution with Ni or Co, so care must be taken. The preferred dropping rate is influenced by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc., but is preferably 30 mL / min or less. In order to improve the discharge capacity, the dropping rate is more preferably 10 mL / min or less, and most preferably 5 mL / min or less.
 また、反応槽内にアンモニア等の錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転および攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、水酸化物前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。従って、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた水酸化物前駆体を得ることができる。 Further, when a complexing agent such as ammonia is present in the reaction tank and a certain convection condition is applied, the particles are rotated and revolved in the stirring tank by continuing the stirring after the dropwise addition of the raw material aqueous solution. In this process, particles collide with each other, and the particles grow concentrically in stages. That is, the hydroxide precursor undergoes two stages of reaction: a metal complex formation reaction when the raw material aqueous solution is dropped into the reaction tank, and a precipitation formation reaction that occurs while the metal complex is retained in the reaction tank. Formed through. Therefore, a hydroxide precursor having a target particle diameter can be obtained by appropriately selecting a time for continuing stirring after the dropping of the raw material aqueous solution.
 原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5h以上が好ましく、1h以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が充分でないものとなる虞を低減させるため、15h以下が好ましく、10h以下がより好ましく、5h以下が最も好ましい。 The preferable stirring duration after completion of dropping of the raw material aqueous solution is influenced by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc., but 0.5 h or more is required to grow the particles as uniform spherical particles. Preferably, 1 h or more is more preferable. Further, in order to reduce the possibility that the output performance in the low SOC region of the battery is not sufficient due to the particle size becoming too large, it is preferably 15 h or less, more preferably 10 h or less, and most preferably 5 h or less.
 また、水酸化物前駆体及びリチウム遷移金属複合酸化物の2次粒子の粒度分布における累積体積が50%となる粒子径であるD50を13μm以下とするための好ましい攪拌継続時間は、制御するpHによって異なる。例えば、pHを8~9.7に制御した場合には、撹拌継続時間は0.5~3hが好ましく、pHを9~9.7に制御した場合には、撹拌継続時間は1~5hが好ましい。 In addition, the preferable stirring duration time for controlling D50, which is a particle diameter at which the cumulative volume in the particle size distribution of the secondary particles of the hydroxide precursor and the lithium transition metal composite oxide is 50%, to 13 μm or less is the pH to be controlled. It depends on. For example, when the pH is controlled to 8 to 9.7, the stirring duration is preferably 0.5 to 3 h, and when the pH is controlled to 9 to 9.7, the stirring duration is 1 to 5 h. preferable.
 水酸化物前駆体の粒子を、中和剤として水酸化ナトリウム等のナトリウム化合物を使用して作製した場合、その後の洗浄工程において粒子に付着しているナトリウムイオンを洗浄除去する。例えば、作製した水酸化物前駆体を吸引ろ過して取り出す際に、イオン交換水100mLによる洗浄回数を5回以上とするような条件を採用することができる。 When the hydroxide precursor particles are prepared using a sodium compound such as sodium hydroxide as a neutralizing agent, sodium ions adhering to the particles are removed by washing in the subsequent washing step. For example, when the produced hydroxide precursor is removed by suction filtration, a condition that the number of washings with 100 mL of ion-exchanged water is 5 times or more can be employed.
 [正極活物質(リチウム遷移金属複合酸化物)の製造方法]
 本実施形態のリチウム遷移金属複合酸化物は、前記水酸化物前駆体とリチウム化合物(Li化合物)とを混合した後、焼成する方法で好適に製造することができる。
 この方法で製造されたリチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有し、前記リチウム遷移金属複合酸化物を構成するLiと遷移金属(Me)のモル比(Li/Me)が1より大きく、前記遷移金属(Me)がMn及びNi、又はMn、Ni及びCoを含み、前記遷移金属(Me)中のMnのモル比Mn/Meが0.5より大きい。
 Li化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム等を用いることができる。但し、Li化合物の量については、焼成中にLi化合物の一部が消失することを見込んで、1~5%程度過剰に仕込むことが好ましい。
[Method for producing positive electrode active material (lithium transition metal composite oxide)]
The lithium transition metal composite oxide of the present embodiment can be suitably produced by a method of firing after mixing the hydroxide precursor and a lithium compound (Li compound).
The lithium transition metal composite oxide produced by this method has an α-NaFeO 2 type crystal structure, and the molar ratio of Li to transition metal (Me) constituting the lithium transition metal composite oxide (Li / Me) Is greater than 1, the transition metal (Me) contains Mn and Ni, or Mn, Ni and Co, and the molar ratio of Mn in the transition metal (Me) Mn / Me is greater than 0.5.
As the Li compound, lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, or the like can be used. However, regarding the amount of the Li compound, it is preferable to add an excess of about 1 to 5% in view of the disappearance of a part of the Li compound during firing.
 焼成温度は、活物質の可逆容量に影響を与える。
 焼成温度が高すぎると、得られた活物質が酸素放出反応を伴って崩壊すると共に、主相の六方晶に加えて単斜晶のLi[Li1/3Mn2/3]O型に規定される相が、固溶相としてではなく、分相して観察される傾向がある。このような分相が多く含まれすぎると、活物質の可逆容量の減少を導くので好ましくない。このような材料では、X線回折図上35°付近及び45°付近に不純物ピークが観察される。従って、焼成温度は、活物質の酸素放出反応の影響する温度未満とすることが好ましい。活物質の酸素放出温度は、本実施形態に係る組成範囲においては、概ね1000℃以上であるが、活物質の組成によって酸素放出温度に若干の差があるので、あらかじめ活物質の酸素放出温度を確認しておくことが好ましい。特に試料に含まれるCo量が多いほど水酸化物前駆体の酸素放出温度は低温側にシフトすることが確認されているので注意が必要である。活物質の酸素放出温度を確認する方法としては、焼成反応過程をシミュレートするために、水酸化物前駆体とリチウム化合物を混合したものを熱重量分析(DTA-TG測定)に供してもよいが、この方法では測定機器の試料室に用いている白金が揮発したLi成分により腐食されて機器を傷めるおそれがあるので、あらかじめ500℃程度の焼成温度を採用してある程度結晶化を進行させた組成物を熱重量分析に供するのが良い。
The firing temperature affects the reversible capacity of the active material.
When the firing temperature is too high, the obtained active material collapses with an oxygen releasing reaction, and in addition to the hexagonal crystal of the main phase, the monoclinic Li [Li 1/3 Mn 2/3 ] O 2 type is obtained. The defined phase tends to be observed as a phase separation rather than as a solid solution phase. If too many such phase separations are contained, it is not preferable because it leads to a reduction in the reversible capacity of the active material. In such materials, impurity peaks are observed around 35 ° and 45 ° on the X-ray diffraction pattern. Therefore, the firing temperature is preferably less than the temperature at which the oxygen release reaction of the active material affects. The oxygen release temperature of the active material is approximately 1000 ° C. or higher in the composition range according to the present embodiment, but there is a slight difference in the oxygen release temperature depending on the composition of the active material. It is preferable to confirm. In particular, it is confirmed that the oxygen release temperature of the hydroxide precursor shifts to a lower temperature side as the amount of Co contained in the sample increases. As a method for confirming the oxygen release temperature of the active material, a mixture of a hydroxide precursor and a lithium compound may be subjected to thermogravimetric analysis (DTA-TG measurement) in order to simulate the firing reaction process. However, in this method, the platinum used in the sample chamber of the measuring instrument may be corroded by the Li component volatilized, and the instrument may be damaged, so a crystallization temperature is advanced to some extent by adopting a firing temperature of about 500 ° C. in advance. The composition may be subjected to thermogravimetric analysis.
 一方、焼成温度が低すぎると、結晶化が十分に進まず、電極特性が低下する傾向がある。本実施形態においては、焼成温度は700℃より高くすることが好ましい。十分に結晶化させることにより、結晶粒界の抵抗を軽減し、円滑なリチウムイオン輸送を促すことができる。
 また、発明者らは、本実施形態に係る活物質の回折ピークの半値幅を詳細に解析した結果、750℃未満の温度で合成した試料においては格子内にひずみが残存しており、750℃以上の温度で合成することでほとんどひずみを除去することができることがわかった。また、結晶子のサイズは合成温度が上昇するに比例して大きくなることがわかった。よって、本実施形態に係る活物質の組成において、系内に格子のひずみがほとんどなく、かつ結晶子サイズが十分成長した粒子とすることができ、良好な放電容量が得られることがわかった。具体的には、格子定数に及ぼすひずみ量が2%以下、かつ結晶子サイズが50nm以上に成長する合成温度(焼成温度)及びLi/Me比組成を採用することが好ましい。この活物質を用いた電極について充放電を行うと、膨張収縮により変化するものの、充放電過程においても結晶子サイズは30nm以上を保っていることがわかった。即ち、焼成温度を上記した活物質の酸素放出温度にできるだけ近付けるように選択することにより、はじめて、可逆容量が顕著に大きい活物質を得ることができる。
On the other hand, if the firing temperature is too low, crystallization does not proceed sufficiently and the electrode characteristics tend to deteriorate. In the present embodiment, the firing temperature is preferably higher than 700 ° C. By sufficiently crystallizing, the resistance of the crystal grain boundary can be reduced and smooth lithium ion transport can be promoted.
In addition, as a result of detailed analysis of the half-value width of the diffraction peak of the active material according to the present embodiment, the inventors have found that strain remains in the lattice in the sample synthesized at a temperature lower than 750 ° C. It was found that almost all strains can be removed by synthesis at the above temperature. It was also found that the crystallite size increased in proportion to the increase in the synthesis temperature. Therefore, it was found that in the composition of the active material according to the present embodiment, particles having almost no lattice distortion in the system and having a sufficiently grown crystallite size can be obtained, and a favorable discharge capacity can be obtained. Specifically, it is preferable to employ a synthesis temperature (firing temperature) and a Li / Me ratio composition in which the amount of strain affecting the lattice constant is 2% or less and the crystallite size grows to 50 nm or more. When charging / discharging the electrode using this active material, it was found that the crystallite size was maintained at 30 nm or more in the charging / discharging process, although it changed due to expansion / contraction. That is, an active material having a remarkably large reversible capacity can be obtained only by selecting the firing temperature as close as possible to the oxygen release temperature of the active material.
 上記のように、好ましい焼成温度は、活物質の酸素放出温度により異なるから、一概に焼成温度の好ましい範囲を設定することは難しいが、モル比Li/Meが1.1~1.3である場合に体積当たりの放電容量を充分なものとするために、焼成温度を750~940℃とすることが好ましく、750~900℃とすることがより好ましい。
 以上のようにして、本実施形態の正極活物質として用いられるリチウム遷移金属複合酸化物は製造される。
As described above, since the preferable firing temperature varies depending on the oxygen release temperature of the active material, it is generally difficult to set a preferable range of the firing temperature, but the molar ratio Li / Me is 1.1 to 1.3. In this case, the firing temperature is preferably 750 to 940 ° C., more preferably 750 to 900 ° C., in order to ensure a sufficient discharge capacity per volume.
As described above, the lithium transition metal composite oxide used as the positive electrode active material of the present embodiment is manufactured.
 [負極活物質]
 負極活物質としては、限定されない。リチウムイオンを析出あるいは吸蔵することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料リチウム金属、リチウム合金(リチウム-シリコン、リチウム-アルミニウム,リチウム-鉛,リチウム-スズ,リチウム-アルミニウム-スズ,リチウム-ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム-チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。
[Negative electrode active material]
The negative electrode active material is not limited. Any form that can deposit or occlude lithium ions may be selected. For example, titanium-based materials such as lithium titanate having a spinel crystal structure represented by Li [Li 1/3 Ti 5/3 ] O 4 , alloy-based materials such as Si, Sb, and Sn-based lithium metal, lithium alloys (Lithium metal-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), lithium composite oxide (lithium-titanium), silicon oxide In addition, an alloy capable of inserting and extracting lithium, a carbon material (for example, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.) can be used.
 正極活物質の粉体および負極活物質の粉体は、平均粒子サイズ100μm以下であることが好ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で15μm以下であることが好ましい。粉体を所定の形状で得るためには、所定の大きさの前駆体を作製する方法や、粉砕機、分級機などを用いる方法がある。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩などが用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。 The positive electrode active material powder and the negative electrode active material powder preferably have an average particle size of 100 μm or less. In particular, the positive electrode active material powder is preferably 15 μm or less for the purpose of improving the high output characteristics of the nonaqueous electrolyte battery. In order to obtain the powder in a predetermined shape, there are a method for producing a precursor having a predetermined size, a method using a pulverizer, a classifier, and the like. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill, a sieve, or the like is used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as hexane may be used. There is no particular limitation on the classification method, and a sieve, an air classifier, or the like is used as needed for both dry and wet methods.
 [その他の電極構成成分]
 以上、正極及び負極の主要構成成分である正極活物質及び負極活物質について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。
[Other electrode components]
As described above, the positive electrode active material and the negative electrode active material which are main components of the positive electrode and the negative electrode have been described in detail. In addition to the main component, the positive electrode and the negative electrode include a conductive agent, a binder, a thickener, A filler etc. may be contained as another structural component.
 導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。 The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, Conductive materials such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material can be included as one kind or a mixture thereof. .
 これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが好ましい。導電剤の添加量は、正極または負極の総重量に対して0.1重量%~50重量%が好ましく、特に0.5重量%~30重量%が好ましい。特にアセチレンブラックを0.1~0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため好ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を用いて、乾式、あるいは湿式で混合することが可能である。 Among these, as the conductive agent, acetylene black is preferable from the viewpoints of electronic conductivity and coatability. The addition amount of the conductive agent is preferably 0.1% by weight to 50% by weight, and particularly preferably 0.5% by weight to 30% by weight with respect to the total weight of the positive electrode or the negative electrode. In particular, acetylene black is preferably used after being pulverized into ultrafine particles of 0.1 to 0.5 μm because the necessary carbon amount can be reduced. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, it is possible to mix by a dry type or a wet type using a powder mixer such as a V-type mixer, an S-type mixer, a grinding machine, a ball mill, or a planetary ball mill.
 前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン-プロピレン-ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して1~50重量%が好ましく、特に2~30重量%が好ましい。 The binder is usually a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene. Polymers having rubber elasticity such as rubber (SBR) and fluororubber can be used as one kind or a mixture of two or more kinds. The amount of the binder added is preferably 1 to 50% by weight, particularly 2 to 30% by weight, based on the total weight of the positive electrode or the negative electrode.
 フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総重量に対して添加量は30重量%以下が好ましい。 As the filler, any material that does not adversely affect battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 30% by weight or less with respect to the total weight of the positive electrode or the negative electrode.
 [正極及び負極の作製]
 正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、およびその他の材料を混練し合剤とし、N-メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、または圧着して50℃~250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが好ましいが、これらに限定されるものではない。
[Production of positive electrode and negative electrode]
For the positive electrode and the negative electrode, the main components (positive electrode active material for the positive electrode, negative electrode material for the negative electrode) and other materials are kneaded and mixed into an organic solvent such as N-methylpyrrolidone or toluene or water. After that, the obtained liquid mixture is applied on a current collector described in detail below, or is pressed and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. . About the application method, for example, it is preferable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.
 集電体としては、Al箔、Cu箔等の集電箔を用いることができる。正極の集電箔としてはAl箔が好ましく、負極の集電箔としてはCu箔が好ましい。集電箔の厚みは10~30μmが好ましい。また、合剤層の厚みはプレス後において、40~150μm(集電箔厚みを除く)が好ましい。 As the current collector, a current collector foil such as an Al foil or a Cu foil can be used. The positive electrode current collector foil is preferably an Al foil, and the negative electrode current collector foil is preferably a Cu foil. The thickness of the current collector foil is preferably 10 to 30 μm. The thickness of the mixture layer is preferably 40 to 150 μm (excluding the thickness of the current collector foil) after pressing.
 [非水電解質]
 本実施形態に係る非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
[Nonaqueous electrolyte]
The nonaqueous electrolyte used for the nonaqueous electrolyte secondary battery according to the present embodiment is not limited, and those generally proposed for use in lithium batteries and the like can be used. Nonaqueous solvents used for the nonaqueous electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane and methyldiglyme; Nitriles such as acetonitrile and benzonitrile; Dioxolane or derivatives thereof; Ethylene sulfide, sulfolane, sultone or derivatives thereof Examples thereof include a conductor alone or a mixture of two or more thereof, but are not limited thereto.
 非水電解質に用いる電解質塩としては、例えば、LiClO,LiBF,LiAsF,LiPF,LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n-CNClO,(n-CNI,(CN-maleate,(CN-benzoate,(CN-phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, and NaBr. , KClO 4 , KSCN, and other inorganic ion salts containing one of lithium (Li), sodium (Na), or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 (SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (nC 4 H 9 ) 4 NI, (C 2 H 5 ) 4 N-maleate, (C 2 H 5 ) 4 N-benzoate, (C 2 H 5 ) 4 N-phthalate, Examples thereof include organic ionic salts such as lithium stearyl sulfonate, lithium octyl sulfonate, and lithium dodecylbenzene sulfonate. These ionic compounds can be used alone or in admixture of two or more.
 さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より好ましい。
 また、非水電解質として常温溶融塩やイオン液体を用いてもよい。
Further, by using a mixture of LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further reduced, Low temperature characteristics can be further improved, and self-discharge can be suppressed, which is more preferable.
Moreover, you may use normal temperature molten salt and an ionic liquid as a nonaqueous electrolyte.
 非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/L~5mol/Lが好ましく、さらに好ましくは、0.5mol/L~2.5mol/Lである。 The concentration of the electrolyte salt in the nonaqueous electrolyte is preferably from 0.1 mol / L to 5 mol / L, more preferably from 0.5 mol / L to 2 in order to reliably obtain a nonaqueous electrolyte battery having high battery characteristics. 0.5 mol / L.
 [セパレータ]
 セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-パーフルオロビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-フルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロアセトン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-プロピレン共重合体、フッ化ビニリデン-トリフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン-テトラフルオロエチレン共重合体等を挙げることができる。
[Separator]
As the separator, it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the material constituting the separator for a nonaqueous electrolyte battery include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.
 セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。 The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.
 また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。 The separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte. Use of the non-aqueous electrolyte in the gel state as described above is preferable in that it has an effect of preventing leakage.
 さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため好ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。 Furthermore, it is preferable that the separator is used in combination with the above-described porous film, nonwoven fabric, or the like and a polymer gel because the liquid retention of the electrolyte is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the microporous wall are coated with a solvophilic polymer having a thickness of several μm or less, and holding the electrolyte in the micropores of the film, Gels.
 前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、電子線(EB)照射、又は、ラジカル開始剤を添加して加熱若しくは紫外線(UV)照射を行うこと等により、架橋反応を行わせることが可能である。 Examples of the solvophilic polymer include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked. The monomer can be subjected to a crosslinking reaction by irradiation with an electron beam (EB) or heating or ultraviolet (UV) irradiation with a radical initiator added.
 [非水電解質二次電池の構成]
 本実施形態に係る非水電解質二次電池の構成については特に限定されるものではなく、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。
 図3に、本発明の一態様に係る非水電解質二次電池である矩形状のリチウム二次電池1の外観斜視図を示す。なお、同図は、容器内部を透視した図としている。図3に示す非水電解質二次電池1は、電極群2が電池容器3に収納されている。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
[Configuration of non-aqueous electrolyte secondary battery]
The configuration of the nonaqueous electrolyte secondary battery according to the present embodiment is not particularly limited, and a cylindrical battery, a square battery (rectangular battery), and a flat battery having a positive electrode, a negative electrode, and a roll separator. Etc. are mentioned as an example.
FIG. 3 is an external perspective view of a rectangular lithium secondary battery 1 which is a nonaqueous electrolyte secondary battery according to one embodiment of the present invention. In the figure, the inside of the container is seen through. In the nonaqueous electrolyte secondary battery 1 shown in FIG. 3, an electrode group 2 is housed in a battery container 3. The electrode group 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material via a separator. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ′, and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5 ′.
 [蓄電装置の構成]
 本実施形態は、上記の非水電解質二次電池を複数個集合した蓄電装置としても実現することができる。本発明の一態様に係る蓄電装置を図4に示す。図4において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
[Configuration of power storage device]
This embodiment can also be realized as a power storage device in which a plurality of the nonaqueous electrolyte secondary batteries are assembled. A power storage device according to one embodiment of the present invention is illustrated in FIG. In FIG. 4, the power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of nonaqueous electrolyte secondary batteries 1. The power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
 (実施例1)
<水酸化物前駆体の作製工程>
 実施例活物質の作製にあたって、反応晶析法を用いて水酸化物前駆体を作製した。まず、硫酸ニッケル6水和物315.4g、硫酸コバルト7水和物168.6g、硫酸マンガン5水和物530.4gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が30:15:55となる1.0Mの硫酸塩水溶液を作製した。次に、5Lの反応槽に2Lのイオン交換水を注ぎ、Nガスを30minバブリングさせることにより、イオン交換水中に含まれる酸素を除去した。反応槽の温度は50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を1500rpmの回転速度で攪拌しながら、反応槽内に対流が十分おこるように設定した。前記硫酸塩水溶液を1.3mL/minの速度で反応槽に50hr滴下した。ここで、滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、1.25Mのアンモニア、及び0.1Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽の水溶液のpHが常に9.5(±0.1)を保つように制御すると共に、反応液の一部をオーバーフローにより排出することにより、反応液の総量が常に2Lを超えないように制御した。滴下終了後、反応槽内の攪拌をさらに1h継続した。攪拌の停止後、室温で12h以上静置した。
 次に、吸引ろ過装置を用いて、反応槽内に生成した水酸化物前駆体粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20h乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、水酸化物前駆体を作製した。
Example 1
<Production process of hydroxide precursor>
Example In preparing an active material, a hydroxide precursor was prepared using a reaction crystallization method. First, 315.4 g of nickel sulfate hexahydrate, 168.6 g of cobalt sulfate heptahydrate, and 530.4 g of manganese sulfate pentahydrate were weighed, and all of these were dissolved in 4 L of ion-exchanged water, and Ni: Co A 1.0 M aqueous sulfate solution having a molar ratio of: Mn of 30:15:55 was prepared. Next, 2 L of ion exchange water was poured into a 5 L reaction tank, and N 2 gas was bubbled for 30 minutes to remove oxygen contained in the ion exchange water. The temperature of the reaction vessel is set to 50 ° C. (± 2 ° C.) and the reaction vessel is stirred at a rotational speed of 1500 rpm using a paddle blade equipped with a stirring motor, so that sufficient convection occurs in the reaction vessel. did. The sulfate aqueous solution was dropped into the reaction vessel at a rate of 1.3 mL / min for 50 hr. Here, the pH of the aqueous solution in the reaction vessel was appropriately dropped by adding a mixed alkaline solution consisting of 4.0 M sodium hydroxide, 1.25 M ammonia, and 0.1 M hydrazine from the start to the end of the dropping. Was controlled to always maintain 9.5 (± 0.1), and a part of the reaction solution was discharged by overflow, so that the total amount of the reaction solution was always controlled not to exceed 2 L. After completion of the dropwise addition, stirring in the reaction vessel was continued for 1 hour. After stopping stirring, the mixture was allowed to stand at room temperature for 12 hours or longer.
Next, using a suction filtration device, the hydroxide precursor particles generated in the reaction tank are separated, and further, sodium ions adhering to the particles are washed and removed using ion exchange water, and an electric furnace is used. Then, it was dried in an air atmosphere at 80 ° C. under normal pressure for 20 hours. Then, in order to arrange | equalize a particle size, it grind | pulverized for several minutes with the smoked automatic mortar. In this way, a hydroxide precursor was produced.
<焼成工程>
 前記水酸化物前駆体2.262gに、水酸化リチウム1水和物1.294gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni,Co,Mn)のモル比が120:100である混合粉体を調製した。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2.5gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から800℃まで10時間かけて昇温し、800℃で4h焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、実施例1に係るリチウム遷移金属複合酸化物Li1.09Ni0.27Co0.14Mn0.50を作製した。
<Baking process>
1.294 g of lithium hydroxide monohydrate is added to 2.262 g of the hydroxide precursor and mixed well using a smoked automatic mortar. The molar ratio of Li: (Ni, Co, Mn) is 120: A mixed powder of 100 was prepared. Using a pellet molding machine, molding was performed at a pressure of 6 MPa to obtain pellets having a diameter of 25 mm. The amount of the mixed powder subjected to pellet molding was determined by conversion so that the mass of the assumed final product was 2.5 g. One pellet was placed on an alumina boat having a total length of about 100 mm, placed in a box-type electric furnace (model number: AMF20), heated in air atmosphere at normal pressure from room temperature to 800 ° C. over 10 hours, Baked at 800 ° C. for 4 h. The box-type electric furnace has internal dimensions of 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction. After firing, the heater was turned off and allowed to cool naturally with the alumina boat placed in the furnace. As a result, the temperature of the furnace decreases to about 200 ° C. after 5 hours, but the subsequent temperature decrease rate is somewhat moderate. After the passage of day and night, it was confirmed that the furnace temperature was 100 ° C. or lower, and then the pellets were taken out and pulverized for several minutes in a smoked automatic mortar in order to make the particle diameter uniform. In this way, lithium transition metal composite oxide Li 1.09 Ni 0.27 Co 0.14 Mn 0.50 O 2 according to Example 1 was produced.
 (実施例2)
 焼成工程において、前記水酸化物前駆体2.315gに、水酸化リチウム1水和物1.214gを加え、Li:(Ni,Co,Mn)のモル比が110:100である混合粉体を調製したこと以外は、実施例1と同様にして、実施例2に係るリチウム遷移金属複合酸化物を作製した。
(Example 2)
In the firing step, 1.214 g of lithium hydroxide monohydrate is added to 2.315 g of the hydroxide precursor, and a mixed powder having a molar ratio of Li: (Ni, Co, Mn) of 110: 100 is obtained. A lithium transition metal composite oxide according to Example 2 was produced in the same manner as Example 1 except that it was prepared.
 (実施例3、4)
 焼成工程において、焼成温度を800℃から、それぞれ750℃、900℃に変更したこと以外は、実施例1と同様にして、実施例3、4に係るリチウム遷移金属複合酸化物を作製した。
(Examples 3 and 4)
Lithium transition metal composite oxides according to Examples 3 and 4 were produced in the same manner as in Example 1, except that in the firing step, the firing temperature was changed from 800 ° C. to 750 ° C. and 900 ° C., respectively.
 (実施例5)
 水酸化物前駆体の作製工程において、硫酸ニッケル6水和物315.4g、硫酸コバルト7水和物112.4g、硫酸マンガン5水和物578.6gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が30:10:60となる1.0Mの硫酸塩水溶液を作製し、前記硫酸塩水溶液の滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、0.6Mのアンモニア、及び0.3Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽の水溶液のpHが常に9.3を保つように制御したこと、焼成工程において、前記水酸化物前駆体2.211gに、水酸化リチウム1水和物1.373gを加え、Li:(Ni,Co,Mn)のモル比が130:100である混合粉体を調製したこと以外は、実施例1と同様にして、実施例5に係るリチウム遷移金属複合酸化物を作製した。
(Example 5)
In the step of preparing the hydroxide precursor, 315.4 g of nickel sulfate hexahydrate, 112.4 g of cobalt sulfate heptahydrate, and 578.6 g of manganese sulfate pentahydrate were weighed, and all of these were ion-exchanged water. A 1.0M sulfate aqueous solution having a Ni: Co: Mn molar ratio of 30:10:60 was prepared by dissolving in 4 L, and 4.0 M In the firing step, the pH of the aqueous solution in the reaction vessel was controlled to be constantly maintained at 9.3 by appropriately dropping a mixed alkaline solution composed of sodium hydroxide, 0.6M ammonia, and 0.3M hydrazine. And 1.373 g of lithium hydroxide monohydrate were added to 2.211 g of the hydroxide precursor to prepare a mixed powder having a molar ratio of Li: (Ni, Co, Mn) of 130: 100 Outside, in the same manner as in Example 1 to prepare a lithium transition metal composite oxide according to Example 5.
 (実施例6)
 水酸化物前駆体の作製工程において、硫酸ニッケル6水和物262.8g、硫酸コバルト7水和物224.8g、硫酸マンガン5水和物530.4gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が25:20:55となる1.0Mの硫酸塩水溶液を作製し、前記硫酸塩水溶液の滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、1.5Mのアンモニア、及び0.2Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽の水溶液のpHが常に9.5(±0.1)を保つように制御したこと以外は、実施例1と同様にして、実施例6に係るリチウム遷移金属複合酸化物を作製した。
(Example 6)
In the step of preparing the hydroxide precursor, 262.8 g of nickel sulfate hexahydrate, 224.8 g of cobalt sulfate heptahydrate, and 530.4 g of manganese sulfate pentahydrate were weighed, and all of these were ion-exchanged water. A 1.0M sulfate aqueous solution having a Ni: Co: Mn molar ratio of 25:20:55 is prepared by dissolving in 4 L, and 4.0 M By appropriately dropping a mixed alkaline solution consisting of sodium hydroxide, 1.5M ammonia, and 0.2M hydrazine, the pH of the aqueous solution in the reaction vessel is always controlled to be 9.5 (± 0.1). A lithium transition metal composite oxide according to Example 6 was produced in the same manner as Example 1 except for the above.
 (実施例7)
 水酸化物前駆体の作製工程において、前記硫酸塩水溶液の滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、0.8Mのアンモニア、及び0.3Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽の水溶液のpHが常に9.5(±0.1)を保つように制御したこと以外は、実施例1と同様にして、実施例7に係るリチウム遷移金属複合酸化物を作製した。
(Example 7)
In the step of preparing the hydroxide precursor, a mixed alkaline solution composed of 4.0 M sodium hydroxide, 0.8 M ammonia, and 0.3 M hydrazine is added from the start to the end of the dropwise addition of the sulfate aqueous solution. The lithium transition metal composite according to Example 7 was the same as Example 1 except that the pH of the aqueous solution in the reaction vessel was controlled to be always kept at 9.5 (± 0.1) by dropping appropriately. An oxide was produced.
 (実施例8)
 水酸化物前駆体の作製工程において、前記硫酸塩水溶液の滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、2Mのアンモニア、及び0.3Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽の水溶液のpHが常に9.5(±0.1)を保つように制御したこと、焼成工程において、前記水酸化物前駆体2.212gに、水酸化リチウム1水和物1.371gを加え、Li:(Ni,Co,Mn)のモル比が130:100である混合粉体を調製したこと以外は、実施例1と同様にして、実施例8に係るリチウム遷移金属複合酸化物を作製した。
(Example 8)
In the step of preparing the hydroxide precursor, a mixed alkaline solution composed of 4.0 M sodium hydroxide, 2 M ammonia, and 0.3 M hydrazine is appropriately dropped from the start to the end of the dropping of the sulfate aqueous solution. Thus, the pH of the aqueous solution in the reaction vessel was controlled so as to always maintain 9.5 (± 0.1). In the firing step, 2.212 g of the hydroxide precursor was added to lithium hydroxide monohydrate. Lithium transition according to Example 8 in the same manner as in Example 1 except that 1.371 g of the product was added and a mixed powder having a molar ratio of Li: (Ni, Co, Mn) of 130: 100 was prepared. A metal composite oxide was produced.
 (比較例1)
 水酸化物前駆体の作製工程において、前記硫酸塩水溶液の滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、0.5Mのアンモニア、及び0.3Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽の水溶液のpHが常に10.55(±0.1)を保つように制御したこと以外は、実施例1と同様にして、比較例1に係るリチウム遷移金属複合酸化物を作製した。
(Comparative Example 1)
In the step of preparing the hydroxide precursor, a mixed alkaline solution composed of 4.0 M sodium hydroxide, 0.5 M ammonia, and 0.3 M hydrazine was added from the start to the end of the dropwise addition of the sulfate aqueous solution. The lithium transition metal composite according to Comparative Example 1 was used in the same manner as in Example 1 except that the pH of the aqueous solution in the reaction vessel was controlled so as to always maintain 10.55 (± 0.1) by dropping appropriately. An oxide was produced.
 (比較例2)
 水酸化物前駆体の作製工程において、前記硫酸塩水溶液の滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、0.5Mのアンモニア、及び0.3Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽の水溶液のpHが常に9.8(±0.1)を保つように制御したこと以外は、実施例1と同様にして、比較例2に係るリチウム遷移金属複合酸化物を作製した。
(Comparative Example 2)
In the step of preparing the hydroxide precursor, a mixed alkaline solution composed of 4.0 M sodium hydroxide, 0.5 M ammonia, and 0.3 M hydrazine was added from the start to the end of the dropwise addition of the sulfate aqueous solution. The lithium transition metal composite according to Comparative Example 2 was prepared in the same manner as in Example 1 except that the pH of the aqueous solution in the reaction vessel was controlled so as to always maintain 9.8 (± 0.1) by dropping appropriately. An oxide was produced.
 (比較例3)
 硫酸ニッケル6水和物210.3g、硫酸コバルト7水和物140.6g、及び硫酸マンガン5水和物651.2gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が20:12.5:67.5となる1Mの硫酸塩水溶液を作製した。次に、5Lの反応槽に2Lのイオン交換水を注ぎ、COガスを30minバブリングさせることにより、イオン交換水中にCOを溶解させた。反応槽の温度を50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を1500rpmの回転速度で攪拌しながら、前記硫酸塩水溶液を1.3mL/minの速度で滴下した。ここで、滴下の開始から終了までの間、1Mの炭酸ナトリウム、および0.5Mのアンモニアを含有する水溶液を適宜滴下することにより、反応槽の水溶液のpHが常に7.9(±0.1)を保つように制御した。滴下終了後、反応槽内の攪拌をさらに3h継続した。攪拌の停止後、12h以上静置した。
 次に、吸引ろ過装置を用いて、反応槽内に生成した共沈炭酸塩の粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20h乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、炭酸塩前駆体を作製した。
(Comparative Example 3)
210.3 g of nickel sulfate hexahydrate, 140.6 g of cobalt sulfate heptahydrate, and 651.2 g of manganese sulfate pentahydrate were weighed, and all of these were dissolved in 4 L of ion-exchanged water, and Ni: Co: A 1M aqueous sulfate solution with a Mn molar ratio of 20: 12.5: 67.5 was prepared. Next, 2 L of ion exchange water was poured into a 5 L reaction vessel, and CO 2 gas was bubbled for 30 minutes to dissolve CO 2 in the ion exchange water. The temperature of the reaction vessel was set to 50 ° C. (± 2 ° C.), and the aqueous sulfate solution was adjusted to 1.3 mL / min while stirring the reaction vessel at a rotational speed of 1500 rpm using a paddle blade equipped with a stirring motor. It was dripped at a speed. Here, from the start to the end of the dropping, an aqueous solution containing 1 M sodium carbonate and 0.5 M ammonia is appropriately dropped, so that the pH of the aqueous solution in the reaction tank is always 7.9 (± 0.1 ) Was controlled. After completion of the dropping, stirring in the reaction vessel was continued for 3 hours. After stopping the stirring, the mixture was allowed to stand for 12 hours or more.
Next, using a suction filtration device, the coprecipitated carbonate particles produced in the reaction vessel are separated, and sodium ions adhering to the particles are washed away using ion-exchanged water, and an electric furnace is used. Then, it was dried in an air atmosphere at 80 ° C. under normal pressure for 20 hours. Then, in order to arrange | equalize a particle size, it grind | pulverized for several minutes with the smoked automatic mortar. In this way, a carbonate precursor was produced.
 実施例1で作製した水酸化物前駆体に代えて、上記のようにして作製した炭酸塩前駆体を用い、焼成工程において、前記炭酸塩前駆体2.204gに、炭酸リチウム1.047gを加え、Li:(Ni,Co,Mn)のモル比が145:100である混合粉体を調製して焼成した以外は、実施例1と同様にして、比較例3に係るリチウム遷移金属複合酸化物を作製した。 Instead of the hydroxide precursor prepared in Example 1, the carbonate precursor prepared as described above was used, and in the firing step, 1.047 g of lithium carbonate was added to 2.204 g of the carbonate precursor. , Li: (Ni, Co, Mn) The lithium transition metal composite oxide according to Comparative Example 3 was the same as Example 1 except that a mixed powder having a molar ratio of 145: 100 was prepared and fired. Was made.
 (比較例4)
 焼成温度を1000℃としたこと以外は、実施例2と同様にして、比較例4に係るリチウム遷移金属複合酸化物を作製した。
(Comparative Example 4)
A lithium transition metal composite oxide according to Comparative Example 4 was produced in the same manner as in Example 2 except that the firing temperature was 1000 ° C.
 (実施例9~15)
 水酸化物前駆体の作製工程において、前記硫酸塩水溶液の滴下の開始から終了までの間に添加する混合アルカリ溶液中のアンモニアの濃度を、1.25Mから、それぞれ、0.4M、0.6M、0.8M、1M、1.4M、1.6M、2Mに変更したこと以外は、実施例1と同様にして、実施例9~15に係る水酸化物前駆体を作製した。
(Examples 9 to 15)
In the step of preparing the hydroxide precursor, the concentration of ammonia in the mixed alkali solution added from the start to the end of the dropwise addition of the sulfate aqueous solution is changed from 1.25 M to 0.4 M and 0.6 M, respectively. , 0.8M, 1M, 1.4M, 1.6M, and 2M, hydroxide precursors according to Examples 9 to 15 were produced in the same manner as in Example 1.
 (実施例16)
 水酸化物前駆体の作製工程において、硫酸ニッケル6水和物473.4g、硫酸マンガン5水和物530.6gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が45:0:55となる1.0Mの硫酸塩水溶液を作製したこと以外は、実施例1と同様にして、実施例16に係る水酸化物前駆体を作製した。
(Example 16)
In the step of preparing the hydroxide precursor, 473.4 g of nickel sulfate hexahydrate and 530.6 g of manganese sulfate pentahydrate were weighed, and all of these were dissolved in 4 L of ion-exchanged water, and Ni: Co: Mn A hydroxide precursor according to Example 16 was produced in the same manner as in Example 1 except that a 1.0 M sulfate aqueous solution having a molar ratio of 45: 0: 55 was produced.
 (前駆体及びリチウム遷移金属複合酸化物のタップ密度の測定)
 実施例1~16及び比較例1、2、4に係る水酸化物前駆体のタップ密度、比較例3に係る炭酸塩前駆体のタップ密度、実施例1~8及び比較例1~4に係るリチウム遷移金属複合酸化物のタップ密度は、REI ELECTRIC CO.LTD.社製のタッピング装置(1968年製)を用いて、上述した条件及び手順にしたがって、測定した。
(Measurement of tap density of precursor and lithium transition metal composite oxide)
Tap densities of hydroxide precursors according to Examples 1 to 16 and Comparative Examples 1, 2, and 4, Tap densities of carbonate precursors according to Comparative Example 3, Examples 1 to 8 and Comparative Examples 1 to 4 The tap density of the lithium transition metal composite oxide is determined by REI ELECTRIC CO. LTD. Using a tapping device (manufactured in 1968) manufactured by the company, the measurement was performed according to the conditions and procedures described above.
 (α-NaFeO型結晶構造の確認)
 実施例1~8及び比較例1~4に係るリチウム遷移金属複合酸化物が、α-NaFeO型結晶構造を有することは、X線回折測定における構造モデルと回折パターンが一致したことにより確認した。
(Confirmation of α-NaFeO type 2 crystal structure)
It was confirmed that the lithium transition metal composite oxides according to Examples 1 to 8 and Comparative Examples 1 to 4 had an α-NaFeO 2 type crystal structure because the structural model and the diffraction pattern in the X-ray diffraction measurement coincided with each other. .
 (半値幅の測定)
 実施例1~8及び比較例1~4に係るリチウム遷移金属複合酸化物の半値幅は、上述した条件及び手順にしたがって、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて測定を行った。前記エックス線回折装置の付属ソフトである「PDXL」を用いて、空間群R3-mでは(003)面に指数付けされる、エックス線回折図上2θ=18.6°±1°に存在する回折ピークについての半値幅FWHM(003)、及び、(104)面に指数付けされる、エックス線回折図上2θ=44±1°に存在する回折ピークについての半値幅FWHM(104)を決定した。その測定結果より、FWHM(003)/FWHM(104)を求めた。
(Measurement of half width)
The full width at half maximum of the lithium transition metal composite oxide according to Examples 1 to 8 and Comparative Examples 1 to 4 was measured using an X-ray diffractometer (manufactured by Rigaku, model name: MiniFlex II) according to the conditions and procedures described above. Went. A diffraction peak existing at 2θ = 18.6 ° ± 1 ° on the X-ray diffractogram, indexed to the (003) plane in the space group R3-m, using “PDXL” which is software attached to the X-ray diffractometer. FWHM (003) and FWHM (104) for the diffraction peak at 2θ = 44 ± 1 ° on the X-ray diffractogram indexed to the (104) plane. From the measurement result, FWHM (003) / FWHM (104) was obtained.
 [非水電解質二次電池用電極の作製]
 実施例1~8及び比較例1~4に係るリチウム遷移金属複合酸化物をそれぞれ正極活物質として用いて、以下の手順で実施例1~8及び比較例1~4に係る非水電解質二次電池用電極を作製した。
[Preparation of electrode for non-aqueous electrolyte secondary battery]
Using the lithium transition metal composite oxides according to Examples 1 to 8 and Comparative Examples 1 to 4 as positive electrode active materials, respectively, the non-aqueous electrolyte secondary according to Examples 1 to 8 and Comparative Examples 1 to 4 were performed in the following procedure. A battery electrode was prepared.
 N-メチルピロリドンを分散媒とし、活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比90:5:5の割合で混練分散されている塗布用ペーストを作製した。該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布し、正極板を作製した。なお、全ての実施例及び比較例に係るリチウム二次電池同士で体積当たりの放電容量を求める試験条件が同一になるように、一定面積当たりに塗布されている活物質の塗布厚みを統一した。このようにして作製した非水電解質二次電池用電極は、一部を切り出し、以下の手順で非水電解質二次電池(リチウム二次電池)である試験電池を作製し、電池特性を評価した。 Using N-methylpyrrolidone as a dispersion medium, a coating paste in which the active material, acetylene black (AB) and polyvinylidene fluoride (PVdF) were kneaded and dispersed at a mass ratio of 90: 5: 5 was prepared. The coating paste was applied to one side of an aluminum foil current collector having a thickness of 20 μm to produce a positive electrode plate. In addition, the application thickness of the active material applied per fixed area was unified so that the test conditions for obtaining the discharge capacity per volume between the lithium secondary batteries according to all Examples and Comparative Examples were the same. The nonaqueous electrolyte secondary battery electrode thus produced was partially cut out, a test battery that was a nonaqueous electrolyte secondary battery (lithium secondary battery) was produced by the following procedure, and the battery characteristics were evaluated. .
 [非水電解質二次電池の作製及び評価]
 正極の単独挙動を正確に観察する目的のため、対極、即ち負極には金属リチウムをニッケル箔集電体に密着させて用いた。ここで、リチウム二次電池の容量が負極によって制限されないよう、負極には十分な量の金属リチウムを配置した。
[Production and evaluation of nonaqueous electrolyte secondary battery]
For the purpose of accurately observing the single behavior of the positive electrode, metallic lithium was used in close contact with the nickel foil current collector for the counter electrode, that is, the negative electrode. Here, a sufficient amount of metallic lithium was disposed on the negative electrode so that the capacity of the lithium secondary battery was not limited by the negative electrode.
 電解液として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)が体積比6:7:7である混合溶媒に濃度が1mol/LとなるようにLiPFを溶解させた溶液を用いた。セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用いた。正極端子及び負極端子の開放端部が外部露出するように電極を収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記電解液を注液後、注液孔を封止した。 As an electrolytic solution, LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) had a volume ratio of 6: 7: 7 so that the concentration would be 1 mol / L. The solution was used. As the separator, a polypropylene microporous film whose surface was modified with polyacrylate was used. A metal resin composite film made of polyethylene terephthalate (15 μm) / aluminum foil (50 μm) / metal-adhesive polypropylene film (50 μm) was used for the outer package. The electrode is housed so that the open ends of the positive electrode terminal and the negative electrode terminal are exposed to the outside, and the fusion margin where the inner surfaces of the metal resin composite film face each other is hermetically sealed except for the portion serving as a liquid injection hole, After injecting the electrolytic solution, the injection hole was sealed.
 以上の手順にて作製されたリチウム二次電池は、25℃の下、初期充放電工程に供した。充電は、電流0.1C、電圧4.6Vの定電流定電圧充電とし、充電終止条件は電流値が1/6に減衰した時点とした。放電は、電流0.1C、終止電圧2.0Vの定電流放電とした。この充放電を2サイクル行った。ここで、充電後及び放電後にそれぞれ30分の休止過程を設けた。 The lithium secondary battery produced by the above procedure was subjected to an initial charge / discharge process at 25 ° C. Charging was performed at a constant current and a constant voltage with a current of 0.1 C and a voltage of 4.6 V, and the charge termination condition was when the current value was attenuated to 1/6. The discharge was a constant current discharge with a current of 0.1 C and a final voltage of 2.0 V. This charge / discharge was performed for two cycles. Here, a pause process of 30 minutes was provided after charging and after discharging, respectively.
 次に、1サイクルの充放電試験を行った。充電は、電流0.1C、電圧4.45Vの定電流定電圧充電とし、充電終止条件は電流値が1/6に減衰した時点とした。放電は、電流0.1C、終止電圧2.0Vの定電流放電とした。ここで、充電後及び放電後にそれぞれ10分の休止過程を設けた。このサイクルにおける正極活物質の放電容量(mAh/g)を記録した。 Next, a one-cycle charge / discharge test was performed. Charging was performed at a constant current and a constant voltage with a current of 0.1 C and a voltage of 4.45 V, and the charge termination condition was when the current value was attenuated to 1/6. The discharge was a constant current discharge with a current of 0.1 C and a final voltage of 2.0 V. Here, a pause process of 10 minutes was provided after charging and discharging, respectively. The discharge capacity (mAh / g) of the positive electrode active material in this cycle was recorded.
 (限界合剤密度の測定)
 上記で作製した実施例1~8及び比較例1~4に係る非水電解質二次電池用電極をそれぞれ2cm×2cmの大きさに複数枚ずつ切り出し、平板プレス機(RIKEN SEIKI Co.LTD.製、CDM-20M TYPE P-1B)を用いて、1MPaから15MPaまでの種々のプレス圧力を適用することによって、極板厚みの異なる種々のプレス後電極を作製した。それぞれのプレス後電極の厚みと重量から、合剤密度(g/cm)を算出した。
 それぞれのプレス後電極は、120℃の温度環境下にて12hの減圧乾燥を行い、含有水分を十分に除去した後、2cm×2cmの正方形の対向する二辺の各中点を結ぶ線を折り目として、谷部に何も挟まず、手で半分に折り曲げ、他の対向する二辺同士を一致させた。さらに、湾曲してU字状となっている折り目の山部分を押圧し、当該電極の表面同士を全面にわたって接触させた。次に、元の平面状に再び広げ、該電極を可視光源の方向に向けて折り曲げ部分を目視観察し、可視光が折り曲げ部分を透過して観察されるか否かによって、合剤層の部分の破損の有無を確認した。そして、破損の認められなかった電極のうち、最も小さな厚みを有する電極を決定し、当該電極に係る上記合剤密度(g/cm)を当該実施例又は比較例に係る非水電解質二次電池用電極の「限界合剤密度(g/cm)」と定義した。
(Measurement of limit mixture density)
A plurality of non-aqueous electrolyte secondary battery electrodes according to Examples 1 to 8 and Comparative Examples 1 to 4 prepared above were cut into a size of 2 cm × 2 cm, respectively, and a flat plate press (manufactured by RIKEN SEIKI Co. LTD. CDM-20M TYPE P-1B), various post-pressing electrodes having different electrode plate thicknesses were produced by applying various pressing pressures from 1 MPa to 15 MPa. The mixture density (g / cm 3 ) was calculated from the thickness and weight of each post-press electrode.
Each pressed electrode was dried under reduced pressure for 12 h under a temperature environment of 120 ° C., and after sufficiently removing the contained water, a line connecting each midpoint of two opposing sides of a 2 cm × 2 cm square was folded. As described above, nothing was sandwiched between the valleys, and it was folded by hand to make the other two opposite sides coincide. Furthermore, the crest portion of the fold that was curved and formed into a U-shape was pressed to bring the surfaces of the electrodes into contact with each other over the entire surface. Next, the sheet is spread again to the original flat shape, the electrode is directed toward the visible light source, the bent portion is visually observed, and the portion of the mixture layer is determined depending on whether visible light is observed through the bent portion. The presence or absence of damage was confirmed. And the electrode which has the smallest thickness among the electrodes by which damage was not recognized was determined, and the said mixture density (g / cm < 3 >) which concerns on the said electrode is the nonaqueous electrolyte secondary which concerns on the said Example or a comparative example It was defined as “limit mixture density (g / cm 3 )” of the battery electrode.
 それぞれの実施例及び比較例について、上記放電容量(mAh/g)の値にそれぞれの限界合剤密度(g/cm)の値を乗ずることによって、体積当たりの放電容量である「0.1C容量(mAh/cm)」を算出した。 For each of the examples and comparative examples, the discharge capacity per unit volume “0.1 C” is obtained by multiplying the value of the discharge capacity (mAh / g) by the value of the limit mixture density (g / cm 3 ). The capacity (mAh / cm 3 ) ”was calculated.
 (全細孔容積及びピーク微分細孔容積の測定)
 実施例1~8及び比較例1~4に係るリチウム遷移金属複合酸化物粒子の全細孔容積及びピーク微分細孔容積の測定については、上述した手順により、放電状態の上記の試験電池を解体して正極板を取り出し、採取した正極板中の活物質であるリチウム遷移金属複合酸化物の粒子について、Quantachrome社製の「autosorb iQ」及び制御・解析ソフト「ASiQwin」を用いて行った。
(Measurement of total pore volume and peak differential pore volume)
For the measurement of the total pore volume and the peak differential pore volume of the lithium transition metal composite oxide particles according to Examples 1 to 8 and Comparative Examples 1 to 4, the above test batteries in a discharged state were disassembled according to the procedure described above. Then, the positive electrode plate was taken out, and the particles of the lithium transition metal composite oxide, which is an active material in the collected positive electrode plate, were measured using “autosorb iQ” manufactured by Quantachrome and control / analysis software “ASiQwin”.
 実施例1~8及び比較例1~4に係るリチウム遷移金属複合酸化物のLi/Me比、焼成温度、FWHM(003)/FWHM(104)、全細孔容積、ピーク微分細孔容積、前記リチウム遷移金属複合酸化物をそれぞれ正極活物質として用いたリチウム二次電池の0.1C容量、リチウム遷移金属複合酸化物(活物質)のタップ密度を表1に示す。
 実施例1~16及び比較例1~4に係る前駆体のNi/Me比、Co/Me比、Mn/Me比、前駆体の種類、反応槽のpH、反応槽に滴下するアルカリ溶液中のアンモニア、ヒドラジンの濃度、前駆体のタップ密度を表2に示す。
Li / Me ratio of lithium transition metal composite oxides according to Examples 1 to 8 and Comparative Examples 1 to 4, firing temperature, FWHM (003) / FWHM (104), total pore volume, peak differential pore volume, Table 1 shows the 0.1 C capacity of a lithium secondary battery using a lithium transition metal composite oxide as a positive electrode active material and the tap density of the lithium transition metal composite oxide (active material).
Ni / Me ratio, Co / Me ratio, Mn / Me ratio of precursors according to Examples 1 to 16 and Comparative Examples 1 to 4, types of precursors, pH of the reaction tank, alkaline solution dropped into the reaction tank Table 2 shows the concentrations of ammonia and hydrazine and the tap density of the precursor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1より、FWHM(003)/FWHM(104))が0.6以下である結晶構造を有し、全細孔容積が0.05cm/g以下である実施例1~8に係るリチウム遷移金属複合酸化物を用いたリチウム二次電池は、体積当たりの放電容量である0.1C容量が大きくなっていることが分かる。また、リチウム遷移金属複合酸化物のピーク微分細孔容積は0.2mm/(g・nm)以下が好ましいことが分かる。
 表1及び表2より、このような結晶構造、微細構造は、Li/Meが1より大きく、Mn/Meが0.5より大きい組成を有し、共沈前駆体が水酸化物であり、水酸化物前駆体の作製工程における反応槽の水溶液のpHが9.8未満であり、リチウム遷移金属複合酸化物を750~900℃の温度で焼成された場合に得られていることが分かる。反応槽の水溶液のpHが9~9.8未満である場合、水酸化物前駆体のタップ密度は1.3g/cm以上になる。
 実施例1、9~15からみて、水酸化物前駆体のタップ密度を向上させるためには、滴下するアンモニア(錯化剤)の濃度は0.6M以上とすることが好ましい。0.6~1.6Mで、水酸化物前駆体のタップ密度を1.4g/cm以上とすることができる。ヒドラジン(還元剤)の濃度は0.1M以上とすることが好ましい。
 実施例1~5、16を対比すると、Co/Me比が0の場合よりも、Co/Me比が0.10以上の場合に、水酸化物前駆体のタップ密度がより高くなり、0.1C容量もより高くなることが分かる。
From Table 1, the lithium transition according to Examples 1 to 8 having a crystal structure in which FWHM (003) / FWHM (104)) is 0.6 or less and the total pore volume is 0.05 cm 3 / g or less. It can be seen that a lithium secondary battery using a metal composite oxide has a large 0.1 C capacity, which is a discharge capacity per volume. It can also be seen that the peak differential pore volume of the lithium transition metal composite oxide is preferably 0.2 mm 3 / (g · nm) or less.
From Table 1 and Table 2, such crystal structure and microstructure have a composition in which Li / Me is larger than 1 and Mn / Me is larger than 0.5, and the coprecipitation precursor is a hydroxide, It can be seen that the pH of the aqueous solution in the reaction vessel in the production process of the hydroxide precursor is less than 9.8, and the lithium transition metal composite oxide is obtained when calcined at a temperature of 750 to 900 ° C. When the pH of the aqueous solution in the reaction vessel is 9 to less than 9.8, the tap density of the hydroxide precursor is 1.3 g / cm 3 or more.
In view of Examples 1 and 9 to 15, in order to improve the tap density of the hydroxide precursor, the concentration of ammonia (complexing agent) to be dropped is preferably 0.6 M or more. The tap density of the hydroxide precursor can be 1.4 g / cm 3 or more at 0.6 to 1.6M. The concentration of hydrazine (reducing agent) is preferably 0.1M or higher.
When Examples 1 to 5 and 16 are compared, the tap density of the hydroxide precursor is higher when the Co / Me ratio is 0.10 or more than when the Co / Me ratio is 0. It can be seen that the 1C capacity is also higher.
 比較例1及び2のように、水酸化物前駆体の作製工程における反応槽の水溶液のpHが9.8以上の場合には、水酸化物前駆体のタップ密度は1.3g/cm以上にならない。また、これらの水酸化物前駆体を焼成して得たリチウム遷移金属複合酸化物は、FWHM(003)/FWHM(104)が0.6以下になるが、全細孔容積が0.05cm/gより大きくなり、体積当たりの0.1C容量は小さくなる。また、このようなリチウム遷移金属複合酸化物は、ピーク微分細孔容積も0.2mm/(g・nm)より大きくなる。 As in Comparative Examples 1 and 2, when the pH of the aqueous solution in the reaction vessel in the hydroxide precursor preparation step is 9.8 or more, the tap density of the hydroxide precursor is 1.3 g / cm 3 or more. do not become. In addition, the lithium transition metal composite oxide obtained by firing these hydroxide precursors has a FWHM (003) / FWHM (104) of 0.6 or less, but the total pore volume is 0.05 cm 3. / C and 0.1 C capacity per volume becomes small. Further, such a lithium transition metal composite oxide has a peak differential pore volume larger than 0.2 mm 3 / (g · nm).
 比較例3のように、共沈前駆体として炭酸塩を採用し、反応槽の水溶液のpHを8程度と低くした場合、炭酸塩前駆体のタップ密度は1.6g/cm以上になるが、この炭酸塩前駆体を焼成して得たリチウム遷移金属複合酸化物は、FWHM(003)/FWHM(104)が0.6より大きくなり、体積当たりの0.1C容量は小さくなる。 As in Comparative Example 3, when carbonate is used as a coprecipitation precursor and the pH of the aqueous solution in the reaction vessel is lowered to about 8, the tap density of the carbonate precursor is 1.6 g / cm 3 or more. In the lithium transition metal composite oxide obtained by firing this carbonate precursor, FWHM (003) / FWHM (104) is larger than 0.6, and the 0.1 C capacity per volume is small.
 比較例4のように、水酸化物前駆体のタップ密度が1.3g/cm以上であっても、この水酸化物前駆体を1000℃で焼成した場合、得られたリチウム遷移金属複合酸化物は、FWHM(003)/FWHM(104)が0.6より大きくなり、体積当たりの0.1C容量は小さくなる。 Even when the tap density of the hydroxide precursor was 1.3 g / cm 3 or more as in Comparative Example 4, when this hydroxide precursor was baked at 1000 ° C., the obtained lithium transition metal composite oxidation As for a thing, FWHM (003) / FWHM (104) becomes larger than 0.6, and the 0.1C capacity per volume becomes small.
 以上のとおりであるから、Li/Meが1より大きく、Mn/Meが0.5より大きく、FWHM(003)/FWHM(104))が0.6以下であり、全細孔容積が0.05cm/g以下であるという要件を満たすリチウム遷移金属複合酸化物を非水電解質二次電池の正極活物質として用いることにより、体積当たりの放電容量が大きくなるといえる。
 そして、このようなリチウム遷移金属複合酸化物は、水酸化物前駆体の作製工程における反応槽の水溶液のpHが9.8未満であり、リチウム遷移金属複合酸化物を750~900℃の温度で焼成された場合に得られる。
As described above, Li / Me is larger than 1, Mn / Me is larger than 0.5, FWHM (003) / FWHM (104)) is 0.6 or less, and the total pore volume is 0.00. It can be said that the discharge capacity per volume is increased by using a lithium transition metal composite oxide that satisfies the requirement of not more than 05 cm 3 / g as the positive electrode active material of the nonaqueous electrolyte secondary battery.
In such a lithium transition metal composite oxide, the pH of the aqueous solution in the reaction vessel in the hydroxide precursor preparation step is less than 9.8, and the lithium transition metal composite oxide is heated at a temperature of 750 to 900 ° C. Obtained when fired.
 本発明の一側面に係るリチウム遷移金属複合酸化物を含む正極活物質を用いることにより、体積当たりの放電容量が大きい非水電解質二次電池を提供することができるので、この非水電解質二次電池は、ハイブリッド自動車用、電気自動車用の非水電解質二次電池として有用である。 By using the positive electrode active material including the lithium transition metal composite oxide according to one aspect of the present invention, a nonaqueous electrolyte secondary battery having a large discharge capacity per volume can be provided. The battery is useful as a nonaqueous electrolyte secondary battery for hybrid vehicles and electric vehicles.
1  非水電解質二次電池(リチウム二次電池)
2  電極群
3  電池容器
4  正極端子
4’ 正極リード
5  負極端子
5’ 負極リード
20  蓄電ユニット
30  蓄電装置
1 Nonaqueous electrolyte secondary battery (lithium secondary battery)
2 Electrode group 3 Battery container 4 Positive electrode terminal 4 ′ Positive electrode lead 5 Negative electrode terminal 5 ′ Negative electrode lead 20 Power storage unit 30 Power storage device

Claims (15)

  1.  リチウム遷移金属複合酸化物を含む非水電解質電池用正極活物質であって、
     前記リチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有し、
     前記リチウム遷移金属複合酸化物を構成するLiと遷移金属(Me)のモル比(Li/Me)が1より大きく、
     前記遷移金属(Me)がMn及びNi、又はMn、Ni及びCoを含み、前記遷移金属(Me)中のMnのモル比Mn/Meが0.5より大きく、
     R3-mに帰属可能なX線回折パターンを有し、CuKα線を用いたX線回折測定によるミラー指数hklにおける(104)面の回折ピークの半値幅(FWHM(104))に対する(003)面の回折ピークの半値幅の比(FWHM(003)/FWHM(104))が0.6以下であり、前記リチウム遷移金属複合酸化物の粒子の窒素ガス吸着法を用いた吸着等温線からBJH法で求めた全細孔容積が0.05cm/g以下である、非水電解質二次電池用正極活物質。
    A positive electrode active material for a non-aqueous electrolyte battery comprising a lithium transition metal composite oxide,
    The lithium transition metal composite oxide has an α-NaFeO 2 type crystal structure,
    The molar ratio (Li / Me) of Li and transition metal (Me) constituting the lithium transition metal composite oxide is greater than 1,
    The transition metal (Me) contains Mn and Ni, or Mn, Ni and Co, and the molar ratio Mn / Me of Mn in the transition metal (Me) is greater than 0.5,
    (003) plane with half-width (FWHM (104)) of diffraction peak of (104) plane at Miller index hkl by X-ray diffraction measurement using CuKα ray having an X-ray diffraction pattern that can be assigned to R3-m The half-width ratio (FWHM (003) / FWHM (104)) of the diffraction peak of B is the BJH method from the adsorption isotherm using the nitrogen gas adsorption method of the lithium transition metal composite oxide particles. The positive electrode active material for nonaqueous electrolyte secondary batteries whose total pore volume calculated | required by 0.05 is 0.05 cm < 3 > / g or less.
  2.  前記リチウム遷移金属複合酸化物の粒子の窒素ガス吸着法を用いた吸着等温線からBJH法で求めたピーク微分細孔容積が0.2mm/(g・nm)以下である、請求項1に記載の非水電解質二次電池用正極活物質。 The peak differential pore volume determined by the BJH method from the adsorption isotherm using the nitrogen gas adsorption method of the particles of the lithium transition metal composite oxide is 0.2 mm 3 / (g · nm) or less. The positive electrode active material for nonaqueous electrolyte secondary batteries as described.
  3.  前記モル比Li/Meが、1.1以上1.3以下である、請求項1又は2に記載の非水電解質二次電池用正極活物質。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the molar ratio Li / Me is 1.1 or more and 1.3 or less.
  4.  前記遷移金属(Me)中のCoのモル比Co/Meが0.2以下である、請求項1~3のいずれかに記載の非水電解質二次電池用正極活物質。 4. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein a molar ratio Co / Me of Co in the transition metal (Me) is 0.2 or less.
  5.  前記遷移金属(Me)中のCoのモル比Co/Meが0.1以上である、請求項1~4のいずれかに記載の非水電解質二次電池用正極活物質。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein a molar ratio Co / Me of Co in the transition metal (Me) is 0.1 or more.
  6.  請求項1~5のいずれかに記載の非水電解質二次電池用正極活物質に含まれるリチウム遷移金属複合酸化物の製造に用いる遷移金属水酸化物前駆体であって、前記遷移金属(Me)がMn及びNi、又はMn、Ni及びCoを含み、前記遷移金属(Me)中のMnのモル比Mn/Meが0.5より大きく、タップ密度が1.3g/cm以上である、遷移金属水酸化物前駆体。 A transition metal hydroxide precursor used for producing a lithium transition metal composite oxide contained in the positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the transition metal (Me ) Contains Mn and Ni, or Mn, Ni and Co, the molar ratio of Mn in the transition metal (Me) is Mn / Me larger than 0.5, and the tap density is 1.3 g / cm 3 or more. Transition metal hydroxide precursor.
  7.  前記遷移金属(Me)中のCoのモル比Co/Meが0.2以下である、請求項5に記載の遷移金属水酸化物前駆体。 The transition metal hydroxide precursor according to claim 5, wherein a molar ratio Co / Me of Co in the transition metal (Me) is 0.2 or less.
  8.  前記遷移金属(Me)中のCoのモル比Co/Meが0.1以上である、請求項6又は7に記載の遷移金属水酸化物前駆体。 The transition metal hydroxide precursor according to claim 6 or 7, wherein a molar ratio Co / Me of Co in the transition metal (Me) is 0.1 or more.
  9.  請求項6~8のいずれかに記載の遷移金属水酸化物前駆体の製造方法であって、反応槽に、遷移金属(Me)を含有する溶液と共に、アルカリ金属水酸化物、錯化剤、及び、還元剤を含有するアルカリ溶液を加えて、前記反応槽の溶液のpHを9~9.8未満として、遷移金属水酸化物を共沈させる、遷移金属水酸化物前駆体の製造方法。 A method for producing a transition metal hydroxide precursor according to any one of claims 6 to 8, wherein the reaction tank contains a solution containing a transition metal (Me), an alkali metal hydroxide, a complexing agent, And a method for producing a transition metal hydroxide precursor, wherein an alkaline solution containing a reducing agent is added to adjust the pH of the solution in the reaction vessel to less than 9 to 9.8 to coprecipitate the transition metal hydroxide.
  10.  前記錯化剤の濃度が、0.6M以上である、請求項9に記載の遷移金属水酸化物前駆体の製造方法。 The method for producing a transition metal hydroxide precursor according to claim 9, wherein the concentration of the complexing agent is 0.6M or more.
  11.  前記還元剤の濃度が、0.05M以上である、請求項9又は10に記載の遷移金属水酸化物前駆体の製造方法。 The method for producing a transition metal hydroxide precursor according to claim 9 or 10, wherein the concentration of the reducing agent is 0.05 M or more.
  12.  請求項6~8のいずれかに記載の遷移金属水酸化物前駆体と、リチウム化合物とを混合して、750~900℃で焼成する、α-NaFeO型結晶構造を有し、Liと遷移金属(Me)のモル比(Li/Me)が1より大きいリチウム遷移金属複合酸化物を含む非水電解質電池用正極活物質の製造方法。 A transition metal hydroxide precursor according to any one of claims 6 to 8 and a lithium compound are mixed and baked at 750 to 900 ° C, having an α-NaFeO 2 type crystal structure, transitioning with Li A method for producing a positive electrode active material for a nonaqueous electrolyte battery, comprising a lithium transition metal composite oxide having a metal (Me) molar ratio (Li / Me) of greater than 1.
  13.  請求項1~5のいずれかに記載の正極活物質を含有する、非水電解質二次電池用電極。 An electrode for a nonaqueous electrolyte secondary battery containing the positive electrode active material according to any one of claims 1 to 5.
  14.  請求項13に記載の非水電解質二次電池用電極を備えた非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising the electrode for a nonaqueous electrolyte secondary battery according to claim 13.
  15.  請求項14に記載の非水電解質二次電池を複数個集合した蓄電装置。 A power storage device in which a plurality of the nonaqueous electrolyte secondary batteries according to claim 14 are assembled.
PCT/JP2017/024741 2016-07-14 2017-07-05 Positive electrode active material for nonaqueous electrolyte secondary batteries, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device WO2018012385A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016139728A JP2019149222A (en) 2016-07-14 2016-07-14 Cathode active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, manufacturing method of transition metal hydroxide precursor, manufacturing method of cathode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2016-139728 2016-07-14

Publications (1)

Publication Number Publication Date
WO2018012385A1 true WO2018012385A1 (en) 2018-01-18

Family

ID=60952413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024741 WO2018012385A1 (en) 2016-07-14 2017-07-05 Positive electrode active material for nonaqueous electrolyte secondary batteries, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device

Country Status (2)

Country Link
JP (1) JP2019149222A (en)
WO (1) WO2018012385A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117281A1 (en) * 2017-12-15 2019-06-20 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, transition metal hydroxide precursor, method for production of transition metal hydroxide precursor, method for production of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US20190270650A1 (en) * 2016-10-31 2019-09-05 Sumitomo Chemical Company, Limited Positive electrode active material precursor for lithium secondary battery, and method for manufacturing positive electrode active material for lithium secondary battery
CN112771695A (en) * 2018-06-21 2021-05-07 株式会社杰士汤浅国际 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, method for producing nonaqueous electrolyte secondary battery, and method for using nonaqueous electrolyte secondary battery
US20210249645A1 (en) * 2018-06-21 2021-08-12 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery
CN113454032A (en) * 2019-02-22 2021-09-28 住友金属矿山株式会社 Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
EP3910708A4 (en) * 2019-03-15 2022-03-30 Basf Toda Battery Materials LLC Positive electrode active material for secondary cell having non-aqueous electrolyte, positive electrode for secondary cell having non-aqueous electrolyte, and secondary cell having non-aqueous electrolyte

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021093289A (en) * 2019-12-10 2021-06-17 株式会社Gsユアサ Non-aqueous electrolyte power storage element, application thereof and manufacturing method thereof
JP6980053B2 (en) * 2020-05-07 2021-12-15 住友化学株式会社 A method for producing a positive electrode active material precursor for a lithium secondary battery, a method for producing a positive electrode active material precursor for a lithium secondary battery, and a method for producing a positive electrode active material for a lithium secondary battery.
CN113161537B (en) * 2021-03-31 2022-06-21 华南师范大学 High nickel material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031478A1 (en) * 2011-08-31 2013-03-07 トヨタ自動車株式会社 Lithium rechargeable battery
JP2013179044A (en) * 2012-02-01 2013-09-09 Nissan Motor Co Ltd Transition metal oxide containing solid solution lithium, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013206552A (en) * 2012-03-27 2013-10-07 Tdk Corp Active material and lithium ion secondary battery
JP2015026594A (en) * 2013-06-20 2015-02-05 株式会社Gsユアサ Mix active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
WO2015026108A1 (en) * 2013-08-20 2015-02-26 주식회사 엘지화학 Precursor for preparing lithium composite transition metal oxide, method for preparing same, and lithium composite transition metal oxide using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031478A1 (en) * 2011-08-31 2013-03-07 トヨタ自動車株式会社 Lithium rechargeable battery
JP2013179044A (en) * 2012-02-01 2013-09-09 Nissan Motor Co Ltd Transition metal oxide containing solid solution lithium, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013206552A (en) * 2012-03-27 2013-10-07 Tdk Corp Active material and lithium ion secondary battery
JP2015026594A (en) * 2013-06-20 2015-02-05 株式会社Gsユアサ Mix active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
WO2015026108A1 (en) * 2013-08-20 2015-02-26 주식회사 엘지화학 Precursor for preparing lithium composite transition metal oxide, method for preparing same, and lithium composite transition metal oxide using same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190270650A1 (en) * 2016-10-31 2019-09-05 Sumitomo Chemical Company, Limited Positive electrode active material precursor for lithium secondary battery, and method for manufacturing positive electrode active material for lithium secondary battery
US11365130B2 (en) * 2016-10-31 2022-06-21 Sumitomo Chemical Company, Limited Positive electrode active material precursor for lithium secondary battery, and method for manufacturing positive electrode active material for lithium secondary battery
US11251427B2 (en) 2017-12-15 2022-02-15 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, method of producing transition metal hydroxide precursor, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2019117282A1 (en) * 2017-12-15 2019-06-20 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2019117281A1 (en) * 2017-12-15 2021-01-07 株式会社Gsユアサ Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, transition metal hydroxide precursor, transition metal hydroxide precursor, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery Positive electrode and non-aqueous electrolyte secondary battery
JP7296044B2 (en) 2017-12-15 2023-06-22 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2019117282A1 (en) * 2017-12-15 2021-01-07 株式会社Gsユアサ Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11545662B2 (en) 2017-12-15 2023-01-03 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2019117281A1 (en) * 2017-12-15 2019-06-20 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, transition metal hydroxide precursor, method for production of transition metal hydroxide precursor, method for production of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7137769B2 (en) 2017-12-15 2022-09-15 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
US20210249645A1 (en) * 2018-06-21 2021-08-12 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery
CN112771695A (en) * 2018-06-21 2021-05-07 株式会社杰士汤浅国际 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, method for producing nonaqueous electrolyte secondary battery, and method for using nonaqueous electrolyte secondary battery
CN112771695B (en) * 2018-06-21 2024-01-02 株式会社杰士汤浅国际 Positive electrode active material, positive electrode, nonaqueous electrolyte secondary battery, and method for using same
CN113454032A (en) * 2019-02-22 2021-09-28 住友金属矿山株式会社 Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
CN113454032B (en) * 2019-02-22 2023-05-30 住友金属矿山株式会社 Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
EP3910708A4 (en) * 2019-03-15 2022-03-30 Basf Toda Battery Materials LLC Positive electrode active material for secondary cell having non-aqueous electrolyte, positive electrode for secondary cell having non-aqueous electrolyte, and secondary cell having non-aqueous electrolyte

Also Published As

Publication number Publication date
JP2019149222A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
JP6825559B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2018012385A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device
WO2017104688A1 (en) Positive electrode active material for lithium secondary batteries, method for manufacturing precursor of positive electrode active material, method for manufacturing positive electrode active material, positive electrode for lithium secondary batteries, and lithium secondary battery
JP6471693B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP7296044B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6083505B2 (en) Positive electrode active material for lithium secondary battery, method for producing the positive electrode active material, electrode for lithium secondary battery, and lithium secondary battery
JP2015026594A (en) Mix active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP2018073481A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2017104736A1 (en) Method for producing transition metal hydroxide particles
JP2018129221A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6583662B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6274536B2 (en) Method for producing mixed active material for lithium secondary battery, method for producing electrode for lithium secondary battery, and method for producing lithium secondary battery
JP7004959B2 (en) Lithium transition metal composite oxide, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing lithium transition metal composite oxide, positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte Electrodes for secondary batteries, non-aqueous electrolyte secondary batteries and power storage devices
JP6460575B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6834363B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP2018073752A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6474033B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP7043989B2 (en) A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery.
JP2019149371A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method of precursor used for manufacturing of positive electrode active material, manufacturing method of positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17827513

Country of ref document: EP

Kind code of ref document: A1