JP7147478B2 - Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP7147478B2
JP7147478B2 JP2018205573A JP2018205573A JP7147478B2 JP 7147478 B2 JP7147478 B2 JP 7147478B2 JP 2018205573 A JP2018205573 A JP 2018205573A JP 2018205573 A JP2018205573 A JP 2018205573A JP 7147478 B2 JP7147478 B2 JP 7147478B2
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
secondary battery
electrolyte secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018205573A
Other languages
Japanese (ja)
Other versions
JP2020004693A (en
Inventor
諒 原田
顕 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to US17/252,765 priority Critical patent/US20210257665A1/en
Priority to PCT/JP2019/024375 priority patent/WO2019244955A1/en
Priority to EP19821775.4A priority patent/EP3813163A4/en
Priority to CN201980041784.3A priority patent/CN112771695B/en
Publication of JP2020004693A publication Critical patent/JP2020004693A/en
Application granted granted Critical
Publication of JP7147478B2 publication Critical patent/JP7147478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、非水電解質二次電池、及び非水電解質二次電池の製造方法に関する。 The present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing a non-aqueous electrolyte secondary battery.

リチウム二次電池に代表される非水電解質二次電池は、近年ますます用途が拡大され、より高容量の正極材料の開発が求められている。
従来、非水電解質二次電池用正極活物質として、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物が検討され、LiCoOを用いた非水電解質二次電池が広く実用化されている。LiCoOの放電容量は120~130mAh/g程度である。前記リチウム遷移金属複合酸化物を構成する遷移金属(Me)として、地球資源として豊富なMnを用い、前記リチウム遷移金属複合酸化物を構成する遷移金属に対するLiのモル比Li/Meがほぼ1であり、遷移金属中のMnのモル比Mn/Meが0.5以下であるいわゆる「LiMeO型」活物質を用いた非水電解質二次電池も実用化されている。例えば、LiNi1/2Mn1/2やLiNi1/3Co1/3Mn1/3の放電容量は150~180mAh/gである。
Non-aqueous electrolyte secondary batteries, typified by lithium secondary batteries, have been used more and more in recent years, and there is a demand for the development of higher-capacity positive electrode materials.
Conventionally, as a positive electrode active material for non-aqueous electrolyte secondary batteries, a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure has been studied, and non-aqueous electrolyte secondary batteries using LiCoO 2 have been widely put into practical use. there is The discharge capacity of LiCoO 2 is about 120-130 mAh/g. Mn, which is abundant as an earth resource, is used as the transition metal (Me) constituting the lithium-transition metal composite oxide, and the molar ratio Li/Me of Li to the transition metal constituting the lithium-transition metal composite oxide is approximately 1. A non-aqueous electrolyte secondary battery using a so-called “LiMeO 2 type” active material in which the Mn molar ratio Mn/Me in the transition metal is 0.5 or less has also been put to practical use. For example, LiNi 1/2 Mn 1/2 O 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 have a discharge capacity of 150 to 180 mAh/g.

一方、近年、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の中でも、遷移金属(Me)中のMnのモル比Mn/Meを高め、遷移金属(Me)に対するLiのモル比Li/Meが1を超えるいわゆる「リチウム過剰型」活物質が知られている。この活物質は、Li/Meが一定以上の大きさの場合、電池を組み立てて最初に行う充電過程において、4.5~5.0V(vs.Li/Li)の電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察されるという特徴があり、前記平坦な領域が観察される充電過程が終了するまで充電を行うことにより、以降の充電電位をそれほど貴としなくても、「LiMeO型」活物質に比べて高い放電容量を有することから、注目されている(特許文献1参照)。 On the other hand, in recent years, among lithium transition metal composite oxides having a α-NaFeO 2 type crystal structure, the molar ratio Mn/Me of Mn in the transition metal (Me) has been increased, and the molar ratio of Li to the transition metal (Me) has been increased. A so-called “lithium-excessive” active material in which /Me exceeds 1 is known. When Li/Me is a certain size or more, this active material is charged within the potential range of 4.5 to 5.0 V (vs. Li/Li + ) in the initial charging process after assembling the battery. It is characterized by the observation of a region in which the potential change is relatively flat with respect to the amount of electricity. Even without it, it has a higher discharge capacity than the "LiMeO 2 type" active material, so it is attracting attention (see Patent Document 1).

特許文献1には、「α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の固溶体を含むリチウム二次電池用活物質であって、前記固溶体が含有するLi,Co,Ni及びMnの組成比が、Li1+(1/3)xCo1-x-yNi(1/2)yMn(2/3)x+(1/2)y(x+y≦1、0≦y、1-x-y=z)を満たし、Li[Li1/3Mn2/3]O(x)-LiNi1/2Mn1/2(y)-LiCoO(z)系三角相図において、(x,y,z)が、点A(0.45,0.55,0)、点B(0.63,0.37,0)、点C(0.7,0.25,0.05)、点D(0.67,0.18,0.15)、点E(0.75,0,0.25)、点F(0.55,0,0.45)、及び点G(0.45,0.2,0.35)を頂点とする七角形ABCDEFGの線上又は内部に存在する範囲の値で表され、かつ、X線回折測定による(003)面と(104)面の回折ピークの強度比が、充放電前においてI(003)/I(104)≧1.56であり、放電末においてI(003)/I(104)>1であり、4.3V(vs.Li/Li)を超え4.8V以下(vs.Li/Li)の正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域に少なくとも至る初期充電を行う工程を経た場合に、4.3V(vs.Li/Li)以下の電位領域において放電可能な電気量が177mAh/g以上となることを特徴とするリチウム二次電池用活物質。」(請求項3)を正極に含む非水電解質二次電池が記載されている。 Patent Document 1 describes "an active material for a lithium secondary battery containing a solid solution of a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure, wherein the solid solution contains Li, Co, Ni and Mn. The composition ratio is Li 1 + (1/3) x Co 1-x-y Ni (1/2) y Mn (2/3) x + (1/2) y (x + y ≤ 1, 0 ≤ y, 1-x -y=z), and in the Li[Li 1/3 Mn 2/3 ]O 2 (x)-LiNi 1/2 Mn 1/2 O 2 (y)-LiCoO 2 (z) system triangular phase diagram, (x, y, z) is point A (0.45, 0.55, 0), point B (0.63, 0.37, 0), point C (0.7, 0.25, 0 . 05), point D (0.67, 0.18, 0.15), point E (0.75, 0, 0.25), point F (0.55, 0, 0.45), and point G (0.45, 0.2, 0.35) represented by a range of values existing on or inside a heptagon ABCDEFG with vertices, and (003) plane and (104) plane by X-ray diffraction measurement The diffraction peak intensity ratio of is I (003) /I (104) ≧1.56 before charging and discharging, and I (003) /I (104) >1 at the end of discharging, and is 4.3 V (vs .Li/Li + ) to 4.8 V or less (vs. Li/Li + ), the step of performing initial charging to reach at least a region in which the potential change that appears with respect to the amount of charge electricity is relatively flat. An active material for a lithium secondary battery, characterized in that the amount of electricity that can be discharged in a potential region of 4.3 V (vs. Li/Li + ) or less is 177 mAh/g or more when passed through.” (Claim 3 ) in the positive electrode.

そして、段落[0058]には、「本発明に係るリチウム二次電池用活物質は、x>1/3の領域にて存在する活物質であり、CuKα線を用いたエックス線回折図の2θ=20~30°付近に、Li[Li1/3Mn2/3]O型の単斜晶にみられる回折ピークが観察されるものであった。これは、LiとMn4+が規則配列する場合に観察される超格子線と推定される。」と記載され、また、段落[0062]には、「本発明に係るリチウム二次電池用活物質を用い、使用時において、充電時の正極の最大到達電位が4.3V(vs.Li/Li)以下となるような充電方法を採用しても、充分な放電容量を取り出すことのできるリチウム二次電池を製造するためには、次に述べる、本発明に係るリチウム二次電池用活物質に特徴的な挙動を考慮した充電工程を該リチウム二次電池の製造工程中に設けることが重要である。即ち、本発明に係るリチウム二次電池用活物質を正極に用いて定電流充電を続けると、正極電位4.3V~4.8Vの範囲に、電位変化が比較的平坦な領域が比較的長い期間に亘って観察される。・・・ここで採用した充電条件は、電流0.1ItA、電圧(正極電位)4.5V(vs.Li/Li)の定電流定電圧充電であるが、充電電圧をさらに高く設定しても、この比較的長い期間に亘る電位平坦領域は、xの値が1/3以下の材料を用いた場合にはほとんど観察されない。逆に、xの値が2/3を超える材料では、電位変化が比較的平坦な領域が観察される場合であっても短いものとなる。また、従来のLi[Co1-2xNiMn]O(0≦x≦1/2)系材料でもこの挙動は観察されない。この挙動は、本発明に係るリチウム二次電池用活物質に特徴的なものである。」と記載されている。 In addition, in paragraph [0058], "the active material for a lithium secondary battery according to the present invention is an active material existing in the region of x>1/3, and 2θ = A diffraction peak seen in Li[Li 1/3 Mn 2/3 ]O 2 -type monoclinic crystals was observed around 20 to 30°, which indicates that Li + and Mn 4+ are in an ordered arrangement. It is estimated that it is a superlattice line observed when it is used." In order to manufacture a lithium secondary battery capable of extracting a sufficient discharge capacity even when a charging method is adopted in which the maximum potential of the positive electrode reaches 4.3 V (vs. Li/Li + ) or less, It is important to provide a charging process in consideration of the characteristic behavior of the active material for a lithium secondary battery according to the present invention, which will be described below, during the manufacturing process of the lithium secondary battery. When the active material for a secondary battery is used for the positive electrode and constant current charging is continued, a region in which the potential change is relatively flat is observed over a relatively long period of time in the positive electrode potential range of 4.3 V to 4.8 V. . However, this potential plateau region over a relatively long period is hardly observed when the value of x is less than 1/3, and conversely, when the value of x exceeds 2/3, Even when a relatively flat region of potential change is observed, it is short, and the conventional Li[Co 1-2x Ni x Mn x ]O 2 (0≦x≦1/2)-based materials However, this behavior is not observed.This behavior is characteristic of the active material for a lithium secondary battery according to the present invention."

そして、前記リチウム二次電池の実施例として、前記正極と組み合わせる負極に「リチウム金属」を用い、電解質に「LiPFをEC/EMC/DMCが体積比6:7:7である混合溶媒に濃度が1mol/lとなるよう溶解させたもの」を用い、「20℃の下、5サイクルの初期充放電工程に供した。電圧制御は全て正極電位に対して行った。充電は、電流0.1ItA、電圧4.5Vの定電流定電圧充電とし、充電終止条件は電流値が1/6に減衰した時点とした。放電は、電流0.1ItA、終止電圧2.0Vの定電流放電とした。全てのサイクルにおいて充電後及び放電後に30分の休止時間を設定した。」(段落[0112]~[0114])と記載されている。 As an example of the lithium secondary battery, "lithium metal" is used for the negative electrode combined with the positive electrode, and "LiPF 6 is used as the electrolyte in a mixed solvent with a volume ratio of EC/EMC/DMC of 6:7:7. 1 mol/l", and subjected to 5 cycles of initial charging/discharging process at 20°C. All voltage control was performed with respect to the positive electrode potential. A constant current constant voltage charge of 1 ItA and a voltage of 4.5 V was performed, and the charge termination condition was the time when the current value decreased to 1/6.Discharge was a constant current discharge of a current of 0.1 ItA and a final voltage of 2.0 V. A rest time of 30 minutes was set after charging and after discharging in all cycles.” (paragraphs [0112] to [0114]).

また、特許文献2には、「正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒を含む非水電解液とを備える非水電解液二次電池において、前記正極活物質が、一般式(1)Li1+xMn(ここで、x、y及びzは、0<x<0.4、0<y<1、0<z<1及びx+y+z=1を満たし、Mは1種類以上の金属元素で少なくともNi又はCoを含む)で表されるリチウム含有遷移金属酸化物を含み、前記非水溶媒が、2個以上のフッ素原子がカーボネート環に直接結合したフッ素化環状カーボネートを含むことを特徴とする非水電解液二次電池。」(請求項1)が記載されている。 In addition, in Patent Document 2, "In a non-aqueous electrolyte secondary battery including a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and a non-aqueous electrolyte containing a non-aqueous solvent, the positive electrode active material is represented by the general formula (1) Li 1+x Mn y M z O 2 (where x, y and z are 0<x<0.4, 0<y<1, 0<z<1 and x+y+z=1 wherein M is one or more metal elements and includes at least Ni or Co), and the non-aqueous solvent has two or more fluorine atoms directly bonded to the carbonate ring A non-aqueous electrolyte secondary battery comprising a fluorinated cyclic carbonate." (Claim 1).

そして、前記二次電池の実施例1として、正極活物質が「Li1.2Mn0.54Ni0.13Co0.13」であり、負極がシリコンと炭素を含み、非水電解質が「4,5-ジフルオロエチレンカーボネートとエチルメチルカーボネートとを2:8の体積比で混合した非水溶媒に、LiPFを1モル/リットルとなるように溶解させ」たものであり、初期充放電を「0.5Itの定電流で電池電圧が4.45Vとなるまで充電し、さらに4.45Vの定電圧で電流値が0.05Itとなるまで定電圧充電させた。尚、このときの正極の電位は金属リチウム基準で4.60Vであった。その後、0.5Itの定電流で電池電圧1.50Vになるまで放電させ」て行ったことが記載されている(段落[0041]~[0049])。 Then, as Example 1 of the secondary battery, the positive electrode active material is "Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 ", the negative electrode contains silicon and carbon, and the non-aqueous electrolyte is "a non-aqueous solvent in which 4,5-difluoroethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 2:8, and LiPF 6 is dissolved so as to be 1 mol/liter", and the initial charge is Discharge was performed by charging at a constant current of 0.5 It until the battery voltage reached 4.45 V, and then charging at a constant voltage of 4.45 V until the current value reached 0.05 It. The potential of the positive electrode was 4.60 V based on metallic lithium.Then, the battery was discharged at a constant current of 0.5 It until the battery voltage reached 1.50 V. [0049]).

また、正極にリチウム過剰型活物質を用い、非水電解質にホウ素に結合したオキサレート基を有する化合物を添加した非水電解質二次電池も知られている。
特許文献3には、「4.4V(vsLi/Li+)以上の電位で作動する正極活物質を含有する正極と、負極と、非水溶媒を含有する電解液と、を有するリチウムイオン二次電池であって、前記電解液は、下記式(1)及び/又は式(2)で表されるホウ素原子を有する第一のリチウム塩を0.01質量%以上10質量%以下で含有し、且つ、ホウ素原子を有さない第二のリチウム塩を1質量%以上40質量%以下で含有する、リチウムイオン二次電池。・・・」(請求項1)、「前記第一のリチウム塩は、LiBF4、LiB(C242、及びLiBF2(C24)からなる群から選ばれる1種以上である、請求項1~3のいずれか1項記載のリチウムイオン二次電池。」(請求項4)が記載されている。
Also known is a non-aqueous electrolyte secondary battery in which a lithium-excess active material is used for the positive electrode and a compound having an oxalate group bonded to boron is added to the non-aqueous electrolyte.
In Patent Document 3, "Lithium ion secondary having a positive electrode containing a positive electrode active material that operates at a potential of 4.4 V (vs Li/Li + ) or more, a negative electrode, and an electrolytic solution containing a non-aqueous solvent A battery, wherein the electrolytic solution contains 0.01% by mass or more and 10% by mass or less of a first lithium salt having a boron atom represented by the following formula (1) and / or formula (2), And a lithium ion secondary battery containing 1% by mass or more and 40% by mass or less of a second lithium salt that does not have a boron atom..." (Claim 1), "The first lithium salt is , LiBF 4 , LiB(C 2 O 4 ) 2 , and LiBF 2 (C 2 O 4 ). battery." (Claim 4).

そして、段落[0076]~[0083]には、実施例1として、正極活物質が「0.5Li2MnO3-0.5LiNi0.37Mn0.37Co0.262」であり、負極活物質がグラファイトであり、電解液が「エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF6塩を1mol/L含有させた溶液(・・・)を9.8gに、・・・リチウムビスオキサボレート(・・・以下、「LiBOB」と表記する。)を0.2g混合し」た「電解液A」であるリチウムイオン二次電池が記載され、段落[0085]~[0087]には、実施例3として、実施例1の電解液AのLiBOBをLiBF(C)に変更した電解液Cを用いた以外は実施例1と同様のリチウムイオン二次電池を作製したことが記載され、各電池に対して、4.7Vに到達する充電及び2.0Vまでの放電を行った後、4.5Vに到達する充電及び2.0Vまでの放電を1サイクルの充放電として50サイクル充放電試験を行って電池評価をしたことが記載されている。 In paragraphs [0076] to [0083], as Example 1, the positive electrode active material is "0.5Li 2 MnO 3 -0.5LiNi 0.37 Mn 0.37 Co 0.26 O 2 " and the negative electrode active material is graphite. The electrolytic solution is 9.8 g of a solution containing 1 mol/L of LiPF 6 salt in a mixed solvent of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1:2 (...). A lithium ion secondary battery that is an "electrolytic solution A" in which 0.2 g of lithium bisoxaborate (... hereinafter referred to as "LiBOB") is mixed is described, paragraphs [0085] to [0087] In Example 3, a lithium ion secondary battery similar to that of Example 1 was produced except that the electrolyte solution C in which LiBOB in the electrolyte solution A of Example 1 was changed to LiBF 2 (C 2 O 2 ) was used. Each battery was charged to 4.7 V and discharged to 2.0 V, and then charged to 4.5 V and discharged to 2.0 V for one cycle. It is described that the battery was evaluated by performing a 50-cycle charge/discharge test as discharge.

特許文献4には、「正極、負極、非水電解液、セパレータを備えるリチウムイオン電池であって、前記正極に含有される正極活物質は、金属Liを対極として充放電させた場合の初回充放電効率が80%~90%であり、前記負極に含有される負極活物質は、シリコン化合物と炭素材料との混合材料からなり、該負極は初期充放電における不可逆容量分のリチウムがドープされていない状態であり、前記正極と前記負極の初期充電電気容量において、前記正極に対する前記負極の容量比が0.95以上1以下であることを特徴とするリチウムイオン電池。」(請求項1)、「前記正極活物質が、下記化学式1で表されることを特徴とする請求項1に記載のリチウムイオン電池。
[化学式1] aLi[Li1/3Mn2/3]O2・(1-a)Li[NixCoyMnz]O2 (0≦a≦0.3、0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)」(請求項6)、「前記非水電解液は、溶媒と支持塩とを備えており、前記溶媒は、少なくともγ-ブチロラクトン(GBL)を含有しており、前記支持塩は、少なくともリチウムビス(オキサレート)ボレート(LiBOB)を含有していることを特徴とする請求項1に記載のリチウムイオン電池。」(請求項8)が記載されている。
In Patent Document 4, "A lithium ion battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, the positive electrode active material contained in the positive electrode is the first charge when charging and discharging with metal Li as a counter electrode. The discharge efficiency is 80% to 90%, the negative electrode active material contained in the negative electrode is made of a mixed material of a silicon compound and a carbon material, and the negative electrode is doped with lithium for the irreversible capacity in the initial charge and discharge. A lithium ion battery, wherein the capacity ratio of the negative electrode to the positive electrode is 0.95 or more and 1 or less in the initial charging electric capacities of the positive electrode and the negative electrode.” (Claim 1) "The lithium ion battery according to claim 1, wherein the positive electrode active material is represented by the following chemical formula 1.
[Chemical Formula 1] aLi[Li1/3Mn2/ 3 ] O2・(1-a)Li[ NixCoyMnz ] O2 ( 0≤a≤0.3 , 0≤x≤1 , 0≤y ≤ 1, 0 ≤ z ≤ 1, x + y + z = 1)” (Claim 6), “The non-aqueous electrolytic solution comprises a solvent and a supporting salt, and the solvent is at least γ-butyrolactone (GBL), and the supporting electrolyte contains at least lithium bis(oxalate)borate (LiBOB).” (Claim 8) is described.

そして、段落[0047]~[0054]には、実施例1として、正極活物質が「(0.2LiMnO-0.8LiNi0.33Co0.33Mn0.33」であり、負極活物質が「SiとSiOとHC」の複合化したものであり、非水電解質が「1M LiPF+0.05MLiBOB EC(エチレンカーボネート):GBL(γ-ブチロラクトン)=1:1(vol%)」である充放電試験電池を作製し、「初回充放電のカットオフ電圧は2.2-4.6V、2サイクル目以降の充放電のカットオフ電圧は2.2-4.3V、60℃で充放電試験を行ったこと」が記載されている。 In paragraphs [0047] to [0054], as Example 1, the positive electrode active material is "(0.2Li 2 MnO 3 -0.8LiNi 0.33 Co 0.33 Mn 0.33 O 2 ". , The negative electrode active material is a composite of “Si, SiO and HC”, and the non-aqueous electrolyte is “1M LiPF 6 +0.05M LiBOB EC (ethylene carbonate):GBL (γ-butyrolactone) = 1:1 (vol% )”, and “the cutoff voltage for the initial charge and discharge is 2.2 to 4.6 V, the cutoff voltage for charge and discharge after the second cycle is 2.2 to 4.3 V, 60 A charge-discharge test was performed at ℃".

特許文献5には、「正極活物質を含む正極と、負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解質とを備える非水電解質二次電池において、前記正極活物質が、層状構造を有し、一般式Li1+x(NiMnCo)O2+α(x+a+b+c=1,0.7≦a+b,0<x≦0.1,0≦c/(a+b)<0.35,0.7≦a/b≦2.0,-0.1≦α≦0.1)で表わされるリチウム含有遷移金属複合酸化物であり、かつ前記非水電解質に、オキサレート錯体をアニオンとするリチウム塩が含まれていることを特徴とする非水電解質二次電池。」(請求項1)が記載されている。 In Patent Document 5, "In a non-aqueous electrolyte secondary battery including a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and a non-aqueous electrolyte having lithium ion conductivity, the positive electrode active material is layered. having the general formula Li 1+x (N a Mn b Co c )O 2+α (x+a+b+c=1, 0.7≦a+b, 0<x≦0.1, 0≦c/(a+b)<0.35, 0.7≦a/b≦2.0, −0.1≦α≦0.1), and the non-aqueous electrolyte contains lithium having an oxalate complex as an anion. A non-aqueous electrolyte secondary battery characterized by containing a salt” (Claim 1).

そして、段落[0039]~[0058]、及び表1には、実施例1~8として、正極活物質が、Li1.06Ni0.47Mn0.47、Li1.07Ni0.56Mn0.37、又はLi1.07Ni0.42Co0.09Mn0.42であり、負極活物質が、非晶質炭素で表面を被覆した黒鉛であり、電解液が、ECとMECとDMCを混合した溶媒に、溶質としてのLiPFを1Mになるように溶解し、これに重量比で1%の量のVCを加え、さらにリチウム-ビスオキサレートボレート(LiBOB)を0.1Mになるよう溶解した電解液である、非水電解質二次電池を作製し、「作製した非水電解質二次電池を、1000mAで4.2Vまで定電流充電した後、4.2Vで50mAまで定電圧充電を行い、330mAで2.4Vまで放電し、このときの容量を電池放電容量とした」(段落[0045])こと、その後、SOC50%の充電状態でIV特性を測定したことが記載されている。 In paragraphs [0039] to [0058] and Table 1, as Examples 1 to 8, the positive electrode active materials are Li 1.06 Ni 0.47 Mn 0.47 O 2 and Li 1.07 Ni 0 .56 Mn 0.37 O 2 or Li 1.07 Ni 0.42 Co 0.09 Mn 0.42 O 2 , the negative electrode active material is graphite the surface of which is coated with amorphous carbon, and the electrolytic LiPF 6 as a solute is dissolved in a mixed solvent of EC, MEC and DMC so that the liquid becomes 1 M, VC is added in an amount of 1% by weight, and lithium-bisoxalate borate ( LiBOB) was dissolved to a concentration of 0.1 M to prepare a non-aqueous electrolyte secondary battery. The battery was charged at a constant voltage of 2 V to 50 mA, discharged at 330 mA to 2.4 V, and the capacity at this time was taken as the battery discharge capacity” (paragraph [0045]). It states that it was measured.

特許文献6には、実施例22として、正極活物質が「マンガン酸リチウム(Li1.1Mn1.9Al0.1,LMO)80質量%と、Li1.15Ni0.45Mn0.45Co0.10(Co-less LNMC)20質量%」(段落[0401])であり、負極活物質が「人造黒鉛粉末」(段落[0343])であり、非水電解質が「エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを混合(体積比30:30:40)し、次いで十分に乾燥したLiFSOを0.1mol/Lと、リチウムビスオキサラートボレート(LiB(C、LiBOB)を0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解」(段落[0408])したものである、リチウム二次電池が記載されている。 In Patent Document 6, as Example 22, the positive electrode active material is "lithium manganate (Li 1.1 Mn 1.9 Al 0.1 O 4 , LMO) 80% by mass and Li 1.15 Ni 0.45 Mn 0.45 Co 0.10 O 2 (Co-less LNMC) 20% by mass” (paragraph [0401]), the negative electrode active material is “artificial graphite powder” (paragraph [0343]), and the non-aqueous electrolyte "Mixed ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) (30:30:40 by volume), then added 0.1 mol/L of sufficiently dried LiFSO 3 and added lithium Lithium obtained by dissolving bisoxalate borate (LiB(C 2 O 4 ) 2 , LiBOB) at a ratio of 0.1 mol/L and LiPF 6 at a ratio of 1 mol/L (paragraph [0408]) A secondary battery is described.

そして、実施例22に係るリチウム二次電池の初期放電容量の評価について、「リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において、0.1Cに相当する定電流で4.2Vまで充電した後、0.1Cの定電流で3.0Vまで放電した。2サイクル目と3サイクル目は0.33Cで4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.33Cの定電流で3.0Vまで放電し、3サイクル目の放電過程から初期放電容量を求めた。」(段落[0404])と記載され、また、同電池の高温保存特性の評価について、75℃保存後残存容量、75℃保存後回復容量、及び保存容量維持率を、4.2Vまでの定電流充電及び4.2Vの定電圧充電で評価したことが記載されている。 Then, regarding the evaluation of the initial discharge capacity of the lithium secondary battery according to Example 22, "the lithium secondary battery was sandwiched between glass plates in order to improve the adhesion between the electrodes, and at 25 ° C., 0.1 C After charging to 4.2 V at a constant current corresponding to , discharging to 3.0 V at a constant current of 0.1 C. In the second and third cycles, after charging to 4.2 V at 0.33 C, 4.2 V The battery was charged until the current value reached 0.05 C at a constant voltage of , discharged to 3.0 V at a constant current of 0.33 C, and the initial discharge capacity was obtained from the third cycle discharge process.” (Paragraph [ 0404]), and regarding the evaluation of the high-temperature storage characteristics of the same battery, the remaining capacity after storage at 75 ° C., the recovery capacity after storage at 75 ° C., and the storage capacity retention rate were measured by constant current charging up to 4.2 V and 4 It is described that evaluation was performed with a constant voltage charge of .2V.

特許第4877660号公報Japanese Patent No. 4877660 特開2012-104335号公報JP 2012-104335 A 特開2013-191390号公報JP 2013-191390 A 特開2016-100054号公報JP 2016-100054 A 特開2010-050079号公報JP 2010-050079 A 特開2011-187440号公報JP 2011-187440 A

非水電解質二次電池には、誤って満充電状態(SOC100%)を超えてさらに充電(以下、「過充電」という。)がされた場合においても、安全性が確保されることが規格(例えば、自動車用電池に関する「GB/T(中国勧奨国家標準)」)によって定められている。安全性が向上したことを評価する方法としては、充電制御回路が壊れた場合を想定し、満充電状態を超えてさらに電流を強制的に印加したときに、電池電圧の急上昇が観察されたSOCを記録する方法がある。より高いSOCに至るまで、電池電圧の急上昇が観察されない場合、安全性が向上したと評価される。
ここで、SOCとはState Of Chargeの略で、電池の充電状態をそのときの残存容量と満充電時の容量との比率で表したものであり、満充電状態を「SOC100%」と表記する。
Non-aqueous electrolyte secondary batteries are required by the standards ( For example, it is defined by "GB/T (Recommended National Standard of China)" for automobile batteries. As a method to evaluate whether the safety has been improved, assuming that the charging control circuit is broken, when the current is forcibly applied beyond the fully charged state, a sudden increase in the battery voltage is observed SOC is there a way to record Safety is evaluated as improved when no rapid increase in battery voltage is observed up to higher SOC.
Here, SOC is an abbreviation for State Of Charge, and represents the state of charge of the battery by the ratio of the remaining capacity at that time to the capacity at full charge, and the fully charged state is expressed as "SOC 100%". .

特許文献1~4には、リチウム過剰型活物質を正極に用い、正極電位が4.5V(vs.Li/Li)以上に至るまでの初期充放電工程を経て製造されることを前提とする非水電解質二次電池が記載されており、非水電解質二次電池が過充電された場合に、電池電圧の急上昇をより高いSOCに至るまで遅延させることについては示されていない。
一方、特許文献5、6には、正極にLi/Meが1以上のリチウム過剰型活物質を用い、初期充放電工程を電圧4.2V(正極電位は約4.3V(vs.Li/Li)であると考えられる)で行う非水電解質二次電池について記載されている。しかし、特許文献5、6に記載の実施例に係るリチウム過剰型活物質は、Li/Meが1.15以下と小さい。なお、特許文献1には、x>1/3(Li/Me>1.25)の領域にて存在するリチウム過剰型活物質の場合に、「CuKα線を用いたエックス線回折図の2θ=20~30°付近にLi[Li1/3Mn2/3]O型の単斜晶にみられる回折ピークが観察される」と記載されていることから、Li/Meがこれよりもはるかに小さい特許文献5、6に記載されたリチウム過剰型活物質において、初期充放電工程における正極の最大到達電位が4.5V(vs.Li/Li)未満であったとしても、2θ=20~22°の範囲に回折ピークは観察されない蓋然性が高い。そして、特許文献5、6にも、非水電解質二次電池が過充電された場合に、電池電圧の急上昇をより高いSOCに至るまで遅延させることについては示されていない。
In Patent Documents 1 to 4, it is assumed that a lithium-excess type active material is used for the positive electrode, and that the positive electrode potential is manufactured through an initial charge/discharge process until the positive electrode potential reaches 4.5 V (vs. Li/Li + ) or more. However, there is no mention of delaying the rapid increase in battery voltage to a higher SOC when the non-aqueous electrolyte secondary battery is overcharged.
On the other hand, in Patent Documents 5 and 6, a lithium-excess type active material having a Li/Me ratio of 1 or more is used for the positive electrode, and the initial charge/discharge process is performed at a voltage of 4.2 V (the positive electrode potential is about 4.3 V (vs. Li/Li A non-aqueous electrolyte secondary battery is described which is considered to be + ). However, the lithium-excess type active materials according to the examples described in Patent Documents 5 and 6 have a small Li/Me ratio of 1.15 or less. In addition, in Patent Document 1, in the case of a lithium-excess type active material existing in the region of x>1/3 (Li/Me>1.25), "2θ of X-ray diffraction diagram using CuKα rays = 20 A diffraction peak seen in a Li[Li 1/3 Mn 2/3 ]O 2 type monoclinic crystal is observed near ~ 30 °.” In the lithium-excess type active material described in Patent Documents 5 and 6, even if the maximum potential of the positive electrode in the initial charge/discharge process is less than 4.5 V (vs. Li/Li + ), 2θ = 20 ~ There is a high probability that no diffraction peak will be observed in the 22° range. Patent Documents 5 and 6 also do not disclose delaying the rapid increase in battery voltage to a higher SOC when the non-aqueous electrolyte secondary battery is overcharged.

本発明の課題は、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池を提供することである。 An object of the present invention is to provide a non-aqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed up to higher SOC.

本発明の一側面は、正極、負極及び非水電解質を備える非水電解質二次電池であって、前記正極は、活物質として、α-NaFeO型結晶構造を有し、一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるリチウム遷移金属複合酸化物を含み、前記活物質は、CuKα線を用いたエックス線回折図において、20~22°の範囲に回折ピークが観察される、非水電解質二次電池である。 One aspect of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode has an α-NaFeO 2 type crystal structure as an active material and has the general formula Li 1+α Me 1-α O 2 (0<α, Me is a transition metal element containing Ni and Mn, or Ni, Mn and Co), and the active material uses CuKα rays. This is a non-aqueous electrolyte secondary battery in which a diffraction peak is observed in the range of 20 to 22° in the X-ray diffraction pattern obtained.

本発明の他の側面は、正極、負極及び非水電解質を備える非水電解質二次電池であって、前記正極は、活物質として、α-NaFeO型結晶構造を有し、一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるリチウム遷移金属複合酸化物を含み、前記正極は、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池である。 Another aspect of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode has an α-NaFeO 2 -type crystal structure as an active material and has the general formula Li 1+α A lithium-transition metal composite oxide represented by Me 1-α O 2 (0<α, Me is Ni and Mn, or a transition metal element including Ni, Mn and Co), and the positive electrode has a positive electrode potential of 5 When charging up to .0V (vs. Li/Li + ), the potential change is compared with the amount of charge in the positive electrode potential range of 4.5 to 5.0 V (vs. Li/Li + ). This is a non-aqueous electrolyte secondary battery in which a relatively flat region is observed.

本発明のさらに他の側面は、前記非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、非水電解質二次電池の製造方法である。 Still another aspect of the present invention is the method for manufacturing the non-aqueous electrolyte secondary battery, wherein the maximum potential of the positive electrode in the initial charge and discharge process is less than 4.5 V (vs. Li/Li + ). A method for manufacturing a water electrolyte secondary battery.

本発明によれば、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池、及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery in which a sudden rise in battery voltage is not observed up to a higher SOC, and a method for manufacturing the same.

本発明の実施形態に係る非水電解質二次電池及び従来例に係る非水電解質二次電池が備える正極活物質のエックス線回折図1 is an X-ray diffraction diagram of a positive electrode active material included in a non-aqueous electrolyte secondary battery according to an embodiment of the present invention and a non-aqueous electrolyte secondary battery according to a conventional example; LiMeO型及びリチウム過剰型活物質を含む正極について、正極の充電上限電位を4.6V(vs.Li/Li)として初回充電した場合に観察される充電電気量に対する正極電位変化を示す図FIG. 10 is a graph showing changes in positive electrode potential with respect to charged electricity observed when positive electrodes containing LiMeO 2 type and lithium-excess active materials are initially charged with the positive electrode charge upper limit potential of 4.6 V (vs. Li/Li + ). 本発明の実施形態に係る非水電解質二次電池における「充電電気量に対して電位変化が比較的平坦な領域」を説明する図FIG. 4 is a diagram for explaining “a region in which the potential change is relatively flat with respect to the amount of charged electricity” in the non-aqueous electrolyte secondary battery according to the embodiment of the present invention; 本発明の一態様に係る非水電解質二次電池の一実施形態を示す斜視図1 is a perspective view showing an embodiment of a non-aqueous electrolyte secondary battery according to one aspect of the present invention; FIG. 本発明の一態様に係る非水電解質二次電池を複数個備えた蓄電装置を示す概略図Schematic diagram showing a power storage device including a plurality of nonaqueous electrolyte secondary batteries according to one embodiment of the present invention

本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施形態又は実施例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。 The configuration and effects of the present invention will be described with technical ideas. However, the mechanism of action is presumed, and whether it is correct or not does not limit the present invention. In addition, the present invention can be embodied in various other forms without departing from its spirit or essential characteristics. Therefore, the embodiments or examples described below are merely illustrative in every respect and should not be construed as limiting. Furthermore, all modifications and changes that fall within the equivalent scope of claims are within the scope of the present invention.

本発明の一実施形態は、正極、負極及び非水電解質を備える非水電解質二次電池であって、前記正極は、活物質として、α-NaFeO型結晶構造を有し、一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるリチウム遷移金属複合酸化物を含み、前記活物質は、CuKα線を用いたエックス線回折図において、20~22°の範囲に回折ピークが観察される、非水電解質二次電池である。 One embodiment of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the positive electrode has an α-NaFeO 2 -type crystal structure as an active material and has the general formula Li 1+α A lithium transition metal composite oxide represented by Me 1-α O 2 (0<α, Me is Ni and Mn, or a transition metal element including Ni, Mn and Co), and the active material emits CuKα rays. It is a non-aqueous electrolyte secondary battery in which a diffraction peak is observed in the range of 20 to 22° in the X-ray diffraction diagram used.

本発明の他の一実施形態は、正極、負極及び非水電解質を備える非水電解質二次電池であって、前記正極は、活物質として、α-NaFeO型結晶構造を有し、一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるリチウム遷移金属複合酸化物を含み、前記正極は、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される正極を備えた、非水電解質二次電池である。 Another embodiment of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode has an α-NaFeO 2 type crystal structure as an active material and has the general formula Li 1+α Me 1-α O 2 (0<α, Me is Ni and Mn, or a transition metal element including Ni, Mn and Co), and the positive electrode has a positive electrode potential is charged to 5.0 V (vs. Li/Li + ), the potential change with respect to the charged quantity of electricity within the positive electrode potential range of 4.5 to 5.0 V (vs. Li/Li + ) is a non-aqueous electrolyte secondary battery having a positive electrode in which a relatively flat region is observed.

前記非水電解質二次電池は、前記正極の活物質として、遷移金属(Me)に対するMnのモル比が、0.4≦Mn/Meであるリチウム遷移金属複合酸化物を用いてもよい。この一態様によれば、活物質の層状構造を安定化させることができる。 In the non-aqueous electrolyte secondary battery, a lithium-transition metal composite oxide having a molar ratio of Mn to transition metal (Me) of 0.4≦Mn/Me may be used as the positive electrode active material. According to this aspect, the layered structure of the active material can be stabilized.

前記非水電解質二次電池は、前記正極の活物質として、遷移金属(Me)に対するLiのモル比が、1.15<Li/Meであるリチウム遷移金属複合酸化物を用いてもよい。
この一態様によれば、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池を提供することができる。
In the non-aqueous electrolyte secondary battery, a lithium-transition metal composite oxide having a molar ratio of Li to transition metal (Me) of 1.15<Li/Me may be used as the positive electrode active material.
According to this aspect, it is possible to provide a non-aqueous electrolyte secondary battery in which no sudden increase in battery voltage is observed up to a higher SOC.

前記非水電解質二次電池は、前記正極の活物質として、遷移金属(Me)に対するLiのモル比が、Li/Me≦1.35であるリチウム遷移金属複合酸化物を用いてもよい。この一態様によれば、放電容量を優れたものとすることができる。 In the non-aqueous electrolyte secondary battery, the positive electrode active material may be a lithium-transition metal composite oxide in which the molar ratio of Li to transition metal (Me) is Li/Me≦1.35. According to this aspect, the discharge capacity can be improved.

前記非水電解質二次電池は、満充電状態(SOC100%)における正極の最大到達電位が4.5V(vs.Li/Li)未満となる電池電圧で使用することが好ましい。 The non-aqueous electrolyte secondary battery is preferably used at a battery voltage at which the maximum potential of the positive electrode in a fully charged state (SOC 100%) is less than 4.5 V (vs. Li/Li + ).

以上の実施形態によれば、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池を提供することができる。 According to the above embodiments, it is possible to provide a non-aqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed up to a higher SOC.

前記非水電解質二次電池は、前記非水電解質として、非水溶媒にフッ素化環状カーボネートを含む非水電解質を用いてもよい。このような構成によれば、上記した、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池を提供することができるという効果に加え、保存後のAC抵抗の増加を抑制できるという効果が奏される。 In the non-aqueous electrolyte secondary battery, a non-aqueous electrolyte containing a fluorinated cyclic carbonate as a non-aqueous solvent may be used as the non-aqueous electrolyte. According to such a configuration, in addition to the effect that it is possible to provide a non-aqueous electrolyte secondary battery in which a sudden increase in battery voltage is not observed up to a higher SOC, an increase in AC resistance after storage is suppressed. There is an effect that it can be done.

前記非水電解質は、ホウ素に結合したオキサレート基を有する化合物を含んでいてもよい。
この一態様によれば、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池を提供することができるという効果に加え、初期のAC抵抗を低減することができるという効果が奏される。
The non-aqueous electrolyte may contain a compound having an oxalate group bonded to boron.
According to this aspect, in addition to the effect of being able to provide a non-aqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed up to a higher SOC, the effect of being able to reduce the initial AC resistance is obtained. played.

本発明のさらに他の一実施形態は、前記非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、非水電解質二次電池の製造方法である。
なお、本明細書中の「初期」充放電とは、非水電解質を注液後に行われる1回又は複数回の充電及び放電をさし、特に「初回」充放電とは、非水電解質を注液後に行われる、1回目の充電及び放電をさす。
この実施形態によれば、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池が製造される。
上記した本発明の一実施形態、本発明の他の一実施形態、本発明のさらに他の実施形態について、以下、詳細に説明する。
Still another embodiment of the present invention is the method for manufacturing the non-aqueous electrolyte secondary battery, wherein the maximum potential of the positive electrode in the initial charge/discharge step is less than 4.5 V (vs. Li/Li + ). , a method for manufacturing a non-aqueous electrolyte secondary battery.
In this specification, the term “initial” charging and discharging refers to one or more charging and discharging operations performed after injecting the non-aqueous electrolyte. Refers to the first charging and discharging after injection.
According to this embodiment, a non-aqueous electrolyte secondary battery is manufactured in which no rapid increase in battery voltage is observed up to higher SOC.
One embodiment of the present invention described above, another embodiment of the present invention, and still another embodiment of the present invention will be described in detail below.

<リチウム遷移金属複合酸化物>
上記した本発明の一実施形態、本発明の他の一実施形態(以下、まとめて「本実施形態」という。)に係る非水電解質二次電池が備える正極が、活物質として含むリチウム遷移金属複合酸化物は、一般式Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表されるいわゆる「リチウム過剰型」活物質である。典型的には、Li1+α(NiβCoγMnδ1-α(β+γ+δ=1)と表すことができる。より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池とすることができる正極活物質を提供するために、遷移金属元素Meに対するLiのモル比Li/Me、すなわち(1+α)/(1-α)は1.15より大きいことが好ましく、1.2以上であることがより好ましく、1.23以上であることがさらに好ましい。放電容量を優れたものとするためには、Li/Meは1.35以下であることが好ましく、1.3以下であることがより好ましい。
遷移金属元素Meに対するMnのモル比Mn/Me、すなわちδは、層状構造の安定化の観点から、0.4以上が好ましく、0.45以上であることがより好ましい。また、充放電容量の観点から、Mn/Meは0.65以下であることが好ましく、0.60以下であることがより好ましい。
遷移金属元素Meに対するNiのモル比Ni/Me、すなわちβは、非水電解質二次電池の充放電サイクル性能を向上させるために、0.2以上とすることが好ましい。また、0.5以下とすることが好ましく、0.4以下とすることがより好ましい。
遷移金属元素Meに対するCoのモル比Co/Me、すなわちγは、活物質粒子の導電性を高める観点から、0.0以上とすることが好ましく、0.2以上とすることがより好ましい。また、材料コストを削減するために、0.4以下とすることが好ましく、0.3以下とすることがより好ましい。
なお、本実施形態に係るリチウム遷移金属複合酸化物は、本発明の効果を損なわない範囲で、Na、K等のアルカリ金属、Mg、Ca等のアルカリ土類金属、Fe等の3d遷移金属に代表される遷移金属など、少量の他の金属を含有することを排除するものではない。
<Lithium transition metal composite oxide>
Lithium transition metal contained as an active material in the positive electrode included in the non-aqueous electrolyte secondary battery according to one embodiment of the present invention and another embodiment of the present invention (hereinafter collectively referred to as "this embodiment") The composite oxide is a so-called “lithium-excess type” active material represented by the general formula Li 1+α Me 1-α O 2 (0<α, Me is Ni and Mn, or a transition metal element including Ni, Mn and Co). is. Typically, it can be expressed as Li 1+α (Ni β Co γ Mn δ ) 1-α O 2 (β+γ+δ=1). In order to provide a positive electrode active material that can be used as a non-aqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed up to a higher SOC, the molar ratio of Li to the transition metal element Me, Li/Me, that is, (1+α) /(1-α) is preferably greater than 1.15, more preferably 1.2 or greater, and even more preferably 1.23 or greater. In order to obtain excellent discharge capacity, Li/Me is preferably 1.35 or less, more preferably 1.3 or less.
From the viewpoint of stabilizing the layered structure, the molar ratio Mn/Me of Mn to the transition metal element Me, that is, δ, is preferably 0.4 or more, more preferably 0.45 or more. Moreover, from the viewpoint of charge/discharge capacity, Mn/Me is preferably 0.65 or less, more preferably 0.60 or less.
The molar ratio Ni/Me of Ni to the transition metal element Me, that is, β, is preferably 0.2 or more in order to improve the charge/discharge cycle performance of the non-aqueous electrolyte secondary battery. Also, it is preferably 0.5 or less, more preferably 0.4 or less.
The molar ratio Co/Me of Co to the transition metal element Me, that is, γ, is preferably 0.0 or more, more preferably 0.2 or more, from the viewpoint of increasing the conductivity of the active material particles. In order to reduce material costs, it is preferably 0.4 or less, more preferably 0.3 or less.
In addition, the lithium-transition metal composite oxide according to the present embodiment contains alkali metals such as Na and K, alkaline earth metals such as Mg and Ca, and 3d transition metals such as Fe within a range that does not impair the effects of the present invention. It does not exclude the inclusion of minor amounts of other metals, such as the transition metals represented.

本実施形態に係るリチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有している。合成後(充放電前)の前記リチウム遷移金属複合酸化物は、空間群P312に帰属されるとともに、CuKα線を用いたエックス線回折図において、2θ=20~22°の範囲に超格子ピーク(Li[Li1/3Mn2/3]O型の単斜晶に見られるピーク)が観察される。この超格子ピーク(以下、「20~22°の範囲の回折ピーク」という。)は、正極電位が4.5V(vs.Li/Li)未満の電位領域で充放電を行っても、消失することがない。ところが、一度でも4.5V(vs.Li/Li)以上に至る電位まで充電を行うと、結晶中のLiの脱離に伴って結晶の対称性が変化することにより、20~22°の範囲の回折ピークが消失して、前記リチウム遷移金属複合酸化物は空間群R3-mに帰属されるようになる。ここで、P312は、R3-mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3-mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。なお、「R3-m」は本来「R3m」の「3」の上にバー「-」を施して表記する。 The lithium-transition metal composite oxide according to this embodiment has an α-NaFeO 2 type crystal structure. The lithium transition metal composite oxide after synthesis (before charging and discharging) belongs to the space group P3 1 12, and in an X-ray diffraction diagram using CuKα rays, a superlattice peak in the range of 2θ = 20 to 22 °. (Peak observed in Li[Li 1/3 Mn 2/3 ]O 2 -type monoclinic crystal) is observed. This superlattice peak (hereinafter referred to as “diffraction peak in the range of 20 to 22°”) disappears even when charging and discharging is performed in a potential region where the positive electrode potential is less than 4.5 V (vs. Li/Li + ). I have nothing to do. However, once the charge is performed to a potential of 4.5 V (vs. Li/Li + ) or more, the symmetry of the crystal changes due to the detachment of Li from the crystal, resulting in a 20 to 22° angle. The range of diffraction peaks disappears, and the lithium-transition metal composite oxide belongs to the space group R3-m. Here, P3 1 12 is a crystal structure model in which the atomic positions of the 3a, 3b, and 6c sites in R3-m are subdivided, and when the atomic arrangement in R3-m is ordered, the P3 1 12 model is adopted. Note that "R3-m" is originally written by adding a bar "-" above the "3" of "R3m".

<正極活物質>
本実施形態に係る非水電解質二次電池の正極活物質は、前記リチウム遷移金属複合酸化物を含み、CuKα線を用いてエックス線回折測定を行った場合、エックス線回折図において、20~22°の範囲に回折ピークが観察されるという特徴を備える。
<Positive electrode active material>
The positive electrode active material of the non-aqueous electrolyte secondary battery according to the present embodiment contains the lithium transition metal composite oxide, and when X-ray diffraction measurement is performed using CuKα rays, the X-ray diffraction diagram shows that the It has the feature that a diffraction peak is observed in the range.

<回折ピークの確認方法>
本実施形態に係る非水電解質二次電池に用いる正極活物質や、本実施形態に係る非水電解質二次電池が備える正極に含まれる正極活物質に対するエックス線回折測定、及び、CuKα線を用いたエックス線回折図において、20~22°の範囲に回折ピークが観察されることの確認は、以下のとおりの手順及び条件により、行う。ここで、「観察される」とは、回折角17~19°の範囲内の強度の最大値と最小値との差分(I18)に対する回折角20~22°の範囲内の強度の最大値と最小値との差分(I21)の比、すなわち「I21/I18」の値が0.001~0.1の範囲であることをさす。
エックス線回折測定に供する試料は、正極作製前の活物質粉末(充放電前粉末)であれば、そのまま測定に供する。非水電解質二次電池(以下、「電池」ともいう。)を解体して取り出した正極から試料を採取する場合には、電池を解体する前に、当該電池の公称容量(Ah)の10分の1となる電流値(A)で、指定される電圧の下限となる電池電圧に至るまで定電流放電を行い、完全放電状態とする。解体した結果、金属リチウム電極を負極に用いた電池であれば、以下に述べる追加作業は行わず、正極を取り出す。金属リチウム電極を負極に用いた電池でない場合は、正極電位を正確に制御するため、追加作業として、電池を解体して正極を取り出した後に、金属リチウム電極を対極とした試験電池を組み立て、正極合剤1gあたり10mAの電流値で、正極電位が2.0V(vs.Li/Li)となるまで定電流放電を行い、完全放電状態に調整した後、再解体し、正極を取り出す。
取り出した正極は、ジメチルカーボネートを用いて正極に付着した非水電解質を十分に洗浄し、室温にて一昼夜乾燥させた後、集電体上から正極合剤を採取する。採取した正極合剤を瑪瑙製乳鉢で軽く解砕し、エックス線回折測定用試料ホルダーに配置して測定に供する。
上記の電池の解体から再解体までの作業、及び正極の洗浄、乾燥作業は、露点-60℃以下のアルゴン雰囲気中で行う。
<Confirmation method of diffraction peak>
The positive electrode active material used in the non-aqueous electrolyte secondary battery according to the present embodiment and the positive electrode active material contained in the positive electrode included in the non-aqueous electrolyte secondary battery according to the present embodiment were subjected to X-ray diffraction measurement, and CuKα rays were used. Confirmation that a diffraction peak is observed in the range of 20 to 22° in the X-ray diffraction diagram is performed by the following procedures and conditions. Here, “observed” means the maximum intensity within the range of diffraction angles of 20 to 22° with respect to the difference (I 18 ) between the maximum and minimum values of intensity within the range of diffraction angles of 17 to 19°. and the minimum value (I 21 ), that is, the value of “I 21 /I 18 ” is in the range of 0.001 to 0.1.
If the sample to be subjected to the X-ray diffraction measurement is the active material powder (powder before charging/discharging) before manufacturing the positive electrode, it is directly subjected to the measurement. When collecting a sample from a positive electrode taken out after disassembling a non-aqueous electrolyte secondary battery (hereinafter also referred to as "battery"), before disassembling the battery, 10 minutes of the nominal capacity (Ah) of the battery At a current value (A) of 1, constant current discharge is performed until the battery voltage reaches the lower limit of the specified voltage, and the battery is in a completely discharged state. As a result of dismantling, if the battery uses a metal lithium electrode as the negative electrode, the positive electrode is taken out without performing the additional work described below. If the battery does not use a metallic lithium electrode as the negative electrode, in order to accurately control the positive electrode potential, as an additional task, disassemble the battery, remove the positive electrode, and then assemble a test battery with a metallic lithium electrode as the counter electrode. Constant current discharge is performed at a current value of 10 mA per 1 g of the mixture until the positive electrode potential reaches 2.0 V (vs. Li/Li + ), adjusted to a completely discharged state, dismantled again, and the positive electrode is taken out.
The removed positive electrode is thoroughly washed with dimethyl carbonate to remove the non-aqueous electrolyte adhering to the positive electrode, dried at room temperature for a whole day and night, and then the positive electrode mixture is collected from the current collector. The collected positive electrode mixture is lightly pulverized in an agate mortar, placed on a sample holder for X-ray diffraction measurement, and subjected to measurement.
The operations from dismantling to re-dismantling of the battery, cleaning and drying of the positive electrode are performed in an argon atmosphere with a dew point of -60°C or lower.

<エックス線回折測定>
本明細書において、エックス線回折測定は、次の条件にて行う。線源はCuKα、加速電圧は30kV、加速電流は15mAとする。サンプリング幅は0.01deg、スキャンスピードは1.0deg/min、発散スリット幅は0.625deg、受光スリットは開放、散乱スリット幅は8.0mmとする。
<X-ray diffraction measurement>
In this specification, the X-ray diffraction measurement is performed under the following conditions. The radiation source is CuKα, the acceleration voltage is 30 kV, and the acceleration current is 15 mA. The sampling width is 0.01 deg, the scanning speed is 1.0 deg/min, the divergence slit width is 0.625 deg, the light receiving slit is open, and the scattering slit width is 8.0 mm.

後述する実施例1に示すように、リチウム過剰型活物質を正極、金属リチウムを負極として、非水電解質二次電池を組み立てた後、充電上限電位を4.25V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として、0.1C相当の電流値で、2回の充放電を行って完成した完全放電状態の非水電解質二次電池を解体して得られる正極について、上記の手順でエックス線回折測定を行うと、図1の下段と同様に、20~22°の範囲に回折ピークが観察されるエックス線回折図が得られる。
また、後述する比較例2に示すように、リチウム過剰型活物質を正極、金属リチウムを負極として、非水電解質二次電池を組み立てた後、充電上限電位を4.6V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として、初回充放電を行ったのち、充電上限電位を4.25V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として、2回目の充放電(いずれも0.1C相当の電流値)を行って完成した完全放電状態の非水電解質二次電池を解体して得られる正極について、上記の手順でエックス線回折測定を行うと、図1の上段と同様に20~22°の範囲のピークは観察されないエックス線回折図が得られる。すなわち、上記のとおり、一度でも4.5V(vs.Li/Li)以上に至る電位まで充電を行うと、20~22°の範囲のピークは観察されない。
本実施形態に係る非水電解質二次電池は、充放電後においても、上記の手順で測定した正極活物質のエックス線回折図に20~22°の範囲の回折ピークが観察されることから、本実施形態に係る非水電解質二次電池は、初期充放電を含めて、満充電状態(SOC100%)における正極の最大到達電位が4.5V(vs.Li/Li)未満となる電池電圧で使用されていることがわかる。
As shown in Example 1 to be described later, after assembling a non-aqueous electrolyte secondary battery using a lithium-excess type active material as a positive electrode and metallic lithium as a negative electrode, the upper limit charging potential is set to 4.25 V (vs. Li/Li + ). , with a lower discharge potential of 2.0 V (vs. Li/Li + ), and a current value equivalent to 0.1 C, the fully discharged non-aqueous electrolyte secondary battery was dismantled after being charged and discharged twice. When the positive electrode thus obtained is subjected to X-ray diffraction measurement according to the procedure described above, an X-ray diffraction pattern in which a diffraction peak is observed in the range of 20 to 22° is obtained as in the lower part of FIG.
Further, as shown in Comparative Example 2 to be described later, after assembling a non-aqueous electrolyte secondary battery using a lithium-excess type active material as a positive electrode and metallic lithium as a negative electrode, the upper limit charging potential is set to 4.6 V (vs. Li/Li + ), the lower limit of discharge potential was set to 2.0 V (vs. Li / Li + ), and the initial charge and discharge was performed. Then, the upper limit of charge potential was set to 4.25 V (vs. Positive electrode obtained by dismantling a completely discharged non-aqueous electrolyte secondary battery completed by performing a second charge/discharge (current value equivalent to 0.1 C in both cases) at 0 V (vs. Li/Li + ) When the X-ray diffraction measurement is performed according to the procedure described above, an X-ray diffraction diagram is obtained in which no peak in the range of 20° to 22° is observed, as in the upper part of FIG. That is, as described above, once the battery is charged to a potential of 4.5 V (vs. Li/Li + ) or higher, no peak in the range of 20 to 22° is observed.
In the non-aqueous electrolyte secondary battery according to the present embodiment, even after charging and discharging, a diffraction peak in the range of 20 to 22 ° is observed in the X-ray diffraction diagram of the positive electrode active material measured by the above procedure. In the non-aqueous electrolyte secondary battery according to the embodiment, the maximum potential of the positive electrode in a fully charged state (SOC 100%) is less than 4.5 V (vs. Li/Li + ) including initial charge and discharge. known to be used.

また、本実施形態に係る非水電解質二次電池は、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域(以下、「電位変化が平坦な領域」ともいう。)が観察される。なお、前記電位変化が平坦な領域が観察される充電過程が終了するまでの充電を一度でも行った場合は、その後、正極電位が5.0V(vs.Li/Li)に至る充電を行っても、上前記電位変化が平坦な領域は、再び観察されることはない。 In addition, when the non-aqueous electrolyte secondary battery according to the present embodiment is charged to a positive electrode potential of 5.0 V (vs. Li/Li + ), it is 4.5 to 5.0 V (vs. Li/Li + ), a region in which the potential change is relatively flat with respect to the amount of charged electricity (hereinafter also referred to as “flat potential change region”) is observed. In addition, if charging is performed even once until the charging process in which the flat potential change is observed is completed, then charging is performed until the positive electrode potential reaches 5.0 V (vs. Li/Li + ). However, the flat regions above the potential change are not observed again.

図2を用いて、本発明の作用機構の原理を説明する。図2における実線は、リチウム遷移金属複合酸化物(「リチウム過剰型」と表記)を正極活物質として用いた正極と、金属リチウムを用いた負極とを備えた本実施形態に係る非水電解質二次電池を組み立て、正極の充電上限電位を4.6V(vs.Li/Li)として初回充電を行ったときの正極電位の変化を示している。破線は、市販のLiNi1/3Co1/3Mn1/3(「LiMeO型」と表記)を正極活物質として用いた正極を備えることを除いては同様の構成とした非水電解質二次電池に、同様の初回充電を行った場合の正極電位の変化を示している。リチウム過剰型活物質を用いた正極では、4.45~4.6V(vs.Li/Li)の正極電位範囲内に、電位変化が平坦な領域が観察される。一方で、LiMeO型活物質を用いた正極では、4.45~4.6V(vs.Li/Li)の正極電位範囲内に、電位変化が平坦な領域が観察されない。
なお、平坦な領域が観察される電位範囲や充放電時の容量は、リチウム過剰型活物質を用いた正極でも、組成等の物性によって若干異なるため、この図は一例に過ぎない。
The principle of the working mechanism of the present invention will be described with reference to FIG. The solid line in FIG. 2 indicates the non-aqueous electrolyte 2 according to the present embodiment, which includes a positive electrode using a lithium transition metal composite oxide (denoted as “excess lithium type”) as a positive electrode active material and a negative electrode using metallic lithium. The change in the positive electrode potential is shown when the following battery is assembled and the initial charge is performed with the upper limit charging potential of the positive electrode set to 4.6 V (vs. Li/Li + ). The dashed line indicates a non-aqueous non-aqueous electrode having the same configuration except that it has a positive electrode using commercially available LiNi 1/3 Co 1/3 Mn 1/3 O 2 (denoted as “LiMeO 2 type”) as a positive electrode active material. It shows the change in the positive electrode potential when the electrolyte secondary battery is similarly charged for the first time. In the positive electrode using the lithium-excess active material, a flat potential change region is observed within the positive electrode potential range of 4.45 to 4.6 V (vs. Li/Li + ). On the other hand, in the positive electrode using the LiMeO 2 -type active material, no flat potential change region is observed within the positive electrode potential range of 4.45 to 4.6 V (vs. Li/Li + ).
Note that the potential range in which a flat region is observed and the capacity during charge/discharge slightly vary depending on physical properties such as composition even for positive electrodes using a lithium-excess type active material, so this figure is only an example.

本実施形態に係る非水電解質二次電池は、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、電位変化が平坦な領域が観察されるリチウム過剰型活物質を正極に含むが、初期充放電工程において、前記平坦な領域が観察される充電過程が終了するまでの充電が行われることなく電池が完成される。初期充放電工程における正極の最大到達電位は4.5V(vs.Li/Li)未満とすることが好ましい。さらに、本実施形態に係る非水電解質二次電池は、前記平坦な領域が観察される充電過程が終了するまでの充電が行われることがない充電条件下で使用される。したがって、本実施形態に係る非水電解質二次電池は、製造段階から使用時に至るまで、前記平坦な領域が観察される充電過程が終了するまでの充電が一度も行われていないから、過充電された場合、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が平坦な領域が観察される。
本実施形態に係る非水電解質二次電池は、上記で説明した挙動を利用することによって、通常使用時の満充電状態であるSOC100%を超えて過充電されても、より高いSOCに至るまで電池電圧(正極電位)の急上昇を抑制することができる。
In the non-aqueous electrolyte secondary battery according to the present embodiment, when the positive electrode potential is charged to 5.0 V (vs. Li/Li + ), a region where the potential change is flat is observed. Excessive lithium active material is included in the positive electrode, but in the initial charge/discharge process, the battery is completed without charging until the end of the charging process in which the flat region is observed. The maximum potential of the positive electrode in the initial charging/discharging step is preferably less than 4.5 V (vs. Li/Li + ). Furthermore, the non-aqueous electrolyte secondary battery according to the present embodiment is used under charging conditions in which charging is not performed until the charging process in which the flat region is observed is completed. Therefore, in the non-aqueous electrolyte secondary battery according to the present embodiment, from the manufacturing stage to the time of use, charging is not performed even once until the charging process in which the flat region is observed is completed. In this case, a region in which the potential change is flat with respect to the charge quantity of electricity is observed within the positive electrode potential range of 4.5 to 5.0 V (vs. Li/Li + ).
By utilizing the behavior described above, the non-aqueous electrolyte secondary battery according to the present embodiment can reach a higher SOC even if it is overcharged beyond 100% SOC, which is the fully charged state during normal use. A sudden rise in the battery voltage (positive electrode potential) can be suppressed.

<電位変化が平坦な領域の確認方法>
ここで、「電位変化が平坦な領域」が観察されることの確認は、以下の手順による。非水電解質二次電池を解体して取り出した正極を作用極、金属リチウムを対極とした試験電池を作製する。なお、前記試験電池の電池電圧と作用極電位(正極電位)は、ほぼ同じ値であるため、以下の手順における正極電位は、試験電池の電池電圧と読み替えることができる。前記試験電池を正極合剤1gあたり10mAの電流値で正極の終止電位2.0V(vs.Li/Li)まで放電したのち、30分の休止を行う。その後正極合剤1gあたり10mAの電流値で正極の終止電位5.0V(vs.Li/Li)まで定電流充電を行う。ここで、充電開始から4.45V(vs.Li/Li)到達時の容量がX(mAh)、各電位における容量がY(mAh)であるときの、Y/X*100を容量比Z(%)とする。横軸に正極電位、縦軸に分母を電位変化の差分、分子を容量比変化の差分としたdZ/dVとしてプロットすることによって、dZ/dVカーブを得られる。
図3における実線は、リチウム過剰型活物質を正極活物質として用いた正極と金属リチウムを用いた負極とを備えた非水電解質二次電池を組み立て、初回に4.6V(vs.Li/Li)に至る充電を行ったときのdZ/dVカーブの一例である。dZ/dVカーブは計算式からも分かるように、容量比変化に対し、電位変化が小さいときはdZ/dVの値が大きくなり、容量比変化に対し、電位変化が大きいときはdZ/dVの値が小さくなる。リチウム過剰型活物質の充電過程では、4.5V(vs.Li/Li)を超えた電位領域における電位変化が平坦な領域において、dZ/dVの値は大きくなる。その後、電位変化が平坦な領域が終了し、電位が再び上昇し始めた場合は、dZ/dVの値は小さくなる。すなわち、dZ/dVカーブにおいて、ピークが観察される。ここで、4.5V(vs.Li/Li)から5.0V(vs.Li/Li)の範囲におけるdZ/dVの最大値が150以上を示す場合、充電電気量に対して電位変化が平坦な領域が観察されると判断する。一方、破線は、市販のLiMeO型活物質を正極活物質として用いた正極を備えることを除いては同様の構成とし、同様の試験を行った電池のdZ/dVカーブである。電位変化が平坦な領域が観察されないことに対応して、リチウム過剰型に見られたようなピークは観察されない。なお、本明細書において、通常使用時とは、当該非水電解質二次電池について推奨され、又は指定される充放電条件を採用して当該非水電解質二次電池を使用する場合であり、当該非水電解質二次電池のための充電器が用意されている場合は、その充電器を適用して当該非水電解質二次電池を使用する場合をいう。
<Method for confirming the area where the potential change is flat>
Here, the following procedure is used to confirm that the "area where the potential change is flat" is observed. A non-aqueous electrolyte secondary battery is disassembled and taken out to prepare a test battery using the positive electrode as the working electrode and metal lithium as the counter electrode. Since the battery voltage and the working electrode potential (positive electrode potential) of the test battery are substantially the same value, the positive electrode potential in the following procedure can be read as the battery voltage of the test battery. The test battery is discharged at a current value of 10 mA per 1 g of the positive electrode mixture until the final potential of the positive electrode is 2.0 V (vs. Li/Li + ), and then rested for 30 minutes. After that, constant current charging is performed at a current value of 10 mA per 1 g of the positive electrode mixture until the final potential of the positive electrode is 5.0 V (vs. Li/Li + ). Here, when the capacity when reaching 4.45 V (vs. Li/Li + ) from the start of charging is X (mAh) and the capacity at each potential is Y (mAh), Y/X*100 is the capacity ratio Z (%). A dZ/dV curve can be obtained by plotting dZ/dV with the positive electrode potential on the horizontal axis, the difference in potential change on the denominator on the vertical axis, and the difference in capacitance ratio change on the numerator.
A solid line in FIG. + ) is an example of a dZ/dV curve when charging is performed. As can be seen from the formula for the dZ/dV curve, when the potential change is small with respect to the capacitance ratio change, the dZ/dV value is large, and when the potential change is large with respect to the capacitance ratio change, the dZ/dV value is value becomes smaller. In the charging process of the lithium-excess type active material, the value of dZ/dV becomes large in the region where the potential change is flat in the potential region exceeding 4.5 V (vs. Li/Li + ). After that, when the region where the potential change is flat ends and the potential starts to rise again, the value of dZ/dV becomes smaller. That is, a peak is observed in the dZ/dV curve. Here, when the maximum value of dZ/dV in the range of 4.5 V (vs. Li/Li + ) to 5.0 V (vs. Li/Li + ) is 150 or more, the potential change with respect to the amount of charge determines that a flat region is observed. On the other hand, the dashed line is the dZ/dV curve of a battery having the same configuration except that it has a positive electrode using a commercially available LiMeO 2 type active material as a positive electrode active material and subjected to the same test. A peak such as that seen in the lithium-excess type is not observed, corresponding to the fact that no flat region of potential change is observed. In this specification, the term "during normal use" refers to the case where the non-aqueous electrolyte secondary battery is used under the charging and discharging conditions recommended or specified for the non-aqueous electrolyte secondary battery. When a charger for the non-aqueous electrolyte secondary battery is prepared, it refers to the case where the non-aqueous electrolyte secondary battery is used by applying the charger.

<リチウム遷移金属複合酸化物の前駆体の製造方法>
次に、本実施形態に係る非水電解質二次電池の正極活物質の製造に用いるリチウム遷移金属複合酸化物の前駆体の製造方法について説明する。
本実施形態に係るリチウム遷移金属複合酸化物は、基本的に、活物質を構成する金属元素(Li、Ni、Co及びMn)を目的とする活物質(酸化物)の組成どおりに含有する原料を調製し、これを焼成することによって得ることができる。
目的とする組成の複合酸化物を作製するにあたり、Li、Ni、Co及びMnのそれぞれの化合物を混合・焼成するいわゆる「固相法」や、あらかじめNi、Co及びMnを一粒子中に存在させた共沈前駆体を作製しておき、これにリチウム塩を混合・焼成する「共沈法」が知られている。「固相法」による合成過程では、特にMnはNi及びCoに対して均一に固溶しにくいため、各元素が一粒子中に均一に分布した試料を得ることは困難である。これまで文献などにおいては、固相法によってNiやCoの一部にMnを固溶(LiNi1-xMnなど)しようという試みが多数なされているが、「共沈法」を選択する方が原子レベルで均一相を得ることが容易である。そこで、本実施形態に係るリチウム遷移金属複合酸化物の前駆体の製造方法においては、「共沈法」を採用した。
<Method for Producing Precursor of Lithium Transition Metal Composite Oxide>
Next, a method for producing the precursor of the lithium-transition metal composite oxide used for producing the positive electrode active material of the non-aqueous electrolyte secondary battery according to this embodiment will be described.
The lithium-transition metal composite oxide according to the present embodiment is basically a raw material containing metal elements (Li, Ni, Co and Mn) constituting the active material according to the composition of the target active material (oxide). can be obtained by preparing and firing this.
In producing a composite oxide with the desired composition, the so-called "solid phase method" in which compounds of Li, Ni, Co and Mn are mixed and fired, or Ni, Co and Mn are pre-existed in one particle. A "coprecipitation method" is known in which a coprecipitate precursor is prepared and then mixed with a lithium salt and fired. In the synthesis process by the "solid-phase method", it is difficult to obtain a sample in which each element is uniformly distributed in one particle, especially since Mn is difficult to form a uniform solid solution with Ni and Co. Until now, many attempts have been made in the literature to form a solid solution of Mn (LiNi 1-x Mn x O 2 , etc.) in part of Ni or Co by a solid-phase method, but the “coprecipitation method” was selected. It is easier to obtain a homogeneous phase at the atomic level. Therefore, the "coprecipitation method" is employed in the method for producing the precursor of the lithium-transition metal composite oxide according to the present embodiment.

本実施形態に係るリチウム遷移金属複合酸化物の前駆体の製造方法においては、Ni、Co及びMnを含有する原料水溶液を滴下し、溶液中でNi、Co及びMnを含有する化合物を共沈させて前駆体を作製することが好ましい。
共沈前駆体を作製するにあたって、Ni、Co及びMnのうちMnは酸化されやすく、Ni、Co及びMnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Ni、Co及びMnの原子レベルでの均一な混合は不十分なものとなりやすい。したがって、本発明においては、共沈前駆体に分布して存在するMnの酸化を抑制するために、溶存酸素を除去することが好ましい。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素(O)を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)等を用いることができる。
In the method for producing a precursor of a lithium-transition metal composite oxide according to the present embodiment, a raw material aqueous solution containing Ni, Co, and Mn is added dropwise, and a compound containing Ni, Co, and Mn is coprecipitated in the solution. It is preferable to prepare the precursor by
In producing the coprecipitated precursor, Mn among Ni, Co and Mn is easily oxidized, and it is not easy to produce a coprecipitated precursor in which Ni, Co and Mn are uniformly distributed in a divalent state. , Ni, Co and Mn at the atomic level tend to be insufficient. Therefore, in the present invention, it is preferable to remove dissolved oxygen in order to suppress the oxidation of Mn distributed in the coprecipitate precursor. A method of removing dissolved oxygen includes a method of bubbling an oxygen-free gas. As the gas that does not contain oxygen (O 2 ), nitrogen gas, argon gas, carbon dioxide (CO 2 ), etc. can be used, although not limited thereto.

溶液中でNi、Co及びMnを含有する化合物を共沈させて前駆体を作製する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈水酸化物前駆体として作製しようとする場合には、10.5~14とすることができる。前駆体及び複合酸化物のタップ密度を大きくするためには、pHを制御することが好ましい。pHを11.5以下とすることにより、複合酸化物のタップ密度を1.00g/cm以上とすることができ、高率放電性能を向上させることができる。さらに、pHを11.0以下とすることにより、粒子成長を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
また、前記共沈前駆体を共沈炭酸塩前駆体として作製しようとする場合には、pHを7.5~11とすることができる。pHを9.4以下とすることにより、複合酸化物のタップ密度を1.25g/cm以上とすることができ、高率放電性能を向上させることができる。さらに、pHを8.0以下とすることにより、粒子成長を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
The pH in the step of co-precipitating a compound containing Ni, Co and Mn in a solution to produce a precursor is not limited, but the co-precipitated precursor is produced as a co-precipitated hydroxide precursor. If so, it can be 10.5 to 14. It is preferable to control the pH in order to increase the tap density of the precursor and composite oxide. By setting the pH to 11.5 or less, the composite oxide can have a tap density of 1.00 g/cm 3 or more, and high rate discharge performance can be improved. Furthermore, by setting the pH to 11.0 or less, particle growth can be promoted, so that the duration of stirring after the end of dropping the raw material aqueous solution can be shortened.
Further, when the coprecipitate precursor is to be produced as a coprecipitate carbonate precursor, the pH can be adjusted to 7.5-11. By setting the pH to 9.4 or less, the composite oxide can have a tap density of 1.25 g/cm 3 or more, and high rate discharge performance can be improved. Furthermore, by setting the pH to 8.0 or less, particle growth can be promoted, so that the duration of stirring after the end of dropping the raw material aqueous solution can be shortened.

前記共沈前駆体の原料は、Ni源としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co源としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を、Mn源としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を一例として挙げることができる。 Raw materials for the coprecipitate precursor include Ni sources such as nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, nickel acetate, etc., and Co sources such as cobalt sulfate, cobalt nitrate, cobalt acetate, etc., and Mn sources. Examples thereof include manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, and manganese acetate.

前記原料水溶液の滴下速度は、生成する共沈前駆体の1粒子内における元素分布の均一性に大きく影響を与える。好ましい滴下速度については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、30mL/min以下が好ましい。放電容量を向上させるためには、滴下速度は10mL/min以下がより好ましく、5mL/min以下が最も好ましい。 The dropping speed of the raw material aqueous solution greatly affects the uniformity of the elemental distribution within one particle of the coprecipitate precursor to be produced. A preferable dropping rate is preferably 30 mL/min or less, although it is affected by the size of the reaction vessel, stirring conditions, pH, reaction temperature, and the like. In order to improve the discharge capacity, the dropping rate is more preferably 10 mL/min or less, most preferably 5 mL/min or less.

また、反応槽内にNH等の錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転及び攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、共沈前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。したがって、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた共沈前駆体を得ることができる。 In addition, when a complexing agent such as NH is present in the reaction tank and a constant convection condition is applied, by continuing stirring after the dropping of the raw material aqueous solution, the rotation of the particles and the Revolution is accelerated, and in this process, the particles gradually grow into concentric spheres while colliding with each other. That is, the coprecipitate precursor undergoes a two-stage reaction: a metal complex formation reaction when the raw material aqueous solution is dropped into the reaction vessel, and a precipitate formation reaction that occurs while the metal complex stays in the reaction vessel. It is formed. Therefore, the coprecipitate precursor having the desired particle size can be obtained by appropriately selecting the time for continuing the stirring after the dropping of the raw material aqueous solution.

原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5時間以上が好ましく、1時間以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が十分でないものとなる虞を低減させるため、30時間以下が好ましく、25時間以下がより好ましく、20時間以下が最も好ましい。 Regarding the preferable duration of stirring after the completion of dropping the raw material aqueous solution, it is affected by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc., but it is 0.5 hours or more in order to grow the particles as uniform spherical particles. is preferred, and 1 hour or more is more preferred. In addition, in order to reduce the possibility that the output performance of the battery in the low SOC region will be insufficient due to an excessively large particle size, the time is preferably 30 hours or less, more preferably 25 hours or less, and most preferably 20 hours or less.

<リチウム遷移金属複合酸化物の製造方法>
本実施形態に係る非水電解質二次電池の正極活物質の製造方法は、前記共沈前駆体とリチウム化合物とを混合し、焼成する方法であることが好ましい。
前記リチウム化合物としては、水酸化リチウム、炭酸リチウムを一例として挙げることができる。リチウム化合物の総量は、焼成中にリチウム化合物の一部が消失することを見込んで、1~5mol%程度過剰に仕込むことが好ましい。
また、これらのリチウム化合物と共に、焼結助剤としてフッ化リチウム、硫酸リチウム、又はリン酸リチウムを使用してもよい。これらの焼結助剤の添加比率は、リチウム化合物の総モル量に対して1~10mol%とすることが好ましい。
<Method for Producing Lithium Transition Metal Composite Oxide>
The method for producing the positive electrode active material of the non-aqueous electrolyte secondary battery according to the present embodiment is preferably a method of mixing the coprecipitate precursor and the lithium compound and calcining the mixture.
Examples of the lithium compound include lithium hydroxide and lithium carbonate. As for the total amount of the lithium compound, it is preferable to add an excess amount of about 1 to 5 mol % in anticipation of part of the lithium compound being lost during firing.
In addition to these lithium compounds, lithium fluoride, lithium sulfate, or lithium phosphate may be used as a sintering aid. The addition ratio of these sintering aids is preferably 1 to 10 mol % with respect to the total molar amount of the lithium compound.

焼成温度は、正極活物質の充放電サイクル性能に影響を与える。
焼成温度が低すぎると、結晶化が十分に進まず、充放電サイクル性能が低下する傾向がある。本発明の一態様においては、焼成温度は800℃以上とすることが好ましい。800℃以上とすることにより、結晶化度が高い活物質粒子を得ることができ、充放電サイクル性能を向上させることができる。
The firing temperature affects the charge-discharge cycle performance of the positive electrode active material.
If the firing temperature is too low, crystallization will not proceed sufficiently, and charge/discharge cycle performance will tend to deteriorate. In one aspect of the present invention, the firing temperature is preferably 800° C. or higher. When the temperature is 800° C. or higher, active material particles having a high degree of crystallinity can be obtained, and charge/discharge cycle performance can be improved.

一方、焼成温度が高すぎると層状α-NaFeO構造から岩塩型立方晶構造へと構造変化がおこり、充放電反応中における活物質中のリチウムイオン移動に不利な状態となり、充放電サイクル性能が低下する。本発明においては、焼成温度は1000℃以下とすることが好ましい。1000℃以下とすることにより、岩塩型立方晶構造への構造変化が抑制された活物質粒子を得ることができ、充放電サイクル性能を向上させることができる。
したがって、本発明の一態様に係るリチウム遷移金属複合酸化物を含有する正極活物質を作製する場合、充放電サイクル性能を向上させるために、焼成温度は800~1000℃とすることが好ましい。
On the other hand, if the sintering temperature is too high, the structure changes from the layered α-NaFeO 2 structure to the rocksalt cubic crystal structure, which is disadvantageous to the movement of lithium ions in the active material during the charge-discharge reaction, resulting in poor charge-discharge cycle performance. descend. In the present invention, the firing temperature is preferably 1000° C. or less. By setting the temperature to 1000° C. or less, it is possible to obtain active material particles in which structural change to a rock salt-type cubic crystal structure is suppressed, and to improve charge-discharge cycle performance.
Therefore, when producing a positive electrode active material containing a lithium-transition metal composite oxide according to one aspect of the present invention, the firing temperature is preferably 800 to 1000° C. in order to improve charge-discharge cycle performance.

焼成して得たリチウム遷移金属複合酸化物の一次粒子及び/又は二次粒子の表面には、エネルギー密度維持率が高く、クーロン効率を向上させた正極活物質を得るために、異種元素を被覆及び/又は固溶させてもよい。異種元素として、例えばアルミニウム化合物があげられる。
アルミニウム化合物を被覆させるには、合成したリチウム遷移金属複合酸化物の粒子を、アルミニウムを含む化合物(硫酸塩、硝酸塩、酢酸塩等)の水溶液に投入する方法を採用することができる。この水溶液は酸性とすることが好ましい。但し、投入する順序は、これに限定されない。例えば、水に分散させたリチウム遷移金属複合酸化物粒子にアルミニウムを含む化合物の水溶液を投入する方法を採用してもよい。また、アルミニウムを含む水溶液にリチウム遷移金属複合酸化物を投入した後、又は投入する際に、pH調整剤を投入してもよい。前記pH調整剤としては、アルカリ溶液であれば、限定されない。前記アルカリ溶液としては、例えば、NaOH水溶液、KOH水溶液が挙げられる。pH調整剤を投入することによって調整されるpHの値は、適宜選択することができる。
ろ過等により、アルミニウムの化合物の添加された粒子を分別し、得られた粒子を、好ましくは、80~120℃で乾燥し、さらに、300~500℃にて1~10時間、大気中で熱処理を行うことにより、粒子表面にアルミニウムを含む酸化物の存在するリチウム遷移金属複合酸化物粒子が得られる。
リチウム遷移金属複合酸化物粒子の表面にアルミニウム化合物を被覆させる際には、リチウム遷移金属複合酸化物に対してアルミニウム化合物が、好ましくは0.1質量%~0.7質量%となるように、より好ましくは0.2質量%~0.6質量%となるようにすると、前記エネルギー密度維持率のさらなる向上効果及びクーロン効率の向上効果がより十分に発揮される。
The surface of the primary particles and/or secondary particles of the lithium-transition metal composite oxide obtained by firing is coated with a different element in order to obtain a positive electrode active material with a high energy density retention rate and improved coulombic efficiency. and/or may be dissolved. Examples of foreign elements include aluminum compounds.
In order to coat the aluminum compound, a method of putting the synthesized lithium-transition metal composite oxide particles into an aqueous solution of a compound containing aluminum (sulfate, nitrate, acetate, etc.) can be adopted. This aqueous solution is preferably acidic. However, the order of charging is not limited to this. For example, a method of adding an aqueous solution of a compound containing aluminum to lithium-transition metal composite oxide particles dispersed in water may be employed. Further, a pH adjuster may be added after or during the addition of the lithium-transition metal composite oxide to the aluminum-containing aqueous solution. The pH adjuster is not limited as long as it is an alkaline solution. Examples of the alkaline solution include NaOH aqueous solution and KOH aqueous solution. The pH value adjusted by adding the pH adjuster can be selected as appropriate.
The particles to which the aluminum compound has been added are separated by filtration or the like, and the obtained particles are preferably dried at 80 to 120° C. and further heat-treated in the air at 300 to 500° C. for 1 to 10 hours. By performing the above, lithium-transition metal composite oxide particles having aluminum-containing oxides present on the particle surfaces can be obtained.
When coating the surface of the lithium-transition metal composite oxide particles with the aluminum compound, the aluminum compound is preferably 0.1% by mass to 0.7% by mass with respect to the lithium-transition metal composite oxide, More preferably, when the content is 0.2% by mass to 0.6% by mass, the effect of further improving the energy density retention rate and the effect of improving the coulombic efficiency are more fully exhibited.

<負極材料>
本実施形態に係る電池の負極材料としては、限定されるものではなく、リチウムイオンを放出あるいは吸蔵することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のリチウム複合酸化物、金属リチウム、リチウム合金(リチウム-シリコン、リチウム-アルミニウム、リチウム-鉛、リチウム-スズ、リチウム-アルミニウム-スズ、リチウム-ガリウム、及びウッド合金等の金属リチウム含有合金)、リチウムを吸蔵・放出可能なシリコン、アンチモン、スズ等の金属、これらの合金、酸化ケイ素、酸化スズ等の金属酸化物、炭素材料(例えば黒鉛、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。
<Negative electrode material>
The negative electrode material of the battery according to the present embodiment is not limited, and any material can be selected as long as it can release or absorb lithium ions. For example, lithium composite oxides such as lithium titanate having a spinel crystal structure represented by Li[Li 1/3 Ti 5/3 ]O 4 , metallic lithium, lithium alloys (lithium-silicon, lithium-aluminum, lithium - metallic lithium-containing alloys such as lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and Wood's alloys), silicon capable of storing and releasing lithium, metals such as antimony and tin, alloys thereof, silicon oxide , metal oxides such as tin oxide, carbon materials (for example, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.), and the like.

<正極・負極>
正極活物質、及び負極材料は、平均粒子サイズが100μm以下の粉体であることが好ましい。特に、正極活物質の粉体は、非水電解質二次電池の高出力特性を向上させるために15μm以下であることが好ましく、充放電サイクル性能を維持するためには10μm以上であることが好ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。粉砕には、例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
<Positive electrode/negative electrode>
The positive electrode active material and the negative electrode material are preferably powders with an average particle size of 100 μm or less. In particular, the powder of the positive electrode active material is preferably 15 μm or less in order to improve the high output characteristics of the non-aqueous electrolyte secondary battery, and preferably 10 μm or more in order to maintain charge-discharge cycle performance. . A pulverizer or a classifier is used to obtain powder in a predetermined shape. For pulverization, for example, a mortar, ball mill, sand mill, vibrating ball mill, planetary ball mill, jet mill, counter jet mill, whirling jet mill, sieve and the like are used. At the time of pulverization, wet pulverization in which water or an organic solvent such as hexane is allowed to coexist can also be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like may be used as necessary, both dry and wet.

以上、正極及び負極の主要構成成分である正極活物質及び負極材料について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。 The positive electrode active material and the negative electrode material, which are the main constituent components of the positive electrode and the negative electrode, have been described in detail above. etc. may be contained as other constituents.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種又はそれらの混合物として含ませることができる。 The conductive agent is not limited as long as it is an electronically conductive material that does not adversely affect the battery performance. Conductive materials such as ketjen black, carbon whiskers, carbon fibers, metal (copper, nickel, aluminum, silver, gold, etc.) powders, metal fibers, and conductive ceramics materials can be included singly or as a mixture thereof. .

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが好ましい。導電剤の添加量は、正極又は負極の総質量に対して0.1質量%~50質量%が好ましく、特に0.5質量%~30質量%が好ましい。特にアセチレンブラックを0.1~0.5μmの超微粒子に粉砕して用いると、必要炭素量を削減できるため好ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を用いて乾式、あるいは湿式で混合することが可能である。 Among these, acetylene black is preferable as the conductive agent from the viewpoint of electronic conductivity and coatability. The amount of the conductive agent added is preferably 0.1% by mass to 50% by mass, particularly preferably 0.5% by mass to 30% by mass, based on the total mass of the positive electrode or negative electrode. In particular, it is preferable to grind acetylene black into ultrafine particles of 0.1 to 0.5 μm and use it, because the required amount of carbon can be reduced. These mixing methods are physical mixing, the ideal of which is homogeneous mixing. Therefore, dry or wet mixing can be performed using a powder mixer such as a V-type mixer, an S-type mixer, a grinder, a ball mill, or a planetary ball mill.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン等の熱可塑性樹脂、エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種又は2種以上の混合物として用いることができる。結着剤の添加量は、正極又は負極の総質量に対して1~50質量%が好ましく、特に2~30質量%が好ましい。 The binders are generally polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), thermoplastic resins such as polyethylene and polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene butadiene. A polymer having rubber elasticity such as rubber (SBR) and fluororubber can be used singly or as a mixture of two or more. The amount of the binder added is preferably 1 to 50% by mass, particularly preferably 2 to 30% by mass, based on the total mass of the positive electrode or negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば限定されない。通常、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極又は負極の総質量に対して30質量%以下が好ましい。 The filler is not limited as long as it is a material that does not adversely affect battery performance. Ordinarily, olefinic polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The amount of filler added is preferably 30% by mass or less with respect to the total mass of the positive electrode or negative electrode.

正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、及びその他の材料を、N-メチルピロリドン、トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、又は圧着して50℃~250℃程度の温度で、2時間程度加熱処理することにより合剤層を形成することで好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが好ましいが、これらに限定されるものではない。 The positive electrode and the negative electrode are obtained after mixing the main constituent components (positive electrode active material for the positive electrode, negative electrode material for the negative electrode) and other materials in an organic solvent such as N-methylpyrrolidone or toluene or water. The resulting mixed solution is applied or pressure-bonded onto a current collector described in detail below and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours to form a mixture layer. is made. Regarding the coating method, for example, it is preferable to apply to any thickness and any shape using means such as roller coating such as an applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.

集電体としては、アルミニウム箔、銅箔等の集電箔を用いることができる。正極の集電体としてはアルミニウム箔が好ましく、負極の集電体としては銅箔が好ましい。集電体の厚さは10~30μmが好ましい。また、合剤層の厚さは、40~150μm(集電体厚さを除く)が好ましい。 As the current collector, a current collecting foil such as an aluminum foil or a copper foil can be used. Aluminum foil is preferable as the current collector for the positive electrode, and copper foil is preferable as the current collector for the negative electrode. The thickness of the current collector is preferably 10 to 30 μm. Moreover, the thickness of the mixture layer is preferably 40 to 150 μm (excluding the thickness of the current collector).

<非水電解質>
本発明の一態様に係る非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。
非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート等の環状カーボネート類又はそれらのフッ化物;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフラン又はその誘導体;1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソラン又はその誘導体;エチレンスルフィド又はその誘導体等の単独又はそれら2種以上の混合物等を挙げることができる。
<Non-aqueous electrolyte>
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery according to one aspect of the present invention is not particularly limited, and those generally proposed for use in lithium batteries and the like can be used.
Non-aqueous solvents used in the non-aqueous electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, and chloroethylene carbonate, or their fluorides; cyclic esters such as γ-butyrolactone and γ-valerolactone; and dimethyl carbonate. , diethyl carbonate, chain carbonates such as ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate, methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2- Ethers such as dimethoxyethane, 1,4-dibutoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; can be mentioned.

本実施形態に係る非水電解質は、特に非水溶媒としてフッ素化環状カーボネートを含むことが好ましい。非水溶媒にフッ素化環状カーボネートを含む非水電解質を用いると、保存後のAC抵抗の増加を抑制できる。フッ素化環状カーボネートとしては、4-フルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4,4,5-トリフルオロエチレンカーボネート等を挙げることができる。中でも、電池内でガスが発生することによる電池膨れが抑制できる点で、4-フルオロエチレンカーボネート(FEC)を用いることが好ましい。
フッ素化環状カーボネートの含有量は、非水溶媒中の体積比で3~30%であることが好ましく、5~25%であることがより好ましい。
The non-aqueous electrolyte according to this embodiment preferably contains a fluorinated cyclic carbonate as a non-aqueous solvent. Using a non-aqueous electrolyte containing a fluorinated cyclic carbonate as the non-aqueous solvent can suppress an increase in AC resistance after storage. Fluorinated cyclic carbonates include 4-fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4,4,5-trifluoroethylene carbonate and the like. Among them, 4-fluoroethylene carbonate (FEC) is preferably used because it can suppress battery swelling due to gas generation in the battery.
The content of the fluorinated cyclic carbonate is preferably 3 to 30% by volume in the non-aqueous solvent, more preferably 5 to 25%.

また、本実施形態に係る非水電解質には、ホウ素に結合したオキサレート基を有する化合物が添加されることが好ましい。ホウ素に結合したオキサレート基を有する化合物は、初期AC抵抗を低減する効果があり、正極にリチウム過剰型活物質を用いた非水電解質二次電池の出力特性を向上させることができる。 Moreover, it is preferable that a compound having an oxalate group bonded to boron is added to the non-aqueous electrolyte according to the present embodiment. A compound having an oxalate group bonded to boron has the effect of reducing the initial AC resistance, and can improve the output characteristics of a non-aqueous electrolyte secondary battery using a lithium-excess type active material for the positive electrode.

ホウ素に結合したオキサレート基を有する化合物としては、リチウムビスオキサレートボレート(LiBOB)、ジフルオロ(オキサラト)ホウ酸リチウム(LiDFOB)、(3-メチル-2,4-ペンタンジオナト)オキサラトボレート(MOAB)等が挙げられる。各オキサレート基を有する化合物の化学構造式を以下に示す。 Compounds having boron-bonded oxalate groups include lithium bisoxalateborate (LiBOB), lithium difluoro(oxalato)borate (LiDFOB), (3-methyl-2,4-pentanedionato)oxalatoborate (MOAB ) and the like. Chemical structural formulas of compounds having each oxalate group are shown below.

Figure 0007147478000001
リチウムビスオキサレートボレート(LiBOB)
Figure 0007147478000001
Lithium bisoxalate borate (LiBOB)

Figure 0007147478000002
ジフルオロ(オキサラト)ホウ酸リチウム(LiDFOB)
Figure 0007147478000002
Lithium difluoro(oxalato)borate (LiDFOB)

Figure 0007147478000003
(3-メチル-2,4-ペンタンジオナト)オキサラトボレート(MOAB)
Figure 0007147478000003
(3-methyl-2,4-pentanedionato)oxalatoborate (MOAB)

ホウ素に結合したオキサレート基を有する化合物の添加量の下限は、非水電解質を構成する電解質塩以外の構成成分全体の質量に対し、充放電サイクル性能の向上のため0.1質量%以上が好ましく、より好ましくは0.2質量%以上であり、上限は、抵抗の増大の虞を低減するため、2.0質量%以下が好ましく、より好ましくは1.0質量%以下である。 The lower limit of the amount of the compound having an oxalate group bonded to boron is preferably 0.1% by mass or more in order to improve the charge-discharge cycle performance with respect to the mass of the entire constituent components other than the electrolyte salt that constitutes the non-aqueous electrolyte. , more preferably 0.2% by mass or more, and the upper limit is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, in order to reduce the possibility of an increase in resistance.

<初期AC抵抗の測定方法>
本願明細書において、初期AC抵抗の測定は次の条件で行う。測定は、注液、及び初期充放電を経た、工場出荷状態の非水電解質二次電池を対象とする。測定に先立ち、25℃にて、0.1Cの電流で所定の電圧範囲で充電及び放電した後、開回路とし、2時間以上放置する。以上の操作によって、非水電解質二次電池を完全放電状態とする。1kHzの交流(AC)を印加する方式のインピーダンスメータを用いて正負極端子間の抵抗値を測定し、これを「初期AC抵抗(mΩ)」とする。過充電あるいは過放電された非水電解質二次電池を測定対象としてはならない。
<Method for measuring initial AC resistance>
In the specification of the present application, the initial AC resistance is measured under the following conditions. The target of the measurement is a factory-shipped non-aqueous electrolyte secondary battery that has undergone liquid injection and initial charge/discharge. Prior to the measurement, the battery was charged and discharged at a current of 0.1 C at 25° C. in a predetermined voltage range, then opened and left for 2 hours or longer. By the above operation, the non-aqueous electrolyte secondary battery is brought into a completely discharged state. The resistance value between the positive and negative terminals is measured using an impedance meter that applies an alternating current (AC) of 1 kHz, and this value is defined as "initial AC resistance (mΩ)". Overcharged or overdischarged non-aqueous electrolyte secondary batteries should not be measured.

<保存後のAC抵抗の測定方法>
本明細書において、保存試験及び、保存後のAC抵抗の測定は次の条件で行う。非水電解質二次電池を25℃にて、0.1Cで所定の電圧まで充電し、満充電状態とする。その後、45℃にて15日間放置する。次に、0.2Cの電流で所定の電圧まで定電流放電を行った後、開回路とし、2時間以上放置する。以上の操作によって、非水電解質二次電池を完全放電状態とする。1kHzの交流(AC)を印加する方式のインピーダンスメータを用いて、25℃にて正負極端子間の抵抗値を測定する。過充電あるいは過放電された非水電解質二次電池を測定対象としてはならない。
<Method for measuring AC resistance after storage>
In this specification, the storage test and measurement of AC resistance after storage are performed under the following conditions. The non-aqueous electrolyte secondary battery is charged to a predetermined voltage at 25° C. and 0.1 C to reach a fully charged state. After that, it is left at 45° C. for 15 days. Next, after performing constant current discharge to a predetermined voltage with a current of 0.2 C, the circuit is opened and left for 2 hours or longer. By the above operation, the non-aqueous electrolyte secondary battery is brought into a completely discharged state. Using an impedance meter that applies an alternating current (AC) of 1 kHz, the resistance value between the positive and negative terminals is measured at 25°C. Overcharged or overdischarged non-aqueous electrolyte secondary batteries should not be measured.

非水電解質には、本発明の効果を損なわない範囲で、一般に非水電解質に使用される添加剤が添加されていてもよい。例えば、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等の含フッ素アニソール化合物等の過充電防止剤;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物等の負極被膜形成剤;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、プロペンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム等を単独で又は二種以上混合して非水電解質に加えることができる。
非水電解質中のこれらの添加剤の添加量は特に限定はないが、非水電解質を構成する電解質塩以外の構成成分全体に対し、それぞれ、0.01質量%以上が好ましく、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、上限は、5質量%以下が好ましく、より好ましくは3質量%以下、更に好ましくは2質量%以下である。これらを添加する目的としては、充放電効率の向上、抵抗上昇の抑制、電池膨れの抑制、充放電サイクル性能の向上等が挙げられる。
Additives generally used for non-aqueous electrolytes may be added to the non-aqueous electrolyte as long as the effects of the present invention are not impaired. For example, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; 2-fluorobiphenyl, o-cyclohexylfluorobenzene Fluorinated anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole and 3,5-difluoroanisole Overcharge inhibitors such as vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, etc. Film-forming agents; ethylene sulfite, propylene sulfite, dimethyl sulfite, propanesultone, propenesultone, butanesultone, methyl methanesulfonate, busulfan, methyl toluenesulfonate, dimethyl sulfate, ethylene sulfate, sulfolane, dimethylsulfone, diethylsulfone, dimethylsulfoxide, diethyl sulfoxide, tetramethylene sulfoxide, diphenyl sulfide, 4,4′-bis(2,2-dioxo-1,3,2-dioxathiolane, 4-methylsulfonyloxymethyl-2,2-dioxo-1,3,2- Dioxathiolane, thioanisole, diphenyl disulfide, dipyridinium disulfide, perfluorooctane, tristrimethylsilyl borate, tristrimethylsilyl phosphate, tetrakistrimethylsilyl titanate, lithium monofluorophosphate, lithium difluorophosphate, etc. alone or in combination of two or more can be added to the non-aqueous electrolyte.
The amount of these additives added to the non-aqueous electrolyte is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0, based on the total constituent components other than the electrolyte salt constituting the non-aqueous electrolyte. .1% by mass or more, more preferably 0.2% by mass or more, and the upper limit is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 2% by mass or less. The purposes of adding these include improvement of charge/discharge efficiency, suppression of resistance increase, suppression of battery swelling, and improvement of charge/discharge cycle performance.

非水電解質に用いる電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF、LiSCN、LiBr、LiI、LiSO、Li10Cl10、NaClO、NaI、NaSCN、NaBr、KClO、KSCN等のリチウム(Li)、ナトリウム(Na)又はカリウム(K)の1種を含む無機イオン塩、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、(CHNBF、(CHNBr、(CNClO、(CNI、(CNBr、(n-CNClO、(n-CNI、(CN-maleate、(CN-benzoate、(CN-phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Electrolyte salts used for the non-aqueous electrolyte include, for example, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr , KClO 4 , inorganic ion salts containing one of lithium (Li), sodium (Na) or potassium (K) such as KSCN, LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO2) 2 , LiN( CF3SO2 )( C4F9SO2 ), LiC ( CF3SO2 ) 3 , LiC ( C2F5SO2 ) 3 , ( CH3 ) 4NBF4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (nC 4 H 9 ) 4 NClO 4 , (nC 4H9 )4NI, ( C2H5 ) 4N - maleate, ( C2H5 ) 4N - benzoate, ( C2H5 ) 4N - phthalate, lithium stearylsulfonate, lithium octylsulfonate , Examples include organic ion salts such as lithium dodecylbenzenesulfonate and the like, and these ionic compounds can be used alone or in combination of two or more.

さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より好ましい。 Furthermore, by mixing LiPF 6 or LiBF 4 with a lithium salt having a perfluoroalkyl group such as LiN(C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further lowered. Low-temperature characteristics can be further improved, and self-discharge can be suppressed, which is more preferable.

また、非水電解質として常温溶融塩やイオン液体を用いてもよい。 Further, a room-temperature molten salt or an ionic liquid may be used as the non-aqueous electrolyte.

非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質二次電池を確実に得るために、0.1mol/L~5mol/Lが好ましく、さらに好ましくは、0.5mol/L~2.5mol/Lである。 The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol/L to 5 mol/L, more preferably 0.5 mol/L, in order to reliably obtain a non-aqueous electrolyte secondary battery having high battery characteristics. ~2.5 mol/L.

<セパレータ>
本実施形態に係る非水電解質二次電池に用いるセパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質二次電池用セパレータを構成する材料としては、例えばポリエチレン、ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-パーフルオロビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-フルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロアセトン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-プロピレン共重合体、フッ化ビニリデン-トリフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン-テトラフルオロエチレン共重合体等を挙げることができる。
<Separator>
As the separator used in the non-aqueous electrolyte secondary battery according to the present embodiment, it is preferable to use a porous film, a non-woven fabric, or the like, which exhibits excellent high-rate discharge performance, alone or in combination. Examples of materials constituting the separator for non-aqueous electrolyte secondary batteries include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride. - hexafluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer , vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexa Fluoropropylene copolymers, vinylidene fluoride-ethylene-tetrafluoroethylene copolymers, and the like can be mentioned.

セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。 The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Moreover, the porosity is preferably 20% by volume or more from the viewpoint of charge-discharge characteristics.

また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。 Also, the separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinylpyrrolidone, polyvinylidene fluoride, and the like, and a non-aqueous electrolyte. It is preferable to use the non-aqueous electrolyte in the gel state as described above because it has the effect of preventing liquid leakage.

さらに、セパレータは、上記したような多孔膜や不織布等とポリマーゲルを併用して用いると、非水電解質の保液性が向上するため好ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に非水電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。 Furthermore, it is preferable to use a polymer gel in combination with the above-described porous membrane or non-woven fabric as the separator because the liquid retention of the non-aqueous electrolyte is improved. That is, by forming a film in which the surface and the wall surfaces of the micropores of a polyethylene microporous membrane are coated with a solvent-philic polymer having a thickness of several μm or less, and holding a non-aqueous electrolyte in the pores of the film, the solvent-philic The polar polymer gels.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。 Examples of the solvent-philic polymer include, in addition to polyvinylidene fluoride, a crosslinked polymer of an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a monomer having an isocyanate group, or the like. The monomer can be subjected to a cross-linking reaction using heating, ultraviolet rays (UV) in combination with a radical initiator, or actinic rays such as electron beams (EB).

その他の電池の構成要素としては、端子、絶縁板、電池ケース等があるが、これらの部品は従来用いられてきたものをそのまま用いて差し支えない。 Other battery components include terminals, an insulating plate, a battery case, and the like, and conventionally used parts may be used as they are.

<非水電解質二次電池>
本実施形態に係る非水電解質二次電池を図4に示す。図4は、矩形状の非水電解質二次電池の容器内部を透視した斜視図である。電極群2が収納された電池容器3内に非水電解質(電解液)を注入することにより非水電解質二次電池1が組み立てられる。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
本実施形態に係る非水電解質二次電池の形状については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。
<Non-aqueous electrolyte secondary battery>
FIG. 4 shows a non-aqueous electrolyte secondary battery according to this embodiment. FIG. 4 is a perspective view of the inside of a container of a rectangular non-aqueous electrolyte secondary battery. A nonaqueous electrolyte secondary battery 1 is assembled by injecting a nonaqueous electrolyte (electrolytic solution) into a battery container 3 in which an electrode group 2 is housed. The electrode group 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material with a separator interposed therebetween. The positive electrode is electrically connected to a positive terminal 4 via a positive lead 4', and the negative electrode is electrically connected to a negative terminal 5 via a negative lead 5'.
The shape of the non-aqueous electrolyte secondary battery according to the present embodiment is not particularly limited, and examples thereof include cylindrical batteries, prismatic batteries (rectangular batteries), and flat batteries.

非水電解質二次電池は、一般的に、電解質を注液、封口後、工場内で複数回の充放電を経ることで完成し、出荷される。
本実施形態に係る非水電解質二次電池は、工場出荷前の初期充放電(製造工程)において、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、前記電位変化が平坦な領域が観察される充電過程が終了するまでの充電が一度も行われることなく出荷される。
A non-aqueous electrolyte secondary battery is generally completed and shipped after charging and discharging multiple times in a factory after injecting an electrolyte and sealing.
In the non - aqueous electrolyte secondary battery according to the present embodiment, the potential It is shipped without being charged even once until the end of the charging process in which a flat region of change is observed.

本実施形態に係る非水電解質二次電池が、前記平坦な領域が観察される充電過程が終了するまでの充電が行われた履歴を有しないことは、当該電池の正極活物質が、前記CuKα線を用いたエックス線回折図において、20~22°の範囲に回折ピークが観察されること、又は、当該電池が、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が平坦な領域が観察されることにより確認することができる。これらの確認方法の詳細は、上記したとおりである。 The fact that the non-aqueous electrolyte secondary battery according to the present embodiment does not have a history of being charged until the charging process in which the flat region is observed is completed is because the positive electrode active material of the battery is the CuKα A diffraction peak is observed in the range of 20 to 22° in an X-ray diffractogram using a ray, or the battery was charged to a positive electrode potential of 5.0 V (vs. Li/Li + ). At this time, it can be confirmed by observing a region where the potential change is flat with respect to the amount of charge in the positive electrode potential range of 4.5 to 5.0 V (vs. Li/Li + ). The details of these confirmation methods are as described above.

本実施形態の非水電解質二次電池は、電池を複数個集合した蓄電装置としても実現することができる。蓄電装置の一例を図5に示す。図5において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。 The non-aqueous electrolyte secondary battery of this embodiment can also be realized as a power storage device in which a plurality of batteries are assembled. An example of a power storage device is shown in FIG. In FIG. 5 , the power storage device 30 includes a plurality of power storage units 20 . Each power storage unit 20 includes a plurality of nonaqueous electrolyte secondary batteries 1 . The power storage device 30 can be mounted as a power supply for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), and plug-in hybrid vehicles (PHEV).

(実施例1)
<リチウム遷移金属複合酸化物の作製>
硫酸ニッケル6水和物284g、硫酸コバルト7水和物303g、硫酸マンガン5水和物443gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が27:27:46となる1.0Mの硫酸塩水溶液を作製した。
次に、5Lの反応槽にイオン交換水2Lを注ぎ、アルゴンガスを30minバブリングさせることにより、イオン交換水中に含まれる酸素を除去した。反応槽の温度は50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を1500rpmの回転速度で攪拌しながら、反応槽内に対流が十分おこるように設定した。前記硫酸塩水溶液を3mL/minの速度で反応槽に滴下した。ここで、滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、0.5Mのアンモニア、及び0.2Mのヒドラジンからなる混合アルカリ水溶液を適宜滴下することにより、反応槽中のpHが常に9.8(±0.1)を保つように制御すると共に、反応液の一部をオーバーフローにより排出することにより、反応液の総量が常に2Lを超えないように制御した。滴下終了後、反応槽内の攪拌をさらに3時間継続した。攪拌の停止後、室温で12時間以上静置した。
次に、吸引ろ過装置を用いて、反応槽内に生成した水酸化物前駆体粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20時間乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、水酸化物前駆体を作製した。
前記水酸化物前駆体1.852gに、水酸化リチウム1水和物0.971gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni、Co、Mn)のモル比が130:100となるように混合粉体を調製した。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から900℃まで10時間かけて昇温し、900℃で5時間焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、電気炉のスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製乳鉢で軽く解砕した。
このようにして、リチウム遷移金属複合酸化物Li1.13Ni0.235Co0.235Mn0.40を作製した。
(Example 1)
<Preparation of lithium transition metal composite oxide>
284 g of nickel sulfate hexahydrate, 303 g of cobalt sulfate heptahydrate, and 443 g of manganese sulfate pentahydrate were weighed and dissolved in 4 L of ion-exchanged water to obtain a Ni:Co:Mn molar ratio of 27: A 1.0 M sulfate aqueous solution of 27:46 was made.
Next, 2 L of ion-exchanged water was poured into a 5-L reactor, and oxygen contained in the ion-exchanged water was removed by bubbling argon gas for 30 minutes. The temperature of the reaction tank was set to 50°C (±2°C), and the inside of the reaction tank was stirred at a rotational speed of 1500 rpm using a paddle blade equipped with a stirring motor. did. The aqueous sulfate solution was added dropwise to the reactor at a rate of 3 mL/min. Here, from the start to the end of dropping, by appropriately dropping a mixed alkaline aqueous solution consisting of 4.0 M sodium hydroxide, 0.5 M ammonia, and 0.2 M hydrazine, the pH in the reaction vessel is The total amount of the reaction solution was controlled so as not to exceed 2 L at all times by controlling to keep the value at 9.8 (±0.1) and discharging a part of the reaction solution by overflow. After the dropwise addition was completed, stirring in the reactor was continued for an additional 3 hours. After stopping the stirring, the mixture was allowed to stand at room temperature for 12 hours or more.
Next, using a suction filtration device, the hydroxide precursor particles produced in the reaction vessel are separated, and furthermore, ion-exchanged water is used to wash and remove sodium ions adhering to the particles, followed by an electric furnace. and dried at 80° C. for 20 hours in an air atmosphere under normal pressure. After that, it was pulverized for several minutes in an automatic mortar made of agate in order to make the particle size uniform. Thus, a hydroxide precursor was produced.
To 1.852 g of the hydroxide precursor, 0.971 g of lithium hydroxide monohydrate was added and mixed well using an agate automatic mortar to obtain a Li:(Ni, Co, Mn) molar ratio of 130: Mixed powder was prepared so that it would be 100. Using a pellet molding machine, it was molded at a pressure of 6 MPa to obtain pellets with a diameter of 25 mm. The amount of the mixed powder subjected to pellet molding was determined by conversion so that the mass of the assumed final product would be 2 g. One of the pellets is placed on an alumina boat with a total length of about 100 mm, placed in a box-shaped electric furnace (model number: AMF20), and heated from room temperature to 900 ° C. over 10 hours in an air atmosphere under normal pressure, It was calcined at 900° C. for 5 hours. The internal dimensions of the box-shaped electric furnace are 10 cm long, 20 cm wide and 30 cm deep, and heating wires are inserted at intervals of 20 cm in the width direction. After firing, the electric furnace was turned off, and the alumina boat was allowed to cool naturally while left in the furnace. As a result, the temperature of the furnace drops to about 200° C. after 5 hours, but the rate of temperature drop after that is rather slow. After a day and night, after confirming that the temperature of the furnace was 100° C. or lower, the pellets were taken out and lightly pulverized in an agate mortar to make the particle sizes uniform.
Thus , a lithium transition metal composite oxide Li1.13Ni0.235Co0.235Mn0.40O2 was produced .

<結晶構造の確認>
前記リチウム遷移金属複合酸化物について、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて粉末エックス線回折測定を行い、α-NaFeO型結晶構造を有することを確認した。
<Confirmation of crystal structure>
The lithium transition metal composite oxide was subjected to powder X-ray diffraction measurement using an X-ray diffractometer (manufactured by Rigaku, model name: MiniFlex II), and was confirmed to have an α-NaFeO 2 type crystal structure.

<正極の作製>
N-メチルピロリドンを分散媒とし、前記リチウム遷移金属複合酸化物(以下、「LR」という。)を活物質とし、活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比90:5:5の割合で混練分散されている塗布用正極ペーストを作製した。該塗布用正極ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布、乾燥したのちプレスし、実施例1に係る正極を作製した。
<Preparation of positive electrode>
Using N-methylpyrrolidone as a dispersion medium, using the lithium transition metal composite oxide (hereinafter referred to as “LR”) as an active material, and using an active material, acetylene black (AB) and polyvinylidene fluoride (PVdF) at a mass ratio of 90: A positive electrode paste for coating was prepared by kneading and dispersing at a ratio of 5:5. The positive electrode paste for coating was applied to one side of a 20 μm-thick aluminum foil current collector, dried and then pressed to prepare a positive electrode according to Example 1.

<負極の作製>
金属リチウム箔をニッケル集電体に配置して、負極を作製した。該金属リチウムの量は、前記正極と組み合わせたときに電池の容量が負極によって制限されないように調整した。
<Production of negative electrode>
A negative electrode was prepared by placing a metallic lithium foil on a nickel current collector. The amount of lithium metal was adjusted so that the capacity of the battery when combined with the positive electrode was not limited by the negative electrode.

<非水電解質二次電池の組み立て>
実施例1に係る正極を用いて、以下の手順で非水電解質二次電池を組み立てた。
4-フルオロエチレンカーボネート(FEC)/プロピレンカーボネート(PC)/エチルメチルカーボネート(EMC)が体積比1:1:8である混合溶媒に、濃度が1mol/LとなるようにLiPFを溶解させた溶液100質量%に対し、添加剤としてリチウムジフルオロホスフェート(LiDFP)0.5質量%、及び4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)(化合物A)1質量%を添加したものを非水電解質として用いた。
セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用いた。実施例1に係る正極、及び前記負極を、前記セパレータを介して、正極端子及び負極端子の開放端部が外部露出するように前記外装体に収納し、前記金属樹脂複合フィルムの金属接着性ポリプロピレン面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記非水電解質を注液後、注液孔を封止して、非水電解質二次電池を組み立てた。
<Assembly of Nonaqueous Electrolyte Secondary Battery>
Using the positive electrode according to Example 1, a non-aqueous electrolyte secondary battery was assembled according to the following procedure.
LiPF 6 was dissolved in a mixed solvent of 4-fluoroethylene carbonate (FEC)/propylene carbonate (PC)/ethyl methyl carbonate (EMC) at a volume ratio of 1:1:8 to a concentration of 1 mol/L. Lithium difluorophosphate (LiDFP) 0.5% by mass and 4,4'-bis(2,2-dioxo-1,3,2-dioxathiolane) (compound A) 1 mass as additives with respect to 100% by mass of the solution % was added as a non-aqueous electrolyte.
A polypropylene microporous membrane surface-modified with polyacrylate was used as a separator. A metal-resin composite film composed of polyethylene terephthalate (15 μm)/aluminum foil (50 μm)/metal-adhesive polypropylene film (50 μm) was used for the exterior body. The positive electrode and the negative electrode according to Example 1 are housed in the exterior body through the separator so that the open ends of the positive electrode terminal and the negative electrode terminal are exposed to the outside, and the metal-adhesive polypropylene of the metal-resin composite film The fusion margin where the faces face each other was airtightly sealed except for the portion to be the injection hole, and after the non-aqueous electrolyte was injected, the injection hole was sealed to assemble a non-aqueous electrolyte secondary battery. .

<初期充放電工程>
組み立てた非水電解質二次電池は、25℃の下、初期充放電工程に供した。充電は、電流0.1C、終止電圧4.25Vの定電流定電圧(CCCV)充電とし、充電終止条件は電流値が1/6に減衰した時点とした。放電は、電流0.1C、終止電圧2.0Vの定電流放電とした。この充放電を2回行った。ここで、充電後及び放電後にそれぞれ30分の休止工程を設けた。なお、負極材料が金属リチウムの場合、正極電位と電池電圧はほぼ同じ値であるため、以下の手順における正極電位は、試験電池の電池電圧と読み替えることができる。対極が黒鉛の場合、電池電圧に黒鉛の電位を加味し、約0.1V足したものが正極の電位となることがわかっている。
以上の製造工程を経て、実施例1に係る非水電解質二次電池を完成した。
<Initial charge/discharge process>
The assembled non-aqueous electrolyte secondary battery was subjected to an initial charging/discharging process at 25°C. The charging was constant current constant voltage (CCCV) charging with a current of 0.1 C and a final voltage of 4.25 V, and the charging termination condition was the time when the current value was attenuated to 1/6. The discharge was constant current discharge with a current of 0.1C and a final voltage of 2.0V. This charge/discharge was performed twice. Here, a pause step of 30 minutes was provided after charging and after discharging. When the negative electrode material is metallic lithium, the positive electrode potential and the battery voltage are approximately the same value, so the positive electrode potential in the following procedure can be read as the battery voltage of the test battery. It is known that when the counter electrode is graphite, the potential of the positive electrode is obtained by adding the potential of graphite to the battery voltage and adding about 0.1 V.
A non-aqueous electrolyte secondary battery according to Example 1 was completed through the above manufacturing steps.

(比較例1)
市販のLiNi0.5Co0.2Mn0.3(以下、「NCM523」という。)を正極活物質として用いた以外は、実施例1と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、比較例1に係る非水電解質二次電池を完成した。
(Comparative example 1)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that commercially available LiNi 0.5 Co 0.2 Mn 0.3 O 2 (hereinafter referred to as “NCM523”) was used as the positive electrode active material. Assembly and initial charge/discharge were performed, and a non-aqueous electrolyte secondary battery according to Comparative Example 1 was completed.

(比較例2)
実施例1と同様にして非水電解質二次電池の組み立てを行い、初期充放電工程における1回目の充電のみ終止電圧4.6Vの定電流定電圧(CCCV)充電とした以外は、実施例1と同様の初期充放電工程を行い、比較例2に係る非水電解質二次電池を完成した。
(Comparative example 2)
A non-aqueous electrolyte secondary battery was assembled in the same manner as in Example 1, except that only the first charge in the initial charge and discharge process was constant current constant voltage (CCCV) charge with a final voltage of 4.6 V. A non-aqueous electrolyte secondary battery according to Comparative Example 2 was completed.

(実施例2)
実施例1において作製したリチウム遷移金属複合酸化物Li1.13Ni0.235Co0.235Mn0.40 358gを0.1Mの硫酸アルミニウム水溶液200mLに投入し、マグネチックスターラーを用いて25℃、400rpmにて30秒撹拌した。その後、吸引ろ過により粉末とろ液に分別した。得られた粉末は80℃の大気中で20時間乾燥した。さらに、先述の箱型電気炉をもちいて400℃の大気中で4時間熱処理を行った。このようにして、アルミニウム化合物を被覆させたリチウム遷移金属複合酸化物(以下、「LR-Al」という。)を作製した。このリチウム遷移金属複合酸化物を正極活物質として用いた以外は、実施例1と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例2に係る非水電解質二次電池を完成した。
(Example 2)
358 g of the lithium transition metal composite oxide Li 1.13 Ni 0.235 Co 0.235 Mn 0.40 O 2 prepared in Example 1 was added to 200 mL of a 0.1 M aqueous solution of aluminum sulfate, and stirred using a magnetic stirrer. Stirred at 25° C. and 400 rpm for 30 seconds. Then, it was separated into powder and filtrate by suction filtration. The obtained powder was dried in air at 80° C. for 20 hours. Further, heat treatment was performed in the air at 400° C. for 4 hours using the above-mentioned box-type electric furnace. Thus, a lithium-transition metal composite oxide coated with an aluminum compound (hereinafter referred to as "LR-Al") was produced. The nonaqueous electrolyte secondary battery was assembled and initially charged and discharged in the same manner as in Example 1, except that this lithium transition metal composite oxide was used as the positive electrode active material. Finished the battery.

<正極活物質のエックス線回折ピークの確認>
実施例1及び比較例2に係る初期充放電後の非水電解質二次電池から前述した手順及び条件で採取した正極合剤を用いて、前述した条件で、エックス線回折測定を行った。実施例1の正極活物質には、CuKα線を用いたエックス線回折図において、20~22°の範囲に回折ピークが観察される(図1の下段参照)が、比較例2の正極活物質には、20~22°の範囲に回折ピークが観察されないことを確認した(図1の上段参照)。
<Confirmation of X-ray diffraction peak of positive electrode active material>
X-ray diffraction measurement was performed under the conditions described above using the positive electrode mixtures collected from the non-aqueous electrolyte secondary batteries after the initial charge/discharge according to Example 1 and Comparative Example 2 according to the procedures and conditions described above. In the positive electrode active material of Example 1, a diffraction peak is observed in the range of 20 to 22° in the X-ray diffraction diagram using CuKα rays (see the lower part of FIG. 1). confirmed that no diffraction peak was observed in the range of 20 to 22° (see upper part of Fig. 1).

<過充電試験>
実施例及び比較例に係る非水電解質二次電池を用いて、電池電圧の上限を設けずに正極合剤1gあたり10mAの電流値で定電流(CC)充電を行った。この充電は、初期充放電を含めると、3回目の充電に相当する。ここで、充電開始から4.45V(vs.Li/Li)到達時の容量がX(mAh)、各電圧における容量がY(mAh)であるときの、Y/X*100を容量比Z(%)とし、正極電位が急上昇し、正極電位が5.1V(vs.Li/Li)に到達したときの容量比Z(%)を「遅延効果」として記録した。また、dZ/dVの最大値を求めた。
<Overcharge test>
Using the non-aqueous electrolyte secondary batteries according to Examples and Comparative Examples, constant current (CC) charging was performed at a current value of 10 mA per 1 g of positive electrode mixture without setting an upper limit for battery voltage. This charge corresponds to the third charge including the initial charge/discharge. Here, when the capacity when reaching 4.45 V (vs. Li/Li + ) from the start of charging is X (mAh), and the capacity at each voltage is Y (mAh), Y/X*100 is the capacity ratio Z (%), and the capacity ratio Z (%) when the positive electrode potential rapidly increased and reached 5.1 V (vs. Li/Li + ) was recorded as the “retarding effect”. Also, the maximum value of dZ/dV was obtained.

実施例1、2及び比較例1、2に係る非水電解質二次電池の過充電試験における遅延効果(%)、及びdZ/dVの最大値を表1に示す。 Table 1 shows the delay effect (%) and the maximum value of dZ/dV in the overcharge test of the non-aqueous electrolyte secondary batteries according to Examples 1 and 2 and Comparative Examples 1 and 2.

Figure 0007147478000004
Figure 0007147478000004

表1によると、NCM523を用いた正極を備える比較例1に係る非水電解質二次電池は、過充電試験において、Zが135%で正極電位が急上昇して、5.1V(vs.Li/Li)に到達しており、遅延効果が十分ではない。これは、過充電試験において、電圧の上限を設けずに充電を行ったとき、比較例1に係る非水電解質二次電池の正極が、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が平坦な領域が観察されないこと(dZ/dVの最大値が150未満であること)と関連している。
また、比較例2に係る非水電解質二次電池は、リチウム過剰型活物質を用いた正極を備えているが、過充電試験において、Zが130%で正極電位の急上昇が観察されており、やはり遅延効果が十分ではない。これは、初期充放電工程において、正極電位が4.6V(vs.Li/Li)に至る充電が行われたため、過充電試験において、電圧の上限を設けずに充電を行ったとき、比較例2に係る非水電解質二次電池の正極が、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が平坦な領域が観察されないこと(dZ/dVの最大値が150未満であること)と関連している。
これに対して、リチウム過剰型活物質を用いた正極を備え、初期充放電工程を4.5V(vs.Li/Li)未満の電位で行った実施例1、2に係る非水電解質二次電池では、比較例1、2に比べて優れた遅延効果がみとめられる。これは、実施例1、2に係る非水電解質二次電池の正極が、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が平坦な領域が観察されること(dZ/dVの最大値が150以上であること)と関連している。
According to Table 1, in the overcharge test, the positive electrode potential of the non-aqueous electrolyte secondary battery according to Comparative Example 1, which has a positive electrode using NCM523, rapidly increased to 5.1 V (vs. Li/ Li + ), and the retardation effect is not sufficient. This is because in the overcharge test, when charging was performed without setting the upper limit of the voltage, the positive electrode of the non-aqueous electrolyte secondary battery according to Comparative Example 1 was 4.5 to 5.0 V (vs. Li/Li + ) within the range of positive electrode potential (maximum value of dZ/dV is less than 150).
In addition, the non-aqueous electrolyte secondary battery according to Comparative Example 2 has a positive electrode using a lithium-excess active material. Again, the delay effect is not sufficient. This is because the positive electrode potential was charged to 4.6 V (vs. Li/Li + ) in the initial charge/discharge process, so in the overcharge test, when charging was performed without setting the upper limit of the voltage, the comparison In the positive electrode of the non-aqueous electrolyte secondary battery according to Example 2, a region where the potential change is flat with respect to the amount of charged electricity is observed within the positive electrode potential range of 4.5 to 5.0 V (vs. Li/Li + ). (maximum dZ/dV less than 150).
On the other hand, the non-aqueous electrolytes according to Examples 1 and 2 were provided with a positive electrode using a lithium-excess active material, and the initial charge/discharge process was performed at a potential of less than 4.5 V (vs. Li/Li + ). In the following batteries, an excellent delay effect as compared with Comparative Examples 1 and 2 is observed. This is because the positive electrode of the non-aqueous electrolyte secondary batteries according to Examples 1 and 2 is within the positive electrode potential range of 4.5 to 5.0 V (vs. Li/Li + ). is associated with the observation of a flat region (maximum value of dZ/dV greater than or equal to 150).

次に、実施例1又は2に対して、非水電解質の組成を変更した非水電解質電池を作製した。 Next, a non-aqueous electrolyte battery was produced in which the composition of the non-aqueous electrolyte was changed from that of Example 1 or 2.

(実施例3)
非水電解質の溶媒を、エチレンカーボネート(EC)/プロピレンカーボネート(PC)/エチルメチルカーボネート(EMC)が体積比25:5:70である混合溶媒に変更した以外は、実施例1と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例3に係る非水電解質二次電池を完成した。
(Example 3)
In the same manner as in Example 1, except that the solvent for the non-aqueous electrolyte was changed to a mixed solvent of ethylene carbonate (EC)/propylene carbonate (PC)/ethyl methyl carbonate (EMC) with a volume ratio of 25:5:70. , the non-aqueous electrolyte secondary battery was assembled and the initial charge and discharge were performed to complete the non-aqueous electrolyte secondary battery according to Example 3.

(実施例4)
非水電解質の溶媒を、実施例3と同様に変更し、添加剤としてさらにビニレンカーボネート(VC)を非水電解質の質量に対して0.2質量%加えた以外は実施例1と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例4に係る非水電解質二次電池を完成した。
(Example 4)
In the same manner as in Example 1, except that the solvent for the non-aqueous electrolyte was changed in the same manner as in Example 3, and 0.2% by mass of vinylene carbonate (VC) was added as an additive to the mass of the non-aqueous electrolyte. , the non-aqueous electrolyte secondary battery was assembled and the initial charge and discharge were performed to complete the non-aqueous electrolyte secondary battery according to Example 4.

(実施例5)
非水電解質の溶媒を、FEC/EMCが体積比20:80である混合溶媒に変更した以外は、実施例1と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例5に係る非水電解質二次電池を完成した。
(Example 5)
Assembly and initial charge/discharge of a non-aqueous electrolyte secondary battery were performed in the same manner as in Example 1, except that the solvent of the non-aqueous electrolyte was changed to a mixed solvent having a volume ratio of FEC/EMC of 20:80. A non-aqueous electrolyte secondary battery according to Example 5 was completed.

(実施例6)
非水電解質の溶媒を、FEC/EMCが体積比5:95である混合溶媒に変更した以外は、実施例1と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例6に係る非水電解質二次電池を完成した。
(Example 6)
Assembly and initial charge/discharge of a non-aqueous electrolyte secondary battery were performed in the same manner as in Example 1, except that the solvent of the non-aqueous electrolyte was changed to a mixed solvent having an FEC/EMC volume ratio of 5:95. A non-aqueous electrolyte secondary battery according to Example 6 was completed.

(実施例7、8)
正極活物質を実施例2において作製したアルミニウム化合物を被覆させたリチウム遷移金属複合酸化物(LR-Al)に変更した以外は、それぞれ実施例3及び4と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例7及び実施例8に係る非水電解質二次電池を完成した。
(Examples 7 and 8)
A nonaqueous electrolyte secondary battery was prepared in the same manner as in Examples 3 and 4, respectively, except that the positive electrode active material was changed to the lithium transition metal composite oxide (LR-Al) coated with the aluminum compound prepared in Example 2. and initial charge/discharge were performed to complete the non-aqueous electrolyte secondary batteries according to Examples 7 and 8.

<保存試験>
実施例1~8に係る非水電解質二次電池に対して、上記した条件で初期AC抵抗の測定を行った。その後、上記した条件で保存試験を行い、保存後のAC抵抗を測定した。初期AC抵抗に対する保存後のAC抵抗の増加率(%)を、「初期に対する15日目の抵抗増加率」とした。実施例1~8に係る非水電解質二次電池の初期に対する15日目の抵抗増加率(%)を表2に示す。
<Storage test>
The initial AC resistance of the non-aqueous electrolyte secondary batteries according to Examples 1 to 8 was measured under the conditions described above. After that, a storage test was performed under the conditions described above, and the AC resistance after storage was measured. The rate of increase (%) in the AC resistance after storage relative to the initial AC resistance was defined as the "rate of increase in resistance on the 15th day relative to the initial stage." Table 2 shows the resistance increase rate (%) of the non-aqueous electrolyte secondary batteries according to Examples 1 to 8 on the 15th day compared to the initial stage.

Figure 0007147478000005
Figure 0007147478000005

表2によると、正極活物質としてLRを用いた実施例1、3~6において、FECを含まない非水電解質を用いた実施例3、4に係る非水電解質二次電池と比べて、FECを含む非水電解質を用いた実施例1、5、6に係る非水電解質二次電池では、保存後のAC抵抗の増加がより抑制されていることがわかる。また、正極活物質としてLR―Alを用いた実施例2、7、8において、やはり、FECを含まない非水電解質を用いた実施例7、8に係る非水電解質二次電池に比べて、FECを含む非水電解質を用いた実施例2に係る非水電解質二次電池では、保存後のAC抵抗の増加がより抑制されていることがわかる。 According to Table 2, in Examples 1 and 3 to 6 using LR as the positive electrode active material, compared with the non-aqueous electrolyte secondary batteries according to Examples 3 and 4 using non-aqueous electrolytes containing no FEC, FEC In the non-aqueous electrolyte secondary batteries according to Examples 1, 5, and 6 using the non-aqueous electrolyte containing, it can be seen that the increase in AC resistance after storage is further suppressed. In addition, in Examples 2, 7, and 8 using LR-Al as the positive electrode active material, compared to the non-aqueous electrolyte secondary batteries according to Examples 7 and 8 using a non-aqueous electrolyte that does not contain FEC, In the non-aqueous electrolyte secondary battery according to Example 2 using the non-aqueous electrolyte containing FEC, it can be seen that the increase in AC resistance after storage is further suppressed.

次に、非水電解質の添加剤を変更した例を示す。
(実施例9)
エチレンカーボネート(EC)/プロピレンカーボネート(PC)/エチルメチルカーボネート(EMC)が体積比25:5:70である混合溶媒に、濃度が1mol/LとなるようにLiPFを溶解させた溶液100質量%に対し、添加剤として、化合物Aのみを1.0質量%加えたものを非水電解質として用いた。
黒鉛を負極活物質として用い、質量比で、黒鉛:スチレン-ブタジエン・ゴム(SBR):カルボキシメチルセルロース(CMC)=97:2:1の割合(固形分換算)で含み、水を溶剤とする塗布用負極ペーストを作製し、厚さ10μmの帯状の銅箔集電体の片面に塗布し、乾燥した。これをローラープレス機により加圧した後、100℃で12時間減圧乾燥して、極板中の水分を除去した。このようにして負極を作製した。
前記非水電解質、及び負極を用いた以外は実施例3と同様にして、非水電解質二次電池の組み立て及び初期充放電を行い、実施例9に係る非水電解質二次電池を完成した。なお、初期充放電工程における初回及び2回目の充電を終止電圧4.25Vの定電流定電圧(CCCV)充電としたとき、満充電状態における黒鉛負極の電位は0.1V(vs.Li/Li)程度であり、正極電位は4.35V(vs.Li/Li)程度まで到達している。
Next, an example in which the additive of the non-aqueous electrolyte is changed is shown.
(Example 9)
100 mass of a solution in which LiPF 6 was dissolved to a concentration of 1 mol/L in a mixed solvent of ethylene carbonate (EC)/propylene carbonate (PC)/ethyl methyl carbonate (EMC) at a volume ratio of 25:5:70. %, 1.0% by mass of compound A alone was added as an additive to the non-aqueous electrolyte.
Coating using graphite as a negative electrode active material, containing graphite: styrene-butadiene rubber (SBR): carboxymethyl cellulose (CMC) at a mass ratio of 97: 2: 1 (in terms of solid content), and using water as a solvent A negative electrode paste was prepared, applied to one side of a strip-shaped copper foil current collector having a thickness of 10 μm, and dried. After pressurizing this with a roller press, it was dried under reduced pressure at 100° C. for 12 hours to remove moisture in the electrode plate. Thus, a negative electrode was produced.
A non-aqueous electrolyte secondary battery according to Example 9 was completed by assembling the non-aqueous electrolyte secondary battery and performing initial charging and discharging in the same manner as in Example 3 except that the non-aqueous electrolyte and the negative electrode were used. In addition, when the first and second charges in the initial charge and discharge process are constant current and constant voltage (CCCV) charges with a final voltage of 4.25 V, the potential of the graphite negative electrode in a fully charged state is 0.1 V (vs. Li / Li + ), and the positive electrode potential reaches about 4.35 V (vs. Li/Li + ).

(実施例10~12)
添加剤として、1.0質量%の化合物Aに代えて、1.0質量%の化合物Aとともに、LiDFOBを、それぞれ、0.2、0.5、及び1.0質量%加えた以外は実施例9と同様にして、実施例10~12に係る非水電解質二次電池を完成した。
(Examples 10-12)
except that LiDFOB was added at 0.2, 0.5, and 1.0 wt. Non-aqueous electrolyte secondary batteries according to Examples 10 to 12 were completed in the same manner as in Example 9.

(実施例13、14)
添加剤として、LiDFOBを、それぞれLiBOB、及びMOABに変更した以外は、実施例11と同様にして、実施例13、14に係る非水電解質二次電池を作製した。
(Examples 13 and 14)
Non-aqueous electrolyte secondary batteries according to Examples 13 and 14 were produced in the same manner as in Example 11, except that LiBOB and MOAB were used as additives instead of LiDFOB.

(比較例3~6)
初期充放電工程において、初回及び2回目の充電を終止電圧4.5Vの定電流定電圧(CCCV)充電とした以外は、それぞれ、実施例9、11、13及び14と同様にして比較例3~6に係る非水電解質二次電池を作製した。なお、初期充放電工程の満充電状態における黒鉛負極の電位は0.1V(vs.Li/Li)程度であり、正極電位は4.6V(vs.Li/Li)程度まで到達している。
(Comparative Examples 3-6)
Comparative Example 3 in the same manner as in Examples 9, 11, 13 and 14, respectively, except that in the initial charge and discharge step, the first and second charges were constant current constant voltage (CCCV) charge with a final voltage of 4.5 V. Non-aqueous electrolyte secondary batteries according to 6 were produced. The potential of the graphite negative electrode in the fully charged state in the initial charge/discharge step is about 0.1 V (vs. Li/Li + ), and the positive electrode potential reaches about 4.6 V (vs. Li/Li + ). there is

実施例9~14、及び比較例3~6に係る非水電解質二次電池の初期AC抵抗を測定し、ホウ素に結合したオキサレート基を有する化合物を添加剤として含まない場合(実施例9及び比較例3に係る非水電解質二次電池)の初期AC抵抗に対する前記添加剤を含む非水電解質二次電池の初期AC抵抗の増減率を「抵抗増減率/%」として求めた。その結果を以下の表3に示す。なお、表3における「添加量/mass%」は、「ホウ素に結合したオキサレート基を有する化合物の添加量の質量パーセント」である。 The initial AC resistance of the nonaqueous electrolyte secondary batteries of Examples 9 to 14 and Comparative Examples 3 to 6 was measured, and when the compound having an oxalate group bonded to boron was not contained as an additive (Example 9 and Comparative The change rate of the initial AC resistance of the non-aqueous electrolyte secondary battery containing the additive with respect to the initial AC resistance of the non-aqueous electrolyte secondary battery according to Example 3) was obtained as "resistance change rate/%". The results are shown in Table 3 below. The "addition amount/mass%" in Table 3 is "mass percent of the addition amount of the compound having an oxalate group bonded to boron".

Figure 0007147478000006
Figure 0007147478000006

表3によると、正極活物質としてLRを用い、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満として製造された実施例9~14に係る非水電解質二次電池は、正極の最大到達電位が4.5V(vs.Li/Li)以上となる初期充放電をされた比較例3~6に係る非水電解質二次電池よりも、初期AC抵抗が低減されていることがわかる。なお、比較例3~6の非水電解質二次電池の正極の最大到達電位は、上記したとおり、4.6V(vs.Li/Li)程度である。そして、実施例の中でも、非水電解質がホウ素に結合したオキサレート基を有する化合物を添加剤として含む実施例10~14は、前記化合物を含まない実施例9と比較して、さらに初期AC抵抗を低減する効果を奏することがわかる。
正極活物質として実施例9~14と同じLRを正極に用いた比較例3~6に係る非水電解質二次電池は、初期充放電工程における正極の最大到達電位が4.5V(vs.Li/Li)以上となる工程を経て製造されているから、前述した手順による回折ピークの確認方法により、正極活物質の20~22°の範囲の回折ピークが消失していることが確認される。そして、該各比較例に係る非水電解質二次電池は、実施例9~14に係る非水電解質二次電池と比べて、いずれも初期AC抵抗が高く、しかも、非水電解質がホウ素に結合したオキサレート基を有する化合物を添加剤として含むことにより、初期AC抵抗がさらに増加しているから、前記化合物の含有は、初期AC抵抗の低減に逆効果であることがわかる。
According to Table 3, the non-aqueous electrolytes according to Examples 9 to 14 were produced using LR as the positive electrode active material and setting the maximum potential of the positive electrode to less than 4.5 V (vs. Li/Li + ) in the initial charge/discharge process. The secondary battery has a higher initial AC resistance than the non-aqueous electrolyte secondary batteries according to Comparative Examples 3 to 6, which were initially charged and discharged so that the maximum potential of the positive electrode reached 4.5 V (vs. Li/Li + ) or more. is reduced. The maximum attainable potential of the positive electrode of the non-aqueous electrolyte secondary batteries of Comparative Examples 3 to 6 is about 4.6 V (vs. Li/Li + ) as described above. Among the examples, Examples 10 to 14, in which the non-aqueous electrolyte contained, as an additive, a compound having an oxalate group bonded to boron, further improved the initial AC resistance compared to Example 9 in which the compound was not included. It turns out that there exists an effect to reduce.
In the non-aqueous electrolyte secondary batteries according to Comparative Examples 3 to 6, in which the same LR as in Examples 9 to 14 was used as the positive electrode active material for the positive electrode, the maximum potential of the positive electrode in the initial charge and discharge process was 4.5 V (vs. Li /Li + ) or more. Therefore, it is confirmed that the diffraction peak in the range of 20 to 22° of the positive electrode active material has disappeared by the method of confirming the diffraction peak according to the procedure described above. . The non-aqueous electrolyte secondary batteries according to the comparative examples all have higher initial AC resistance than the non-aqueous electrolyte secondary batteries according to Examples 9 to 14, and the non-aqueous electrolyte binds to boron. Since the initial AC resistance is further increased by including the compound having an oxalate group as an additive, it can be seen that the inclusion of said compound has the opposite effect of reducing the initial AC resistance.

本発明に係る非水電解質二次電池は、誤って過充電された場合においてもより高いSOCに至るまで、電池電圧の急上昇が観察されない。
また、非水電解質の非水溶媒にフッ素化環状カーボネートを含むことにより、保存後のAC抵抗の増加を抑制することができる。
さらに、非水電解質がホウ素に結合したオキサレート基を有する化合物を含むことにより、初期AC抵抗を低減することができる。
したがって、本発明に係る非水電解質二次電池は、高い安全性、保存性能が要求されるハイブリッド自動車(HEV)用、プラグインハイブリッド自動車(PHEV)用、電気自動車(EV)用の電池として、有用性が高い。
Even when the non-aqueous electrolyte secondary battery according to the present invention is accidentally overcharged, no rapid increase in battery voltage is observed up to a higher SOC.
Further, by including the fluorinated cyclic carbonate in the non-aqueous solvent of the non-aqueous electrolyte, it is possible to suppress an increase in AC resistance after storage.
Furthermore, the initial AC resistance can be reduced by including a compound having an oxalate group bonded to boron in the non-aqueous electrolyte.
Therefore, the non-aqueous electrolyte secondary battery according to the present invention can be used as a battery for hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and electric vehicles (EV) that require high safety and storage performance. Highly useful.

1 非水電解質二次電池
2 電極群
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
20 蓄電ユニット
30 蓄電装置
1 non-aqueous electrolyte secondary battery 2 electrode group 3 battery container 4 positive electrode terminal 4' positive electrode lead 5 negative electrode terminal 5' negative electrode lead 20 power storage unit 30 power storage device

Claims (7)

正極、負極及び非水電解質を備える非水電解質二次電池であって、
前記正極は、活物質として、
α-NaFeO型結晶構造を有し、
一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表され、遷移金属(Me)に対するLiのモル比が、1.15<Li/Meであるリチウム遷移金属複合酸化物を含み、
前記活物質は、CuKα線を用いたエックス線回折図において、20~22°の範囲に回折ピークが観察され
前記非水電解質は、非水溶媒にフッ素化環状カーボネートを含む、非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte,
The positive electrode, as an active material,
α-NaFeO 2 type crystal structure,
Represented by the general formula Li 1+α Me 1-α O 2 (0<α, Me is Ni and Mn, or a transition metal element including Ni, Mn and Co), and the molar ratio of Li to the transition metal (Me) is 1 .15<Li/Me comprising a lithium transition metal composite oxide,
The active material has a diffraction peak in the range of 20 to 22° in an X-ray diffraction diagram using CuKα rays ,
A non-aqueous electrolyte secondary battery , wherein the non-aqueous electrolyte contains a fluorinated cyclic carbonate in a non-aqueous solvent .
正極、負極及び非水電解質を備える非水電解質二次電池であって、
前記正極は、活物質として、
α-NaFeO型結晶構造を有し、
一般式 Li1+αMe1-α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表され、遷移金属(Me)に対するLiのモル比が、1.15<Li/Meであるリチウム遷移金属複合酸化物を含み、
前記正極は、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察され
前記非水電解質は、非水溶媒にフッ素化環状カーボネートを含む、非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte,
The positive electrode, as an active material,
α-NaFeO 2 type crystal structure,
Represented by the general formula Li 1+α Me 1-α O 2 (0<α, Me is Ni and Mn, or a transition metal element including Ni, Mn and Co), and the molar ratio of Li to the transition metal (Me) is 1 .15<Li/Me comprising a lithium transition metal composite oxide,
When the positive electrode is charged to a positive electrode potential of 5.0 V (vs. Li/Li + ), the positive electrode potential is within the positive electrode potential range of 4.5 to 5.0 V (vs. Li/Li + ). A relatively flat region of potential change is observed with respect to the amount of
A non-aqueous electrolyte secondary battery , wherein the non-aqueous electrolyte contains a fluorinated cyclic carbonate in a non-aqueous solvent .
前記正極が活物質として含むリチウム遷移金属複合酸化物は、遷移金属(Me)に対するMnのモル比が、0.4≦Mn/Meである請求項1又は2に記載の非水電解質二次電池。 3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium transition metal composite oxide contained as an active material in the positive electrode has a molar ratio of Mn to transition metal (Me) of 0.4≦Mn/Me. . 前記正極が活物質として含むリチウム遷移金属複合酸化物は、遷移金属(Me)に対するLiのモル比が、Li/Me≦1.35である請求項1~のいずれか1項に記載の非水電解質二次電池。 The lithium-transition metal composite oxide contained as an active material in the positive electrode has a molar ratio of Li to transition metal ( Me) of Li/Me ≤ 1.35. Water electrolyte secondary battery. 満充電状態(SOC100%)における正極の最大到達電位が4.5V(vs.Li/Li)未満となる電池電圧で使用される、請求項1~のいずれか1項に記載の非水電解質二次電池。 The non-aqueous battery according to any one of claims 1 to 4 , which is used at a battery voltage where the maximum potential of the positive electrode in a fully charged state (SOC 100%) is less than 4.5 V (vs. Li/Li + ). Electrolyte secondary battery. 前記非水電解質は、ホウ素に結合したオキサレート基を有する化合物を含む、請求項1~のいずれか1項に記載の非水電解質二次電池。 6. The non-aqueous electrolyte secondary battery according to claim 1 , wherein said non-aqueous electrolyte contains a compound having an oxalate group bonded to boron. 請求項1~のいずれか1項に記載の非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、非水電解質二次電池の製造方法。 The method for manufacturing the non-aqueous electrolyte secondary battery according to any one of claims 1 to 6 , wherein the maximum potential of the positive electrode in the initial charge and discharge process is less than 4.5 V (vs. Li/Li + ). A method for manufacturing a non-aqueous electrolyte secondary battery.
JP2018205573A 2018-06-21 2018-10-31 Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery Active JP7147478B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/252,765 US20210257665A1 (en) 2018-06-21 2019-06-19 Positive active material for nonaqueous electrolyte secondary battery, method for producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery
PCT/JP2019/024375 WO2019244955A1 (en) 2018-06-21 2019-06-19 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method for producing non-aqueous electrolyte secondary battery, and method for use of non-aqueous electrolyte secondary battery
EP19821775.4A EP3813163A4 (en) 2018-06-21 2019-06-19 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method for producing non-aqueous electrolyte secondary battery, and method for use of non-aqueous electrolyte secondary battery
CN201980041784.3A CN112771695B (en) 2018-06-21 2019-06-19 Positive electrode active material, positive electrode, nonaqueous electrolyte secondary battery, and method for using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018117725 2018-06-21
JP2018117725 2018-06-21

Publications (2)

Publication Number Publication Date
JP2020004693A JP2020004693A (en) 2020-01-09
JP7147478B2 true JP7147478B2 (en) 2022-10-05

Family

ID=68983200

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018205573A Active JP7147478B2 (en) 2018-06-21 2018-10-31 Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP2020525783A Active JP7373132B2 (en) 2018-06-21 2019-06-19 Positive electrode active material for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, method for manufacturing non-aqueous electrolyte secondary batteries, and method for using non-aqueous electrolyte secondary batteries
JP2023109667A Pending JP2023123790A (en) 2018-06-21 2023-07-03 Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, manufacturing method of nonaqueous electrolyte secondary battery, and using method of nonaqueous electrolyte secondary battery

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2020525783A Active JP7373132B2 (en) 2018-06-21 2019-06-19 Positive electrode active material for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, method for manufacturing non-aqueous electrolyte secondary batteries, and method for using non-aqueous electrolyte secondary batteries
JP2023109667A Pending JP2023123790A (en) 2018-06-21 2023-07-03 Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, manufacturing method of nonaqueous electrolyte secondary battery, and using method of nonaqueous electrolyte secondary battery

Country Status (5)

Country Link
US (1) US20210249645A1 (en)
EP (1) EP3793010B1 (en)
JP (3) JP7147478B2 (en)
CN (1) CN112771694B (en)
WO (1) WO2019244956A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117282A1 (en) * 2017-12-15 2019-06-20 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7417456B2 (en) 2020-03-27 2024-01-18 三井化学株式会社 Preparation liquid for non-aqueous electrolyte, non-aqueous electrolyte for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP7371571B2 (en) 2020-05-07 2023-10-31 株式会社Gsユアサ Non-aqueous electrolyte storage device and method for manufacturing the same
WO2022145032A1 (en) * 2020-12-29 2022-07-07 カワサキモータース株式会社 Electrolyte solution for proton conducting secondary batteries, and proton conducting secondary battery provided wih same
EP4297122A1 (en) * 2021-04-01 2023-12-27 GS Yuasa International Ltd. Positive electrode active material for nonaqueous electrolyte power storage elements, positive electrode for nonaqueous electrolyte power storage elements, nonaqueous electrolyte power storage element, power storage unit, and power storage device
CN114914440B (en) * 2022-06-10 2024-03-29 蜂巢能源科技股份有限公司 Ultrahigh nickel polycrystal nickel aluminum magnesium lithium zirconate anode material and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (en) 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP2010050079A (en) 2008-03-17 2010-03-04 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228292B2 (en) 2006-07-06 2013-07-03 東ソー株式会社 A method for producing a lithium-nickel-manganese-cobalt composite oxide.
JP4877660B2 (en) 2008-09-30 2012-02-15 株式会社Gsユアサ Active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2011113792A (en) 2009-11-26 2011-06-09 Nippon Chem Ind Co Ltd Positive electrode active material for lithium secondary battery, method of manufacturing the same, and the lithium secondary battery
JP2012104335A (en) 2010-11-09 2012-05-31 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5757139B2 (en) * 2010-12-27 2015-07-29 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, lithium transition metal composite oxide, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5757140B2 (en) * 2010-12-27 2015-07-29 株式会社Gsユアサ Non-aqueous electrolyte secondary battery positive electrode active material, lithium transition metal composite oxide, method for producing the positive electrode active material, etc., and non-aqueous electrolyte secondary battery
JP6090662B2 (en) 2012-06-29 2017-03-08 株式会社Gsユアサ Positive electrode active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery
JP6131760B2 (en) * 2012-08-03 2017-05-24 株式会社Gsユアサ Positive electrode active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery
CN104466158A (en) * 2013-09-22 2015-03-25 中兴通讯股份有限公司 Lithium-rich positive electrode material and preparation method thereof
US10044036B2 (en) * 2013-12-02 2018-08-07 Gs Yuasa International Ltd. Positive active material for lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery
US10673070B2 (en) * 2015-05-28 2020-06-02 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method for producing same, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6052643B2 (en) * 2016-01-06 2016-12-27 株式会社Gsユアサ Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP2019149222A (en) * 2016-07-14 2019-09-05 株式会社Gsユアサ Cathode active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, manufacturing method of transition metal hydroxide precursor, manufacturing method of cathode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6834363B2 (en) * 2016-11-02 2021-02-24 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary batteries, electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (en) 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP2010050079A (en) 2008-03-17 2010-03-04 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2023123790A (en) 2023-09-05
JPWO2019244956A1 (en) 2021-06-24
EP3793010A1 (en) 2021-03-17
WO2019244956A1 (en) 2019-12-26
US20210249645A1 (en) 2021-08-12
EP3793010B1 (en) 2024-05-22
CN112771694A (en) 2021-05-07
CN112771694B (en) 2024-03-05
EP3793010A4 (en) 2021-07-28
JP7373132B2 (en) 2023-11-02
JP2020004693A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6197029B2 (en) Active material for nonaqueous electrolyte storage element
JP7147478B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
KR102165664B1 (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
JP6600944B2 (en) Lithium secondary battery
JP6471693B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
WO2019244955A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method for producing non-aqueous electrolyte secondary battery, and method for use of non-aqueous electrolyte secondary battery
JP6020204B2 (en) Nonaqueous electrolyte secondary battery
JP7205051B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP7322892B2 (en) Non-aqueous electrolyte secondary battery, method for manufacturing non-aqueous electrolyte secondary battery, and method for using non-aqueous electrolyte secondary battery
JP2018041657A (en) Positive electrode active material for lithium secondary battery, method for manufacturing the same, lithium secondary battery electrode, and lithium secondary battery
CN112771695B (en) Positive electrode active material, positive electrode, nonaqueous electrolyte secondary battery, and method for using same
JP6036168B2 (en) Nonaqueous electrolyte secondary battery
JP6834629B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and positive electrode active material for non-aqueous electrolyte secondary battery
JP2018206609A (en) Nonaqueous electrolyte secondary battery
JP2015115244A (en) Positive electrode for lithium secondary battery, lithium secondary battery, battery module, and automobile mounting battery module
JP6420299B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP6354964B2 (en) Nonaqueous electrolyte secondary battery
US20220006080A1 (en) Nonaqueous electrolyte secondary battery, method of manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery
JP6394956B2 (en) Nonaqueous electrolyte secondary battery
JP7043989B2 (en) A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery.
JP6387054B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP6746099B2 (en) Non-aqueous electrolyte secondary battery active material, method for producing non-aqueous electrolyte secondary battery active material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN113646928A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R150 Certificate of patent or registration of utility model

Ref document number: 7147478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150