JP2018041657A - Positive electrode active material for lithium secondary battery, method for manufacturing the same, lithium secondary battery electrode, and lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery, method for manufacturing the same, lithium secondary battery electrode, and lithium secondary battery Download PDF

Info

Publication number
JP2018041657A
JP2018041657A JP2016175810A JP2016175810A JP2018041657A JP 2018041657 A JP2018041657 A JP 2018041657A JP 2016175810 A JP2016175810 A JP 2016175810A JP 2016175810 A JP2016175810 A JP 2016175810A JP 2018041657 A JP2018041657 A JP 2018041657A
Authority
JP
Japan
Prior art keywords
lithium
transition metal
positive electrode
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016175810A
Other languages
Japanese (ja)
Other versions
JP6844156B2 (en
Inventor
諒 原田
Ryo Harada
諒 原田
遠藤 大輔
Daisuke Endo
大輔 遠藤
智彦 野田
Tomohiko Noda
智彦 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2016175810A priority Critical patent/JP6844156B2/en
Publication of JP2018041657A publication Critical patent/JP2018041657A/en
Application granted granted Critical
Publication of JP6844156B2 publication Critical patent/JP6844156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To increase the initial efficiency of a lithium secondary battery.SOLUTION: A positive electrode active material for a lithium secondary battery comprises particles of a lithium transition metal composite oxide. The lithium transition metal composite oxide particles have an α-NaFeOtype structure, and include Ni, Co and Mn as a transition metal (Me), in which the mole ratio Ni/Me of Ni to Me is given by Ni/Me≥0.4. The lithium transition metal composite oxide particles have two or more peaks in a particle size distribution, and have at least one peak on a particle diameter side larger than a diameter showing a maximum peak. A method for manufacturing the positive electrode active material for a lithium secondary battery comprises the steps of: mixing particles of a precursor of the transition metal compound including Ni, Co and Mn with a lithium compound, and a fluorine source including fluorine of 2.5 mol% or more to the precursor; and baking the resultant mixture at a temperature over 950°C, thereby manufacturing the lithium transition metal composite oxide particles.SELECTED DRAWING: Figure 1

Description

本発明は、リチウム二次電池用正極活物質、その正極活物質の製造方法、その正極活物質を含有するリチウム二次電池用電極、及びその電極を備えたリチウム二次電池に関する。   The present invention relates to a positive electrode active material for a lithium secondary battery, a method for producing the positive electrode active material, an electrode for a lithium secondary battery containing the positive electrode active material, and a lithium secondary battery including the electrode.

従来、リチウム二次電池用正極活物質として、α―NaFeO型結晶構造を有するリチウム遷移金属複合酸化物が検討され、LiCoOを用いたリチウム二次電池が広く実用化されていた。しかし、LiCoOは、放電容量が120〜130mAh/g程度であった。 Conventionally, lithium transition metal composite oxides having an α-NaFeO 2 type crystal structure have been studied as positive electrode active materials for lithium secondary batteries, and lithium secondary batteries using LiCoO 2 have been widely put into practical use. However, LiCoO 2 has a discharge capacity of about 120 to 130 mAh / g.

LiCoOに比べて単位質量当たり高い放電容量を示す正極活物質として、Ni、Co、Mnなどを含むニッケル系リチウム遷移金属酸化物が知られているが、このニッケル系リチウム遷移金属酸化物は、充填密度が低いため単位体積当たりの放電容量が低く、結果的にこれを用いたリチウム二次電池は放電容量が低いものであった(特許文献1の段落[0004]参照)。 Nickel-based lithium transition metal oxides containing Ni, Co, Mn, etc. are known as positive electrode active materials that exhibit a high discharge capacity per unit mass compared to LiCoO 2 . Since the packing density is low, the discharge capacity per unit volume is low, and as a result, the lithium secondary battery using this has a low discharge capacity (see paragraph [0004] of Patent Document 1).

また、フッ素を含有させたニッケル系リチウム遷移金属複合酸化物も公知であり(特許文献2参照)、特許文献2の実施例11には、「Ni0.83Co0.17(OH)2で表されるコバルト共沈水酸化ニッケル粉末と水酸化アルミニウムと四ホウ酸リチウムとフッ化リチウムとをLi:B:Al:F:Mn:(Ni+Co)のモル比が1.05:0.02:0.02:0.05:0.03:0.95となるように3モル/リットルの硝酸マンガン水溶液に分散させたものに、3モル/リットルの水酸化ナトリウム水溶液を滴下して温度40〜60℃に保持して撹幹しながら連続的に反応させた。得られた生成物に、Li:(Ni+Co+Mn+Al+B+F)のモル比が1.05:0.95となるように3モル/リットルの水酸化リチウム水溶液を滴下し、十分に混合した後、酸素濃度が18%以上100%以下となるように酸素気流を導入しながら、700℃の温度で保持された反応炉中に噴霧し、酸素濃度が95%以上となるようにして保持した後、1MPasまで加圧しながら800℃で5時間加熱処理を行った。得られた生成物をX線回折により測定したところ、Li1.05Ni0.75Co0.15Mn0.03Al0.020.020.051.95であることが確認された。」(段落[0061])と記載されている。 A nickel-based lithium transition metal composite oxide containing fluorine is also known (see Patent Document 2). Example 11 of Patent Document 2 includes cobalt represented by “Ni 0.83 Co 0.17 (OH) 2. Co-precipitated nickel hydroxide powder, aluminum hydroxide, lithium tetraborate, and lithium fluoride have a molar ratio of Li: B: Al: F: Mn: (Ni + Co) of 1.05: 0.02: 0.02: 0. .05: 0.03: 0.95 A 3 mol / liter sodium hydroxide aqueous solution was added dropwise to a solution dispersed in a 3 mol / liter manganese nitrate aqueous solution so as to maintain a temperature of 40-60 ° C. The resulting product was reacted continuously with a 3 mol / liter lithium hydroxide aqueous solution so that the molar ratio of Li: (Ni + Co + Mn + Al + B + F) was 1.05: 0.95. After dripping and mixing well, while introducing an oxygen stream so that the oxygen concentration becomes 18% or more and 100% or less, it is sprayed in a reactor maintained at a temperature of 700 ° C., and the oxygen concentration is 95% or more. Then, heat treatment was performed for 5 hours at 800 ° C. while pressurizing up to 1 MPas, and the obtained product was measured by X-ray diffraction, Li 1.05 Ni 0.75 Co 0.15 Mn 0.03 Al 0.02 B 0.02 F 0.05 0 1.95 ”(paragraph [0061]).

正極活物質の充填密度を高める方法として、前駆体の焼成時にフッ素系添加剤を加えて低温焼成する技術が知られている(例えば、非特許文献1、特許文献3、4参照)。   As a method for increasing the packing density of the positive electrode active material, a technique of adding a fluorine-based additive at the time of firing the precursor and firing at a low temperature is known (see, for example, Non-Patent Document 1, Patent Documents 3 and 4).

非特許文献1には、前駆体である遷移金属水酸化物にLiOH・HOとLiFとを混合し、900℃で焼成を行って、Li[NiCo1−2xMn]Oで表される正極活物質を得たことが記載されている(Experimental欄)。 In Non-Patent Document 1, LiOH.H 2 O and LiF are mixed with a transition metal hydroxide that is a precursor, fired at 900 ° C., and Li [Ni x Co 1-2x Mn x ] O 2. Is obtained (Experimental column).

特許文献3には、「少なくとも層状構造のリチウム遷移金属複合酸化物を有する非水電解液二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、一次粒子の凝集体である二次粒子を有し、該二次粒子は、該二次粒子の内部に充填部と、空洞部とを有し、該二次粒子の中位径は3μm以上である非水電解液二次電池用正極活物質。」(請求項3)、「前記リチウム遷移金属複合酸化物は、フッ素、バナジウムおよびホウ素からなる群から選ばれる少なくとも1種を有する請求項3または4に記載の非水電解液二次電池用正極活物質。」(請求項6)が記載されている。   Patent Document 3 states that “a positive electrode active material for a non-aqueous electrolyte secondary battery having at least a layered lithium transition metal composite oxide, wherein the lithium transition metal composite oxide is an aggregate of primary particles. A non-aqueous electrolyte secondary particle having secondary particles, wherein the secondary particles have a filling portion and a cavity portion inside the secondary particles, and the median diameter of the secondary particles is 3 μm or more The positive electrode active material for a battery. (Claim 3), "The lithium transition metal composite oxide has at least one selected from the group consisting of fluorine, vanadium and boron. "Positive electrode active material for liquid secondary battery" (Claim 6).

また、特許文献3には、「リチウム遷移金属複合酸化物が、フッ素、バナジウムおよびホウ素からなる群から選ばれる少なくとも1種を有することにより、低温焼成においても一次粒子の大きさを制御することができるため、負荷特性の向上を妨げることなく、より効果的に極板充填性を向上させることができる。」(段落[0018])と記載されている。
そして、実施例10においては、コバルト、ニッケルおよびマンガンを含む沈殿物をろ過、水洗後、熱処理したのち、炭酸リチウムおよびフッ化リチウムと混合し、大気中にて900℃で15時間焼成して得たLi1.00Ni0.33Co0.33Mn0.330.0025で表される正極活物質から製造された極板が、3.15g/mlの密度を有することが示されている(段落[0095]、表1)。
Patent Document 3 states that “the lithium transition metal composite oxide has at least one selected from the group consisting of fluorine, vanadium and boron, so that the size of the primary particles can be controlled even at low temperature firing. Therefore, the electrode plate filling property can be more effectively improved without hindering the improvement of the load characteristics ”(paragraph [0018]).
In Example 10, the precipitate containing cobalt, nickel and manganese was filtered, washed with water, heat-treated, mixed with lithium carbonate and lithium fluoride, and fired at 900 ° C. for 15 hours in the air. An electrode plate manufactured from a positive electrode active material represented by Li 1.00 Ni 0.33 Co 0.33 Mn 0.33 O 2 F 0.0025 has a density of 3.15 g / ml. (Paragraph [0095], Table 1).

特許文献4には、「リチウム含有複合酸化物が、下記一般式(1)で表される化合物である請求項8に記載のリチウム含有複合酸化物の製造方法。
LiNiMnCoMe ・・・一般式(1)
ただし、前記一般式(1)において、1.02≦a≦1.12、0<x≦1.0、0<y≦1.0、0≦z≦1.0、0≦b≦0.3、0.90≦x+y+z+b≦1.05、1.9≦c≦2.1、及び0≦d≦0.03であり、Meは、Mg、Ca、Sr、Ba、Al、及びZrからなる群から選ばれる少なくとも一種である。」(請求項9)、「請求項8または9に記載のリチウム含有複合酸化物の製造方法により得られることを特徴とするリチウム含有複合酸化物。」(請求項10)が記載されている。
Patent Document 4 discloses that “the lithium-containing composite oxide is a compound represented by the following general formula (1):
Li a Ni x Mn y Co z Me b O c F d ··· formula (1)
However, in the general formula (1), 1.02 ≦ a ≦ 1.12, 0 <x ≦ 1.0, 0 <y ≦ 1.0, 0 ≦ z ≦ 1.0, 0 ≦ b ≦ 0. 3, 0.90 ≦ x + y + z + b ≦ 1.05, 1.9 ≦ c ≦ 2.1, and 0 ≦ d ≦ 0.03, and Me is composed of Mg, Ca, Sr, Ba, Al, and Zr It is at least one selected from the group. (Claim 9) and "A lithium-containing composite oxide obtained by the method for producing a lithium-containing composite oxide according to claim 8 or 9" (Claim 10).

また、特許文献4には、実施例2に、「実施例1に記載の方法と同様にして得られた複合化合物200.00gと、Li含量26.96mol/kgの炭酸リチウム(LiCO、SQM社製)83.59gと、フッ化リチウム(LiF、和光純薬工業社製)0.06gとを混合し、大気雰囲気下にて、910℃で8時間焼成した以外は、実施例1同様にして、仕込み組成Li1.014Ni0.495Co0.197Mn0.2941.9990.001のリチウム含有複合酸化物を得た。なお、得られたリチウム含有複合酸化物の組成比は、仕込み比と一致した。」(段落[0102])と記載されており、該リチウム含有複合酸化物のタップ密度が2.3g/cmとなること(表2)、及び該リチウム含有複合酸化物を用いた電極の電極密度が3.01g/cmとなり、該電極を備える電池の効率が88.2%となること(表3)も記載されている。 Patent Document 4 discloses in Example 2 that “200.00 g of a composite compound obtained in the same manner as in the method described in Example 1 and lithium carbonate (Li 2 CO 3 having a Li content of 26.96 mol / kg). Ex. 1 except that 83.59 g of SQM) and 0.06 g of lithium fluoride (LiF, manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and baked at 910 ° C. for 8 hours in an air atmosphere. Similarly, a lithium-containing composite oxide having a charging composition of Li 1.014 Ni 0.495 Co 0.197 Mn 0.294 O 1.999 F 0.001 was obtained. The composition ratio of the lithium-containing composite oxide was 2.3 g / cm 3 (Table 2), and the composition ratio of the lithium-containing composite oxide was equal to the preparation ratio ”(paragraph [0102]). Lithium-containing composite oxidation It is also described that the electrode density of the electrode using the object is 3.01 g / cm 3 and the efficiency of the battery including the electrode is 88.2% (Table 3).

正極活物質の充填密度を高める他の方法として、粒径が異なる複数の粒子を混合する技術も知られている(例えば、特許文献5、6参照)。   As another method for increasing the packing density of the positive electrode active material, a technique of mixing a plurality of particles having different particle diameters is also known (see, for example, Patent Documents 5 and 6).

特許文献5には、「負極と、リチウム及び遷移金属からなる複合酸化物を正極活物質として塗布成形した正極と、その間にセパレータを配し、非水電解質を充填したリチウム二次電池の正極活物質であって、前記球状粒子の平均粒径が1〜20μmで、且つ最大粒径が50μm以下であり、その粒度分布に複数のピ−クを持つことを特徴とする非水系リチウム二次電池用正極活物質。」(請求項7)、「前記球状粒子の粒度分布に複数のピ−クを持たせるために、別々に粒度を調整し、粒径の異なる粉末を混合させることを特徴とする請求項7記載の非水系リチウム二次電池用正極活物質。」(請求項8)、「前記球状粒子の粒度分布は2つのピ−クを持ち、その2つのピ−クの粒径比が2以上であることを特徴とする請求項7または8記載の非水系リチウム二次電池用正極活物質。」(請求項9)が記載されている。   Patent Document 5 states that “a negative electrode, a positive electrode obtained by coating and molding a composite oxide composed of lithium and a transition metal as a positive electrode active material, and a positive electrode active of a lithium secondary battery in which a separator is disposed and filled with a nonaqueous electrolyte. A non-aqueous lithium secondary battery, characterized in that the spherical particles have an average particle size of 1 to 20 μm, a maximum particle size of 50 μm or less, and a plurality of peaks in the particle size distribution (Claim 7), “In order to have a plurality of peaks in the particle size distribution of the spherical particles, the particle size is adjusted separately and powders having different particle sizes are mixed. The positive electrode active material for a non-aqueous lithium secondary battery according to claim 7. (Claim 8), "The particle size distribution of the spherical particles has two peaks, and the particle size ratio of the two peaks. 9 or more according to claim 7 or 8, Non-aqueous lithium secondary battery positive electrode active material "(Claim 9) is described.

また、特許文献5には、「・・・・加えて粒度分布が2つのピ−クを持っていることから、粒子間の隙間にも小さい粒子が充填されていき、更に密に充填される。このため電池内へ充填できる正極材の量を大きくすることが可能であり、電池として高容量を得ることが可能となった。また、正極の充填率が高いと、正極粒子間、導電助剤との接触性が良くなり、電気的な接触状態も良好になるため、サイクル特性も良好となる。」(段落[0009])と記載されている。
そして、実施例においては、平均粒径3μmの不定形のLi−Co複合酸化物粒子(Li:Co=1:1)に、平均粒径18μmの球状Li−Co複合酸化物粒子(Li:Co=1:1)を1:1の割合で混ぜた正極活物質を用いて製造した電極が3.4g/cmの電極密度を示し、該電極を用いた電池が524mAh/cmの放電容量を示したことが記載されている(段落[0019]、表1)。
In addition, in Patent Document 5, “... in addition, since the particle size distribution has two peaks, the gaps between the particles are filled with small particles, and the particles are more densely packed. As a result, the amount of the positive electrode material that can be filled into the battery can be increased, and a high capacity can be obtained as the battery. Since the contact property with the agent is improved and the electrical contact state is also improved, the cycle characteristics are also improved "(paragraph [0009]).
In the examples, the amorphous Li—Co composite oxide particles (Li: Co = 1: 1) having an average particle diameter of 3 μm are added to the spherical Li—Co composite oxide particles (Li: Co) having an average particle diameter of 18 μm. = 1: 1) manufactured using a positive electrode active material mixed at a ratio of 1: 1 shows an electrode density of 3.4 g / cm 3 , and a battery using the electrode has a discharge capacity of 524 mAh / cm 3 . (Paragraph [0019], Table 1).

特許文献6には、「異なる粒子径を有する多数の大粒子の集合体と、異なる粒子径を有する多数の小粒子の集合体との混合物Bからなり、該混合物Bに含まれる粒子の粒径xとその頻度Fとの関数F(x)が式1の関係を有し(但し、式1中、大粒子の集合体におけるメディアン径μが10μm≦μ≦30μmであり、標準偏差σが1.16≦σ≦1.65であり、小粒子の集合体におけるメディアン径μが0.1μm≦μ<10μmであり、標準偏差σが1.16≦σ≦1.65であり、A+A=1、0<A<1、0<A<1、かつ1≦A/A≦9である。)、上記混合物Bを1.92t/cmで加圧した後の混合物B’に含まれる粒子の粒径xとその頻度Eとの関数E(x)が式2の関係を有し(但し、式2中、大粒子の集合体におけるメディアン径μ’が10μm≦μ’≦30μmであり、標準偏差σ’が1.16≦σ’≦1.65であり、小粒子の集合体におけるメディアン径μ’が0.1μm≦μ’<10μmであり、標準偏差σ’が1.16≦σ’≦1.65であり、A’+A’=1、0<A’<1、0<A’<1、かつ1≦A’/A’≦9である。)、かつメディアン径μ’のμに対する変化率が10%以下であり、メディアン径μ’のμに対する変化率が20%以上であることを特徴とするリチウムイオン二次電池用正極活物質。」(請求項1)、「正極活物質が、LiNiCoMnで表される組成を有するリチウム複合酸化物である(但し、Mは、Ni、Co及びMn以外の遷移金属元素、Al並びに第2族元素から成る群から選ばれる少なくとも1種の元素であり、p、x、y、z、q、r及びaが、それぞれ、0.9≦p≦1.5、0≦x≦0.8、0≦y≦1.0、0≦z≦0.5、0≦q≦0.1、1.9≦r≦2.1、0≦a≦0.1を満足する。)請求項1又は2に記載のリチウムイオン二次電池用正極活物質。」(請求項3)が記載されている。 Patent Document 6 includes “a mixture B of a large number of large particles having different particle diameters and a large number of small particles having different particle diameters, and the particle size of the particles contained in the mixture B. The function F (x) of x and its frequency F has the relationship of Formula 1 (where, in Formula 1, the median diameter μ g in the aggregate of large particles is 10 μm ≦ μ g ≦ 30 μm, and the standard deviation σ g is 1.16 ≦ σ g ≦ 1.65, the median diameter μ h in the small particle aggregate is 0.1 μm ≦ μ h <10 μm, and the standard deviation σ h is 1.16 ≦ σ h ≦ 1. .65, A g + A h = 1, 0 <A g <1, 0 <A h <1, and 1 ≦ A g / A h ≦ 9)), and the mixture B is 1.92 t / cm the particle size x of the particles contained in the mixture B 'after pressurizing with 2 function E with its frequency E (x) has the relationship of equation 2 However, in Equation 2, a median diameter mu 'g is 10μm ≦ μ' g ≦ 30μm in aggregates of large particles, the standard deviation sigma 'g is 1.16 ≦ sigma' is g ≦ 1.65, small particles The median diameter μ ′ h in the aggregate is 0.1 μm ≦ μ ′ h <10 μm, the standard deviation σ ′ h is 1.16 ≦ σ ′ h ≦ 1.65, and A ′ g + A ′ h = 1. 0 <A ′ g <1, 0 <A ′ h <1, and 1 ≦ A ′ g / A ′ h ≦ 9), and the rate of change of the median diameter μ ′ g with respect to μ g is 10% or less. The positive electrode active material for a lithium ion secondary battery, wherein the change rate of the median diameter μ ′ h with respect to μ h is 20% or more. (Claim 1), “The positive electrode active material is Li p. a lithium composite oxide having a composition represented by a Ni x Co y Mn z M q O r F a ( where, M is, Ni, Co and and at least one element selected from the group consisting of transition metal elements other than n, Al, and Group 2 elements, and p, x, y, z, q, r, and a are 0.9 ≦ p ≦ 1.5, 0 ≦ x ≦ 0.8, 0 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.5, 0 ≦ q ≦ 0.1, 1.9 ≦ r ≦ 2.1, 0 ≦ a ≦ 0.1 is satisfied.) The positive electrode active material for a lithium ion secondary battery according to claim 1 or 2 ”(claim 3).

また、特許文献6には、実施例1にメディアン径が16μmの略球状のNi0.50Co0.20Mn0.30(OH)の組成を有する複合水酸化物粉末と炭酸リチウム粉末とを混合した後、酸素含有雰囲気下950℃で焼成して得た、Li1.015(Ni0.50Co0.20Mn0.300.985の組成を有する大粒径リチウム複合酸化物の粉末、及びメディアン径が5μmの中空状のNi0.50Co0.20Mn0.30(OH)の組成を有する複合水酸化物粉末と炭酸リチウム粉末とを混合した後、酸素含有雰囲気下950℃で焼成して得た、Li1.015(Ni0.50Co0.20Mn0.300.985の組成を有する小粒径リチウム複合酸化物の粉末を、重量比で、大粒径リチウム複合酸化物:小粒径リチウム複合酸化物=80:20の割合で混合した正極活物質が、3.65g/cmのプレス密度を示し、該活物質を用いた電池が、620mAh/cmの体積容量密度を示したことが記載されている(段落[0051]〜[0056])。 Patent Document 6 discloses a composite hydroxide powder having a composition of substantially spherical Ni 0.50 Co 0.20 Mn 0.30 (OH) 2 having a median diameter of 16 μm and lithium carbonate powder in Example 1. After mixing, a large particle size lithium composite having a composition of Li 1.015 (Ni 0.50 Co 0.20 Mn 0.30 ) 0.985 O 2 obtained by firing at 950 ° C. in an oxygen-containing atmosphere. After mixing the oxide powder and the composite hydroxide powder having a composition of hollow Ni 0.50 Co 0.20 Mn 0.30 (OH) 2 having a median diameter of 5 μm and the lithium carbonate powder, oxygen A powder of a small particle size lithium composite oxide having a composition of Li 1.015 (Ni 0.50 Co 0.20 Mn 0.30 ) 0.985 O 2 obtained by firing at 950 ° C. in a containing atmosphere, Large particle size by weight The positive electrode active material mixed at a ratio of lithium composite oxide: small particle size lithium composite oxide = 80: 20 exhibits a press density of 3.65 g / cm 3 , and a battery using the active material has a capacity of 620 mAh / cm. 3 (paragraphs [0051] to [0056]).

特開2015−18803号公報Japanese Patent Laying-Open No. 2015-18803 特開2000−243394号公報JP 2000-243394 A 特開2005−44722号公報JP 2005-44722 A WO2014/175191WO2014 / 175191 特開2002−279984号公報JP 2002-279984 A WO2013/191179WO2013 / 191179

J. Electrochem. Soc., Jouanneau et al., 151, 1749 (2004)J. Electrochem. Soc., Jouanneau et al., 151, 1749 (2004)

非特許文献1、特許文献3、4に記載された、焼成時にフッ素系添加剤(LiF等)を加えて低温焼成する技術では、活物質の充填密度が向上するものの、同時に初期効率の低下が起こり、エネルギー密度の高い電池が得られないことが課題であった。
特許文献2に記載されたリチウム遷移金属複合酸化物は、Ni/Me比が高く、合成過程でLiFを用いているが、噴霧乾燥法を用いていること、酸素分圧が95%以上の環境下で焼成を行っていることから、タップ密度の高い活物質は得られず、また、シャープな粒度分布を示すものが得られる。したがって、初期効率は低いものである。
In the technology described in Non-Patent Document 1, Patent Documents 3 and 4, and the low-temperature firing technique by adding a fluorine-based additive (LiF or the like) during firing, the packing density of the active material is improved, but at the same time the initial efficiency is reduced. The problem was that a battery having a high energy density could not be obtained.
The lithium transition metal composite oxide described in Patent Document 2 has a high Ni / Me ratio and uses LiF in the synthesis process. However, it uses a spray drying method and has an oxygen partial pressure of 95% or more. Since the firing is performed below, an active material having a high tap density cannot be obtained, and a material having a sharp particle size distribution is obtained. Therefore, the initial efficiency is low.

特許文献5、6に記載のとおり、電極の充填密度を高くすることを目的として、大粒径と小粒径のリチウム遷移金属複合酸化物を混合すると、粒度分布が複数のピークを持つ活物質が得られ、単位体積当たりの放電容量が増加する。しかし、大粒径と小粒径のリチウム遷移金属複合酸化物を混合して電極の充填密度を高くするためには、小粒径のリチウム遷移金属複合酸化物は、専ら、大粒径のリチウム遷移金属複合酸化物の隙間に充填されなければならないため、必然的に、大粒径のリチウム遷移金属複合酸化物の累積体積に比べて、小粒径のリチウム遷移金属複合酸化物の累積体積の方が小さくなる。このため、粒度分布において最大ピークを示す粒径よりも大粒径側にはピークを有さず、後述の比較例に示されるように、初期効率は向上しない。
また、Ni,Co,Mnを含む正極活物質は、特許文献1、6に記載されているようなNi/Me比が高いリチウム遷移金属複合酸化物の場合、高い焼成温度(1000℃付近)を採用すると、タップ密度は向上するが、初期効率が劣るという課題があった。
As described in Patent Documents 5 and 6, when a lithium transition metal composite oxide having a large particle size and a small particle size is mixed for the purpose of increasing the packing density of the electrode, the active material having a plurality of peaks in the particle size distribution And the discharge capacity per unit volume increases. However, in order to increase the packing density of the electrode by mixing a large particle size and a small particle size lithium transition metal composite oxide, the small particle size lithium transition metal composite oxide is exclusively Since the gaps in the transition metal composite oxide must be filled, inevitably, the cumulative volume of the lithium transition metal composite oxide having a small particle size is larger than that of the lithium transition metal composite oxide having a large particle size. Is smaller. For this reason, there is no peak on the larger particle size side than the particle size showing the maximum peak in the particle size distribution, and the initial efficiency is not improved as shown in a comparative example described later.
Further, in the case where the positive electrode active material containing Ni, Co, and Mn is a lithium transition metal composite oxide having a high Ni / Me ratio as described in Patent Documents 1 and 6, a high firing temperature (around 1000 ° C.) is used. When employed, the tap density is improved, but the initial efficiency is inferior.

本発明は、リチウム二次電池において、初期効率を向上させることを課題とする。   An object of the present invention is to improve initial efficiency in a lithium secondary battery.

上記課題を解決するために、本発明の一側面は、「リチウム遷移金属複合酸化物粒子を含有するリチウム二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物粒子は、α−NaFeO型構造を有し、遷移金属(Me)としてNi、Co及びMnを含み、Meに対するNiのモル比Ni/MeがNi/Me≧0.4であり、粒度分布において2つ以上のピークを有するとともに、最大ピークを示す粒径よりも大粒径側に少なくとも1つのピークを有する、リチウム二次電池用正極活物質。」を採用する。 In order to solve the above problems, one aspect of the present invention is “a positive electrode active material for a lithium secondary battery containing lithium transition metal composite oxide particles, wherein the lithium transition metal composite oxide particles are α- It has a NaFeO 2 type structure, contains Ni, Co and Mn as transition metals (Me), the molar ratio of Ni to Me is Ni / Me ≧ 0.4, and two or more peaks in the particle size distribution And a positive electrode active material for a lithium secondary battery having at least one peak on the larger particle size side than the particle size exhibiting the maximum peak.

本発明の他の一側面は、「Ni、Co及びMnを含む遷移金属化合物の前駆体粒子に、リチウム化合物と、前記前駆体粒子に対して2.5mol%以上のフッ素を含むフッ素源とを混合し、950℃を超える温度で焼成して、前記リチウム遷移金属複合酸化物粒子を製造する、前記リチウム二次電池用正極活物質の製造方法。」である。   According to another aspect of the present invention, “a precursor particle of a transition metal compound containing Ni, Co and Mn includes a lithium compound and a fluorine source containing 2.5 mol% or more of fluorine with respect to the precursor particle. The method for producing a positive electrode active material for a lithium secondary battery, wherein the lithium transition metal composite oxide particles are produced by mixing and firing at a temperature exceeding 950 ° C. ”.

本発明の他の一側面は、前記リチウム二次電池用正極活物質を含むリチウム二次電池用正極であり、前記正極を備えたリチウム二次電池である。   Another aspect of the present invention is a lithium secondary battery positive electrode including the lithium secondary battery positive electrode active material, and is a lithium secondary battery including the positive electrode.

本発明によれば、リチウム二次電池の初期効率を向上させることができる。   According to the present invention, the initial efficiency of the lithium secondary battery can be improved.

実施例3の粒度分布のピークを示す概略図Schematic showing the peak of the particle size distribution of Example 3 比較例1の粒度分布のピークを示す概略図Schematic showing the peak of the particle size distribution of Comparative Example 1 本発明の一実施形態に係るリチウム二次電池を示す外観斜視図1 is an external perspective view showing a lithium secondary battery according to an embodiment of the present invention. 本発明の一実施形態に係るリチウム二次電池を複数個集合した蓄電装置を示す概略図1 is a schematic diagram showing a power storage device in which a plurality of lithium secondary batteries according to an embodiment of the present invention are assembled.

本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施の形態若しくは実験例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。   The configuration and operational effects of the present invention will be described with the technical idea. However, the action mechanism includes estimation, and the correctness does not limit the present invention. It should be noted that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the following embodiments or experimental examples are merely examples in all respects and should not be interpreted in a limited manner. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

[正極活物質]
本発明の一実施形態(以下、「本実施形態」という。)は、リチウム二次電池用正極活物質に含有されるリチウム遷移金属複合酸化物粒子が、α−NaFeO型構造を有し、遷移金属(Me)としてNi、Co及びMnを含み、Meに対するNiのモル比Ni/MeがNi/Me≧0.4である。
[Positive electrode active material]
In one embodiment of the present invention (hereinafter referred to as “this embodiment”), the lithium transition metal composite oxide particles contained in the positive electrode active material for a lithium secondary battery have an α-NaFeO 2 type structure, Ni, Co, and Mn are included as transition metals (Me), and the molar ratio of Ni to Me, Ni / Me, is Ni / Me ≧ 0.4.

遷移金属(Me)中のNi、Co、Mnの比率に応じてリチウム二次電池の各種性能が変化するので、Meに対するNi、Co及びMnのそれぞれのモル比は、生産しようとするリチウム二次電池に求められる性能上の特徴等に応じて適宜決定される。   Since various performances of the lithium secondary battery change depending on the ratio of Ni, Co, and Mn in the transition metal (Me), the respective molar ratios of Ni, Co, and Mn to Me are the secondary lithium to be produced. It is determined appropriately according to the performance characteristics required for the battery.

リチウム二次電池の充放電サイクル性能を向上させるために、また、質量あたりの放電容量を十分なものとするために、Meに対するNiのモル比Ni/Meは0.4以上とする。Ni/Meは、0.4〜0.6とすることが好ましい。
活物質粒子の導電性を十分なものとし、リチウム二次電池の高率放電性能を制御するために、また、材料コストを勘案し、Meに対するCoのモル比Co/Meは、0.1〜0.3とすることが好ましい。
リチウム二次電池の充放電サイクル性能を向上させるために、また、材料コストを勘案し、Meに対するMnのモル比Mn/Meは、0.2〜0.4とすることが好ましい。
In order to improve the charge / discharge cycle performance of the lithium secondary battery and to make the discharge capacity per mass sufficient, the molar ratio of Ni to Me, Ni / Me, is 0.4 or more. Ni / Me is preferably 0.4 to 0.6.
In order to make the conductivity of the active material particles sufficient, and to control the high rate discharge performance of the lithium secondary battery, and considering the material cost, the molar ratio Co / Me to Me is 0.1 to 0.1. It is preferable to set it to 0.3.
In order to improve the charge / discharge cycle performance of the lithium secondary battery and considering the material cost, the molar ratio of Mn to Me, Mn / Me, is preferably 0.2 to 0.4.

本実施形態におけるリチウム遷移金属複合酸化物粒子は、典型的には、組成式Li1+xMe1−x(Me:Ni、Co及びMnを含む遷移金属)で表されるリチウム遷移金属複合酸化物の粒子である。体積あたりの放電容量が高いリチウム二次電池を得るために、−0.1<x<0.1であることが好ましい。−0.05≦x≦0.09であることがより好ましい。 The lithium transition metal composite oxide particles in the present embodiment are typically lithium transition metal composite oxides represented by the composition formula Li 1 + x Me 1-x O 2 (Me: transition metal containing Ni, Co, and Mn). Particles of things. In order to obtain a lithium secondary battery having a high discharge capacity per volume, −0.1 <x <0.1 is preferable. More preferably, −0.05 ≦ x ≦ 0.09.

上記リチウム遷移金属複合酸化物粒子は、フッ素を含有していることが、タップ密度を向上させる点で好ましい。この場合のリチウム遷移金属複合酸化物の組成式は、一例として、Li1+x(NiCoMn1−x2―y(a+b+c=1)で表される。
フッ素の含有量は、2.5〜10mol%が好ましく、2.5〜5mol%とすることがより好ましい。
リチウム遷移金属複合酸化物粒子がフッ素を含有する場合、該フッ素は、合成過程で含有されるものであるから、存在状態は明らかではないが、後述するジメチルカーボネートを用いた洗浄を行っても除去されない。なお、非水電解質や結着剤にフッ素を含有する材料(LiPF、PVDF等)が用いられることがあるが、電池を解体して取り出した電極から試料を採取する場合に、後述する前処理を行うことにより、これらに由来するフッ素は除去されるから、リチウム遷移金属複合酸化物粒子に含有されるフッ素と区別できる。
The lithium transition metal composite oxide particles preferably contain fluorine in terms of improving the tap density. The composition formula of the lithium transition metal composite oxide in this case is represented by, for example, Li 1 + x (Ni a Co b Mn c ) 1-x O 2 -y F y (a + b + c = 1).
The content of fluorine is preferably 2.5 to 10 mol%, and more preferably 2.5 to 5 mol%.
When the lithium transition metal composite oxide particles contain fluorine, since the fluorine is contained in the synthesis process, the existence state is not clear, but it can be removed by washing with dimethyl carbonate described later. Not. A material containing fluorine (LiPF 6 , PVDF, etc.) may be used for the non-aqueous electrolyte and the binder, but when the sample is taken from the electrode taken out by disassembling the battery, the pretreatment described later Since the fluorine derived from these is removed by performing the above, it can be distinguished from the fluorine contained in the lithium transition metal composite oxide particles.

上記リチウム遷移金属複合酸化物粒子は、本発明の効果を損なわない範囲で、Na,K等のアルカリ金属、Mg,Ca等のアルカリ土類金属、Fe,Zn等の3d遷移金属に代表される遷移金属など少量の他の金属を含有することを排除するものではない。   The lithium transition metal composite oxide particles are typified by alkali metals such as Na and K, alkaline earth metals such as Mg and Ca, and 3d transition metals such as Fe and Zn as long as the effects of the present invention are not impaired. The inclusion of small amounts of other metals such as transition metals is not excluded.

本実施形態に係るリチウム二次電池用正極活物質は、これを構成するリチウム遷移金属複合酸化物粒子が、粒度分布において2つ以上のピークを有するとともに、最大ピークを示す粒径よりも大粒径側に少なくとも1つのピークを有する。
リチウム遷移金属複合酸化物粒子が、粒度分布において2つ以上のピークを有していても、最大ピークを示す粒径より大粒径側にピークを有さない場合には、単一のピークを有するものと比較して、初期効率は向上しない。また、これを用いたリチウム二次電池の体積あたりの放電容量は低い。
リチウム遷移金属複合酸化物粒子が、粒度分布において2つ以上のピークを有するとともに、最大ピークを示す粒径よりも大粒径側に少なくとも1つのピークを有する場合、これを用いたリチウム二次電池の体積あたりの放電容量が向上するとともに、初期効率が向上する。
リチウム遷移金属複合酸化物粒子に、フッ素を含有させることにより、タップ密度は向上するが、粒度分布において単一のピークのみを有する場合には、初期効率は向上しない。
リチウム遷移金属複合酸化物粒子が、図1に示すように、粒度分布において2つ以上のピークを有するとともに、最大ピークを示す粒径よりも大粒径側に少なくとも1つのピークを有する場合、図2に示すような粒度分布において単一のピークのみを有するものと比較して、これを用いて製造したリチウム二次電池の初期効率が向上する。
In the positive electrode active material for a lithium secondary battery according to the present embodiment, the lithium transition metal composite oxide particles constituting the lithium active metal particles have two or more peaks in the particle size distribution, and are larger than the particle size exhibiting the maximum peak. It has at least one peak on the radial side.
Even if the lithium transition metal composite oxide particles have two or more peaks in the particle size distribution, if there is no peak on the larger particle size side than the particle size showing the maximum peak, a single peak is The initial efficiency is not improved compared to what it has. Moreover, the discharge capacity per volume of the lithium secondary battery using this is low.
When the lithium transition metal composite oxide particles have two or more peaks in the particle size distribution and at least one peak larger than the particle size showing the maximum peak, a lithium secondary battery using the lithium transition metal composite oxide particles As the discharge capacity per volume increases, the initial efficiency improves.
By including fluorine in the lithium transition metal composite oxide particles, the tap density is improved, but the initial efficiency is not improved when the particle size distribution has only a single peak.
When the lithium transition metal composite oxide particles have two or more peaks in the particle size distribution as shown in FIG. 1 and at least one peak larger than the particle size showing the maximum peak, The initial efficiency of a lithium secondary battery manufactured using this is improved as compared with that having only a single peak in the particle size distribution as shown in FIG.

また、本実施形態に係るリチウム遷移金属複合酸化物粒子は、粒度分布において最大ピークを示す粒度をDFre(μm)、該ピークに隣接するピークを示す粒度をDAdj(μm)(ただし、DAdj>DFre)としたときに、DAdj/DFreが1.8〜3.2であることが、初期効率の高いリチウム二次電池を得る点で好ましい。DAdj/DFreの値は、2.0〜3.0であることがより好ましく、2.0〜2.8であることがさらに好ましい。 The lithium transition metal composite oxide particles according to the present embodiment have a particle size distribution having a maximum peak size of D Fre (μm) and a peak adjacent to the peak of D Adj (μm) (where D adj> when the D Fre), it D adj / D Fre is 1.8 to 3.2 is preferred from the viewpoint of obtaining a high lithium secondary battery initial efficiency. The value of D Adj / D Fre is more preferably 2.0 to 3.0, and further preferably 2.0 to 2.8.

また、本実施形態に係るリチウム遷移金属複合酸化物粒子は、粒度分布における最大ピークの頻度をFre(%)、累積粒度分布における累積体積が10%及び90%となる粒度をそれぞれD10(μm)及びD90(μm)としたときに、Fre/(D90−D10)が0.42以下であることが、初期効率の高いリチウム二次電池を得る点で好ましい。 In addition, the lithium transition metal composite oxide particles according to the present embodiment have Fre (%) as the frequency of the maximum peak in the particle size distribution, and D 10 (μm) particle sizes at which the cumulative volume in the cumulative particle size distribution is 10% and 90%, respectively. ) And D 90 (μm), Fre / (D 90 -D 10 ) is preferably 0.42 or less from the viewpoint of obtaining a lithium secondary battery with high initial efficiency.

本実施形態に係るリチウム遷移金属複合酸化物粒子(正極活物質)は、2.00g/cm以上のタップ密度を有するものが特に好ましい。このような高いタップ密度の粉末とすることで、電極における充填密度が向上し、単位体積当たりの放電容量の高い二次電池が得られる。 The lithium transition metal composite oxide particles (positive electrode active material) according to this embodiment are particularly preferably those having a tap density of 2.00 g / cm 3 or more. By using such a high tap density powder, the packing density in the electrode is improved, and a secondary battery having a high discharge capacity per unit volume can be obtained.

本実施形態に係るリチウム二次電池用正極活物質は、上記リチウム遷移金属複合酸化物粒子の他、本発明の効果が損なわれない限りにおいて、他の正極活物質を含んでもよく、このような形態も本発明の技術的範囲に属する。   The positive electrode active material for a lithium secondary battery according to the present embodiment may contain other positive electrode active materials in addition to the lithium transition metal composite oxide particles as long as the effects of the present invention are not impaired. The form also belongs to the technical scope of the present invention.

(各種測定試料の前処理)
リチウム遷移金属複合酸化物粒子を試料として以下に述べる各種測定を行う場合、電極作製前の粉末状態のものについては、そのまま測定に供する。電池を解体して取り出した電極から試料を採取する場合には、電池を解体する前に、次の手順によって電池を放電状態とする。まず、0.1CmAの電流で、正極の電位が4.3V(vs.Li/Li)となる電池電圧まで定電流充電を行い、同じ電池電圧にて、電流値が0.01CmAに減少するまで定電圧充電を行い、充電末状態とする。30分の休止後、0.1CmAの電流で、正極の電位が2.0V(vs.Li/Li)となる電池電圧に至るまで定電流放電を行い、放電末状態とする。金属リチウム電極を負極に用いた電池であれば、当該電池を放電末状態又は充電末状態とした後に電池を解体して電極を取り出せばよいが、金属リチウム電極を負極に用いた電池でない場合は、正極電位を正確に制御するため、電池を解体して電極を取り出した後に、金属リチウム電極を対極とした電池を組立ててから、上記の手順に沿って、放電末状態に調整する。電池の解体から測定までの作業は露点−60℃以下のアルゴン雰囲気中で行う。取り出した正極板は、ジメチルカーボネートを用いて電極に付着した電解液を十分に洗浄し室温にて一昼夜の乾燥後、アルミニウム箔集電体上の合剤を採取する。この合剤を小型電気炉を用いて空気中600℃で4時間加熱することで導電剤であるカーボンおよび結着剤であるPVdFバインダーを除去し、リチウム遷移金属複合酸化物粒子を取り出す。
(Pretreatment of various measurement samples)
When various measurements described below are performed using lithium transition metal composite oxide particles as a sample, those in a powder state before electrode preparation are directly subjected to measurement. When a sample is collected from an electrode taken out by disassembling the battery, the battery is put into a discharged state by the following procedure before disassembling the battery. First, with a current of 0.1 CmA, constant current charging is performed up to a battery voltage at which the positive electrode potential becomes 4.3 V (vs. Li / Li + ), and at the same battery voltage, the current value decreases to 0.01 CmA. Charge the battery at a constant voltage until the end of charge. After a pause of 30 minutes, constant current discharge is performed at a current of 0.1 CmA until the battery voltage reaches a positive electrode potential of 2.0 V (vs. Li / Li + ), and a discharge end state is obtained. If the battery uses a metal lithium electrode as the negative electrode, the battery may be disassembled after the battery is brought into the end-of-discharge state or the end-of-charge state, and the electrode may be taken out. In order to accurately control the positive electrode potential, after disassembling the battery and taking out the electrode, after assembling the battery using the metal lithium electrode as a counter electrode, the battery is adjusted to the end of discharge state according to the above procedure. The work from disassembly of the battery to measurement is performed in an argon atmosphere with a dew point of −60 ° C. or lower. The taken-out positive electrode plate uses dimethyl carbonate to sufficiently wash the electrolytic solution adhering to the electrode, and after drying at room temperature for a whole day and night, the mixture on the aluminum foil current collector is collected. The mixture is heated in air at 600 ° C. for 4 hours using a small electric furnace to remove carbon as a conductive agent and PVdF binder as a binder, and take out lithium transition metal composite oxide particles.

(リチウム遷移金属複合酸化物粒子の粒度分布の測定)
リチウム遷移金属複合酸化物粒子の粒度分布は、以下の方法で測定する。
測定装置には日機装社製Microtrac(型番:MT3000)を用いた。前記測定装置は、光学台、試料供給部及び制御ソフトを搭載したコンピュータからなり、光学台にはレーザー光透過窓を備えた湿式セルが設置される。測定原理は、測定対象試料が分散溶媒中に分散している分散液が循環している湿式セルにレーザー光を照射し、測定試料からの散乱光分布を粒度分布に変換する方式である。前記分散液は試料供給部に蓄えられ、ポンプによって湿式セルに循環供給される。前記試料供給部は、常に超音波振動が加えられている。分散溶媒として水を用いた。測定制御ソフトにはMicrotrac DHS for Win98(MT3000)を用いた。前記測定装置に設定入力する「物質情報」については、溶媒の「屈折率」として1.33を設定し、「透明度」として「透過(TRANSPARENT)」を選択し、「球形粒子」として「非球形」を選択した。試料の測定に先立ち、「Set Zero」操作を行う。「Set Zero」操作は、粒子からの散乱光以外の外乱要素(ガラス、ガラス壁面の汚れ、ガラス凸凹など)が後の測定に与える影響を差し引くための操作であり、試料供給部に分散溶媒である水のみを入れ、湿式セルに分散溶媒である水のみが循環している状態でバックグラウンド測定を行い、バックグラウンドデータをコンピュータに記憶させる。続いて「Sample LD(Sample Loading)」操作を行う。Sample LD操作は、測定時に湿式セルに循環供給される分散液中の試料濃度を最適化するための操作であり、測定制御ソフトの指示に従って試料供給部に測定対象試料を手動で最適量に達するまで投入する操作である。続いて、「測定」ボタンを押すことで測定操作が行われる。前記測定操作を2回繰り返し、その平均値として測定結果が制御コンピュータから出力される。測定結果は、粒度分布、並びに、D10、D50及びD90の各値(D10、D50及びD90は、2次粒子の粒度分布における累積体積がそれぞれ10%、50%及び90%となる粒度)として取得される。粒度分布の分割幅は、縦軸の頻度を0.01%、横軸の常用対数をとった粒径を0.0376として設定する。DFreについては粒度分布のもっとも大きいピークの粒度を読み取ることによって、DAdjについては粒度分布の最も大きいピークに隣接するピークの粒度を読み取ることによって、Freについては、粒度分布のもっとも大きいピークのピークトップの頻度を読み取ることによって、それぞれ取得される。
(Measurement of particle size distribution of lithium transition metal composite oxide particles)
The particle size distribution of the lithium transition metal composite oxide particles is measured by the following method.
Microtrac (model number: MT3000) manufactured by Nikkiso Co., Ltd. was used as a measuring device. The measuring apparatus is composed of a computer equipped with an optical bench, a sample supply unit, and control software, and a wet cell equipped with a laser light transmission window is installed on the optical bench. The measurement principle is a method in which a wet cell in which a dispersion liquid in which a sample to be measured is dispersed in a dispersion solvent circulates is irradiated with laser light, and the scattered light distribution from the measurement sample is converted into a particle size distribution. The dispersion is stored in a sample supply unit and circulated and supplied to a wet cell by a pump. The sample supply unit is always subjected to ultrasonic vibration. Water was used as a dispersion solvent. Microtrac DHS for Win98 (MT3000) was used as measurement control software. For the `` substance information '' set and input to the measuring device, set 1.33 as the `` refractive index '' of the solvent, select `` TRANSPARENT '' as the `` transparency '', and set `` non-spherical '' as the `` spherical particle '' Selected. Prior to sample measurement, perform “Set Zero” operation. The “Set Zero” operation is an operation to subtract the influence of disturbance elements other than the scattered light from the particles (glass, dirt on the glass wall surface, glass irregularities, etc.) on the subsequent measurement. Only a certain amount of water is put in, a background measurement is performed in a state where only the water as the dispersion solvent is circulating in the wet cell, and the background data is stored in the computer. Subsequently, “Sample LD (Sample Loading)” operation is performed. The Sample LD operation is an operation for optimizing the sample concentration in the dispersion that is circulated and supplied to the wet cell during measurement, and manually reaches the optimum amount of the sample to be measured in the sample supply unit according to the instructions of the measurement control software. It is an operation to throw up. Subsequently, the measurement operation is performed by pressing the “Measure” button. The measurement operation is repeated twice, and the measurement result is output from the control computer as the average value. Measurement results, the particle size distribution, and, D 10, D values of 50 and D 90 (D 10, D 50 and D 90 10% cumulative volume in the particle size distribution of secondary particles each 50% and 90% Obtained as a granularity). The division width of the particle size distribution is set as 0.01% on the vertical axis and 0.0376 on the common logarithm on the horizontal axis. For D Fre , read the particle size of the largest peak in the particle size distribution, for D Adj , read the particle size of the peak adjacent to the largest peak of the particle size distribution, and for Fre, the peak of the largest peak in the particle size distribution Each is obtained by reading the frequency of the top.

(リチウム遷移金属複合酸化物粒子のタップ密度の測定)
本明細書において、リチウム遷移金属複合酸化物粒子のタップ密度は、以下の方法により測定する。10−2dmのメスシリンダーに被測定試料の粉体を2g±0.2g投入し、REI ELECTRIC CO.LTD.社製のタッピング装置を用いて、200回カウント後の被測定試料の体積を投入した質量で除した値を採用する。
(Measurement of tap density of lithium transition metal composite oxide particles)
In this specification, the tap density of the lithium transition metal composite oxide particles is measured by the following method. 2 g ± 0.2 g of the powder of the sample to be measured is put into a 10 −2 dm 3 graduated cylinder, and REI ELECTRIC CO. LTD. A value obtained by dividing the volume of the sample to be measured after counting 200 times by the input mass using a tapping device manufactured by the company is adopted.

(リチウム遷移金属複合酸化物粒子が含有するフッ素の定性分析)
Fの定性分析は、リチウム遷移金属複合酸化物に対して、走査型電子顕微鏡(SEM)(JEOL社製、型番JSM-6360)及びこれに付属するエネルギー分散型X線分析(EDX:Energy dispersive X-ray spectrometry)装置(以下「SEM−EDX装置」ともいう)を用いて、次の手順により行う。ステンレス製の試料台に導電性テープを張り付け、測定対象とするリチウム遷移金属複合酸化物の粉末粒子をスパテラにて適量採取して、テープ上に保持させる。表面に白金蒸着(蒸着時間:5min、電流値:10mA)を行い、前記SEM−EDX装置にセットする。分析位置のワーキングディスタンスは10mmとし、電子銃の加速電圧は15kVとする。複数の測定点において、SEM−EDX測定の元素分析によりNiに対するFのモル濃度を算出する。Fを含有する活物質はNiに対して、5mol%以上のモル濃度を示す。これによりFの定性分析を行う。
(Qualitative analysis of fluorine contained in lithium transition metal composite oxide particles)
The qualitative analysis of F was performed using a scanning electron microscope (SEM) (manufactured by JEOL, model number JSM-6360) and energy dispersive X-ray analysis (EDX: Energy dispersive X) for lithium transition metal composite oxides. -ray spectrometry) apparatus (hereinafter, also referred to as “SEM-EDX apparatus”) is performed according to the following procedure. A conductive tape is attached to a stainless steel sample stage, and an appropriate amount of powder particles of a lithium transition metal composite oxide to be measured are collected with a spatula and held on the tape. Platinum deposition (deposition time: 5 min, current value: 10 mA) is performed on the surface, and set in the SEM-EDX apparatus. The working distance at the analysis position is 10 mm, and the acceleration voltage of the electron gun is 15 kV. At a plurality of measurement points, the molar concentration of F with respect to Ni is calculated by elemental analysis of SEM-EDX measurement. The active material containing F exhibits a molar concentration of 5 mol% or more with respect to Ni. Thereby, qualitative analysis of F is performed.

[正極活物質の製造方法]
本実施形態に係るリチウム二次電池用正極活物質に含有されるリチウム遷移金属複合酸化物粒子は、あらかじめNi,Co,Mnを一粒子中に存在させた前駆体粒子を作製しておき、これにLi塩及びフッ素源を混合・焼成する方法で好適に製造することができる。
前駆体粒子を作製する方法としては、Ni、Co及びMnを含有する原料水溶液を滴下し、溶液中でNi、Co及びMnを含有する化合物を共沈させる「共沈法」を用いて共沈前駆体を作製することが好ましい。
共沈前駆体を作製するにあたって、Ni,Co,MnのうちMnは酸化されやすく、Ni,Co,Mnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Ni,Co,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。したがって、本発明においては、共沈前駆体に分布して存在するMnの酸化を抑制するために、溶存酸素を除去することが好ましい。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)等を用いることができる。
[Method for producing positive electrode active material]
The lithium transition metal composite oxide particles contained in the positive electrode active material for a lithium secondary battery according to the present embodiment are prepared in advance as precursor particles in which Ni, Co, and Mn are present in one particle. It can be suitably manufactured by a method of mixing and baking a Li salt and a fluorine source.
As a method for producing precursor particles, a co-precipitation method is used in which a raw material aqueous solution containing Ni, Co and Mn is dropped and a compound containing Ni, Co and Mn is co-precipitated in the solution. It is preferable to prepare a precursor.
In producing a coprecipitation precursor, Mn is easily oxidized among Ni, Co, and Mn, and it is not easy to produce a coprecipitation precursor in which Ni, Co, and Mn are uniformly distributed in a divalent state. Uniform mixing at the atomic level of Ni, Co and Mn tends to be insufficient. Therefore, in the present invention, it is preferable to remove dissolved oxygen in order to suppress oxidation of Mn existing in the coprecipitation precursor. Examples of the method for removing dissolved oxygen include a method of bubbling a gas not containing oxygen. The gas not containing oxygen is not limited, but nitrogen gas, argon gas, carbon dioxide (CO 2 ), or the like can be used.

溶液中でNi、Co及びMnを含有する化合物を共沈させて前駆体を作製する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈水酸化物前駆体として作製しようとする場合には、10.5〜14とすることができる。特に、pHを11.0以下とすることにより、粒子成長を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
また、前記共沈前駆体を共沈炭酸塩前駆体として作製しようとする場合には、7.5〜11とすることができる。特に、pHを8.0以下とすることにより、粒子成長速度を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
Although the pH in the step of preparing a precursor by co-precipitation of a compound containing Ni, Co and Mn in a solution is not limited, an attempt is made to prepare the co-precipitation precursor as a co-precipitation hydroxide precursor. When doing, it can be set to 10.5-14. In particular, since the particle growth can be promoted by setting the pH to 11.0 or less, the stirring continuation time after completion of dropping of the raw material aqueous solution can be shortened.
Moreover, when it is going to produce the said coprecipitation precursor as a coprecipitation carbonate precursor, it can be set as 7.5-11. In particular, by adjusting the pH to 8.0 or less, the particle growth rate can be accelerated, so that the stirring continuation time after completion of dropping of the raw material aqueous solution can be shortened.

前記共沈前駆体の原料は、Ni化合物としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co化合物としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を、Mn化合物としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を一例として挙げることができる。   The raw material of the coprecipitation precursor is nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, nickel acetate or the like as the Ni compound, and cobalt sulfate, cobalt nitrate, cobalt acetate, or the like as the Mn compound as the Co compound. Examples thereof include manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, manganese acetate and the like.

前記原料水溶液の滴下速度は、生成する共沈前駆体の1粒子内における元素分布の均一性に大きく影響を与える。好ましい滴下速度については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、30ml/min以下が好ましい。放電容量を向上させるためには、滴下速度は10ml/min以下がより好ましく、5ml/min以下が最も好ましい。   The dropping speed of the raw material aqueous solution greatly affects the uniformity of element distribution in one particle of the coprecipitation precursor to be generated. The preferred dropping rate is influenced by the reaction vessel size, stirring conditions, pH, reaction temperature, etc., but is preferably 30 ml / min or less. In order to improve the discharge capacity, the dropping rate is more preferably 10 ml / min or less, and most preferably 5 ml / min or less.

また、反応槽内にNH等の錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転及び攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、共沈前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。したがって、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた共沈前駆体粒子を得ることができる。 Further, when a complexing agent such as NH 3 is present in the reaction tank and a certain convection condition is applied, by continuing the stirring after the dropwise addition of the raw material aqueous solution, the rotation of the particles and in the stirring tank are performed. Revolution is promoted, and in this process, particles collide with each other, and the particles grow into concentric spheres step by step. That is, the coprecipitation precursor undergoes a reaction in two stages: a metal complex formation reaction when the raw material aqueous solution is dropped into the reaction tank, and a precipitation formation reaction that occurs while the metal complex is retained in the reaction tank. It is formed. Therefore, coprecipitation precursor particles having a target particle diameter can be obtained by appropriately selecting a time for continuing stirring after the dropping of the raw material aqueous solution.

原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5h以上が好ましく、1h以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が充分でないものとなる虞を低減させるため、30h以下が好ましく、25h以下がより好ましく、20h以下が最も好ましい。   The preferable stirring duration after completion of dropping of the raw material aqueous solution is influenced by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc., but 0.5 h or more is required to grow the particles as uniform spherical particles. Preferably, 1 h or more is more preferable. Further, in order to reduce the possibility that the output performance in the low SOC region of the battery is not sufficient due to the particle size becoming too large, 30 h or less is preferable, 25 h or less is more preferable, and 20 h or less is most preferable.

上記前駆体粒子に混合するLi化合物としては、通常使用されている水酸化リチウム、炭酸リチウムと共に、焼結助剤として、LiF、LiSO、又はLiPOを使用することが好ましい。これらのうちLiFは、後述するフッ素源としても作用する。これらの焼結助剤の添加比率は、Li化合物の総量に対して1〜10mol%とすることが好ましい。なお、Li化合物の総量は、焼成中にLi化合物の一部が消失することを見込んで、1〜5%程度過剰に仕込むことが好ましい。 The Li compound to be mixed with the precursor particles, lithium hydroxide which is usually used, with lithium carbonate, as a sintering aid, LiF, Li 2 SO 4, or it is preferable to use Li 3 PO 4. Of these, LiF also acts as a fluorine source to be described later. The addition ratio of these sintering aids is preferably 1 to 10 mol% with respect to the total amount of the Li compound. The total amount of the Li compound is preferably charged in an excess of about 1 to 5% in view of the disappearance of a part of the Li compound during firing.

上記前駆体粒子にリチウム源としてのLi化合物を混合する際には、同時にフッ素源としてのF化合物を混合して、目的とする活物質(酸化物)の組成どおりの比率で金属元素(Li,Ni,Co,Mn)を含有するとともに、前記前駆体粒子に対して2.5mol%以上のフッ素を含有する粒子とすることが好ましい。このようにすることで、粒度分布において2つ以上のピークを有するとともに、最大ピークを示す粒径よりも大粒径側に少なくとも1つのピークを有するリチウム遷移金属複合酸化物粒子を、一度の焼成で製造することができるため、粒径が異なる複数の粒子を混合する手間を省くことができる。
上記前駆体粒子にLi化合物及びF化合物を混合して焼成することで、粒度分布において2つ以上のピークを有するとともに、最大ピークを示す粒径よりも大粒径側に少なくとも1つのピークを有するリチウム遷移金属複合酸化物粒子を製造できる理由については、必ずしも明らかではないが、製造されたリチウム遷移金属複合酸化物粒子の一部を走査型電子顕微鏡(SEM)で観察したところ、粒径が約10μmの粒子と、粒径がその2〜3倍の粒子とが区別されて観察されたことから、粒径が約10μmの前駆体粒子(二次粒子)の一部が、焼成の過程で2個又は3個会合する反応が生じることによるものと本発明者らは推察している。
前記フッ素の含有量の上限は特に限定されないが、F化合物の含有量増加による特性の向上効果と原料コストの上昇とを考慮すると、前記前駆体粒子に対して10mol%以下とすることが好ましく、5.0mol%以下とすることがより好ましい。
フッ素化合物としては、LiFの他、フッ化アンモニウム、フッ化カルシウム、フッ化アルミニウム、フッ化バリウム、フッ化マグネシウム、フッ化ナトリウム、フッ化カリウム等を使用することができる。
When mixing the Li compound as the lithium source with the precursor particles, the F compound as the fluorine source is mixed at the same time, and the metal element (Li, Ni, Co, Mn) and particles containing 2.5 mol% or more of fluorine with respect to the precursor particles are preferable. In this way, lithium transition metal composite oxide particles having two or more peaks in the particle size distribution and having at least one peak larger than the particle size showing the maximum peak are fired once. Therefore, the trouble of mixing a plurality of particles having different particle sizes can be saved.
By mixing and firing Li compound and F compound in the precursor particles, the particle size distribution has two or more peaks and at least one peak on the larger particle size side than the particle size showing the maximum peak. The reason why lithium transition metal composite oxide particles can be produced is not necessarily clear, but when a part of the produced lithium transition metal composite oxide particles were observed with a scanning electron microscope (SEM), the particle size was about Since 10 μm particles and particles having a particle size of 2 to 3 times were observed as distinguished from each other, some of the precursor particles (secondary particles) having a particle size of about 10 μm were 2 in the firing process. The present inventors speculate that this is due to the occurrence of a reaction in which three or three are associated.
The upper limit of the fluorine content is not particularly limited, but considering the effect of improving characteristics due to the increase in the content of the F compound and the increase in raw material cost, it is preferably 10 mol% or less with respect to the precursor particles. More preferably, it is 5.0 mol% or less.
In addition to LiF, ammonium fluoride, calcium fluoride, aluminum fluoride, barium fluoride, magnesium fluoride, sodium fluoride, potassium fluoride, and the like can be used as the fluorine compound.

前記フッ素を含有する前駆体粒子の焼成は、950℃を超える温度で行う。
焼成温度が950℃以下では、得られる粒子の粒度分布が2つ以上のピークを示さず、これを用いて製造されるリチウム二次電池の初期効率が低下する。
好ましい焼成温度は1000℃〜1100℃である。
Firing of the precursor particles containing fluorine is performed at a temperature exceeding 950 ° C.
When the firing temperature is 950 ° C. or lower, the particle size distribution of the obtained particles does not show two or more peaks, and the initial efficiency of a lithium secondary battery produced using the same decreases.
A preferable firing temperature is 1000 ° C. to 1100 ° C.

[負極活物質]
負極材料としては、限定されるものではなく、リチウムイオンを放出あるいは吸蔵することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料リチウム金属、リチウム合金(リチウム−シリコン、リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム−チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。
[Negative electrode active material]
The negative electrode material is not limited, and any negative electrode material may be selected as long as it can release or occlude lithium ions. For example, titanium-based materials such as lithium titanate having a spinel crystal structure represented by Li [Li 1/3 Ti 5/3 ] O 4 , alloy-based materials such as Si, Sb, and Sn-based lithium metal, lithium alloys (Lithium metal-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), lithium composite oxide (lithium-titanium), silicon oxide In addition, an alloy capable of inserting and extracting lithium, a carbon material (for example, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.) can be used.

[正極及び負極の作製]
正極活物質の粉体及び負極材料の粉体は、平均粒子サイズ100μm以下であることが望ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で10μm以下であることが望ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
[Production of positive electrode and negative electrode]
It is desirable that the positive electrode active material powder and the negative electrode material powder have an average particle size of 100 μm or less. In particular, the positive electrode active material powder is desirably 10 μm or less for the purpose of improving the high output characteristics of the non-aqueous electrolyte battery. In order to obtain the powder in a predetermined shape, a pulverizer or a classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill or a sieve is used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as hexane may be used. There is no particular limitation on the classification method, and a sieve, an air classifier, or the like is used as needed for both dry and wet methods.

以上、正極及び負極の主要構成成分である正極活物質及び負極材料について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。   The positive electrode active material and the negative electrode material, which are the main components of the positive electrode and the negative electrode, have been described in detail above. In addition to the main components, the positive electrode and the negative electrode include a conductive agent, a binder, a thickener, and a filler. Etc. may be contained as other constituents.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, Conductive materials such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material can be included as one kind or a mixture thereof. .

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。導電剤の添加量は、正極または負極の総重量に対して0.1重量%〜50重量%が好ましく、特に0.5重量%〜30重量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため望ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。   Among these, as the conductive agent, acetylene black is desirable from the viewpoints of electron conductivity and coatability. The addition amount of the conductive agent is preferably 0.1% by weight to 50% by weight, and particularly preferably 0.5% by weight to 30% by weight with respect to the total weight of the positive electrode or the negative electrode. In particular, it is desirable to use acetylene black by pulverizing into ultrafine particles of 0.1 to 0.5 μm because the required carbon amount can be reduced. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, powder mixers such as V-type mixers, S-type mixers, crackers, ball mills, and planetary ball mills can be mixed dry or wet.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して1〜50重量%が好ましく、特に2〜30重量%が好ましい。   The binder is usually a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene. Polymers having rubber elasticity such as rubber (SBR) and fluororubber can be used as one kind or a mixture of two or more kinds. The addition amount of the binder is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight, based on the total weight of the positive electrode or the negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総重量に対して添加量は30重量%以下が好ましい。   As the filler, any material that does not adversely affect the battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 30% by weight or less with respect to the total weight of the positive electrode or the negative electrode.

正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、及びその他の材料を混練し合剤とし、N−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、または圧着して50℃〜250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。   The positive electrode and the negative electrode are prepared by mixing the main components (positive electrode active material in the positive electrode, negative electrode material in the negative electrode) and other materials into a mixture and mixing them in an organic solvent such as N-methylpyrrolidone and toluene or water. After that, the obtained liquid mixture is applied on a current collector described in detail below, or pressed and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. . About the application method, for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.

集電体としては、Al箔、Cu箔等の集電箔を用いることができる。正極の集電箔としてはAl箔が好ましく、負極の集電箔としてはCu箔が好ましい。集電箔の厚みは10〜30μmが好ましい。また、合剤層の厚みはプレス後において、40〜150μm(集電箔厚みを除く)が好ましい。   As the current collector, a current collector foil such as an Al foil or a Cu foil can be used. The positive electrode current collector foil is preferably an Al foil, and the negative electrode current collector foil is preferably a Cu foil. The thickness of the current collector foil is preferably 10 to 30 μm. Further, the thickness of the mixture layer is preferably 40 to 150 μm (excluding the current collector foil thickness) after pressing.

[非水電解質]
本発明に係るリチウム二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
[Nonaqueous electrolyte]
The nonaqueous electrolyte used for the lithium secondary battery according to the present invention is not limited, and those generally proposed for use in lithium batteries and the like can be used. Nonaqueous solvents used for the nonaqueous electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane and methyldiglyme; Nitriles such as acetonitrile and benzonitrile; Dioxolane or derivatives thereof; Ethylene sulfide, sulfolane, sultone or derivatives thereof Examples thereof include a conductor alone or a mixture of two or more thereof, but are not limited thereto.

非水電解質に用いる電解質塩としては、例えば、LiClO4,LiBF4,LiAsF6,LiPF6,LiSCN,LiBr,LiI,Li2SO4,Li210Cl10,NaClO4,NaI,NaSCN,NaBr,KClO4,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,(CH34NBF4,(CH34NBr,(C254NClO4,(C254NI,(C374NBr,(n−C494NClO4,(n−C494NI,(C254N−maleate,(C254N−benzoate,(C254N−phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the nonaqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr. , KClO 4 , KSCN, and other inorganic ion salts containing one of lithium (Li), sodium (Na), or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C 4 H 9) 4 NI, ( C 2 H 5) 4 N-mal ate, (C 2 H 5) 4 N-benzoate, (C 2 H 5) 4 N-phthalate, lithium stearyl sulfonate, lithium octyl sulfonate, organic ion salts of lithium dodecyl benzene sulfonate, and the like. These These ionic compounds can be used alone or in admixture of two or more.

さらに、LiPF6又はLiBF4と、LiN(C25SO22のようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より望ましい。 Furthermore, by mixing and using LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further reduced. The low temperature characteristics can be further improved, and self-discharge can be suppressed, which is more desirable.

また、非水電解質として常温溶融塩やイオン液体を用いてもよい。   Moreover, you may use normal temperature molten salt and an ionic liquid as a nonaqueous electrolyte.

非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、0.5mol/l〜2.5mol/lである。   The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l, more preferably 0.5 mol / l to 2 in order to reliably obtain a non-aqueous electrolyte battery having high battery characteristics. .5 mol / l.

[セパレータ]
セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。
[Separator]
As the separator, it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the material constituting the separator for a nonaqueous electrolyte battery include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.

セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。   The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.

また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。   The separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte. Use of the non-aqueous electrolyte in the gel state as described above is preferable in that it has an effect of preventing leakage.

さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため望ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。   Furthermore, it is desirable that the separator be used in combination with the above-described porous film, non-woven fabric, or the like and a polymer gel because the liquid retention of the electrolyte is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the microporous wall are coated with a solvophilic polymer having a thickness of several μm or less, and holding the electrolyte in the micropores of the film, Gels.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。   Examples of the solvophilic polymer include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked. The monomer can be subjected to a crosslinking reaction using a radical initiator in combination with heating or ultraviolet rays (UV), or using an actinic ray such as an electron beam (EB).

[リチウム二次電池の構成]
その他の電池の構成要素としては、端子、絶縁板、電池ケース等があるが、これらの部品は従来用いられてきたものをそのまま用いて差し支えない。
[Configuration of lithium secondary battery]
Other battery components include a terminal, an insulating plate, a battery case, and the like, but these components may be used as they are.

図3に、本発明に係るリチウム二次電池の一実施形態である矩形状のリチウム二次電池1の外観斜視図を示す。なお、同図は、容器内部を透視した図としている。図3に示すリチウム二次電池1は、電極群2が電池容器3に収納されている。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。   FIG. 3 shows an external perspective view of a rectangular lithium secondary battery 1 which is an embodiment of the lithium secondary battery according to the present invention. In the figure, the inside of the container is seen through. In the lithium secondary battery 1 shown in FIG. 3, the electrode group 2 is housed in a battery container 3. The electrode group 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material via a separator. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ′, and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5 ′.

本実施形態に係るリチウム二次電池の形状については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。本発明は、上記のリチウム二次電池を複数個集合した蓄電装置としても実現することができる。蓄電装置の一実施形態を図4に示す。図4において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数のリチウム二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。   The shape of the lithium secondary battery according to this embodiment is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), a flat battery, and the like. The present invention can also be realized as a power storage device in which a plurality of the lithium secondary batteries are assembled. One embodiment of a power storage device is shown in FIG. In FIG. 4, the power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of lithium secondary batteries 1. The power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).

(実施例1)
<前駆体作製工程>
実施例活物質の作製にあたって、反応晶析法を用いて水酸化物前駆体を作製した。まず、硫酸コバルト七水和物168.66g、硫酸ニッケル六水和物394.28g及び硫酸マンガン五水和物216.97gを秤量し、イオン交換水に溶解させ、Ni:Co:Mnのモル比が5:2:3となる3Lの硫酸塩水溶液を作製した。次に、5Lの反応槽に2Lのイオン交換水を注ぎ、アルゴンガスを30minバブリングし、イオン交換水中の酸素を除去した。反応槽の温度を50℃(±2℃)に設定し、撹拌モーターを備えたパドル翼を用いて、1500rpmの回転速度で撹拌しながら、イオン交換水中に硫酸塩水溶液を1.5mL/minの速度で滴下した。このときpH=11(±0.1)となるように4M水酸化ナトリウム、0.5Mアンモニア及び0.29Mヒドラジンを含有する水溶液を適宜滴下した。反応溶液の一部をオーバーフローにより排出し、反応液の総量が常に2Lを超えないように制御した。滴下終了後、反応槽内の撹拌をさらに2h以上継続した。
次に、吸引ろ過装置を用いて、得られた水酸化物前駆体の粒子を分離し、イオン交換水を用いて粒子に付着しているナトリウムイオンの洗浄除去を行った後、空気雰囲気中、常圧下、80℃で一晩乾燥させた。このようにして、水酸化物前駆体粒子を作製した。
Example 1
<Precursor production process>
Example In preparing an active material, a hydroxide precursor was prepared using a reaction crystallization method. First, 168.66 g of cobalt sulfate heptahydrate, 394.28 g of nickel sulfate hexahydrate and 216.97 g of manganese sulfate pentahydrate were weighed and dissolved in ion-exchanged water, and a molar ratio of Ni: Co: Mn was obtained. A 3 L aqueous sulfate solution with a ratio of 5: 2: 3 was prepared. Next, 2 L of ion exchange water was poured into a 5 L reaction tank, and argon gas was bubbled for 30 minutes to remove oxygen in the ion exchange water. The temperature of the reaction vessel was set to 50 ° C. (± 2 ° C.), and an aqueous sulfate solution was added to 1.5 mL / min in ion-exchanged water while stirring at a rotational speed of 1500 rpm using a paddle blade equipped with a stirring motor. It was dripped at a speed. At this time, an aqueous solution containing 4M sodium hydroxide, 0.5M ammonia and 0.29M hydrazine was appropriately added dropwise so that pH = 11 (± 0.1). A part of the reaction solution was discharged due to overflow, and the total amount of the reaction solution was controlled so as not to always exceed 2 L. After completion of the dropping, stirring in the reaction vessel was further continued for 2 hours or more.
Next, the particles of the obtained hydroxide precursor are separated using a suction filtration device, and after washing and removing sodium ions adhering to the particles using ion-exchanged water, in an air atmosphere, It was dried overnight at 80 ° C. under normal pressure. In this way, hydroxide precursor particles were produced.

<焼成工程>
この水酸化物前駆体粒子2.371gを水酸化リチウム一水和物1.0911g及びフッ化リチウム0.017gと瑪瑙乳鉢を用いてよく混合した。このときのリチウムと遷移金属(Ni、Co、Mn)のモル比は1.0であり、前記水酸化物前駆体粒子に対するフッ素の割合は2.5mol%であった。ペレット成型機を用いて、10MPaの圧力で直径25mmのペレットを作製した。ペレット成型に要した混合物の量は、想定される最終生成物の質量が2.5gになるように換算して決定した。前記のペレットをアルミナ製ボートに載置し、箱型電気炉(型式 :AMF20)を用いて、空気雰囲気中、常圧下、1000℃で焼成した。常温からの昇温時間を10時間、1000℃における保持時間を4時間とした。前記の箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内においたまま、自然冷却した。一昼夜経過後、炉の温度が100℃以下になっていることを確認してからペレットを取り出して粉砕し、LiNi0.5Co0.2Mn0.3にフッ素を含有している実施例1に係るリチウム遷移金属複合酸化物粒子を作製した。
<Baking process>
2.371 g of this hydroxide precursor particle was mixed well with 1.0911 g of lithium hydroxide monohydrate and 0.017 g of lithium fluoride using an agate mortar. At this time, the molar ratio of lithium to the transition metal (Ni, Co, Mn) was 1.0, and the ratio of fluorine to the hydroxide precursor particles was 2.5 mol%. Using a pellet molding machine, pellets having a diameter of 25 mm were produced at a pressure of 10 MPa. The amount of the mixture required for pellet molding was determined by conversion so that the mass of the expected final product was 2.5 g. The pellets were placed on an alumina boat and fired at 1000 ° C. under normal pressure in an air atmosphere using a box-type electric furnace (model: AMF20). The temperature rising time from room temperature was 10 hours, and the holding time at 1000 ° C. was 4 hours. The internal dimensions of the box-type electric furnace are 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction. After firing, the heater was turned off, and the alumina boat was left in the furnace for natural cooling. After one day and night, after confirming that the temperature of the furnace is 100 ° C. or less, the pellets are taken out and pulverized, and LiNi 0.5 Co 0.2 Mn 0.3 O 2 contains fluorine. Lithium transition metal composite oxide particles according to Example 1 were prepared.

(実施例2)
焼成工程において、前記水酸化物前駆体粒子2.3721gを水酸化リチウム一水和物1.0631g及びフッ化リチウム0.0346gと混合し、水酸化物前駆体粒子に対するフッ素の割合を5.0mol%とした以外は、実施例1と同様にして、実施例2に係るリチウム遷移金属複合酸化物粒子を作製した。
(Example 2)
In the firing step, 2.3721 g of the hydroxide precursor particles are mixed with 1.0631 g of lithium hydroxide monohydrate and 0.0346 g of lithium fluoride, and the ratio of fluorine to the hydroxide precursor particles is 5.0 mol. % Lithium transition metal composite oxide particles according to Example 2 were produced in the same manner as in Example 1 except that the content was%.

(実施例3)
焼成工程において、前記水酸化物前駆体粒子2.3721gを水酸化リチウム一水和物1.0911g及びフッ化アンモニウム0.0247gと混合した以外は、実施例1と同様にして、実施例3に係るリチウム遷移金属複合酸化物粒子を作製した。なお、本実施例における水酸化物前駆体粒子に対するフッ素の割合は、実施例1と同じく2.5mol%である。
(Example 3)
Example 3 was conducted in the same manner as in Example 1 except that 2.3721 g of the hydroxide precursor particles were mixed with 1.0911 g of lithium hydroxide monohydrate and 0.0247 g of ammonium fluoride in the firing step. Such lithium transition metal composite oxide particles were prepared. In addition, the ratio of the fluorine with respect to the hydroxide precursor particle in a present Example is 2.5 mol% similarly to Example 1. FIG.

(実施例4)
焼成工程において、前記水酸化物前駆体粒子2.3721gを水酸化リチウム一水和物1.0631g及びフッ化アンモニウム0.0494gと混合し、水酸化物前駆体粒子に対するフッ素の割合を5.0mol%とした以外は、実施例1と同様にして、実施例4に係るリチウム遷移金属複合酸化物粒子を作製した。
Example 4
In the firing step, 2.3721 g of the hydroxide precursor particles are mixed with 1.0631 g of lithium hydroxide monohydrate and 0.0494 g of ammonium fluoride, and the ratio of fluorine to the hydroxide precursor particles is 5.0 mol. %, Lithium transition metal composite oxide particles according to Example 4 were produced in the same manner as in Example 1 except that the percentage was changed to%.

(比較例1)
焼成工程において、前記水酸化物前駆体粒子2.3721gを水酸化リチウム一水和物1.1190gと混合し、フッ素を実質的に含まない粒子とした以外は、実施例1と同様にして、比較例1に係るリチウム遷移金属複合酸化物粒子を作製した。
(Comparative Example 1)
In the firing step, except that 2.3721 g of the hydroxide precursor particles were mixed with 1.1190 g of lithium hydroxide monohydrate to make particles substantially free of fluorine, the same as in Example 1, Lithium transition metal composite oxide particles according to Comparative Example 1 were produced.

(比較例2)
焼成工程において、前記水酸化物前駆体粒子2.3721gを水酸化リチウム一水和物1.1078g及びフッ化リチウム0.0069gと混合し、水酸化物前駆体粒子に対するフッ素の割合を1.0mol%とした以外は、実施例1と同様にして、比較例2に係るリチウム遷移金属複合酸化物粒子を作製した。
(Comparative Example 2)
In the firing step, 2.3721 g of the hydroxide precursor particles are mixed with 1.1078 g of lithium hydroxide monohydrate and 0.0069 g of lithium fluoride, and the ratio of fluorine to the hydroxide precursor particles is 1.0 mol. The lithium transition metal composite oxide particles according to Comparative Example 2 were produced in the same manner as in Example 1 except that the content was%.

(比較例3)
焼成工程において、前記水酸化物前駆体粒子2.3721gを水酸化リチウム一水和物1.1078g及びフッ化アンモニウム0.0099gと混合し、水酸化物前駆体粒子に対するフッ素の割合を1.0mol%とした以外は、実施例1と同様にして、比較例3に係るリチウム遷移金属複合酸化物粒子を作製した。
(Comparative Example 3)
In the firing step, 2.3721 g of the hydroxide precursor particles are mixed with 1.1078 g of lithium hydroxide monohydrate and 0.0099 g of ammonium fluoride, and the ratio of fluorine to the hydroxide precursor particles is 1.0 mol. % Lithium transition metal composite oxide particles according to Comparative Example 3 were produced in the same manner as in Example 1 except that the content was%.

(実施例5)
前駆体作製工程において、硫酸コバルト七水和物252.99g、硫酸ニッケル六水和物394.26g及び硫酸マンガン五水和物144.65gを秤量し、イオン交換水に溶解させ、Ni:Co:Mnのモル比が5:3:2となる3Lの硫酸塩水溶液を作製した以外は、実施例1と同様にして水酸化物前駆体粒子を作製した。
焼成工程において、前記水酸化物前駆体粒子2.3726gを水酸化リチウム一水和物1.0866g及びフッ化アンモニウム0.0246gと混合した以外は、実施例3と同様にして、実施例5に係るリチウム遷移金属複合酸化物粒子を作製した。なお、本実施例における水酸化物前駆体粒子に対するフッ素の割合は、実施例3と同じく2.5mol%である。
(Example 5)
In the precursor preparation step, 252.99 g of cobalt sulfate heptahydrate, 394.26 g of nickel sulfate hexahydrate and 144.65 g of manganese sulfate pentahydrate are weighed and dissolved in ion-exchanged water, and Ni: Co: Hydroxide precursor particles were prepared in the same manner as in Example 1 except that a 3 L sulfate aqueous solution having a Mn molar ratio of 5: 3: 2 was prepared.
Example 5 was repeated in the same manner as in Example 3 except that 2.3726 g of the hydroxide precursor particles were mixed with 1.0866 g of lithium hydroxide monohydrate and 0.0246 g of ammonium fluoride in the firing step. Such lithium transition metal composite oxide particles were prepared. In addition, the ratio of the fluorine with respect to the hydroxide precursor particle | grains in a present Example is 2.5 mol% similarly to Example 3. FIG.

(比較例4)
焼成工程において、前記水酸化物前駆体粒子2.3726gを水酸化リチウム一水和物1.1144gと混合し、フッ素を実質的に含まない粒子とした以外は、実施例5と同様にして、比較例4に係るリチウム遷移金属複合酸化物粒子を作製した。
(Comparative Example 4)
In the firing step, except that 2.3726 g of the hydroxide precursor particles were mixed with 1.1144 g of lithium hydroxide monohydrate to make particles substantially free of fluorine, the same as in Example 5, Lithium transition metal composite oxide particles according to Comparative Example 4 were produced.

(比較例5)
焼成工程において、前記水酸化物前駆体粒子2.3726gを水酸化リチウム一水和物1.1033g及びフッ化リチウム0.0069gと混合し、水酸化物前駆体粒子に対するフッ素の割合を1.0mol%とした以外は、実施例5と同様にして、比較例5に係るリチウム遷移金属複合酸化物粒子を作製した。
(Comparative Example 5)
In the firing step, 2.3726 g of the hydroxide precursor particles are mixed with 1.1033 g of lithium hydroxide monohydrate and 0.0069 g of lithium fluoride, and the ratio of fluorine to the hydroxide precursor particles is 1.0 mol. %, Lithium transition metal composite oxide particles according to Comparative Example 5 were produced in the same manner as in Example 5.

(実施例6)
前駆体作製工程において、硫酸コバルト七水和物84.33g、硫酸ニッケル六水和物394.26g及び硫酸マンガン五水和物289.29gを秤量し、イオン交換水に溶解させ、Ni:Co:Mnのモル比が5:1:4となる3Lの硫酸塩水溶液を作製した以外は、実施例1と同様にして水酸化物前駆体粒子を作製した。
焼成工程において、前記水酸化物前駆体粒子2.3715gを水酸化リチウム一水和物1.0956g及びフッ化アンモニウム0.0248gと混合した以外は、実施例3と同様にして、実施例6に係るリチウム遷移金属複合酸化物粒子を作製した。なお、本実施例における水酸化物前駆体粒子に対するフッ素の割合は、実施例3と同じく2.5mol%である。
(Example 6)
In the precursor preparation step, 84.33 g of cobalt sulfate heptahydrate, 394.26 g of nickel sulfate hexahydrate and 289.29 g of manganese sulfate pentahydrate are weighed and dissolved in ion-exchanged water, and Ni: Co: Hydroxide precursor particles were prepared in the same manner as in Example 1 except that a 3 L sulfate aqueous solution having a Mn molar ratio of 5: 1: 4 was prepared.
Example 6 was carried out in the same manner as in Example 3 except that 2.3715 g of the hydroxide precursor particles were mixed with 1.0956 g of lithium hydroxide monohydrate and 0.0248 g of ammonium fluoride in the firing step. Such lithium transition metal composite oxide particles were prepared. In addition, the ratio of the fluorine with respect to the hydroxide precursor particle | grains in a present Example is 2.5 mol% similarly to Example 3. FIG.

(比較例6)
焼成工程において、前記水酸化物前駆体粒子2.3715gを水酸化リチウム一水和物1.1237gと混合し、フッ素を実質的に含まない粒子とした以外は、実施例6と同様にして、比較例6に係るリチウム遷移金属複合酸化物粒子を作製した。
(Comparative Example 6)
In the firing step, except that 2.3715 g of the hydroxide precursor particles were mixed with 1.1237 g of lithium hydroxide monohydrate to make particles substantially free of fluorine, the same as in Example 6, Lithium transition metal composite oxide particles according to Comparative Example 6 were produced.

(比較例7)
焼成工程において、前記水酸化物前駆体粒子2.3715gを水酸化リチウム一水和物1.1124g及びフッ化アンモニウム0.0099gと混合し、水酸化物前駆体粒子に対するフッ素の割合を1.0mol%とした以外は、実施例6と同様にして、比較例7に係るリチウム遷移金属複合酸化物粒子を作製した。
(Comparative Example 7)
In the firing step, 2.3715 g of the hydroxide precursor particles are mixed with 1.1124 g of lithium hydroxide monohydrate and 0.0099 g of ammonium fluoride, and the ratio of fluorine to the hydroxide precursor particles is 1.0 mol. The lithium transition metal composite oxide particles according to Comparative Example 7 were produced in the same manner as in Example 6 except that the content was%.

(比較例8)
焼成工程において、前記水酸化物前駆体粒子2.3715gを水酸化リチウム一水和物1.0956g及びフッ化リチウム0.0174gと混合し、水酸化物前駆体粒子に対するフッ素の割合を2.5mol%にするとともに、焼成温度を950℃とした以外は、実施例6と同様にして、比較例8に係るリチウム遷移金属複合酸化物粒子を作製した。
(Comparative Example 8)
In the firing step, 2.3715 g of the hydroxide precursor particles are mixed with 1.0956 g of lithium hydroxide monohydrate and 0.0174 g of lithium fluoride, and the ratio of fluorine to the hydroxide precursor particles is 2.5 mol. %, And a lithium transition metal composite oxide particle according to Comparative Example 8 was produced in the same manner as in Example 6 except that the firing temperature was 950 ° C.

(比較例9)
焼成工程において、焼成温度を800℃とした以外は、比較例1と同様にして、比較例9に係るリチウム遷移金属複合酸化物粒子を作製した。
(Comparative Example 9)
Lithium transition metal composite oxide particles according to Comparative Example 9 were produced in the same manner as in Comparative Example 1 except that the firing temperature was 800 ° C. in the firing step.

(比較例10)
前駆体作製工程において、滴下終了後、反応槽内の撹拌をさらに12h継続した以外は、比較例9と同様にして、大粒径リチウム遷移金属複合酸化物の粒子を作製した。また、滴下終了後、反応槽内の撹拌をさらに3h継続した以外は、比較例9と同様にして、小粒径リチウム遷移金属複合酸化物の粒子を作製した。得られた大粒径リチウム遷移金属複合酸化物と小粒径リチウム遷移金属複合酸化物とを、質量比7:3で混合して、粒度分布において2つ以上のピークを有するリチウム遷移金属複合酸化物混合粒子を作製した。
(Comparative Example 10)
In the precursor preparation step, particles of a large particle size lithium transition metal composite oxide were prepared in the same manner as in Comparative Example 9 except that stirring in the reaction vessel was continued for 12 hours after the completion of dropping. Further, after completion of the dropping, particles of a small-sized lithium transition metal composite oxide were produced in the same manner as in Comparative Example 9, except that stirring in the reaction vessel was continued for 3 hours. The obtained large particle size lithium transition metal composite oxide and small particle size lithium transition metal composite oxide are mixed at a mass ratio of 7: 3, and the lithium transition metal composite oxide has two or more peaks in the particle size distribution. Material mixed particles were prepared.

(α−NaFeO型結晶構造の確認)
実施例1〜6及び比較例1〜10に係るリチウム遷移金属複合酸化物が、α−NaFeO型結晶構造を有することは、X線回折測定における構造モデルと回折パターンが一致したことにより確認した。
(Confirmation of α-NaFeO type 2 crystal structure)
It was confirmed that the lithium transition metal composite oxides according to Examples 1 to 6 and Comparative Examples 1 to 10 had an α-NaFeO 2 type crystal structure because the structural model and the diffraction pattern in the X-ray diffraction measurement coincided. .

(リチウム遷移金属複合酸化物粒子の粒度分布の測定)
実施例1〜6及び比較例1〜10に係るリチウム遷移金属複合酸化物粒子の粒度分布を、上述した条件及び手順に従って測定した。そして、得られたFre(%)、D10(μm)及びD90(μm)から、Fre/(D90−D10)を算出した。また、実施例1〜6については、前記粒度分布の測定で得られたDFre(μm)及びDAdj(μm)から、DAdj/DFreを算出した。
図1に、粒度分布において2つ以上のピークを有するとともに、最大ピークを示す粒径よりも大粒径側に少なくとも1つのピークを有するリチウム遷移金属複合酸化物粒子の典型例として、実施例3の粒度分布を示すが、他の実施例でも、同様の粒度分布が見られた。
図2に、粒度分布が単一のピークを有するリチウム遷移金属複合酸化物粒子の典型例として、比較例1の粒度分布のピークを示すが、他の比較例(比較例10を除く)でも、同様の粒度分布が見られた。
(Measurement of particle size distribution of lithium transition metal composite oxide particles)
The particle size distribution of the lithium transition metal composite oxide particles according to Examples 1 to 6 and Comparative Examples 1 to 10 was measured according to the conditions and procedures described above. Then, Fre / (D 90 -D 10 ) was calculated from the obtained Fre (%), D 10 (μm), and D 90 (μm). In Examples 1 to 6, D Adj / D Fre was calculated from D Fre (μm) and D Adj (μm) obtained by the measurement of the particle size distribution.
As a typical example of lithium transition metal composite oxide particles having two or more peaks in the particle size distribution and having at least one peak larger than the particle size showing the maximum peak in FIG. Similar particle size distribution was also observed in other examples.
FIG. 2 shows the peak of the particle size distribution of Comparative Example 1 as a typical example of the lithium transition metal composite oxide particles having a single peak in the particle size distribution. In other Comparative Examples (except for Comparative Example 10), Similar particle size distribution was seen.

(リチウム遷移金属複合酸化物粒子のタップ密度の測定)
実施例1〜6及び比較例1〜10に係るリチウム遷移金属複合酸化物粒子のタップ密度を、上述した条件及び手順に従って測定した。
(Measurement of tap density of lithium transition metal composite oxide particles)
The tap densities of the lithium transition metal composite oxide particles according to Examples 1 to 6 and Comparative Examples 1 to 10 were measured according to the conditions and procedures described above.

[リチウム二次電池の作製及び評価]
実施例1〜6及び比較例1〜10に係るリチウム遷移金属複合酸化物粒子をそれぞれ正極活物質として用いて、以下の手順でリチウム二次電池を作製し、電池特性を評価した。
[Production and evaluation of lithium secondary battery]
Using the lithium transition metal composite oxide particles according to Examples 1 to 6 and Comparative Examples 1 to 10 as positive electrode active materials, lithium secondary batteries were produced in the following procedure, and battery characteristics were evaluated.

N−メチルピロリドンを分散媒とし、活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比90:5:5の割合で混練分散されている塗布用ペーストを作製した。該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布し、正極板を作製した。なお、全ての実施例及び比較例に係るリチウム二次電池同士で試験条件が同一になるように、一定面積当たりに塗布されている活物質の質量及び塗布厚みを統一した。   Using N-methylpyrrolidone as a dispersion medium, an active material, acetylene black (AB), and polyvinylidene fluoride (PVdF) were kneaded and dispersed at a mass ratio of 90: 5: 5. The coating paste was applied to one side of an aluminum foil current collector having a thickness of 20 μm to produce a positive electrode plate. In addition, the mass and coating thickness of the active material applied per fixed area were standardized so that the test conditions were the same among the lithium secondary batteries according to all the examples and comparative examples.

水を分散媒とし、グラファイト、スチレン−ブタジエンゴム(SBR)及びカルボキシメチルセルロース(CMC)が質量比96.7:2.1:1.2の割合で混練分散されている塗布用ペーストを作製した。該塗布ペーストを厚さ10μmの銅箔集電体の片方の面に塗布し、負極板を作製した。該塗布ペーストの塗布量は、上記正極板と組み合わせたときに電池の容量が負極によって制限されないように調整した。   A coating paste in which graphite, styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were kneaded and dispersed at a mass ratio of 96.7: 2.1: 1.2 was prepared using water as a dispersion medium. The coating paste was applied to one side of a 10 μm thick copper foil current collector to prepare a negative electrode plate. The coating amount of the coating paste was adjusted so that the battery capacity was not limited by the negative electrode when combined with the positive plate.

電解液として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)が体積比6:7:7である混合溶媒に濃度が1mol/lとなるようにLiPFを溶解させた溶液を用いた。セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用い、正極端子及び負極端子の開放端部が外部露出するように電極を収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記電解液を注液後、注液孔を封止した。 As an electrolytic solution, LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) had a volume ratio of 6: 7: 7 so that the concentration was 1 mol / l. The solution was used. As the separator, a polypropylene microporous film whose surface was modified with polyacrylate was used. A metal resin composite film made of polyethylene terephthalate (15 μm) / aluminum foil (50 μm) / metal-adhesive polypropylene film (50 μm) is used for the exterior body, and the electrodes are exposed so that the open ends of the positive electrode terminal and the negative electrode terminal are exposed to the outside. The metal resin composite film was hermetically sealed with the fusion allowance where the inner surfaces of the metal resin composite films faced each other except for the portion serving as the injection hole, and the injection hole was sealed after the electrolyte solution was injected.

以上の手順にて作製されたリチウム二次電池は、25℃の下、初期充放電工程に供した。充電は、電流0.1CmA、電圧4.45Vの定電流定電圧充電とし、充電終止条件は電流値が1/5に減衰した時点とした。放電は、電流0.1CmA、終止電圧2.0Vの定電流放電とした。ここで、充電後及び放電後にそれぞれ10分の休止過程を設けた。
また、前記初期充放電工程の1サイクル目における充電電気量に対する放電電気量の割合の百分率を「初期効率(%)」として記録した。
The lithium secondary battery produced by the above procedure was subjected to an initial charge / discharge process at 25 ° C. Charging was performed at a constant current and constant voltage with a current of 0.1 CmA and a voltage of 4.45 V, and the charge termination condition was when the current value was attenuated to 1/5. The discharge was a constant current discharge with a current of 0.1 CmA and a final voltage of 2.0 V. Here, a pause process of 10 minutes was provided after charging and discharging, respectively.
Further, the percentage of the amount of discharged electricity with respect to the amount of charged electricity in the first cycle of the initial charge / discharge process was recorded as “initial efficiency (%)”.

それぞれの実施例及び比較例について、上記放電容量(mAh/g)の値にそれぞれのタップ密度(g/cm)の値を乗ずることによって、体積当たりの放電容量である「0.1C容量(mAh/cm)」を算出した。 For each of the examples and comparative examples, the value of the discharge capacity (mAh / g) is multiplied by the value of the tap density (g / cm 3 ) to obtain a discharge capacity per volume of “0.1 C capacity ( mAh / cm 3 ) ”was calculated.

実施例1〜6及び比較例1〜8に係るリチウム遷移金属複合酸化物のNi/Co/Mnのモル比、添加材の使用条件(添加材の有無、種類、添加量)、焼成温度、粒度分布のピーク数、DAdj/DFreの値、Fre/(D90−D10)の値及びタップ密度、並びに上記のリチウム遷移金属複合酸化物をそれぞれ正極活物質として用いたリチウム二次電池の試験結果をそれぞれ表1〜表3に示す。 Ni / Co / Mn molar ratio of lithium transition metal composite oxides according to Examples 1 to 6 and Comparative Examples 1 to 8, usage conditions of additives (presence / absence of additive, type, added amount), firing temperature, particle size The number of distribution peaks, the value of D Adj / D Fre , the value of Fre / (D 90 -D 10 ) and the tap density, and the lithium secondary battery using the above lithium transition metal composite oxide as a positive electrode active material, respectively The test results are shown in Tables 1 to 3, respectively.

Figure 2018041657
Figure 2018041657

Figure 2018041657
Figure 2018041657

Figure 2018041657
Figure 2018041657

表1〜表3より、以下のことがわかる。
遷移金属(Me)としてNi、Co及びMnを含み、Meに対するNiのモル比Ni/MeがNi/Me≧0.4であり、粒度分布において2つ以上のピークを有するとともに、最大ピークを示す粒径よりも大粒径側に少なくとも1つのピークを有するリチウム遷移金属複合酸化物粒子を正極活物質として使用した実施例1〜4のリチウム二次電池、実施例5のリチウム二次電池、実施例6のリチウム二次電池は、粒度分布が単一のピークのみを有するリチウム遷移金属複合酸化物粒子を正極活物質として使用した比較例1〜3のリチウム二次電池、比較例4、5のリチウム二次電池、比較例6〜8のリチウム二次電池と比較して、それぞれ、初期効率が向上するとともに、体積当たりの容量が向上していることがわかる。
From Tables 1 to 3, the following can be understood.
Ni, Co, and Mn are included as transition metals (Me), the molar ratio of Ni to Me, Ni / Me, is Ni / Me ≧ 0.4, has two or more peaks in the particle size distribution, and shows the maximum peak Lithium secondary battery of Examples 1 to 4, lithium secondary battery of Example 5 using lithium transition metal composite oxide particles having at least one peak on the larger particle size side than the particle size as the positive electrode active material, implementation The lithium secondary battery of Example 6 is a lithium secondary battery of Comparative Examples 1 to 3 using Comparative Examples 1 to 4 using lithium transition metal composite oxide particles having a single particle size distribution as a positive electrode active material. It can be seen that the initial efficiency is improved and the capacity per volume is improved as compared with the lithium secondary battery and the lithium secondary batteries of Comparative Examples 6 to 8.

また、前駆体粒子にリチウム化合物と共にフッ素源を添加した場合について見ると、表1の比較例2〜3、表2の比較例5、及び表3の比較例7のように、焼成温度が1000℃であってもフッ素の割合が1mol%の場合、並びに表3の比較例8のように、フッ素の割合が2.5mol%であっても焼成温度が950℃の場合には、リチウム遷移金属複合酸化物粒子は、粒度分布において単一のピークのみを有し、初期効率が低下するとともに、体積当たりの容量も低下する。
したがって、前駆体粒子にリチウム化合物と共にフッ素源を添加して、粒度分布において2つ以上のピークを有するとともに、最大ピークを示す粒径よりも大粒径側に少なくとも1つのピークを有するリチウム遷移金属複合酸化物粒子を、粒度分布が異なる複数の粒子を混合することなく、一度の焼成で製造する場合には、前記前駆体粒子に対して2.5mol%以上のフッ素を含むフッ素源を混合すると共に、950℃を超える焼成温度を採用することが必要である。
Moreover, when it sees about the case where a fluorine source is added to a precursor particle | grain with a lithium compound, like Comparative Examples 2-3 of Table 1, Comparative Example 5 of Table 2, and Comparative Example 7 of Table 3, a calcination temperature is 1000. Even when the ratio of fluorine is 1 mol% even when the temperature is ℃, as in Comparative Example 8 of Table 3, when the firing temperature is 950 ° C. even when the ratio of fluorine is 2.5 mol%, the lithium transition metal The composite oxide particles have only a single peak in the particle size distribution, and the initial efficiency is reduced and the capacity per volume is also reduced.
Therefore, a lithium transition metal having two or more peaks in the particle size distribution by adding a fluorine source together with a lithium compound to the precursor particles and at least one peak on the larger particle size side than the particle size exhibiting the maximum peak When the composite oxide particles are produced by single firing without mixing a plurality of particles having different particle size distributions, a fluorine source containing 2.5 mol% or more of fluorine is mixed with the precursor particles. At the same time, it is necessary to employ a firing temperature exceeding 950 ° C.

比較例9、10に係るリチウム遷移金属複合酸化物のNi/Co/Mnのモル比、焼成温度、粒度分布のピーク数、Fre/(D90−D10)の値及びタップ密度、並びに上記各リチウム遷移金属複合酸化物を正極活物質として用いたリチウム二次電池の試験結果を、それぞれ表4に示す。 Ni / Co / Mn molar ratio of lithium transition metal composite oxides according to Comparative Examples 9 and 10, firing temperature, number of particle size distribution peaks, Fre / (D 90 -D 10 ) value and tap density, and each of the above Table 4 shows the test results of the lithium secondary battery using the lithium transition metal composite oxide as the positive electrode active material.

Figure 2018041657
Figure 2018041657

表4より、大粒径リチウム遷移金属複合酸化物と小粒径リチウム遷移金属複合酸化物とを混合して得られた、粒度分布において2つ以上のピークを有するものの、最大ピークを示す粒径よりも大粒径側にはピークを有さないリチウム遷移金属複合酸化物粒子を、正極活物質として使用しても、リチウム二次電池の初期効率は向上しないことがわかる。
なお、比較例9、10は、焼成温度が800℃であるから、初期効率の数値自体は高いものとなっている。これに対して、体積当たりの容量は極めて低い。比較例1に示されるように、焼成温度を1000℃にすれば、体積当たりの容量は高くなるが、初期効率は低くなる。この場合、大粒径リチウム遷移金属複合酸化物と小粒径リチウム遷移金属複合酸化物の混合粒子にしても、同様に、初期効率は向上しない。
From Table 4, the particle size showing the maximum peak, although having two or more peaks in the particle size distribution, obtained by mixing the large particle size lithium transition metal composite oxide and the small particle size lithium transition metal composite oxide It can be seen that even when lithium transition metal composite oxide particles having no peak on the larger particle size side are used as the positive electrode active material, the initial efficiency of the lithium secondary battery is not improved.
In Comparative Examples 9 and 10, since the firing temperature is 800 ° C., the numerical value of the initial efficiency itself is high. On the other hand, the capacity per volume is very low. As shown in Comparative Example 1, when the firing temperature is 1000 ° C., the capacity per volume increases, but the initial efficiency decreases. In this case, even if mixed particles of a large particle size lithium transition metal composite oxide and a small particle size lithium transition metal composite oxide are used, the initial efficiency is not improved.

以上のとおり、本実施形態においては、粒度分布において2つ以上のピークを有するとともに、最大ピークを示す粒径よりも大粒径側に少なくとも1つのピークを有するリチウム遷移金属複合酸化物粒子を、リチウム二次電池用正極活物質として用いることにより、初期効率が高いリチウム二次電池が得られる。   As described above, in the present embodiment, lithium transition metal composite oxide particles having two or more peaks in the particle size distribution and having at least one peak on the larger particle size side than the particle size showing the maximum peak, By using it as a positive electrode active material for a lithium secondary battery, a lithium secondary battery with high initial efficiency can be obtained.

本発明の一側面に係るリチウム遷移金属複合酸化物を含有する正極活物質を用いることにより、単位体積当たりの放電容量が大きく、初期効率の高いリチウム二次電池を提供することができるので、このリチウム二次電池は、ハイブリッド自動車用、電気自動車用のリチウム二次電池として有用である。   By using the positive electrode active material containing the lithium transition metal composite oxide according to one aspect of the present invention, a lithium secondary battery having a large discharge capacity per unit volume and high initial efficiency can be provided. The lithium secondary battery is useful as a lithium secondary battery for hybrid vehicles and electric vehicles.

1 リチウム二次電池
2 電極群
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
20 蓄電ユニット
30 蓄電装置
DESCRIPTION OF SYMBOLS 1 Lithium secondary battery 2 Electrode group 3 Battery container 4 Positive electrode terminal 4 'Positive electrode lead 5 Negative electrode terminal 5' Negative electrode lead 20 Power storage unit 30 Power storage device

Claims (7)

リチウム遷移金属複合酸化物粒子を含有するリチウム二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物粒子は、α−NaFeO型構造を有し、遷移金属(Me)としてNi、Co及びMnを含み、Meに対するNiのモル比Ni/MeがNi/Me≧0.4であり、粒度分布において2つ以上のピークを有するとともに、最大ピークを示す粒径よりも大粒径側に少なくとも1つのピークを有する、リチウム二次電池用正極活物質。 A positive electrode active material for a lithium secondary battery containing lithium transition metal composite oxide particles, wherein the lithium transition metal composite oxide particles have an α-NaFeO 2 type structure, Ni as a transition metal (Me), Ni / Me molar ratio Ni / Me ≧ 0.4, including Co and Mn, Ni / Me ≧ 0.4, having two or more peaks in the particle size distribution, and larger than the particle size showing the maximum peak A positive electrode active material for a lithium secondary battery having at least one peak. 粒度分布において最大ピークを示す粒度をDFre(μm)、該ピークに隣接するピークを示す粒度をDAdj(μm)(ただし、DAdj>DFre)としたときに、DAdj/DFreが1.8〜3.2である、請求項1に記載のリチウム二次電池用正極活物質。 When the particle size distribution showing the maximum peak is D Fre (μm) and the particle size showing the peak adjacent to the peak is D Adj (μm) (where D Adj > D Fre ), D Adj / D Fre is The positive electrode active material for a lithium secondary battery according to claim 1, wherein the positive electrode active material is 1.8 to 3.2. 前記リチウム遷移金属複合酸化物粒子は、前記粒度分布における最大ピークの頻度をFre(%)、累積粒度分布における累積体積が10%及び90%となる粒度をそれぞれD10(μm)及びD90(μm)としたときに、Fre/(D90−D10)が0.42以下である、請求項1又は2に記載のリチウム二次電池用正極活物質。 The lithium transition metal composite oxide particles have Fre (%) as the frequency of the maximum peak in the particle size distribution, and D 10 (μm) and D 90 (D 90 (particle sizes) where the cumulative volume in the cumulative particle size distribution is 10% and 90%, respectively. when the μm), Fre / (D 90 -D 10) is 0.42 or less, the positive electrode active material for a lithium secondary battery according to claim 1 or 2. 前記リチウム遷移金属複合酸化物粒子が、フッ素を含有している、請求項1〜3のいずれかに記載のリチウム二次電池用正極活物質。   The positive electrode active material for lithium secondary batteries according to any one of claims 1 to 3, wherein the lithium transition metal composite oxide particles contain fluorine. Ni、Co及びMnを含む遷移金属化合物の前駆体粒子に、リチウム化合物と、前記前駆体粒子に対して2.5mol%以上のフッ素を含むフッ素源とを混合し、950℃を超える温度で焼成して、前記リチウム遷移金属複合酸化物粒子を製造する、請求項1〜4のいずれかに記載のリチウム二次電池用正極活物質の製造方法。   Transition metal compound precursor particles containing Ni, Co and Mn are mixed with a lithium compound and a fluorine source containing 2.5 mol% or more of fluorine with respect to the precursor particles, and fired at a temperature exceeding 950 ° C. And the manufacturing method of the positive electrode active material for lithium secondary batteries in any one of Claims 1-4 which manufactures the said lithium transition metal complex oxide particle. 請求項1〜4のいずれかに記載のリチウム二次電池用正極活物質を含有する、リチウム二次電池用正極。   The positive electrode for lithium secondary batteries containing the positive electrode active material for lithium secondary batteries in any one of Claims 1-4. 正極、負極及び非水電解質を備えたリチウム二次電池であって、前記正極が、請求項6に記載の正極を備えた、リチウム二次電池。   A lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the positive electrode comprises the positive electrode according to claim 6.
JP2016175810A 2016-09-08 2016-09-08 Positive electrode active material for lithium secondary battery, its manufacturing method, electrode for lithium secondary battery, and lithium secondary battery Active JP6844156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016175810A JP6844156B2 (en) 2016-09-08 2016-09-08 Positive electrode active material for lithium secondary battery, its manufacturing method, electrode for lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175810A JP6844156B2 (en) 2016-09-08 2016-09-08 Positive electrode active material for lithium secondary battery, its manufacturing method, electrode for lithium secondary battery, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2018041657A true JP2018041657A (en) 2018-03-15
JP6844156B2 JP6844156B2 (en) 2021-03-17

Family

ID=61626262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175810A Active JP6844156B2 (en) 2016-09-08 2016-09-08 Positive electrode active material for lithium secondary battery, its manufacturing method, electrode for lithium secondary battery, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6844156B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175701A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
WO2021039120A1 (en) * 2019-08-26 2021-03-04 株式会社Gsユアサ Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device
WO2021085112A1 (en) * 2019-10-29 2021-05-06 パナソニックIpマネジメント株式会社 Positive electrode active material for secondary battery, and secondary battery
EP4036063A4 (en) * 2019-09-27 2022-11-23 Panasonic Intellectual Property Management Co., Ltd. Method for producing lithium-nickel complex oxide

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082466A (en) * 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd Positive electrode active material and nonaqueous electrolyte secondary battery
JP2004158352A (en) * 2002-11-07 2004-06-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008013405A (en) * 2006-07-06 2008-01-24 Tosoh Corp Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
JP2009238587A (en) * 2008-03-27 2009-10-15 Sumitomo Chemical Co Ltd Positive electrode active material powder
JP2012089470A (en) * 2010-09-24 2012-05-10 Toshiba Corp Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP2014063669A (en) * 2012-09-21 2014-04-10 Nichia Chem Ind Ltd Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP2014203509A (en) * 2013-04-01 2014-10-27 戸田工業株式会社 Positive electrode active material particle powder, and manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2015518457A (en) * 2012-02-15 2015-07-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Particle, production method thereof and use thereof
JP2015130343A (en) * 2013-12-30 2015-07-16 三星精密化学株式会社Samsung Fine Chemicals Co., Ltd. Positive electrode active material for lithium secondary battery, production method therefor, and lithium secondary battery containing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082466A (en) * 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd Positive electrode active material and nonaqueous electrolyte secondary battery
JP2004158352A (en) * 2002-11-07 2004-06-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008013405A (en) * 2006-07-06 2008-01-24 Tosoh Corp Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
JP2009238587A (en) * 2008-03-27 2009-10-15 Sumitomo Chemical Co Ltd Positive electrode active material powder
JP2012089470A (en) * 2010-09-24 2012-05-10 Toshiba Corp Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP2015518457A (en) * 2012-02-15 2015-07-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Particle, production method thereof and use thereof
JP2014063669A (en) * 2012-09-21 2014-04-10 Nichia Chem Ind Ltd Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP2014203509A (en) * 2013-04-01 2014-10-27 戸田工業株式会社 Positive electrode active material particle powder, and manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2015130343A (en) * 2013-12-30 2015-07-16 三星精密化学株式会社Samsung Fine Chemicals Co., Ltd. Positive electrode active material for lithium secondary battery, production method therefor, and lithium secondary battery containing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175701A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
JP7143611B2 (en) 2018-03-28 2022-09-29 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery
WO2021039120A1 (en) * 2019-08-26 2021-03-04 株式会社Gsユアサ Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device
EP4036063A4 (en) * 2019-09-27 2022-11-23 Panasonic Intellectual Property Management Co., Ltd. Method for producing lithium-nickel complex oxide
WO2021085112A1 (en) * 2019-10-29 2021-05-06 パナソニックIpマネジメント株式会社 Positive electrode active material for secondary battery, and secondary battery
CN114600282A (en) * 2019-10-29 2022-06-07 松下知识产权经营株式会社 Positive electrode active material for secondary battery and secondary battery

Also Published As

Publication number Publication date
JP6844156B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP6369471B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6094797B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery
JP6428996B2 (en) Mixed active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6044809B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP6175763B2 (en) Positive electrode active material for lithium secondary battery, method for producing the positive electrode active material, electrode for lithium secondary battery, and lithium secondary battery
JP7373132B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, method for manufacturing non-aqueous electrolyte secondary batteries, and method for using non-aqueous electrolyte secondary batteries
JP6069632B2 (en) Positive electrode paste, positive electrode for non-aqueous electrolyte battery using the same, and method for producing non-aqueous electrolyte battery
JP2013065472A (en) Active material for nonaqueous electrolyte secondary battery, method for manufacturing active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6844156B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method, electrode for lithium secondary battery, and lithium secondary battery
JP2018107118A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP6131760B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery
JP6036168B2 (en) Nonaqueous electrolyte secondary battery
JP6611074B2 (en) Mixed active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2018152256A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP2015115244A (en) Positive electrode for lithium secondary battery, lithium secondary battery, battery module, and automobile mounting battery module
JP7031108B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, production of positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Method
JP2018073752A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6354964B2 (en) Nonaqueous electrolyte secondary battery
JP6195010B2 (en) Positive electrode paste, positive electrode for non-aqueous electrolyte battery using the same, and method for producing non-aqueous electrolyte battery
JP2018073751A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6387054B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2016207278A (en) Positive electrode active material foe lithium secondary battery, production method therefor, electrode for lithium secondary battery and lithium secondary battery
JP6420299B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2016143447A (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery
JP2019149371A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method of precursor used for manufacturing of positive electrode active material, manufacturing method of positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6844156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150