JP7031108B2 - Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, production of positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Method - Google Patents

Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, production of positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Method Download PDF

Info

Publication number
JP7031108B2
JP7031108B2 JP2018117727A JP2018117727A JP7031108B2 JP 7031108 B2 JP7031108 B2 JP 7031108B2 JP 2018117727 A JP2018117727 A JP 2018117727A JP 2018117727 A JP2018117727 A JP 2018117727A JP 7031108 B2 JP7031108 B2 JP 7031108B2
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
secondary battery
electrolyte secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018117727A
Other languages
Japanese (ja)
Other versions
JP2019220376A (en
Inventor
弘将 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2018117727A priority Critical patent/JP7031108B2/en
Priority to PCT/JP2019/024375 priority patent/WO2019244955A1/en
Priority to EP19821775.4A priority patent/EP3813163A4/en
Priority to US17/252,765 priority patent/US20210257665A1/en
Priority to CN201980041784.3A priority patent/CN112771695B/en
Publication of JP2019220376A publication Critical patent/JP2019220376A/en
Application granted granted Critical
Publication of JP7031108B2 publication Critical patent/JP7031108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用正極、非水電解質二次電池、及びその電池の製造方法に関する。 The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a method for producing the battery thereof.

リチウム二次電池に代表される非水電解質二次電池は、近年ますます用途が拡大され、より高容量の正極材料の開発が求められている。
従来、非水電解質二次電池用正極活物質として、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物が検討され、LiCoOを用いた非水電解質二次電池が広く実用化されている。LiCoOの放電容量は120~130mAh/g程度である。前記リチウム遷移金属複合酸化物を構成する遷移金属(Me)として、地球資源として豊富なMnを用い、前記リチウム遷移金属複合酸化物を構成する遷移金属に対するLiのモル比Li/Meがほぼ1であり、遷移金属中のMnのモル比Mn/Meが0.5以下であるいわゆる「LiMeO型」活物質を用いた非水電解質二次電池も実用化されている。例えば、LiNi1/2Mn1/2やLiNi1/3Co1/3Mn1/3を含有する正極活物質の放電容量は150~180mAh/gである。
一般に、これらのいわゆる「LiMeO型」活物質を用いた非水電解質電池に対して採用される充電電圧は、約4.3Vであり、このときの正極の最大到達電位は約4.4V(vs.Li/Li)である。これは、これ以上充電電圧を高くしても、より多くの放電容量が取りだせないためである。
Non-aqueous electrolyte secondary batteries represented by lithium secondary batteries have been increasingly used in recent years, and the development of higher-capacity positive electrode materials is required.
Conventionally, as a positive electrode active material for a non-aqueous electrolyte secondary battery, a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure has been studied, and a non-aqueous electrolyte secondary battery using LiCoO 2 has been widely put into practical use. There is. The discharge capacity of LiCoO 2 is about 120 to 130 mAh / g. Mn, which is abundant as an earth resource, is used as the transition metal (Me) constituting the lithium transition metal composite oxide, and the molar ratio of Li to the transition metal constituting the lithium transition metal composite oxide is approximately 1. There is also a non-aqueous electrolyte secondary battery using a so-called "LiMeO type 2 " active material in which the molar ratio Mn / Me of Mn in the transition metal is 0.5 or less. For example, the discharge capacity of the positive electrode active material containing LiNi 1/2 Mn 1/2 O 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 is 150 to 180 mAh / g.
Generally, the charging voltage adopted for a non-aqueous electrolyte battery using these so-called "LiMeO type 2 " active materials is about 4.3V, and the maximum ultimate potential of the positive electrode at this time is about 4.4V (. vs. Li / Li + ). This is because even if the charging voltage is raised further, more discharge capacity cannot be taken out.

一方、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の中でも、遷移金属(Me)中のMnのモル比が大きく、遷移金属(Me)に対するLiのモル比Li/Meが1を超えるいわゆる「リチウム過剰型」活物質が知られている。この活物質は、電池を組立てて、最初に行う充電過程において、4.5~5.0V(vs.Li/Li)の電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察されるという特徴があり、上記平坦な領域に至る初期充電を行うことにより、以降の充電電位をそれほど貴としなくても、「LiMeO型」活物質と同等以上の高い放電容量を有することから、注目されている(特許文献1参照)。 On the other hand, among the lithium transition metal composite oxides having an α-NaFeO type 2 crystal structure, the molar ratio of Mn in the transition metal (Me) is large, and the molar ratio of Li to the transition metal (Me), Li / Me, is 1. So-called "lithium-rich" active materials that exceed are known. In this active material, in the initial charging process after assembling the battery, the potential change is relatively flat with respect to the amount of charged electricity within the potential range of 4.5 to 5.0 V (vs. Li / Li + ). By performing the initial charge to reach the flat region, even if the subsequent charging potential is not so precious, the discharge capacity is as high as or higher than that of the "LiMeO type 2 " active material. (See Patent Document 1).

特許文献1には、「α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の固溶体を含むリチウム二次電池用活物質であって、前記固溶体が含有するLi,Co,Ni及びMnの組成比が、Li1+(1/3)xCo1-x-yNi(1/2)yMn(2/3)x+(1/2)y(x+y≦1、0≦y、1-x-y=z)を満たし、・・・で表され、かつ、X線回折測定による(003)面と(104)面の回折ピークの強度比が、充放電前においてI(003)/I(104)≧1.56であり、放電末においてI(003)/I(104)>1であり、4.3V(vs.Li/Li)を超え4.8V以下(vs.Li/Li)の正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域に少なくとも至る初期充電を行う工程を経た場合に、4.3V(vs.Li/Li)以下の電位領域において放電可能な電気量が177mAh/g以上となることを特徴とするリチウム二次電池用活物質。」(請求項3)が記載されている。 Patent Document 1 describes "an active material for a lithium secondary battery containing a solid solution of a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure, and Li, Co, Ni and Mn contained in the solid solution. The composition ratio is Li 1+ (1/3) x Co 1-x-y Ni (1/2) y Mn (2/3) x + (1/2) y (x + y ≦ 1, 0 ≦ y, 1-x). -Y = z) is satisfied, and the intensity ratio of the diffraction peaks of the (003) plane and the (104) plane by the X-ray diffraction measurement is I (003) / I ( before charging / discharging). 104) ≧ 1.56, I (003) / I (104) > 1 at the end of discharge, exceeding 4.3V (vs.Li / Li + ) and 4.8V or less (vs.Li / Li + ). ), A potential region of 4.3 V (vs. Li / Li + ) or less when the initial charge is performed so that the potential change appearing with respect to the amount of charging electricity reaches at least a relatively flat region in the positive potential range of). The active material for a lithium secondary battery, characterized in that the amount of electricity that can be discharged is 177 mAh / g or more. ”(Claim 3).

そして、段落[0062]には、「本発明に係るリチウム二次電池用活物質を用い、使用時において、充電時の正極の最大到達電位が4.3V(vs.Li/Li)以下となるような充電方法を採用しても、充分な放電容量を取り出すことのできるリチウム二次電池を製造するためには、次に述べる、本発明に係るリチウム二次電池用活物質に特徴的な挙動を考慮した充電工程を該リチウム二次電池の製造工程中に設けることが重要である。即ち、本発明に係るリチウム二次電池用活物質を正極に用いて定電流充電を続けると、正極電位4.3V~4.8Vの範囲に、電位変化が比較的平坦な領域が比較的長い期間に亘って観察される。・・・ここで採用した充電条件は、電流0.1ItA、電圧(正極電位)4.5V(vs.Li/Li)の定電流定電圧充電であるが、充電電圧をさらに高く設定しても、この比較的長い期間に亘る電位平坦領域は、xの値が1/3以下の材料を用いた場合にはほとんど観察されない。逆に、xの値が2/3を超える材料では、電位変化が比較的平坦な領域が観察される場合であっても短いものとなる。また、従来のLi[Co1-2xNiMn]O(0≦x≦1/2)系材料でもこの挙動は観察されない。この挙動は、本発明に係るリチウム二次電池用活物質に特徴的なものである。」と記載されている。 Then, in paragraph [0062], "using the active material for a lithium secondary battery according to the present invention, the maximum ultimate potential of the positive electrode at the time of charging is 4.3 V (vs. Li / Li + ) or less at the time of use. In order to manufacture a lithium secondary battery capable of taking out a sufficient discharge capacity even if such a charging method is adopted, the active material for a lithium secondary battery according to the present invention described below is characteristic. It is important to provide a charging process in consideration of the behavior during the manufacturing process of the lithium secondary battery. That is, when the active material for the lithium secondary battery according to the present invention is used for the positive electrode and constant current charging is continued, the positive electrode is used. In the range of potential 4.3V to 4.8V, a region where the potential change is relatively flat is observed over a relatively long period of time .... The charging conditions adopted here are current 0.1ItA, voltage ( Positive potential) 4.5V (vs. Li / Li + ) constant current constant voltage charging, but even if the charging voltage is set higher, the value of x is the value of x in the potential flat region over this relatively long period. It is rarely observed when a material of 1/3 or less is used. On the contrary, in a material having an x value of more than 2/3, even if a region where the potential change is relatively flat is observed, it is short. Further, this behavior is not observed even with the conventional Li [Co 1-2 x Ni x Mn x ] O 2 (0 ≦ x ≦ 1/2) -based material. This behavior is the lithium secondary battery according to the present invention. It is characteristic of active materials. "

一方、「リチウム過剰型」活物質の酸素サイトをFで置換することにより、4.5V(vs.Li/Li+)を超える初期充電過程を行う場合の初回クーロン効率、レート特性、サイクル寿命特性等の向上を図ることが行われている(特許文献2~5参照)。 On the other hand, the initial Coulomb efficiency, rate characteristics, and cycle life characteristics when the initial charging process exceeding 4.5 V (vs. Li / Li + ) is performed by substituting the oxygen sites of the "lithium excess type" active material with F. (See Patent Documents 2 to 5).

特許文献2には、「 一般式 Li(LiMnNiCoFe)O2-xで表される非水電解質二次電池用正極活物質であって、前記一般式中のa、b、c、d、e及びxは、0<a≦0.33、0<b≦0.67、0≦c<1、0≦d<1、0≦e<1、0.1<x≦1-bの値であり、下式(1)を満たす非水電解質二次電池用正極活物質。

Figure 0007031108000001

(請求項1)が記載されている。
そして、Mn及びNiを含む活物質の実施例として、「Li1.2Ni0.2Mn0.61.90.1」、「Li1.2Ni0.2Mn0.61.80.2」、「Li1.2Ni0.2Mn0.61.70.3」、「Li1.2Ni0.2Mn0.61.60.4」、「Li1.2Ni0.4Mn0.41.80.2」、比較例として、「Li1.2Ni0.2Mn0.6」、「Li1.2Ni0.2Mn0.61.950.05」、「Li1.2Ni0.25Mn0.551.90.1」が記載され、4.6Vまでの充電による初回充電容量と、充電状態から2.0Vまでの放電による初回放電容量から、初回クーロン効率を求めたことが記載されている(段落[0072]~[0078])。 In Patent Document 2, "a positive electrode active material for a non-aqueous electrolyte secondary battery represented by the general formula Li (Li a Mn b Ni c Code Fe e ) O 2-x F x , which is described in the above general formula. In a, b, c, d, e and x, 0 <a ≦ 0.33, 0 <b ≦ 0.67, 0 ≦ c <1, 0 ≦ d <1, 0 ≦ e <1, 0. A positive electrode active material for a non-aqueous electrolyte secondary battery having a value of 1 <x ≦ 1-b and satisfying the following formula (1).
Figure 0007031108000001
"
(Claim 1) is described.
Then, as an example of the active material containing Mn and Ni, "Li 1.2 Ni 0.2 Mn 0.6 O 1.9 F 0.1 " and "Li 1.2 Ni 0.2 Mn 0.6 " O 1.8 F 0.2 ”,“ Li 1.2 Ni 0.2 Mn 0.6 O 1.7 F 0.3 ”,“ Li 1.2 Ni 0.2 Mn 0.6 O 1.6 ” "F 0.4 ", "Li 1.2 Ni 0.4 Mn 0.4 O 1.8 F 0.2 ", as a comparative example, "Li 1.2 Ni 0.2 Mn 0.6 O 2 ", "Li 1.2 Ni 0.2 Mn 0.6 O 1.95 F 0.05 " and "Li 1.2 Ni 0.25 Mn 0.55 O 1.9 F 0.1 " are described and 4 It is described that the initial Coulomb efficiency was obtained from the initial charge capacity by charging up to .6 V and the initial discharge capacity by discharging from the charged state to 2.0 V (paragraphs [0072] to [0078]).

特許文献3には、「層状構造のLiMnOを含むリチウム過量のリチウム金属複合化合物からなり、フルオロ化合物がドーピングされ、FWHM(半値幅)値が0.164°~0.185°の範囲内にある正極活物質。」(請求項1)が記載されている。
そして、実施例として、Ni:Co:Mnのモル比が2:2:6の遷移金属水酸化物前駆体0.82モルと、LiCOとLiFを合わせて1.18モル(LiFは0.02~0.06モル)の混合物を焼成して、正極活物質を得たこと、電池特性の評価は、2.5V~4.6Vの充放電を行って、ハイレート特性、寿命特性を評価したことが記載されている(段落[0054]~[0064]、[0073])。
Patent Document 3 states that "it is composed of a lithium metal composite compound containing an excess of lithium including Li 2 MnO 3 having a layered structure, the fluoro compound is doped, and the FWHM (full width at half maximum) value is in the range of 0.164 ° to 0.185 °. The positive electrode active material inside. ”(Claim 1) is described.
Then, as an example, 0.82 mol of the transition metal hydroxide precursor having a Ni: Co: Mn molar ratio of 2: 2: 6 and 1.18 mol of Li 2 CO 3 and Li F in total (LiF is A mixture of 0.02 to 0.06 mol) was fired to obtain a positive electrode active material, and the battery characteristics were evaluated by charging and discharging 2.5V to 4.6V to obtain high rate characteristics and life characteristics. It is stated that the evaluation was made (paragraphs [0054] to [0064], [0073]).

特許文献4には、「Li元素と、Ni、Co、およびMnから選ばれる少なくとも一種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物とフッ素ガスとを接触させることを特徴とするリチウムイオン二次電池用正極活物質の製造方法。」(請求項1)が記載されている。
そして、実施例として、組成「Li(Li0.2Ni0.137Co0.125Mn0.538)O」のリチウム含有複合酸化物をフッ素処理して正極活物質を得たこと(段落[0082]~[0092])、電池評価は、4.8V~2.5Vの充放電により初期容量を評価し、及び4.5~2.5Vの充放電サイクルによりサイクル特性を評価したことが記載されている(段落[0101],[0102])。
Patent Document 4 includes "a Li element and at least one transition metal element selected from Ni, Co, and Mn (however, the molar amount of the Li element is 1 with respect to the total molar amount of the transition metal element." A method for producing a positive electrode active material for a lithium ion secondary battery, which comprises contacting a lithium-containing composite oxide with a fluorine gas. ”(Claim 1) is described.
Then, as an example, a lithium-containing composite oxide having the composition “Li (Li 0.2 Ni 0.137 Co 0.125 Mn 0.538 ) O 2 ” was treated with fluorine to obtain a positive electrode active material (paragraph). [0082]-[0092]), in the battery evaluation, the initial capacity was evaluated by charging / discharging of 4.8V to 2.5V, and the cycle characteristics were evaluated by the charging / discharging cycle of 4.5 to 2.5V. It is described (paragraphs [0101], [0102]).

特許文献5には、「組成式Li1+xNiαMnβCoγδ2-zによって近似的に表される結晶材料を含む電気活性組成物であって、ここで、xが約0.02~約0.19であり、αが約0.1~約0.4であり、βが約0.35~約0.869であり、γが約0.01~約0.2であり、δが0.0~約0.1であり、zが約0.01~約0.2であり、Aが、Mg、Zn、Al、Ga、B、Zr、Ti、Ca、Ce、Y、Nb、またはそれらの組合せである、電気活性組成物。」(請求項1)が記載されている。
そして、実施例1として、Ni,Co,およびMnを含む金属炭酸塩粉末と、適量のLiCOおよびLiF粉末とを混合し、2ステップで焼成して、組成Li1.2Ni0.175Co0.10Mn0.5252-F(F=0.05、0.01、0.02、0.05、0.1、または0.2)のリチウム複合酸化物を得たこと(段落[0064]~[0069])、実施例2として、LiFを用いずに酸化物を生成し、この酸化物をNHHFと混合し、加熱して、Li1.2Ni0.175Co0.10Mn0.5252-F、Li1.167Ni0.219Co0.125Mn0.4902-F、Li1.130Ni0.266Co0.152Mn0.4512-F、またはLi1.090Ni0.318Co0.182Mn0.4092-Fのリチウム複合酸化物を得たこと(段落[0070]、[0071])、これらのリチウム複合酸化物を正極活物質としてコインセルを製造し、2.0~4.6Vの間で充放電サイクルを行って、比放電容量のデータを得たことが記載されている(段落[0072]~[0078])。
Patent Document 5 describes an electrically active composition comprising a crystalline material approximately represented by the composition formula Li 1 + x Ni α Mn β Co γ A δ O 2-z F z , where x is about. It is 0.02 to about 0.19, α is about 0.1 to about 0.4, β is about 0.35 to about 0.869, and γ is about 0.01 to about 0.2. Δ is 0.0 to about 0.1, z is about 0.01 to about 0.2, and A is Mg, Zn, Al, Ga, B, Zr, Ti, Ca, Ce. , Y, Nb, or a combination thereof, an electroactive composition. ”(Claim 1).
Then, as Example 1, a metal carbonate powder containing Ni, Co, and Mn and an appropriate amount of Li 2 CO 3 and Li F powder are mixed and fired in two steps to form Li 1.2 Ni 0. 175 Co 0.10 Mn 0.525 O 2-F FF (F = 0.05, 0.01, 0.02, 0.05, 0.1, or 0.2) lithium composite oxide obtained (Paragraphs [0064] to [0069]), as Example 2, an oxide was produced without using LiF, and this oxide was mixed with NH 4 HF 2 and heated to Li 1.2 Ni. 0.175 Co 0.10 Mn 0.525 O 2-F FF , Li 1.167 Ni 0.219 Co 0.125 Mn 0.490 O 2-F FF , Li 1.130 Ni 0.266 Co Obtained a lithium composite oxide of 0.152 Mn 0.451 O 2-F FF or Li 1.090 Ni 0.318 Co 0.182 Mn 0.409 O 2-F FF (paragraph [0070 [0070]). ], [0071]), a coin cell was manufactured using these lithium composite oxides as a positive electrode active material, and a charge / discharge cycle was performed between 2.0 and 4.6 V to obtain data on the specific discharge capacity. It is described (paragraphs [0072] to [0078]).

また、正極活物質の電気化学特性を、ラマンスペクトルを評価することにより行う先行技術も存在する。
特許文献6には、「アノード集電体及び前記アノード集電体上に配置されるアノード活物質を含むアノードと、カソード集電体及び前記カソード集電体上に配置され、xLi2MO3・(1-x)LiCoyM’(1-y)2で表される組成物を有するカソード活物質を含むカソードと、を備えることを特徴とする、バッテリセル。」(請求項1)の実施例1として、カソード活物質が「0.02LiMnO・0.98LiNi0.021Co0.979で表される組成物」であり、そのラマンスペクトルが図5に記載されている(段落[0026]~[0029])。
また、その他の実施例として、「0.04LiMnO・0.96LiCoO」、「0.01LiMnO・0.99LiNi0.01Mn0.01Co0.98」で表される組成物が記載されている(段落[0030]、[0036])。
There is also a prior art in which the electrochemical properties of the positive electrode active material are evaluated by evaluating the Raman spectrum.
In Patent Document 6, "an anode containing an anode current collector and an anode active material arranged on the anode current collector, and arranged on the cathode current collector and the cathode current collector, xLi 2 MO 3 ·. (1-x) A battery cell comprising a cathode comprising a cathode active material having a composition represented by LiCo y M' (1-y) O 2. "(Claim 1). As Example 1, the cathode active material is "a composition represented by 0.02Li 2 MnO 3. 0.98 LiNi 0.021 Co 0.979 O 2 ", and its Raman spectrum is shown in FIG. (Paragraphs [0026] to [0029]).
Further, as other examples, it is represented by "0.04Li 2 MnO 3.0.96LiCoO 2 " and "0.01Li 2 MnO 3.0.99LiNi 0.01 Mn 0.01 Co 0.98 O 2 ". Compositions are described (paragraphs [0030], [0036]).

特許文献7には、「下記化学式1のリチウム系正極活物質であり、ラマンスペクトル分析においてスピネル構造のA1g振動モードのピーク強度対六方晶系構造のA1g振動モードのピーク強度の比が1:0.1~1:0.4であり、六方晶系構造のA1g振動モードのピーク強度対E振動モードのピーク強度の比が1:0.9~1:3.5であり、スピネル構造のA1g振動モードのピーク強度対F2g振動モードのピーク強度の比が1:0.2~1:0.4である正極活物質:
[化学式1]
LiCo1-y
前記式で、0.95≦x≦1.0、0≦y
≦1であり、MはNi、Fe、Pb、Mg、Al、K、Na、Ca、Si、Ti、Sn、V、Ge、Ga、B、As、Zr、Mn及びCrからなる群から選択される少なくとも1種以上の元素であり、AはO、F、S及びPからなる群から選択される元素である。」(請求項1)が記載され、リチウム系正極活物質は、電池製造前には六方晶系構造のみ有するため、ラマン分光分析をおこなうと2種の振動モードによるピーク(593cm-1のA1gモードと484cm-1のEモード)のみを示すスペクトルが得られ、電池を作製した後には、リチウム系正極活物質は六方晶系の他にスピネル構造を有するようになることが記載されている(段落[0017]、[0018]、図1,2)。
In Patent Document 7, "It is a lithium-based positive electrode active material of the following chemical formula 1, and the ratio of the peak intensity of the A 1 g vibration mode of the spinel structure to the peak intensity of the A 1 g vibration mode of the hexagonal structure is 1 in Raman spectral analysis. : 0.1 to 1: 0.4, and the ratio of the peak intensity of the A 1 g vibration mode to the peak intensity of the E g vibration mode of the hexagonal structure is 1: 0.9 to 1: 3.5. Positive active material having a spinel structure in which the ratio of the peak intensity of A 1 g vibration mode to the peak intensity of F 2 g vibration mode is 1: 0.2 to 1: 0.4.
[Chemical formula 1]
Li x Coy M 1-y A 2
In the above formula, 0.95 ≦ x ≦ 1.0, 0 ≦ y
≦ 1 and M is selected from the group consisting of Ni, Fe, Pb, Mg, Al, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn and Cr. At least one element, and A is an element selected from the group consisting of O, F, S and P. (Claim 1), since the lithium-based positive electrode active material has only a hexagonal structure before battery production, when Raman spectroscopic analysis is performed, a peak (593 cm -1 A 1 g ) due to two vibration modes is performed. A spectrum showing only the mode and 484 cm -1 Eg mode) is obtained, and it is described that after the battery is made, the lithium-based positive electrode active material will have a spinel structure in addition to the hexagonal system. (Paragraphs [0017], [0018], FIGS. 1 and 2).

非特許文献1には、Li比率を高めたNCMs(LiNi1/3Co1/3Mn1/3、Li1.1Ni1/3Co1/3Mn1/3及び高エネルギーxLiMnO・(1-x)LiMO(M=Ni,Co,Mn;x=0.5))は、ラマンスペクトルにおいて、MeO振動モードに対応する600cm-1付近のピークA1gと、O-Me-O振動モードに対応する500cm-1付近のピークEピークを有すること、LiMnOは、612cm-1(Ag1)、493cm-1等のピークを有すること、及びxLiMnO・(1-x)LiMO(x=0.5)は、LiNi1/3Co1/3Mn1/3が有さずにLiMnOが有するピークを有し、特に496cm-1のピークと569cm-1のショルダーが顕著であることが記載されている。また、NCMsは、充放電前後において、典型的なEとAg1に対応するピークを有する点で、充放電後にも、充放電前の層状LiMO類似構造を維持することが記載されている(206頁右欄2~5行、208頁左欄~209頁右欄「3.2. Ex situ Raman investigation」全文)。 Non-Patent Document 1 describes NCMs (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) with increased Li ratio, Li 1.1 Ni 1/3 Co 1/3 Mn 1/3 O 2 and high energy. xLi 2 MnO 3 · (1-x) LiMO 2 (M = Ni, Co, Mn; x = 0.5)) has a peak A of 1 g near 600 cm -1 corresponding to the MeO 6 vibration mode in the Raman spectrum. , Having a peak Eg peak near 500 cm -1 corresponding to the O-Me-O vibration mode, Li 2 MnO 3 having a peak such as 612 cm -1 (A g 1), 493 cm -1 and xLi . 2 MnO 3 · (1-x) LiMO 2 (x = 0.5) has a peak that Li 2 MnO 3 has without LiNi 1/3 Co 1/3 Mn 1/3 O 2 . In particular, it is described that the peak of 496 cm -1 and the shoulder of 569 cm -1 are remarkable. Further, it is described that NCMs maintain a layered LiMO 2 similar structure before charging / discharging even after charging / discharging in that they have peaks corresponding to typical Eg and Ag1 before and after charging / discharging. (Page 206, right column, lines 2-5, page 208, left column to page 209, right column, "3.2. Ex situ Raman investigation" full text).

特許第4877660号公報Japanese Patent No. 4877660 特開2012-89470号公報Japanese Unexamined Patent Publication No. 2012-89470 特開2014-107269号公報Japanese Unexamined Patent Publication No. 2014-107269 特開2014-75177号公報Japanese Unexamined Patent Publication No. 2014-75177 特表2012-504316号公報Special Table 2012-504316 Gazette 特表2016-517615号公報Special Table 2016-517615 Gazette 特表2005-44785号公報Special Table 2005-44785

P.Lanz,et al.Electrochimica Acta,130,206-212(2014)P. Lanz, et al. Electrochimica Acta, 130, 206-212 (2014)

非水電解質二次電池には、誤って満充電状態(SOC100%)を超えてさらに充電がされた場合に安全性が確保されることが規格(例えば自動車用電池に対して「GB/T(中国勧奨国家標準)」)によって定められている。安全性が向上したことを評価する方法としては、充電制御回路が壊れた場合を想定し、満充電状態を超えてさらに電流を強制的に印加したときに、電池電圧の急上昇が観察されたSOCを記録する方法がある。より高いSOCに至るまで、電池電圧の急上昇が観察されない場合、安全性が向上したと評価される。
ここで、SOCとはState Of Chargeの略で、電池の充電状態をそのときの残存容量と満充電時の容量との比率で表したものであり、満充電状態を「SOC100%」と表記する。また、本明細書中の「初回」充放電とは、非水電解質を注液後に行われる、1回目の充電及び放電をさす。「初期」充放電とは、非水電解質を注液後、電池の出荷前製造工程にて行われる1回または複数回の充電及び放電をさす。
It is a standard for non-aqueous electrolyte secondary batteries to ensure safety if they are accidentally charged beyond the fully charged state (SOC 100%) (for example, "GB / T (for example) for automobile batteries". It is stipulated by the National Standards of the People's Republic of China) ”). As a method of evaluating the improvement in safety, assuming that the charge control circuit is broken, the SOC in which a sudden rise in battery voltage is observed when a current is forcibly applied beyond the fully charged state is observed. There is a way to record. If no spike in battery voltage is observed up to a higher SOC, then safety is assessed as improved.
Here, SOC is an abbreviation for System of Charge, and the state of charge of the battery is expressed by the ratio of the remaining capacity at that time to the capacity at the time of full charge, and the fully charged state is expressed as "SOC 100%". .. Further, the "first time" charging / discharging in the present specification refers to the first charging / discharging performed after injecting a non-aqueous electrolyte. "Initial" charging and discharging refers to one or more charging and discharging performed in the pre-shipment manufacturing process of a battery after injecting a non-aqueous electrolyte.

特許文献1に記載された「4.3V(vs.Li/Li)を超え4.8V以下(vs.Li/Li)の正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域」は「リチウム過剰型」活物質に特徴的に観察される。本明細書中では、以下、「過充電領域」と表記する。上記の電位変化が比較的平坦な領域が観察される充電(以下、「過充電化成」)を一度でも行うと、次に4.8Vに至る充電を行っても、上記平坦な領域は観察されることがない。したがって、正極に「リチウム過剰型」活物質を含み、上記の電位変化が比較的平坦な領域が観察される初期充放電を行わず、通常使用の満充電(SOC100%)を上記の電位変化が平坦な領域が観察されない正極電位とする非水電解質二次電池を提案した。この電池は、SOC100%を超えて、さらに充電された場合、上記電位変化が比較的平坦な領域が初めて観察され、より高いSOCに至るまで電池電圧の急上昇が観察されない。
しかし、上記過充電領域が終了するまでの充電過程を一度も経ないで非水電解質二次電池を製造し、かつ、上記過充電領域が終了するまでの充電を行わずに使用すると、従来のリチウム過剰型活物質では、放電容量が小さいという問題があった。
これに対して、特許文献1~5に記載されたリチウム過剰型活物質を正極に含む非水電解質二次電池は、いずれも過充電領域が終了するまでの充電を行うものである点で、上記の非水電解質二次電池とは異なる。
特許文献6に記載された活物質はMn含有量が少ないから本来のリチウム過剰型活物質ではなく、特許文献7に記載された活物質はリチウム過剰型活物質ではないから、上記の問題は生じない。
Comparison of potential changes appearing with respect to the amount of charging electricity in the positive electrode potential range of "4.3 V (vs. Li / Li + ) and 4.8 V or less (vs. Li / Li + )" described in Patent Document 1. A "flat region" is characteristically observed in "lithium-rich" active materials. Hereinafter, in the present specification, it is referred to as "overcharge area". The flat region is observed even when charging up to 4.8 V is performed even once after charging (hereinafter referred to as "overcharge chemical formation") in which the above-mentioned potential change is observed in a relatively flat region. There is no such thing. Therefore, the positive electrode contains a "lithium-excessive" active material, and the above-mentioned potential change is not performed in the initial charge / discharge where the above-mentioned potential change is observed in a relatively flat region, and the above-mentioned potential change is carried out in the normal use full charge (SOC 100%). We have proposed a non-aqueous electrolyte secondary battery with a positive electrode potential in which a flat region is not observed. When this battery exceeds 100% SOC and is further charged, the region where the potential change is relatively flat is observed for the first time, and no rapid increase in battery voltage is observed until a higher SOC is reached.
However, if a non-aqueous electrolyte secondary battery is manufactured without going through the charging process until the end of the overcharge area and is used without charging until the end of the overcharge area, the conventional method is used. The lithium-rich active material has a problem that the discharge capacity is small.
On the other hand, the non-aqueous electrolyte secondary batteries containing the lithium excess type active material described in Patent Documents 1 to 5 in the positive electrode are all charged until the overcharge region is completed. It is different from the above non-aqueous electrolyte secondary battery.
Since the active material described in Patent Document 6 has a low Mn content, it is not the original lithium-rich active material, and the active material described in Patent Document 7 is not a lithium-rich active material, so that the above problem arises. do not have.

本発明者は、前駆体の結晶構造、リチウム過剰型活物質の組成及び結晶性等を変化させることによって、過充電領域での質量当たりの充電電気量が大きく、かつ、過充電化成をしない場合でも高い質量当たりの放電容量が得られることを見出した。
しかし、リチウム過剰型活物質は、LiMeO型活物質と比べて粉体密度が小さく、体積当たりの放電容量は依然として小さいことが課題であった。
本発明は、過充電領域における体積当たりの充電電気量が大きく、かつ、体積当たりの放電容量が大きい非水電解質二次電池用正極活物質、その正極活物質の製造方法、その正極活物質を含有する非水電解質二次電池を提供することを課題とする。
The present inventor changes the crystal structure of the precursor, the composition of the lithium excess type active material, the crystallinity, etc., so that the amount of electricity charged per mass in the overcharge region is large and overcharge formation is not performed. However, we have found that a high discharge capacity per mass can be obtained.
However, the lithium excess type active material has a problem that the powder density is smaller than that of the LiMeO type 2 active material and the discharge capacity per volume is still small.
The present invention provides a positive electrode active material for a non-aqueous electrolyte secondary battery having a large amount of charging electricity per volume and a large discharge capacity per volume in an overcharge region, a method for producing the positive electrode active material, and the positive electrode active material. An object of the present invention is to provide a non-aqueous electrolyte secondary battery containing the battery.

上記の課題を解決するための本発明の一側面は、リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有し、遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、遷移金属(Me)としてNi及びMn、又はNi、Co及びMnを含み、Meに対するMnのモル比Mn/Meが0.3≦Mn/Me<0.55であり、ラマンスペクトルにおける550~650cm-1の範囲での最大値I600に対する、450~520cm-1の範囲での最大値I490の比(以下、「I490/I600」という。)が0.45以上である、非水電解質二次電池用正極活物質である。 One aspect of the present invention for solving the above problems is a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide is α-NaFeO. It has a type 2 crystal structure, the molar ratio of Li to the transition metal (Me) is 1 <Li / Me, and the transition metal (Me) contains Ni and Mn, or Ni, Co and Mn, and is Me. The molar ratio of Mn to Mn / Me is 0.3 ≦ Mn / Me <0.55, and the maximum value I 600 in the range of 550 to 650 cm -1 in the Raman spectrum is in the range of 450 to 520 cm -1 . It is a positive electrode active material for a non-aqueous electrolyte secondary battery having a ratio of a maximum value of I 490 (hereinafter referred to as “I 490 / I 600 ”) of 0.45 or more.

本発明の他の一側面は、前記非水電解質二次電池用正極活物質の製造方法であって、Ni及びMn、又はNi、Co及びMnを含み、Meに対するMnのモル比Mn/Meが0.3≦Mn/Me<0.55である遷移金属化合物に、Li化合物を混合し、焼成することにより、モル比Li/Meが1<Li/Meであるリチウム遷移金属複合酸化物を製造する際に、焼結助剤を添加する、非水電解質二次電池用正極活物質の製造方法である。 Another aspect of the present invention is the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which comprises Ni and Mn, or Ni, Co and Mn, and has a molar ratio of Mn to Me, Mn / Me. A lithium transition metal composite oxide having a molar ratio of Li / Me of 1 <Li / Me is produced by mixing a Li compound with a transition metal compound of 0.3 ≦ Mn / Me <0.55 and firing. This is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, to which a sintering aid is added.

本発明のさらに他の一側面は、前記非水電解質二次電池用正極活物質を含有する非水電解質二次電池用正極である。
また、前記非水電解質二次電池用正極を備え、前記正極に含有される正極活物質は、CuKα線を用いたエックス線回折図において20~22°の範囲に回折ピークが観察される、非水電解質二次電池である。又は、前記非水電解質二次電池用正極を備え、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池である。
Yet another aspect of the present invention is a positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material for the non-aqueous electrolyte secondary battery.
Further, the positive electrode active material provided with the positive electrode for the non-aqueous electrolyte secondary battery has a diffraction peak observed in the range of 20 to 22 ° in an X-ray diffraction diagram using CuKα rays, which is non-water. It is an electrolyte secondary battery. Alternatively, when the positive electrode for the non-aqueous electrolyte secondary battery is provided and the positive electrode potential reaches 5.0 V (vs. Li / Li + ), the battery is charged to 4.5 to 5.0 V (vs. Li / Li + ). ) Is a non-aqueous electrolyte secondary battery in which a region where the potential change is relatively flat with respect to the amount of charging electricity is observed within the positive electrode potential range.

本発明のさらに他の一側面は、前記非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、非水電解質二次電池の製造方法である。 Yet another aspect of the present invention is the method for manufacturing the non-aqueous electrolyte secondary battery, wherein the maximum ultimate potential of the positive electrode in the initial charge / discharge step is less than 4.5 V (vs. Li / Li + ). This is a method for manufacturing a non-aqueous electrolyte secondary battery.

本発明により、過充電領域における体積当たりの充電電気量が大きく、かつ、体積当たりの放電容量が大きい非水電解質二次電池用正極活物質、その正極活物質の製造方法、その正極活物質を含有する正極、その正極を備える非水電解質二次電池、及びその製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a positive electrode active material for a non-aqueous electrolyte secondary battery having a large amount of charging electricity per volume and a large discharge capacity per volume in an overcharge region, a method for producing the positive electrode active material, and the positive electrode active material thereof are provided. It is possible to provide a positive electrode contained therein, a non-aqueous electrolyte secondary battery provided with the positive electrode thereof, and a method for producing the same.

リチウム過剰型活物質を用いた正極に、SOC100%を超える初回充電を行ったときの典型的な充電カーブ、及び過充電領域を示す概念図A conceptual diagram showing a typical charge curve and an overcharge region when a positive electrode using a lithium excess type active material is initially charged with an SOC of more than 100%. α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物のA1g及びE振動モードを示す図The figure which shows the A1g and Eg vibration modes of the lithium transition metal composite oxide which has the α- NaFeO type 2 crystal structure. LiNi1/3Co1/3Mn1/3、Li1.1Ni1/3Co1/3Mn1/32.1、xLiMnO・(1-x)LiMO(M=Ni,Co,Mn;x=0.5)、及びLiMnOの充放電前のラマンスペクトルLiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 1.1 Ni 1/3 Co 1/3 Mn 1/3 O 2.1, xLi 2 MnO 3・ (1-x) LiMO 2 (M) = Ni, Co, Mn; x = 0.5), and the Raman spectrum of Li 2 MnO 3 before charging and discharging. 本発明の実施例に係る正極活物質の充放電前後におけるラマンスペクトル及びラマンピーク強度比I490/I600 Raman spectrum and Raman peak intensity ratio I 490 / I 600 before and after charging and discharging the positive electrode active material according to the embodiment of the present invention. 実施例の初回充放電条件1を適用した非水電解質二次電池の正極に含有される正極活物質のエックス線回折測定において「20~22°の範囲に回折ピークが観察される」ことを説明する図Explain that "a diffraction peak is observed in the range of 20 to 22 °" in the X-ray diffraction measurement of the positive electrode active material contained in the positive electrode of the non-aqueous electrolyte secondary battery to which the initial charge / discharge condition 1 of the example is applied. figure 実施例の初回充放電条件2を適用した非水電解質二次電池の正極に含有される正極活物質のエックス線回折測定において「20~22°の範囲に回折ピークが観察され」ないことを説明する図Explain that "a diffraction peak is not observed in the range of 20 to 22 °" in the X-ray diffraction measurement of the positive electrode active material contained in the positive electrode of the non-aqueous electrolyte secondary battery to which the initial charge / discharge condition 2 of the example is applied. figure 本発明の一実施形態に係る非水電解質二次電池を示す外観斜視図External perspective view showing a non-aqueous electrolyte secondary battery according to an embodiment of the present invention. 本実施形態に係る非水電解質二次電池における「充電電気量に対して電位変化が比較的平坦な領域」を説明する図The figure explaining "the region where the potential change is relatively flat with respect to the amount of charge electricity" in the non-aqueous electrolyte secondary battery which concerns on this embodiment. 体積当たりの放電容量及び充電電気量を算出するためのプレス密度の測定に用いた装置の概念図Conceptual diagram of the device used to measure the press density for calculating the discharge capacity per volume and the amount of charge electricity. 本発明の一実施形態に係る非水電解質二次電池を複数個備えた蓄電装置を示す概略図Schematic diagram showing a power storage device including a plurality of non-aqueous electrolyte secondary batteries according to an embodiment of the present invention. 本発明の実施例及び比較例に係るラマンスペクトルRaman spectrum according to an example and a comparative example of the present invention. 本発明の実施例及び比較例に係るリチウム過剰型活物質のラマンピーク強度比I490/I600と体積当たりの放電容量の関係を示すグラフA graph showing the relationship between the Raman peak intensity ratio I 490 / I 600 of the lithium excess type active material according to the examples and comparative examples of the present invention and the discharge capacity per volume.

本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その本質又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施形態又は実施例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。 The configuration and action / effect of the present invention will be described with reference to technical ideas. However, the mechanism of action includes estimation, and its correctness does not limit the present invention. It should be noted that the present invention can be carried out in various other forms without departing from its essence or main features. Therefore, the embodiments or examples described below are merely examples in all respects and should not be construed in a limited manner. Further, all modifications and modifications that fall within the equivalent scope of the claims are within the scope of the present invention.

本発明の一実施形態は、リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有し、遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、遷移金属(Me)としてNi及びMn、又はNi、Co及びMnを含み、Meに対するMnのモル比Mn/Meが0.3≦Mn/Me<0.6であり、ラマンスペクトルにおける550~650cm-1の範囲での最大値I600に対する、450~520cm-1の範囲での最大値I490の比(I490/I600)が0.45以上である、非水電解質二次電池用正極活物質である。
上記本発明の一実施形態によれば、過充電領域における体積当たりの充電電気量が大きく、かつ、体積当たりの放電容量が大きい正極活物質が提供される。
One embodiment of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, and the lithium transition metal composite oxide has an α-NaFeO type 2 crystal structure. , The molar ratio of Li to the transition metal (Me) Li / Me is 1 <Li / Me, and the transition metal (Me) contains Ni and Mn or Ni, Co and Mn, and the molar ratio of Mn to Me is Mn / Me is 0.3 ≤ Mn / Me <0.6, and the ratio of the maximum value I 490 in the range of 450 to 520 cm -1 to the maximum value I 600 in the range of 550 to 650 cm -1 in the Raman spectrum ( It is a positive electrode active material for a non-aqueous electrolyte secondary battery having an I 490 / I 600 ) of 0.45 or more.
According to the above embodiment of the present invention, there is provided a positive electrode active material having a large amount of charging electricity per volume in an overcharged region and a large discharge capacity per volume.

本発明の他の一実施形態は、前記非水電解質二次電池用正極活物質の製造方法であって、Ni及びMn、又はNi、Co及びMnを含み、Meに対するMnのモル比Mn/Meが0.3≦Mn/Me<0.55である遷移金属化合物に、Li化合物を混合し、焼成することにより、モル比Li/Meが1<Li/Meであるリチウム遷移金属複合酸化物を製造する際に、焼結助剤を添加する、非水電解質二次電池用正極活物質の製造方法である。
上記本発明の他の一実施形態によれば、特に、体積当たりの放電容量が大きい正極活物質の製造方法が提供される。
Another embodiment of the present invention is the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which comprises Ni and Mn, or Ni, Co and Mn, and has a molar ratio of Mn to Me, Mn / Me. By mixing a Li compound with a transition metal compound having a molar ratio of 0.3 ≦ Mn / Me <0.55 and firing, a lithium transition metal composite oxide having a molar ratio of Li / Me of 1 <Li / Me is obtained. This is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, to which a sintering aid is added at the time of production.
According to the other embodiment of the present invention, there is provided a method for producing a positive electrode active material having a large discharge capacity per volume.

本発明のさらに他の一実施形態は、前記非水電解質二次電池用正極活物質を含有する非水電解質二次電池用正極である。 Yet another embodiment of the present invention is a positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material for the non-aqueous electrolyte secondary battery.

本発明のさらに他の一実施形態は、前記非水電解質二次電池用正極を備え、前記正極に含有される正極活物質は、CuKα線を用いたエックス線回折図において20~22°の範囲に回折ピークが観察される、非水電解質二次電池である。
また、前記非水電解質二次電池用正極を備え、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池である。
この一実施形態によれば、過充電領域における体積当たりの充電電気量が大きいため、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池が提供される。
Yet another embodiment of the present invention comprises the positive electrode for a non-aqueous electrolyte secondary battery, and the positive electrode active material contained in the positive electrode is in the range of 20 to 22 ° in an X-ray diffraction diagram using CuKα rays. It is a non-aqueous electrolyte secondary battery in which a diffraction peak is observed.
Further, when the positive electrode for the non-aqueous electrolyte secondary battery is provided and the positive electrode potential is charged to 5.0 V (vs. Li / Li + ), it is 4.5 to 5.0 V (vs. Li / Li + ). ) Is a non-aqueous electrolyte secondary battery in which a region where the potential change is relatively flat with respect to the amount of charging electricity is observed within the positive electrode potential range.
According to this embodiment, there is provided a non-aqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed until a higher SOC is observed because the amount of electricity charged per volume in the overcharge region is large.

上記の非水電解質二次電池は、4.5V(vs.Li/Li)未満の電位で使用することが好ましい。4.5V(vs.Li/Li)未満の電位で使用した場合、体積当たりの放電容量が大きいことと、より高いSOCに至るまで電池電圧の急上昇が観察されないこととを両立することができる。 The above non-aqueous electrolyte secondary battery is preferably used at a potential of less than 4.5 V (vs. Li / Li + ). When used at a potential of less than 4.5V (vs. Li / Li + ), it is possible to achieve both a large discharge capacity per volume and no observation of a sharp rise in battery voltage up to a higher SOC. ..

本発明のさらに他の一実施形態は、前記非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、非水電解質二次電池の製造方法である。
この一実施形態によれば、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察されることにより、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池が製造される。
上記した本発明の一実施形態に係る非水電解質二次電池用正極活物質(以下、「本実施形態に係る正極活物質」という。)、本発明の他の一実施形態に係る非水電解質二次電池用正極活物質の製造方法(以下、「本実施形態に係る正極活物質の製造方法」という。)、本発明のさらに他の一実施形態に係る非水電解質二次電池用正極(以下、「本実施形態に係る非水電解質二次電池用正極」という。)、本発明のさらに他の一実施形態に係る非水電解質二次電池(以下、「本実施形態に係る非水電解質二次電池」という。)、本発明のさらに他の一実施形態に係る非水電解質二次電池の製造方法(以下、「本実施形態に係る非水電解質二次電池の製造方法」という。)について、以下、詳細に説明する。
Yet another embodiment of the present invention is the method for manufacturing the non-aqueous electrolyte secondary battery, wherein the maximum potential of the positive electrode in the initial charge / discharge step is less than 4.5 V (vs. Li / Li + ). , A method for manufacturing a non-aqueous electrolyte secondary battery.
According to this embodiment, when charging is performed so that the positive electrode potential reaches 5.0 V (vs. Li / Li + ), it is within the positive electrode potential range of 4.5 to 5.0 V (vs. Li / Li + ). In addition, by observing a region where the potential change is relatively flat with respect to the amount of charging electricity, a non-aqueous electrolyte secondary battery in which a rapid increase in battery voltage is not observed up to a higher SOC is manufactured.
Non-aqueous electrolyte according to one embodiment of the present invention The positive electrode active material for a secondary battery (hereinafter referred to as “positive electrode active material according to the present embodiment”), the non-aqueous electrolyte according to another embodiment of the present invention. A method for producing a positive electrode active material for a secondary battery (hereinafter referred to as "a method for producing a positive electrode active material according to the present embodiment"), and a positive electrode for a non-aqueous electrolyte secondary battery according to still another embodiment of the present invention (hereinafter referred to as "a method for producing a positive electrode active material according to the present embodiment"). Hereinafter, "positive electrode for non-aqueous electrolyte secondary battery according to the present embodiment"), non-aqueous electrolyte secondary battery according to still another embodiment of the present invention (hereinafter, "non-aqueous electrolyte according to the present embodiment"). "Secondary battery"), a method for manufacturing a non-aqueous electrolyte secondary battery according to still another embodiment of the present invention (hereinafter, referred to as "a method for manufacturing a non-aqueous electrolyte secondary battery according to the present embodiment"). Will be described in detail below.

<リチウム遷移金属複合酸化物>
本実施形態に係る正極活物質に含有されるリチウム遷移金属複合酸化物(以下、「本実施形態に係るリチウム遷移金属複合酸化物」という。)は、組成式Li1+αMe1-α(α>0;MeはNi及びMn、又はNi、Co及びMnを含む。)と表記することができる、いわゆる「リチウム過剰型」活物質である。上記の組成式において、(1+α)/(1-α)で表される遷移金属元素Meに対するLiのモル比Li/Meは1<Li/Meである。過充電領域における体積当たりの充電電気量をより大きくできる点で、Li/Meは、1.05以上が好ましく、1.1以上がより好ましい。また、1.4未満が好ましく、1.3以下がより好ましい。この範囲であると、過充電領域より低い電位範囲で製造、及び使用する場合の正極活物質の体積当たりの放電容量が向上する。
遷移金属元素Meに対するMnのモル比Mn/Meは、0.3以上0.55以下である。0.3以上であることにより、過充電領域における体積当たりの充電電気量を大きくすることができる。また、0.55以下であることにより、過充電領域より低い電位範囲で製造、及び使用する場合の体積当たりの放電容量が向上する。上記Mnのモル比Mn/Meは、0.5以下がより好ましく、0.45以下がさらに好ましい。
リチウム遷移金属複合酸化物に含有されるCoは、初期効率を向上させる効果がある任意成分であるが、希少資源であることからコスト高である。したがって、遷移金属元素Meに対するCoのモル比Co/Meは0.35以下とすることが好ましく、0でもよい。
遷移金属元素Meに対するNiのモル比Ni/Meは0.2以上が好ましく、0.3以上がより好ましい。また、0.6以下が好ましく、0.55以下がより好ましい。この範囲であると、充放電における分極が小さくなることによって、4.5V(vs.Li/Li)未満の電位で使用する場合の放電容量が大きくなる。
このような組成のリチウム遷移金属複合酸化物を正極活物質に用いることによって、過充電領域における体積当たりの充電電気量が大きく、過充電領域が終了するまでの充電過程を一度も経ないで製造し、かつ、過充電領域が終了するまでの充電を行わずに使用する場合に、体積当たりの放電容量が大きい非水電解質二次電池を得ることができる。
なお、本実施形態に係るリチウム遷移金属複合酸化物は、本発明の効果を損なわない範囲で、Na,K等のアルカリ金属、Mg,Ca等のアルカリ土類金属、Fe等の3d遷移金属に代表される遷移金属など少量の他の金属を含有することを排除するものではない。
<Lithium transition metal composite oxide>
The lithium transition metal composite oxide contained in the positive electrode active material according to the present embodiment (hereinafter referred to as “lithium transition metal composite oxide according to the present embodiment”) has a composition formula Li 1 + α Me 1-α O 2 (hereinafter referred to as “lithium transition metal composite oxide according to the present embodiment”). α>0; Me is a so-called “lithium-rich” active material that can be described as Ni and Mn, or Ni, Co and Mn). In the above composition formula, the molar ratio Li / Me of Li to the transition metal element Me represented by (1 + α) / (1-α) is 1 <Li / Me. Li / Me is preferably 1.05 or more, and more preferably 1.1 or more, in that the amount of charging electricity per volume in the overcharge region can be increased. Further, it is preferably less than 1.4, more preferably 1.3 or less. Within this range, the discharge capacity per volume of the positive electrode active material when manufactured and used in a potential range lower than the overcharge region is improved.
The molar ratio of Mn to the transition metal element Me, Mn / Me, is 0.3 or more and 0.55 or less. When it is 0.3 or more, the amount of charging electricity per volume in the overcharged region can be increased. Further, when it is 0.55 or less, the discharge capacity per volume when manufactured and used in a potential range lower than the overcharge region is improved. The molar ratio of Mn / Me is more preferably 0.5 or less, and even more preferably 0.45 or less.
Co contained in the lithium transition metal composite oxide is an optional component having an effect of improving the initial efficiency, but it is a rare resource and therefore costly. Therefore, the molar ratio Co / Me of Co to the transition metal element Me is preferably 0.35 or less, and may be 0.
The molar ratio of Ni to the transition metal element Me, Ni / Me, is preferably 0.2 or more, more preferably 0.3 or more. Further, 0.6 or less is preferable, and 0.55 or less is more preferable. Within this range, the polarization in charge / discharge becomes smaller, so that the discharge capacity becomes larger when used at a potential of less than 4.5 V (vs. Li / Li + ).
By using the lithium transition metal composite oxide having such a composition as the positive electrode active material, the amount of charge electricity per volume in the overcharge region is large, and it is manufactured without going through the charging process until the end of the overcharge region. Moreover, when used without charging until the end of the overcharge region, a non-aqueous electrolyte secondary battery having a large discharge capacity per volume can be obtained.
The lithium transition metal composite oxide according to the present embodiment can be used as an alkali metal such as Na and K, an alkaline earth metal such as Mg and Ca, and a 3d transition metal such as Fe, as long as the effects of the present invention are not impaired. It does not preclude the inclusion of small amounts of other metals such as typified transition metals.

本実施形態に係るリチウム遷移金属複合酸化物は、ラマンスペクトルにおける550~650cm-1の範囲での最大値I600に対する、450~520cm-1の範囲での最大値I490の比(I490/I600)が0.45以上である。
490/I600を0.45以上とすることにより、過充電領域における体積当たりの充電電気量が大きくなり、かつ、体積当たりの放電容量が大きくなる。
本発明において、I490/I600を0.45以上と特定する意義は以下のように推察される。
本実施形態に係るリチウム遷移金属複合酸化物は、LiMeO(M=Ni及びMn、又はNi、Co及びMnを含む。)とLiMnOの固溶体として表すことができる。LiMeOとLiMnOは、ラマンスペクトルにおいて、MeO振動モードに対応する600cm-1付近のピークA1gとO-Me-O振動モードに対応する490cm-1付近のピークEを有するが、LiMnOには、ピークEが特に顕著に現れることが知られている(非特許文献1参照)。図2に、振動モードを説明する上記特許文献7の図2を転載し、図3に、上記非特許文献1のFig.4を転載する。
490/I600が大きいことは、O-Me-O振動が相対的に大きいから、本実施形態に係るリチウム遷移金属複合酸化物において、相対的にLiMnO成分が多いことを意味する。LiMnOは過充電領域での充電電気量を大きくすることに寄与する成分であるから、I490/I600が0.45以上であることは、より高いSOCに至るまで電池電圧の急上昇が観察されることがない。
一方、I490/I600が小さいことは、MeO振動が相対的に大きいから、本実施形態に係るリチウム遷移金属複合酸化物において、相対的にLiMeO成分が多いことを意味する。LiMeOはLiMnOと比較して、高密度かつ高容量である。しかし、本実施形態に係るリチウム遷移金属複合酸化物を含有する正極活物質においては、焼結助剤により高密度化した場合、LiMeOのユニットの割合が相対的に小さいと考えられるI490/I600が0.45以上の活物質の方が、0.45未満の活物質と比較して、予想外に、体積当たりの放電容量が大きくなることがわかった。焼結助剤によりI490/I600が小さくなる理由としては、活物質中の酸素欠損によって遷移金属の価数が小さくなるか、又は、活物質合成時の不均化(3LiMeO→LiMn+LiMnO)が解消されることによって、活物質中のLiMnOのユニットに対するLiMeOのユニットの割合が大きくなるためと考えられる。ただし、上記の理由により、体積当たりの放電容量を大きくするためには、I490/I600が大きすぎないことが好ましく、0.85以下であることが好ましい。
The lithium transition metal composite oxide according to the present embodiment is the ratio of the maximum value I 490 in the range of 450 to 520 cm -1 to the maximum value I 600 in the range of 550 to 650 cm -1 in the Raman spectrum (I 490 /). I 600 ) is 0.45 or more.
By setting I 490 / I 600 to 0.45 or more, the amount of charging electricity per volume in the overcharge region becomes large, and the discharge capacity per volume becomes large.
In the present invention, the significance of specifying I 490 / I 600 as 0.45 or more is presumed as follows.
The lithium transition metal composite oxide according to the present embodiment can be represented as a solid solution of LiMeO 2 (including M = Ni and Mn, or Ni, Co and Mn) and Li 2 MnO 3 . Although LiMeO 2 and Li 2 MnO 3 have a peak A 1 g near 600 cm -1 corresponding to the MeO 6 vibration mode and a peak E g near 490 cm -1 corresponding to the O-Me-O vibration mode in the Raman spectrum. , Li 2 MnO 3 is known to have a particularly remarkable peak Eg (see Non-Patent Document 1). FIG. 2 is a reproduction of FIG. 2 of Patent Document 7 for explaining the vibration mode, and FIG. 3 shows Fig. 4 is reprinted.
A large I 490 / I 600 means that the lithium transition metal composite oxide according to the present embodiment has a relatively large amount of Li 2 MnO 3 components because the O—Me—O vibration is relatively large. .. Since Li 2 MnO 3 is a component that contributes to increasing the amount of charge electricity in the overcharge region, a value of 0.45 or more for I 490 / I 600 causes a sharp rise in battery voltage up to a higher SOC. Is never observed.
On the other hand, the fact that I 490 / I 600 is small means that the LiMeO 2 component is relatively large in the lithium transition metal composite oxide according to the present embodiment because the MeO 6 vibration is relatively large. LiMeO 2 has a higher density and a higher capacity than Li 2 MnO 3 . However, in the positive electrode active material containing the lithium transition metal composite oxide according to the present embodiment, when the density is increased by the sintering aid, the ratio of LiMeO 2 units is considered to be relatively small I 490 /. It was found that the active material having an I 600 of 0.45 or more unexpectedly had a larger discharge capacity per volume than the active material having an I 600 of less than 0.45. The reason why I 490 / I 600 is reduced by the sintering aid is that the valence of the transition metal is reduced due to oxygen deficiency in the active material, or the disproportionation during active material synthesis (3LiMeO 2 → LiMn 2 ). It is considered that the elimination of O 4 + Li 2 MnO 3 ) increases the ratio of LiMeO 2 units to Li 2 MnO 3 units in the active material. However, for the above reason, in order to increase the discharge capacity per volume, it is preferable that I 490 / I 600 is not too large, and it is preferably 0.85 or less.

また、本実施形態に係る「リチウム過剰型」正極活物質に含有されるリチウム遷移金属複合酸化物は、合成後(充放電前)、空間群P312に帰属されると共に、CuKα線を用いたエックス線回折図上、2θ=20~22°の範囲に超格子ピーク(Li[Li1/3Mn2/3]O型の単斜晶に見られるピーク)が確認される。ここで、「観察される」とは、回折角17~19°の範囲内の強度の最大値と最小値との差分(I18)に対する回折角20~22°の範囲内の強度の最大値と最小値との差分(I21)の比、すなわち「I21/I18」の値が0.001~0.1の範囲であることをさす。この超格子ピーク(以下、「20~22°のピーク」という。)は、4.5V(vs.Li/Li+)未満の電位領域で充放電を行っても、消失することがない。ところが、一度でも4.5V(vs.Li/Li+)以上の過充電領域が終了する電位まで充電を行うと、結晶中のLiの脱離に伴って結晶の対称性が変化することにより、この20~22°のピークが消失して、上記リチウム遷移金属複合酸化物は空間群R3-mに帰属されるようになる。ここで、P312は、R3-mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3-mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。なお、「R3-m」は本来「R3m」の「3」の上にバー「-」を施して表記する。 Further, the lithium transition metal composite oxide contained in the "lithium excess type" positive electrode active material according to the present embodiment belongs to the space group P3 112 after synthesis (before charging / discharging) and uses CuKα rays. On the X-ray diffraction diagram, a superlattice peak (peak seen in Li [Li 1/3 Mn 2/3 ] O2 type monoclinic crystals) is confirmed in the range of 2θ = 20 to 22 °. Here, "observed" means the maximum value of the intensity in the range of the diffraction angle of 20 to 22 ° with respect to the difference (I 18 ) between the maximum value and the minimum value of the intensity in the range of the diffraction angle of 17 to 19 °. It means that the ratio of the difference (I 21 ) between the minimum value and the minimum value, that is, the value of "I 21 / I 18 " is in the range of 0.001 to 0.1. This superlattice peak (hereinafter referred to as "peak of 20 to 22 °") does not disappear even if charging / discharging is performed in a potential region of less than 4.5 V (vs. Li / Li + ). However, if charging is performed to a potential at which the overcharge region of 4.5 V (vs. Li / Li + ) or higher ends even once, the symmetry of the crystal changes with the desorption of Li in the crystal. The peak of 20 to 22 ° disappears, and the lithium transition metal composite oxide is assigned to the space group R3-m. Here, P3 1 12 is a crystal structure model in which the atomic positions of 3a, 3b, and 6c sites in R3-m are subdivided, and the P3 1 12 model is when order is recognized in the atomic arrangement in R3-m. Is adopted. In addition, "R3-m" is originally described by adding a bar "-" on "3" of "R3m".

ラマンスペクトル測定及びエックス線回折測定に供する試料の調製は、以下のとおりの手順及び条件により行う。
測定に供する試料は、正極作製前の活物質粉末(充放電前粉末)であれば、そのまま測定に供する。電池を解体して取り出した電極から試料を採取する場合には、電池を解体する前に、当該電池の公称容量(Ah)の10分の1となる電流値(A)で、指定される電圧の下限となる電池電圧に至るまで定電流放電を行い、放電末状態とする。解体した結果、金属リチウム電極を負極に用いた電池であれば、以下に述べる追加作業は行わず、正極板から採取した正極合剤を測定対象とする。金属リチウム電極を負極に用いた電池でない場合は、正極電位を正確に制御するため、電池を解体して電極を取り出した後に、金属リチウム電極を対極とした電池を組立て、正極合剤1g当たり10mAの電流値で、正極の電位が2.0V(vs.Li/Li)となるまで定電流放電を行い、放電末状態に調整した後、再解体する。取り出した正極板は、ジメチルカーボネートを用いて電極に付着した非水電解質を十分に洗浄し室温にて一昼夜の乾燥後、アルミニウム箔集電体上の合剤を採取する。エックス線回折測定に供する試料は、採取した合剤をめのう乳鉢で軽くほぐし、エックス線回折測定用試料ホルダーに配置して測定に供する。ラマンスペクトル測定に供する試料は、この合剤を小型電気炉を用いて600℃で4時間焼成することで導電剤であるカーボンおよび結着剤であるPVdFバインダーを除去し、リチウム遷移金属複合酸化物粒子を取り出し、活物質粉末(充放電後粉末)として上記の測定に供する。
上記の電池の解体から再解体までの作業、及び正極板の洗浄、乾燥作業は、露点-60℃以下のアルゴン雰囲気中で行う。
The sample to be used for Raman spectrum measurement and X-ray diffraction measurement is prepared according to the following procedure and conditions.
If the sample to be measured is the active material powder (powder before charging / discharging) before the positive electrode is prepared, it is used as it is for the measurement. When a sample is taken from an electrode taken out by disassembling the battery, the voltage specified by the current value (A), which is 1/10 of the nominal capacity (Ah) of the battery, is used before disassembling the battery. A constant current discharge is performed up to the battery voltage, which is the lower limit of the above, and the state is set to the end of discharge state. As a result of dismantling, if the battery uses a metallic lithium electrode as the negative electrode, the positive electrode mixture collected from the positive electrode plate is used as the measurement target without performing the additional work described below. If the battery does not use a metallic lithium electrode as the negative electrode, in order to accurately control the positive electrode potential, after disassembling the battery and taking out the electrode, assemble a battery with the metallic lithium electrode as the counter electrode, and 10 mA per 1 g of the positive electrode mixture. With the current value of, constant current discharge is performed until the potential of the positive electrode reaches 2.0 V (vs. Li / Li + ), adjusted to the discharge end state, and then disassembled again. The removed positive electrode plate is thoroughly washed with dimethyl carbonate to thoroughly wash the non-aqueous electrolyte adhering to the electrode, dried at room temperature for 24 hours, and then the mixture on the aluminum foil current collector is collected. The sample to be used for X-ray diffraction measurement is lightly loosened with a mortar and pestle, and placed in a sample holder for X-ray diffraction measurement for measurement. For the sample to be used for Raman spectrum measurement, this mixture was calcined at 600 ° C. for 4 hours in a small electric furnace to remove carbon as a conductive agent and PVdF binder as a binder, and a lithium transition metal composite oxide. The particles are taken out and subjected to the above measurement as an active material powder (powder after charging / discharging).
The work from dismantling to re-disassembling the battery, and the cleaning and drying work of the positive electrode plate are performed in an argon atmosphere having a dew point of −60 ° C. or lower.

<ラマンスペクトルの測定方法>
ラマンスペクトルの測定は以下の条件にて行う。
堀場製作所社の「LabRAM HR Revolution」を用いてラマン分光測定を行う。対物レンズに100倍のレンズを用い、上記のようにして調製した活物質粉末にレーザの焦点を合わせた状態で測定を行う。その際、波長532nm(YAGレーザ)、グレーティング600g/mmの条件、露光時間30秒、積算回数2回、測定波長100cm-1~4000cm-1の条件で測定を行う。上記測定により得られたスペクトルにおいて、550cm-1以上650cm-1以下の範囲での最大値I600に対する、450cm-1以上520cm-1以下の範囲での最大値I490の比(I490/I600)を求める。
<Measurement method of Raman spectrum>
The Raman spectrum is measured under the following conditions.
Raman spectroscopy is performed using "LabRAM HR Revolution" manufactured by HORIBA, Ltd. A 100x lens is used as the objective lens, and the measurement is performed with the laser focused on the active material powder prepared as described above. At that time, the measurement is performed under the conditions of a wavelength of 532 nm (YAG laser), a grating of 600 g / mm, an exposure time of 30 seconds, two integrations, and a measurement wavelength of 100 cm -1 to 4000 cm -1 . In the spectrum obtained by the above measurement, the ratio of the maximum value I 490 in the range of 450 cm -1 or more and 520 cm -1 or less to the maximum value I 600 in the range of 550 cm -1 or more and 650 cm -1 or less (I 490 / I). 600 ) is calculated.

図4は、後述する実施例2に係るリチウム遷移金属複合酸化物について、充放電前粉末、充放電後粉末を上記の手順により測定したラマンスペクトルである。本実施形態に係るリチウム遷移金属複合酸化物は、粉末状態での充放電前後において、ラマンスペクトルが維持される。
なお、非特許文献1のFig.4(充放電前),Fig.5(充放電後)においても、ラマンスペクトルがほとんど変化していないことが示されている。
FIG. 4 is a Raman spectrum obtained by measuring the pre-charge / discharge powder and the post-charge / discharge powder of the lithium transition metal composite oxide according to Example 2 described later by the above procedure. The lithium transition metal composite oxide according to the present embodiment maintains a Raman spectrum before and after charging and discharging in a powder state.
In addition, Fig. 4 (before charging / discharging), Fig. It is shown that the Raman spectrum hardly changes even at 5 (after charging / discharging).

<エックス線回折の測定方法>
本明細書において、エックス線回折測定は、次の条件にて行う。線源はCuKα、加速電圧は30kV、加速電流は15mAとする。サンプリング幅は0.01deg、スキャンスピードは1.0deg/min、発散スリット幅は0.625deg、受光スリットは開放、散乱スリットは8.0mmとする。
<Measurement method of X-ray diffraction>
In the present specification, the X-ray diffraction measurement is performed under the following conditions. The radioactive source is CuKα, the acceleration voltage is 30 kV, and the acceleration current is 15 mA. The sampling width is 0.01 deg, the scan speed is 1.0 deg / min, the divergent slit width is 0.625 deg, the light receiving slit is open, and the scattering slit is 8.0 mm.

図5は、本実施形態に係る正極活物質を用いた非水電解質二次電池に対して、正極合剤1g当たり10mAの電流値で、充電上限電位を4.35V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として初回の充放電(後述する実施例の初回充放電条件1に相当)を行った後の放電末状態における非水電解質二次電池(本実施形態に係る非水電解質二次電池)の正極に含有される活物質粉末について、上記の手順で測定したエックス線回折図である。図5では、20~22°の範囲に回折ピークが観察される。
図6は、同じ本実施形態に係る正極活物質を用いた非水電解質二次電池に対して、正極合剤1g当たり10mAの電流値で、充電上限電位を4.6V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として初回の充放電(後述する実施例の初回充放電条件2に相当)を行った後の放電末状態における非水電解質二次電池の正極に含有される活物質粉末について、上記の手順で測定したエックス線回折図である。図6では、20~22°の範囲に回折ピークが観察されない。
なお、後述する実施例の初回充放電条件2は、本実施形態に係る正極活物質の過充電領域における体積当たりの充電電気量を調査するために、充電上限電位を4.6V(vs.Li/Li)としたものであるから、初回充放電条件2を適用した後の非水電解質二次電池は、本実施形態に係る非水電解質二次電池ではない。
同じ本実施形態に係る正極活物質を用いた非水電解質二次電池に対して、充電上限電位を4.6V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として、初回の充放電を行った後、充電上限電位4.35V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として充放電を行った放電末状態における非水電解質二次電池の正極に含有される活物質粉末について、上記の手順で測定したところ、図6と同様のエックス線回折図が得られた。すなわち、上記のとおり、一度でも4.5V以上の電位まで充電を行うと、20~22°の範囲のピークは消失し、20~22°の範囲の回折ピークが再び現れることはない。
本実施形態に係る非水電解質二次電池は、上記の手順による充放電後のエックス線回折測定においても、正極活物質のエックス線回折図に20~22°の範囲の回折ピークが観察されることから、本実施形態に係る非水電解質二次電池は、初回充放電を含めて、4.5V(vs.Li/Li)未満の電位で使用された電池であることがわかる。
FIG. 5 shows a current value of 10 mA per 1 g of the positive electrode mixture and a charge upper limit potential of 4.35 V (vs. Li / Li + ) for the non-aqueous electrolyte secondary battery using the positive electrode active material according to the present embodiment. ), The non-aqueous electrolyte secondary in the discharge end state after the first charge / discharge (corresponding to the first charge / discharge condition 1 of the examples described later) with the lower discharge potential set to 2.0 V (vs. Li / Li + ). FIG. 5 is an X-ray discharge diagram measured by the above procedure for an active material powder contained in a positive electrode of a battery (a non-aqueous electrolyte secondary battery according to the present embodiment). In FIG. 5, diffraction peaks are observed in the range of 20 to 22 °.
FIG. 6 shows a current value of 10 mA per 1 g of the positive electrode mixture and a charge upper limit potential of 4.6 V (vs. Li / Li) for a non-aqueous electrolyte secondary battery using the positive electrode active material according to the same embodiment. + ), With the lower limit potential of discharge set to 2.0 V (vs. Li / Li + ), the non-aqueous electrolyte 2 in the discharge end state after the first charge / discharge (corresponding to the first charge / discharge condition 2 of the examples described later). It is an X-ray discharge chart which measured the active material powder contained in the positive electrode of the next battery by the above-mentioned procedure. In FIG. 6, no diffraction peak is observed in the range of 20 to 22 °.
In addition, in the initial charge / discharge condition 2 of the embodiment described later, in order to investigate the amount of charge electricity per volume in the overcharge region of the positive electrode active material according to the present embodiment, the upper limit charge potential is 4.6 V (vs. Li). Since it is / Li + ), the non-aqueous electrolyte secondary battery after applying the initial charge / discharge condition 2 is not the non-aqueous electrolyte secondary battery according to the present embodiment.
For a non-aqueous electrolyte secondary battery using the positive electrode active material according to the same embodiment, the charge upper limit potential is 4.6 V (vs. Li / Li + ) and the discharge lower limit potential is 2.0 V (vs. Li /). After the first charge / discharge as Li + ), the charge / discharge was performed with the charge upper limit potential of 4.35 V (vs. Li / Li + ) and the discharge lower limit potential of 2.0 V (vs. Li / Li + ). When the active material powder contained in the positive electrode of the non-aqueous electrolyte secondary battery in the end-discharged state was measured by the above procedure, an X-ray diffraction diagram similar to that in FIG. 6 was obtained. That is, as described above, once the battery is charged to a potential of 4.5 V or higher, the peak in the range of 20 to 22 ° disappears, and the diffraction peak in the range of 20 to 22 ° does not appear again.
In the non-aqueous electrolyte secondary battery according to the present embodiment, a diffraction peak in the range of 20 to 22 ° is observed in the X-ray diffraction diagram of the positive electrode active material even in the X-ray diffraction measurement after charging / discharging by the above procedure. It can be seen that the non-aqueous electrolyte secondary battery according to the present embodiment is a battery used at a potential of less than 4.5 V (vs. Li / Li + ) including the initial charge / discharge.

<リチウム遷移金属複合酸化物の製造方法>
本実施形態に係る正極活物質の製造方法において、リチウム遷移金属複合酸化物は、Ni及びMn、又はNi、Co及びMnを含み、Meに対するMnのモル比Mn/Meが0.3≦Mn/Me<0.55である遷移金属化合物に、Li化合物を混合し、焼成することにより、製造することができる。前記焼成の際には、焼結助剤を添加することが好ましい。
<Manufacturing method of lithium transition metal composite oxide>
In the method for producing a positive electrode active material according to the present embodiment, the lithium transition metal composite oxide contains Ni and Mn, or Ni, Co and Mn, and the molar ratio of Mn to Me, Mn / Me, is 0.3 ≦ Mn /. It can be produced by mixing a Li compound with a transition metal compound having Me <0.55 and firing it. At the time of the firing, it is preferable to add a sintering aid.

前記遷移金属化合物は、Ni及びMn、又はNi、Co及びMnをそれぞれ含む原料化合物を、pH10.2以下の水溶液中で反応させる共沈法によって製造される遷移金属水酸化物前駆体であることがより好ましい。pHを10.2以下とすることにより、粒子成長を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮でき、かつ、αMe(OH)及びβMe(OH)を含有する結晶構造を有する前駆体を製造することができる。αMe(OH)及びβMe(OH)を含有する結晶構造を有する前駆体は、αMe(OH)単相又はβMe(OH)単相の結晶構造を有する前駆体と比べてタップ密度を大きくすることができる。タップ密度の高い前駆体を用いて作製された電極は、プレス密度を高めることができるので、電極の抵抗を小さくすることができる。なお、pHが低すぎると、αMe(OH)単相の前駆体となるので、反応pHは9を超えることが好ましい。 The transition metal compound is a transition metal hydroxide precursor produced by a coprecipitation method in which a raw material compound containing Ni and Mn or Ni, Co and Mn is reacted in an aqueous solution having a pH of 10.2 or less. Is more preferable. By setting the pH to 10.2 or less, particle growth can be promoted, so that the stirring duration after the completion of dropping the aqueous solution of the raw material can be shortened, and a crystal structure containing αMe (OH) 2 and βMe (OH) 2 can be obtained. A precursor having can be produced. A precursor having a crystal structure containing αMe (OH) 2 and βMe (OH) 2 has a tap density higher than that of a precursor having a crystal structure of αMe (OH) 2 single phase or βMe (OH) 2 single phase. Can be made larger. An electrode made of a precursor having a high tap density can increase the press density, so that the resistance of the electrode can be reduced. If the pH is too low, it becomes a precursor of αMe (OH) 2 single phase, so that the reaction pH preferably exceeds 9.

水酸化物前駆体を製造する場合、アルカリ性を保った反応槽に、遷移金属(Me)を含有する溶液と共に、アルカリ金属水酸化物、錯化剤、及び、還元剤を含有するアルカリ溶液を加えて、遷移金属水酸化物を共沈させることが好ましい。
錯化剤としては、アンモニア、硫酸アンモニウム、硝酸アンモニウム等を用いることができ、アンモニアが好ましい。錯化剤を用いた晶析反応によって、よりタップ密度の大きな前駆体を作製することができる。
錯化剤と共に還元剤を用いることが好ましい。還元剤としては、ヒドラジン、水素化ホウ素ナトリウム等を用いることができ、ヒドラジンが好ましい。
アルカリ金属水酸化物(中和剤)には、水酸化ナトリウム、水酸化リチウム又は水酸化カリウムを使用することができる。
When producing a hydroxide precursor, an alkaline solution containing an alkali metal hydroxide, a complexing agent, and a reducing agent is added to a reaction vessel kept alkaline in addition to a solution containing a transition metal (Me). Therefore, it is preferable to co-precipitate the transition metal hydroxide.
As the complexing agent, ammonia, ammonium sulfate, ammonium nitrate and the like can be used, and ammonia is preferable. A precursor with a higher tap density can be produced by a crystallization reaction using a complexing agent.
It is preferable to use a reducing agent together with the complexing agent. As the reducing agent, hydrazine, sodium borohydride and the like can be used, and hydrazine is preferable.
Sodium hydroxide, lithium hydroxide or potassium hydroxide can be used as the alkali metal hydroxide (neutralizing agent).

Ni,Co,MnのうちMnは酸化されやすく、Ni,Mn、又はNi,Co,Mnが2価の状態で均一に分布した共沈物を作製することが容易ではないため、Ni,Mn、又はNi,Co,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。本実施形態に係る正極活物質の製造方法においては、遷移金属化合物の組成範囲におけるMeに対するMnのモル比Mn/Meが0.3以上であるので、水溶液中の溶存酸素を除去することが重要である。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)等を用いることができる。 Of Ni, Co, and Mn, Mn is easily oxidized, and it is not easy to prepare a coprecipitate in which Ni, Mn, or Ni, Co, and Mn are uniformly distributed in a divalent state. Therefore, Ni, Mn, Alternatively, uniform mixing of Ni, Co, and Mn at the atomic level tends to be inadequate. In the method for producing a positive electrode active material according to the present embodiment, since the molar ratio of Mn to Me in the composition range of the transition metal compound, Mn / Me, is 0.3 or more, it is important to remove the dissolved oxygen in the aqueous solution. Is. Examples of the method for removing dissolved oxygen include a method of bubbling a gas containing no oxygen. The gas containing no oxygen is not limited, but nitrogen gas, argon gas, carbon dioxide (CO 2 ) and the like can be used.

前記遷移金属化合物の原料は、Mn源としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を、Ni源としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co源としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を一例として挙げることができる。 The raw material of the transition metal compound is manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, manganese acetate or the like as the Mn source, and nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, nickel acetate or the like as the Ni source. As an example of the Co source, cobalt sulfate, cobalt nitrate, cobalt acetate and the like can be mentioned.

前記遷移金属化合物の原料水溶液を滴下供給する間、水酸化ナトリウム等のアルカリ金属水酸化物(中和剤)、アンモニア等の錯化剤、及び、ヒドラジン等の還元剤を含有する混合アルカリ溶液を適宜滴下する方法が好ましい。滴下するアルカリ金属水酸化物の濃度は、1.0~8.0Mであることが好ましい。錯化剤の濃度は、0.4M以上であることが好ましく、0.6M以上であることがより好ましい。また、2.0M以下であることが好ましく、1.6M以下であることがより好ましく、1.5M以下とすることがさらに好ましい。還元剤の濃度は、0.05~1.0Mであることが好ましく、0.1~0.5Mとすることがより好ましい。反応槽のpHを低くすると共に、アンモニア(錯化剤)の濃度を0.6M以上とすることにより、水酸化物前駆体のタップ密度を高くすることができる。 While the raw material aqueous solution of the transition metal compound is dropped and supplied, a mixed alkaline solution containing an alkali metal hydroxide (neutralizing agent) such as sodium hydroxide, a complexing agent such as ammonia, and a reducing agent such as hydrazine is prepared. A method of appropriately dropping is preferable. The concentration of the alkali metal hydroxide to be dropped is preferably 1.0 to 8.0 M. The concentration of the complexing agent is preferably 0.4 M or more, more preferably 0.6 M or more. Further, it is preferably 2.0 M or less, more preferably 1.6 M or less, and further preferably 1.5 M or less. The concentration of the reducing agent is preferably 0.05 to 1.0 M, more preferably 0.1 to 0.5 M. By lowering the pH of the reaction vessel and setting the concentration of ammonia (complexing agent) to 0.6 M or more, the tap density of the hydroxide precursor can be increased.

前記原料水溶液の滴下速度は、生成する水酸化物前駆体の1粒子内における元素分布の均一性に大きく影響を与える。特にMnは、NiやCoと均一な元素分布を形成しにくいので注意が必要である。好ましい滴下速度については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、30mL/min以下が好ましい。放電容量を向上させるためには、滴下速度は10mL/min以下がより好ましく、5mL/min以下が最も好ましい。 The dropping rate of the raw material aqueous solution greatly affects the uniformity of the element distribution within one particle of the produced hydroxide precursor. In particular, it should be noted that Mn does not easily form a uniform element distribution with Ni and Co. The preferable dropping rate is affected by the size of the reaction vessel, stirring conditions, pH, reaction temperature and the like, but is preferably 30 mL / min or less. In order to improve the discharge capacity, the dropping rate is more preferably 10 mL / min or less, and most preferably 5 mL / min or less.

また、反応槽内にアンモニア等の錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転および攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、水酸化物前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。従って、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた水酸化物前駆体を得ることができる。 Further, when a complexing agent such as ammonia is present in the reaction tank and certain convection conditions are applied, the particles rotate and revolve in the stirring tank by continuing stirring after the dropping of the raw material aqueous solution is completed. In this process, the particles gradually grow into concentric spheres while colliding with each other. That is, the hydroxide precursor undergoes a two-step reaction: a metal complex forming reaction when the raw material aqueous solution is dropped into the reaction vessel, and a precipitation forming reaction that occurs while the metal complex stays in the reaction vessel. It is formed through. Therefore, a hydroxide precursor having a target particle size can be obtained by appropriately selecting a time for further stirring after the completion of dropping of the raw material aqueous solution.

原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5h以上が好ましく、1h以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が充分でないものとなる虞を低減させるため、15h以下が好ましく、10h以下がより好ましく、5h以下が最も好ましい。 The preferable stirring duration after the completion of dropping the aqueous solution of the raw material is affected by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc., but 0.5 h or more is required to grow the particles as uniform spherical particles. It is preferable, 1h or more is more preferable. Further, in order to reduce the possibility that the output performance in the low SOC region of the battery becomes insufficient due to the particle size becoming too large, 15 hours or less is preferable, 10 hours or less is more preferable, and 5 hours or less is most preferable.

また、水酸化物前駆体及びリチウム遷移金属複合酸化物の2次粒子の粒度分布における累積体積は、50%となる粒子径であるD50を13μm以下とすることが好ましい。そのためには、例えば、pHを9.1~10.2に制御した場合には、攪拌継続時間は1~3hが好ましい。 Further, the cumulative volume of the secondary particles of the hydroxide precursor and the lithium transition metal composite oxide in the particle size distribution is preferably 13 μm or less, which is the particle size of 50%. For that purpose, for example, when the pH is controlled to 9.1 to 10.2, the stirring duration is preferably 1 to 3 hours.

水酸化物前駆体の粒子を、中和剤として水酸化ナトリウム等のナトリウム化合物を使用して作製した場合、その後の洗浄工程において粒子に付着しているナトリウムイオンを洗浄除去することが好ましい。例えば、作製した水酸化物前駆体を吸引ろ過して取り出す際に、イオン交換水500mLによる洗浄回数を6回以上とするような条件を採用することができる。 When the particles of the hydroxide precursor are prepared by using a sodium compound such as sodium hydroxide as a neutralizing agent, it is preferable to wash and remove the sodium ions adhering to the particles in the subsequent washing step. For example, when the produced hydroxide precursor is suction-filtered and taken out, a condition can be adopted such that the number of washings with 500 mL of ion-exchanged water is 6 times or more.

上記のようにして作製した水酸化物前駆体(遷移金属化合物)に、Li化合物を混合し、焼成することにより、リチウム遷移金属複合酸化物を製造する。
遷移金属化合物と混合するLi化合物としては、水酸化リチウム、硝酸リチウム、炭酸リチウム、酢酸リチウム等を用いることができる。
A lithium transition metal composite oxide is produced by mixing a Li compound with the hydroxide precursor (transition metal compound) produced as described above and firing the compound.
As the Li compound to be mixed with the transition metal compound, lithium hydroxide, lithium nitrate, lithium carbonate, lithium acetate and the like can be used.

遷移金属化合物とLi化合物を混合して焼成する際には、焼結助剤を添加することが好ましい。焼結助剤としては、フッ化リチウム(LiF)、炭酸リチウム(LiCO)、フッ化ナトリウム(NaF)、塩化ナトリウム(NaCl)、硫酸リチウム(LiSO)、リン酸リチウム(LiPO)、塩化リチウム(LiCl)、塩化マグネシウム(MgCl)又は塩化カルシウム(CaCl)を使用することが好ましい。上記のように、炭酸リチウムは、リチウム遷移金属複合酸化物を製造するためのLi化合物として用いられるが、後述する実施例のように、上記のリチウム化合物として水酸化リチウムを用いた場合には、炭酸リチウムは焼結助剤として機能する。これらの焼結助剤の添加比率は、Li化合物の総量に対して1~10mol%とすることが好ましい。なお、Li化合物の総量は、焼成中にLi化合物の一部が消失することを見込んで、1~5%程度過剰に仕込むことが好ましい。 When the transition metal compound and the Li compound are mixed and fired, it is preferable to add a sintering aid. Examples of the sintering aid include lithium fluoride (LiF), lithium carbonate (Li 2 CO 3 ), sodium fluoride (NaF), sodium chloride (NaCl), lithium sulfate (Li 2 SO 4 ), and lithium phosphate (Li). 3 It is preferable to use PO 4 ), lithium chloride (LiCl), magnesium chloride (MgCl 2 ) or calcium chloride (CaCl 2 ). As described above, lithium carbonate is used as a Li compound for producing a lithium transition metal composite oxide, but when lithium hydroxide is used as the lithium compound as described in Examples described later, lithium carbonate is used. Lithium carbonate functions as a sintering aid. The addition ratio of these sintering aids is preferably 1 to 10 mol% with respect to the total amount of the Li compound. It is preferable that the total amount of the Li compound is excessively charged by about 1 to 5% in anticipation that a part of the Li compound will disappear during firing.

焼成温度は、活物質の可逆容量に影響を与える。
焼成温度が高すぎると、得られた活物質が酸素放出反応を伴って崩壊すると共に、主相の六方晶に加えて単斜晶のLi[Li1/3Mn2/3]O型に規定される相が、固溶相としてではなく、分相して観察される傾向がある。このような分相が多く含まれすぎると、活物質の可逆容量の減少を招くので好ましくない。このような材料では、エックス線回折図上35°付近及び45°付近に不純物ピークが観察される。したがって、焼成温度は、活物質の酸素放出反応の影響する温度未満とすることが好ましい。活物質の酸素放出温度は、活物質の組成によって若干の差があり、本実施形態に係る正極活物質では、概ね1000℃以上であるが、あらかじめ活物質の酸素放出温度を確認しておくことが好ましい。特に試料に含まれるCo量が多いほど水酸化物前駆体の酸素放出温度は低温側にシフトすることが確認されているので注意が必要である。活物質の酸素放出温度を確認する方法としては、焼成反応過程をシミュレートするために、水酸化物前駆体とリチウム化合物を混合したものを熱質量分析(TG-DTA測定)に供してもよいが、この方法では測定機器の試料室に用いている白金が揮発したLi成分により腐食されて機器を傷めるおそれがあるので、あらかじめ500℃程度の焼成温度を採用してある程度結晶化を進行させた組成物を熱質量分析に供するのが良い。
The firing temperature affects the reversible capacity of the active material.
If the firing temperature is too high, the obtained active material will disintegrate with an oxygen release reaction, and in addition to the hexagonal crystal of the main phase, it will become a monoclinic Li [Li 1/3 Mn 2/3 ] O 2 type. The defined phase tends to be observed as a phase-separated phase rather than as a solid solution phase. If too much of such a phase separation is contained, the reversible capacity of the active material is reduced, which is not preferable. In such a material, impurity peaks are observed near 35 ° and around 45 ° on the X-ray diffraction pattern. Therefore, the firing temperature is preferably lower than the temperature affected by the oxygen release reaction of the active material. The oxygen release temperature of the active material varies slightly depending on the composition of the active material, and the positive electrode active material according to the present embodiment is generally 1000 ° C. or higher, but the oxygen release temperature of the active material should be confirmed in advance. Is preferable. In particular, it has been confirmed that the oxygen release temperature of the hydroxide precursor shifts to the lower temperature side as the amount of Co contained in the sample increases, so caution is required. As a method for confirming the oxygen release temperature of the active material, a mixture of a hydroxide precursor and a lithium compound may be subjected to thermogravimetric analysis (TG-DTA measurement) in order to simulate the firing reaction process. However, in this method, the platinum used in the sample chamber of the measuring instrument may be corroded by the volatilized Li component and damage the instrument. Therefore, a firing temperature of about 500 ° C. was adopted in advance to promote crystallization to some extent. The composition should be subjected to thermogravimetric analysis.

一方、焼成温度が低すぎると、結晶化が十分に進まず、電極特性が低下する傾向がある。十分に結晶化させることにより、結晶粒界の抵抗を軽減し、円滑なリチウムイオン輸送を促すことができる。
したがって、好ましい焼成温度は、活物質の組成による酸素放出温度により異なるが、本実施形態に係る正極活物質の製造方法において、体積当たりの放電容量が十分な活物質を得るためには、焼成温度を800~1000℃とすることが好ましく、850~950℃とすることがより好ましい。
On the other hand, if the firing temperature is too low, crystallization does not proceed sufficiently and the electrode characteristics tend to deteriorate. Sufficient crystallization can reduce the resistance of grain boundaries and promote smooth lithium ion transport.
Therefore, the preferable firing temperature varies depending on the oxygen release temperature depending on the composition of the active material, but in the method for producing the positive electrode active material according to the present embodiment, in order to obtain an active material having a sufficient discharge capacity per volume, the firing temperature is used. Is preferably 800 to 1000 ° C, more preferably 850 to 950 ° C.

<正極>
本実施形態に係る非水電解質二次電池用正極は、上記の正極活物質を主成分とする粉体を含む。その他の成分として、導電剤、結着剤、増粘剤、フィラー等を含有していてもよい。
<Positive electrode>
The positive electrode for a non-aqueous electrolyte secondary battery according to the present embodiment contains the powder containing the above-mentioned positive electrode active material as a main component. As other components, a conductive agent, a binder, a thickener, a filler and the like may be contained.

正極活物質の粉体は、平均粒子サイズは100μm以下であることが好ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上させる点で15μm以下であることが好ましい。粉体を所定の形状で得るためには、所定の大きさの前駆体を作製する方法や、粉砕機、分級機などを用いる方法がある。粉砕には、例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミルや篩などが用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。 The powder of the positive electrode active material preferably has an average particle size of 100 μm or less. In particular, the powder of the positive electrode active material is preferably 15 μm or less in terms of improving the high output characteristics of the non-aqueous electrolyte battery. In order to obtain the powder in a predetermined shape, there are a method of producing a precursor having a predetermined size, a method of using a crusher, a classifier and the like. For pulverization, for example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve, or the like is used. At the time of pulverization, wet pulverization in which water or an organic solvent such as hexane coexists can also be used. The classification method is not particularly limited, and a sieve, a wind power classifier, or the like is used as needed for both dry and wet types.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。 The conductive agent is not limited as long as it is an electronically conductive material that does not adversely affect the battery performance, but is usually natural graphite (scaly graphite, scaly graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, etc. Conductive materials such as Ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, conductive ceramic material, etc. can be contained as one kind or a mixture thereof. ..

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが好ましい。導電剤の添加量は、正極の総質量に対して0.1質量%~50質量%が好ましく、特に0.5質量%~30質量%が好ましい。特にアセチレンブラックを0.1~0.5μmの超微粒子に粉砕して用いると、必要炭素量を削減できるため好ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を用いて、乾式、あるいは湿式で混合することが可能である。 Among these, acetylene black is preferable as the conductive agent from the viewpoint of electron conductivity and coatability. The amount of the conductive agent added is preferably 0.1% by mass to 50% by mass, particularly preferably 0.5% by mass to 30% by mass, based on the total mass of the positive electrode. In particular, it is preferable to pulverize acetylene black into ultrafine particles of 0.1 to 0.5 μm and use it because the required carbon amount can be reduced. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, it is possible to mix by a dry type or a wet type by using a powder mixer such as a V-type mixer, an S-type mixer, a stirring machine, a ball mill, and a planetary ball mill.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン-プロピレン-ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極の総質量に対して1~50質量%が好ましく、特に2~30質量%が好ましい。 Examples of the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene and polypropylene, ethylene-propylene-dienter polymer (EPDM), sulfonated EPDM and styrene butadiene. A polymer having rubber elasticity such as rubber (SBR) and fluororubber can be used as one kind or a mixture of two or more kinds. The amount of the binder added is preferably 1 to 50% by mass, particularly preferably 2 to 30% by mass, based on the total mass of the positive electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば限定されない。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極の総質量に対して30質量%以下が好ましい。 The filler is not limited as long as it is a material that does not adversely affect the battery performance. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The amount of the filler added is preferably 30% by mass or less with respect to the total mass of the positive electrode.

<負極>
上記の正極と組み合わせる負極に用いる負極活物質としては、限定されない。リチウムイオンを吸蔵及び放出することのできる形態のものであれば適宜選択できる。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料リチウム金属、リチウム合金(リチウム-シリコン、リチウム-アルミニウム,リチウム-鉛,リチウム-スズ,リチウム-アルミニウム-スズ,リチウム-ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム-チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。
負極活物質は、正極活物質と同様、粉体として用いられ、負極は正極と同様、その他の成分を含んでいてよい。
<Negative electrode>
The negative electrode active material used for the negative electrode to be combined with the above positive electrode is not limited. Any form that can occlude and release lithium ions can be appropriately selected. For example, a titanium-based material such as lithium titanate having a spinel-type crystal structure represented by Li [Li 1/3 Ti 5/3 ] O4 , an alloy-based material such as Si, Sb, Sn, lithium metal, and a lithium alloy. (Lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and lithium metal-containing alloys such as wood alloys), lithium composite oxide (lithium-titanium), silicon oxide In addition, alloys capable of storing and releasing lithium, carbon materials (for example, graphite, hard carbon, low temperature fired carbon, amorphous carbon, etc.) and the like can be mentioned.
The negative electrode active material is used as a powder like the positive electrode active material, and the negative electrode may contain other components like the positive electrode.

<正極及び負極の作製>
正極及び負極は、前記主成分(各活物質)及びその他の材料を混練し合剤とし、N-メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、または圧着して50℃~250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが好ましいが、これらに限定されるものではない。
<Manufacturing of positive and negative electrodes>
For the positive electrode and the negative electrode, the main components (each active material) and other materials are kneaded to form a mixture, which is mixed with an organic solvent such as N-methylpyrrolidone or toluene or water, and then the obtained mixed solution is described below. It is suitably produced by applying it on a current collector to be described in detail, crimping it, and heat-treating it at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. Regarding the above-mentioned coating method, for example, it is preferable to apply the coating to an arbitrary thickness and an arbitrary shape by using a means such as a roller coating such as an applicator roll, a screen coating, a doctor blade method, a spin coating, and a bar coater. Not limited.

集電体としては、Al箔、Cu箔等の集電箔を用いることができる。正極の集電箔としてはAl箔が好ましく、負極の集電箔としてはCu箔が好ましい。集電箔の厚みは10~30μmが好ましい。また、合剤層の厚みはプレス後において、40~150μm(集電箔厚みを除く)が好ましい。 As the current collector, a current collector foil such as Al foil or Cu foil can be used. Al foil is preferable as the current collector foil of the positive electrode, and Cu foil is preferable as the current collector foil of the negative electrode. The thickness of the current collector foil is preferably 10 to 30 μm. The thickness of the mixture layer is preferably 40 to 150 μm (excluding the thickness of the current collector foil) after pressing.

<非水電解質>
非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム二次電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
<Non-water electrolyte>
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery is not limited, and generally, those proposed for use in lithium secondary batteries and the like can be used. Examples of the non-aqueous solvent used for the non-aqueous electrolyte include cyclic carbonate esters such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate and vinylene carbonate; cyclic esters such as γ-butylolactone and γ-valerolactone; dimethyl carbonate, Chain carbonates such as diethyl carbonate and ethylmethyl carbonate; Chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or its derivatives; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyetane, methyl diglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfolane, sulton or derivatives thereof alone or two or more thereof. Examples include, but are not limited to, mixtures.

非水電解質に用いる電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF、LiSCN、LiBr、LiI、LiSO、Li10Cl10、NaClO、NaI、NaSCN、NaBr、KClO、KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、(CHNBF、(CHNBr、(CNClO、(CNI、(CNBr、(n-CNClO、(n-CNI、(CN-maleate、(CN-benzoate、(CN-phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr. , KClO 4 , KSCN and other inorganic ionic salts containing one of lithium (Li), sodium (Na) or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 ). SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C) 4 H 9 ) 4 NI, (C 2 H 5 ) 4 N-malate, (C 2 H 5 ) 4 N-benzoate, (C 2 H 5 ) 4 N-phthate, lithium stearylsulfonate, lithium octylsulfonate, Examples thereof include organic ionic salts such as lithium dodecylbenzenesulfonate, and these ionic compounds can be used alone or in combination of two or more.

さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より好ましい。
また、非水電解質として常温溶融塩やイオン液体を用いてもよい。
Further, by using a mixture of LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further lowered. It is more preferable because the low temperature characteristics can be further enhanced and self-discharge can be suppressed.
Further, a room temperature molten salt or an ionic liquid may be used as the non-aqueous electrolyte.

非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/L~5mol/Lが好ましく、さらに好ましくは、0.5mol/L~2.5mol/Lである。 The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / L to 5 mol / L, more preferably 0.5 mol / L to 2 in order to surely obtain a non-aqueous electrolyte battery having high battery characteristics. It is .5 mol / L.

<セパレータ>
非水電解質二次電池のセパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独使用あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-パーフルオロビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-フルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロアセトン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-プロピレン共重合体、フッ化ビニリデン-トリフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン-テトラフルオロエチレン共重合体等を挙げることができる。
<Separator>
As the separator of the non-aqueous electrolyte secondary battery, it is preferable to use or use a porous membrane, a non-woven fabric, or the like exhibiting excellent high rate discharge performance alone or in combination. Examples of the material constituting the separator for a non-aqueous electrolyte battery include a polyolefin resin typified by polyethylene and polypropylene, a polyester resin typified by polyethylene terephthalate and polybutylene terephthalate, and vinylidene fluoride and vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, foot Vinylidene-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene Examples thereof include a copolymer, vinylidene fluoride-ethylene-tetrafluoroethylene copolymer and the like.

セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。 The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, from the viewpoint of charge / discharge characteristics, the porosity is preferably 20% by volume or more.

また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。 Further, as the separator, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinylpyrrolidone, polyvinylidene fluoride and the like and an electrolyte may be used. It is preferable to use the non-aqueous electrolyte in the gel state as described above because it has an effect of preventing liquid leakage.

さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため好ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。 Further, it is preferable to use the separator in combination with the above-mentioned porous membrane, non-woven fabric or the like and the polymer gel because the liquid retention property of the electrolyte is improved. That is, the pro-solvent polymer is formed by forming a film coated with a pro-solvent polymer having a thickness of several μm or less on the surface of the polyethylene micropore membrane and the micropore wall surface, and retaining the electrolyte in the micropores of the film. Gells.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、電子線(EB)照射、又は、ラジカル開始剤を添加して加熱若しくは紫外線(UV)照射を行うこと等により、架橋反応を行わせることが可能である。 Examples of the pro-solvent polymer include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group and an ester group, an epoxy monomer, a polymer having a crosslinked monomer such as an isocyanato group, and the like. The monomer can be subjected to a cross-linking reaction by irradiation with an electron beam (EB), heating by adding a radical initiator, or irradiation with ultraviolet rays (UV).

<非水電解質二次電池の構成>
非水電解質二次電池の構成については特に限定されるものではなく、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。
図7に、本発明の一実施形態に係る矩形状の非水電解質二次電池1の外観斜視図を示す。なお、同図は、容器内部を透視した図としている。図7に示す非水電解質二次電池1は、電極群2が電池容器3に収納されている。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
<Structure of non-aqueous electrolyte secondary battery>
The configuration of the non-aqueous electrolyte secondary battery is not particularly limited, and examples thereof include a cylindrical battery having a positive electrode, a negative electrode, and a roll-shaped separator, a square battery (rectangular battery), and a flat battery. Be done.
FIG. 7 shows an external perspective view of the rectangular non-aqueous electrolyte secondary battery 1 according to the embodiment of the present invention. The figure is a perspective view of the inside of the container. In the non-aqueous electrolyte secondary battery 1 shown in FIG. 7, the electrode group 2 is housed in the battery container 3. The electrode group 2 is formed by winding a positive electrode having a positive electrode active material and a negative electrode having a negative electrode active material via a separator. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4', and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5'.

本実施形態に係る非水電解質二次電池は、上記の正極活物質を含有する正極を備え、前記正極に含有される正極活物質がCuKα線を用いたエックス線回折図において20~22°の範囲に回折ピークが観察されるか、又は、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、電池である。
上記の正極に含有される正極活物質が20~22°の範囲に回折ピークが観察される非水電解質二次電池は、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする方法(本実施形態に係る非水電解質二次電池の製造方法)により製造されるので、前記電位変化が比較的平坦な領域が観察される。
そして、上記の電位変化が比較的平坦な領域を有することにより、過充電領域における体積当たりの充電電気量が大きくなるので、より高いSOCに至るまで電池電圧の急上昇が観察されない。
The non-aqueous electrolyte secondary battery according to the present embodiment includes a positive electrode containing the above-mentioned positive electrode active material, and the positive electrode active material contained in the positive electrode is in the range of 20 to 22 ° in an X-ray diffraction diagram using CuKα rays. When a diffraction peak is observed or the positive electrode potential is charged to 5.0 V (vs. Li / Li + ), the positive electrode is 4.5 to 5.0 V (vs. Li / Li + ). It is a battery in which a region where the potential change is relatively flat with respect to the amount of charging electricity is observed within the potential range.
In the non-aqueous electrolyte secondary battery in which the diffraction peak of the positive electrode active material contained in the above positive electrode is observed in the range of 20 to 22 °, the maximum ultimate potential of the positive electrode in the initial charge / discharge step is 4.5 V (vs. Li). Since it is manufactured by a method of less than / Li + ) (a method for manufacturing a non-aqueous electrolyte secondary battery according to the present embodiment), a region where the potential change is relatively flat is observed.
Since the above-mentioned potential change has a relatively flat region, the amount of charging electricity per volume in the overcharge region becomes large, so that a rapid increase in the battery voltage is not observed until a higher SOC is reached.

<電位変化が平坦な領域の確認方法>
「充電電気量に対して電位変化が比較的平坦な領域」(以下、「電位変化が平坦な領域」という。)が観察されることの確認は、以下の手順による。解体して取り出した正極板を作用極、Li金属を対極とした試験電池を作製し、前記試験電池を正極合剤1g当たり10mAの電流値で2.0V(vs.Li/Li)まで放電したのち、30分の休止を行う。その後正極合剤1g当たり10mAの電流値で5.0V(vs.Li/Li+)まで定電流充電を行う。ここで、充電開始から4.45V(vs.Li/Li)到達時の容量X(mAh)に対する、各電位における容量Y(mAh)の比をZ(=Y/X*100(%))とする。横軸に電位、縦軸に分母を電位変化の差分、分子を容量比変化の差分としたdZ/dVをとり、dZ/dVカーブを得る。
図8の実線は、リチウム過剰型活物質を正極活物質として用いた正極とLi金属を用いた負極とを備えた非水電解質二次電池を組み立て、初回の充電を4.5V(vs.Li/Li)未満とした本実施形態に係る非水電解質二次電池について、4.6V(vs.Li/Li)に至る充電を行ったときのdZ/dVカーブの一例である。dZ/dVカーブは計算式からも分かるように、容量比変化に対し、電位変化が小さいときはdZ/dVの値が大きくなり、容量比変化に対し、電位変化が大きいときはdZ/dVの値が小さくなる。リチウム過剰型活物質の4.5V(vs.Li/Li)を超えた電位領域での充電過程では、電位変化が平坦な領域が見え始めたところで、dZ/dVの値は大きくなる。その後電位変化が平坦な領域が終了し、電位が再び上昇し始めた場合は、dZ/dVの値は小さくなる。すなわち、dZ/dVカーブにおいて、ピークが観察される。ここで、4.5V(vs.Li/Li)から5.0V(vs.Li/Li)の範囲におけるdZ/dVの最大値が150以上を示す場合、電位変化が平坦な領域が観察されると判断する。一方、破線は、上記した非水電解質二次電池と同様の構成の電池で、初回に上限4.6V(vs.Li/Li)、下限2.0V(vs.Li/Li)とした充放電を行った非水電解質二次電池について、10分の休止を挟んだのち、2回目の充電を上限4.6V(vs.Li/Li)として充電を行ったときのdZ/dVカーブである。破線では、実線のようなピークは観察されていない。すなわち、リチウム過剰型活物質を含有する正極を備えた非水電解質二次電池を、一度でも4.5V(vs.Li/Li+)以上の電位変化が平坦な領域が終了するまで充電を行うと、以降の4.5V(vs.Li/Li+)以上の電位での充電工程では、dZ/dVカーブにおいてピークが観察されない。なお、本明細書において、通常使用時とは、当該非水電解質二次電池について推奨され、又は指定される充放電条件を採用して当該非水電解質二次電池を使用する場合であり、当該非水電解質二次電池のための充電器が用意されている場合は、その充電器を適用して当該非水電解質二次電池を使用する場合をいう。
<How to check the area where the potential change is flat>
Confirmation that "a region where the potential change is relatively flat with respect to the amount of charging electricity" (hereinafter referred to as "a region where the potential change is flat") is observed is by the following procedure. A test battery was prepared using the positive electrode plate taken out after disassembly as the working electrode and the Li metal as the counter electrode, and the test battery was discharged to 2.0 V (vs. Li / Li + ) at a current value of 10 mA per 1 g of the positive electrode mixture. After that, a 30-minute rest is performed. After that, constant current charging is performed up to 5.0 V (vs. Li / Li + ) with a current value of 10 mA per 1 g of the positive electrode mixture. Here, the ratio of the capacity Y (mAh) at each potential to the capacity X (mAh) when 4.45 V (vs. Li / Li + ) is reached from the start of charging is Z (= Y / X * 100 (%)). And. The horizontal axis is the potential, the vertical axis is the difference in the potential change, and the numerator is the difference in the volume ratio change, and dZ / dV is taken to obtain a dZ / dV curve.
The solid line in FIG. 8 shows a non-aqueous electrolyte secondary battery equipped with a positive electrode using a lithium excess type active material as a positive electrode active material and a negative electrode using a Li metal, and the initial charge is 4.5 V (vs. Li). This is an example of a dZ / dV curve when the non-aqueous electrolyte secondary battery according to the present embodiment having a value of less than / Li + ) is charged to 4.6 V (vs. Li / Li + ). As can be seen from the calculation formula, the dZ / dV curve has a large dZ / dV value when the potential change is small with respect to the capacitance ratio change, and dZ / dV when the potential change is large with respect to the capacitance ratio change. The value becomes smaller. In the charging process of the lithium excess type active material in the potential region exceeding 4.5 V (vs. Li / Li + ), the value of dZ / dV becomes large when the region where the potential change is flat begins to be seen. After that, when the region where the potential change is flat ends and the potential starts to rise again, the value of dZ / dV becomes small. That is, a peak is observed in the dZ / dV curve. Here, when the maximum value of dZ / dV in the range of 4.5 V (vs. Li / Li + ) to 5.0 V (vs. Li / Li + ) is 150 or more, a region where the potential change is flat is observed. Judge to be done. On the other hand, the broken line is a battery having the same configuration as the above-mentioned non-aqueous electrolyte secondary battery, with an upper limit of 4.6 V (vs. Li / Li + ) and a lower limit of 2.0 V (vs. Li / Li + ) for the first time. The dZ / dV curve when the non-aqueous electrolyte secondary battery that has been charged and discharged is charged with a pause of 10 minutes and then the second charge is set to the upper limit of 4.6 V (vs. Li / Li + ). Is. In the broken line, no peak like the solid line is observed. That is, the non-aqueous electrolyte secondary battery provided with the positive electrode containing the lithium excess type active material is charged until the region where the potential change of 4.5 V (vs. Li / Li + ) or more is flat is completed even once. In the subsequent charging step at a potential of 4.5 V (vs. Li / Li + ) or higher, no peak is observed in the dZ / dV curve. In the present specification, the term "normal use" refers to the case where the non-aqueous electrolyte secondary battery is used by adopting the charge / discharge conditions recommended or specified for the non-aqueous electrolyte secondary battery. When a charger for a non-aqueous electrolyte secondary battery is prepared, it means a case where the charger is applied to use the non-aqueous electrolyte secondary battery.

<体積当たりの放電容量及び充電電気量の算出方法>
本明細書において、プレス密度の測定条件は次のとおりである。測定は室温20℃以上25℃以下の大気中にて行う。プレス密度の測定に用いた装置の概念図を図9に示す。一対の測定プローブ1A、1Bを準備する。測定プローブ1A、1Bは、直径8.0mm(±0.05mm)のステンレス鋼(SUS304)製の円柱の一端を平面加工した測定面2A、2Bを有し、他端をステンレス鋼製の台座3A、3Bに前記円柱を垂直に固定したものである。アクリル製の円柱の中心部に、前記ステンレス鋼製円柱が重力によって空気中で自然にゆっくりと下降しうるように内径を調整し研磨加工された貫通孔7を設けた側体6を準備する。側体6の上面及び下面は平滑に研磨加工されている。
一方の前記測定プローブ1Aを測定面2Aが上方を向くように水平な机上に設置し、上方から前記側体6を被せるようにして側体6の貫通孔7に前記測定プローブ1Aの円柱部を挿入する。もう一方の測定プローブ1Bを測定面2Bを下にして前記貫通孔7の上方から挿入し、前記測定面2A、2B間の距離をゼロの状態とする。このとき、ノギスを用いて測定プローブ1Bの台座3Bと測定プローブ1Aの台座3Aとの距離を測定しておく。
<Calculation method of discharge capacity and charge electricity amount per volume>
In the present specification, the measurement conditions of the press density are as follows. The measurement is performed in the air at room temperature of 20 ° C. or higher and 25 ° C. or lower. FIG. 9 shows a conceptual diagram of the device used for measuring the press density. Prepare a pair of measurement probes 1A and 1B. The measuring probes 1A and 1B have measuring surfaces 2A and 2B obtained by flattening one end of a stainless steel (SUS304) cylinder having a diameter of 8.0 mm (± 0.05 mm) and a pedestal 3A made of stainless steel at the other end. The cylinder is vertically fixed to 3B. A side body 6 provided with a through hole 7 whose inner diameter is adjusted and polished so that the stainless steel cylinder can naturally and slowly descend in the air by gravity is prepared at the center of the acrylic cylinder. The upper surface and the lower surface of the side body 6 are smoothly polished.
One of the measuring probes 1A is placed on a horizontal desk so that the measuring surface 2A faces upward, and the cylindrical portion of the measuring probe 1A is placed in the through hole 7 of the side body 6 so as to cover the side body 6 from above. insert. The other measuring probe 1B is inserted from above the through hole 7 with the measuring surface 2B facing down, and the distance between the measuring surfaces 2A and 2B is set to zero. At this time, the distance between the pedestal 3B of the measuring probe 1B and the pedestal 3A of the measuring probe 1A is measured using a caliper.

次に、測定プローブ1Bを引き抜き、貫通孔7の上部から薬さじで0.3gの被測定試料の粉末(正極活物質粉末)を投入し、再度、測定プローブ1Bを測定面2Bを下にして前記貫通孔7の上方から挿入する。圧力計の付いた手動式の油圧プレス機を用いて前記測定プローブ1Bの上方から、プレス機の圧力目盛りが2MPaに達するまで加圧する。なお、前記目盛りが2MPaに達した後、前記目盛りが示す値が減じても追加の加圧は行わない。この状態、即ち、被測定試料が400Nに達するまで加圧された状態で、再び、ノギスを用いて測定プローブ1Bの台座3Bと測定プローブ1Aの台座3Aとの距離を測定する。被測定試料投入前の距離との差(cm)と、測定面の面積(0.5024cm)と被測定試料の投入量(0.3g)から、加圧された状態の被測定試料の密度を算出し、これをプレス密度(g/cm)とする。
上記のようにして測定された正極活物質粉末のプレス密度と質量当たりの放電容量及び充電電気量をかけ合わせることによって、体積当たりの放電容量及び充電電気量を算出する。
Next, the measurement probe 1B is pulled out, 0.3 g of the powder of the sample to be measured (positive electrode active material powder) is charged from the upper part of the through hole 7 with a spatula, and the measurement probe 1B is again placed with the measurement surface 2B facing down. It is inserted from above the through hole 7. Using a manual hydraulic press equipped with a pressure gauge, pressurize from above the measuring probe 1B until the pressure scale of the press reaches 2 MPa. After the scale reaches 2 MPa, no additional pressurization is performed even if the value indicated by the scale decreases. In this state, that is, in a state where the sample to be measured is pressurized until it reaches 400 N, the distance between the pedestal 3B of the measurement probe 1B and the pedestal 3A of the measurement probe 1A is measured again using a caliper. The density of the sample to be measured in a pressurized state from the difference (cm) from the distance before the sample to be measured, the area of the measurement surface (0.5024 cm 2 ) and the amount of the sample to be measured (0.3 g). Is calculated, and this is used as the press density (g / cm 3 ).
The discharge capacity and charge electricity amount per volume are calculated by multiplying the press density of the positive electrode active material powder measured as described above by the discharge capacity per mass and the charge electricity amount.

<蓄電装置の構成>
上記の非水電解質二次電池を複数個集合した蓄電装置も、本発明の一実施形態に含まれる。図10に示す蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
<Configuration of power storage device>
A power storage device in which a plurality of the above-mentioned non-aqueous electrolyte secondary batteries are assembled is also included in one embodiment of the present invention. The power storage device 30 shown in FIG. 10 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of non-aqueous electrolyte secondary batteries 1. The power storage device 30 can be mounted as a power source for an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), or the like.

本実施形態に係る非水電解質二次電池は、上記過充電領域が終了するまでの充電過程を一度も経ないで製造され、かつ、上記過充電領域が終了するまでの充電を行わずに使用されることを前提としている。製造時の上記充電過程及び使用時に採用する充電電圧は、当該充電によって正極が到達する最大到達電位、即ち充電上限電位が、過充電領域が開始する電位以下となるように設定することが好ましい。初期充放電工程における充電上限電位、及び使用時の充電上限電位は4.5V(vs.Li/Li)未満とすることが好ましい。上記充電上限電位は、例えば、4.40V(vs.Li/Li)とすることができる。上記充電上限電位は、4.38V(vs.Li/Li)であってもよく、4.36V(vs.Li/Li)であってもよく、4.34V(vs.Li/Li)であってもよく、4.32V(vs.Li/Li)であってもよい。 The non-aqueous electrolyte secondary battery according to the present embodiment is manufactured without undergoing a charging process until the end of the overcharge region, and is used without charging until the end of the overcharge region. It is assumed that it will be done. It is preferable that the charging voltage adopted during the charging process during manufacturing and during use is set so that the maximum ultimate potential reached by the positive electrode due to the charging, that is, the upper limit charging potential is equal to or lower than the potential at which the overcharge region starts. The upper limit potential for charging in the initial charge / discharge step and the upper limit potential for charging during use are preferably less than 4.5 V (vs. Li / Li + ). The upper limit potential for charging can be, for example, 4.40 V (vs. Li / Li + ). The upper charge potential may be 4.38 V (vs. Li / Li + ), 4.36 V (vs. Li / Li + ), or 4.34 V (vs. Li / Li + ). ), And may be 4.32 V (vs. Li / Li + ).

まず、同一組成の遷移金属化合物を使用し、リチウム遷移金属複合酸化物の製造条件を変化させた実施例1~10及び比較例1を示す。 First, Examples 1 to 10 and Comparative Example 1 in which the transition metal compounds having the same composition are used and the production conditions of the lithium transition metal composite oxide are changed are shown.

<リチウム遷移金属複合酸化物の作製>
(実施例1)
リチウム遷移金属複合酸化物の作製にあたって、反応晶析法を用いて水酸化物前駆体を作製した。まず、硫酸ニッケル6水和物578.3g、硫酸コバルト7水和物56.2g、硫酸マンガン5水和物385.7gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が55:5:40となる1.0Mの硫酸塩水溶液を作製した。次に、5Lの反応槽に2Lのイオン交換水を注ぎ、Nガスを30minバブリングさせることにより、イオン交換水中に含まれる酸素を除去した。反応槽の温度は50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を1500rpmの回転速度で攪拌しながら、反応層内に対流が十分おこるように設定した。前記硫酸塩原液を1.3mL/minの速度で反応槽に50hr滴下した。ここで、滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、1.25Mのアンモニア、及び0.1Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHが常に10.20(±0.1)を保つように制御すると共に、反応液の一部をオーバーフローにより排出することにより、反応液の総量が常に2Lを超えないように制御した。滴下終了後、反応槽内の攪拌をさらに1h継続した。攪拌の停止後、室温で12h以上静置した。 次に、吸引ろ過装置を用いて、反応槽内に生成した水酸化物前駆体粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20h乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、Ni:Co:Mnのモル比が55:5:40である水酸化物前駆体を作製した。
<Preparation of Lithium Transition Metal Composite Oxide>
(Example 1)
In the preparation of the lithium transition metal composite oxide, a hydroxide precursor was prepared by using a reaction crystallization method. First, 578.3 g of nickel sulfate hexahydrate, 56.2 g of cobalt sulfate heptahydrate, and 385.7 g of manganese sulfate pentahydrate were weighed, and all of these were dissolved in 4 L of ion-exchanged water to dissolve Ni: Co. A 1.0 M sulfate aqueous solution having a molar ratio of Mn of 55: 5: 40 was prepared. Next, 2 L of ion-exchanged water was poured into a 5 L reaction vessel, and N2 gas was bubbled for 30 minutes to remove oxygen contained in the ion-exchanged water. The temperature of the reaction vessel is set to 50 ° C (± 2 ° C), and convection is sufficiently generated in the reaction layer while stirring the inside of the reaction vessel at a rotation speed of 1500 rpm using a paddle blade equipped with a stirring motor. did. The sulfate stock solution was added dropwise to the reaction vessel at a rate of 1.3 mL / min for 50 hours. Here, from the start to the end of the dropping, the pH in the reaction vessel is adjusted by appropriately dropping a mixed alkaline solution consisting of 4.0 M sodium hydroxide, 1.25 M ammonia, and 0.1 M hydrazine. It was controlled to always maintain 10.20 (± 0.1), and a part of the reaction solution was discharged by overflow so that the total amount of the reaction solution did not always exceed 2 L. After the dropping was completed, stirring in the reaction vessel was continued for another 1 hour. After the stirring was stopped, the mixture was allowed to stand at room temperature for 12 hours or more. Next, the hydroxide precursor particles generated in the reaction vessel are separated using a suction filtration device, and the sodium ions adhering to the particles are washed and removed using ion-exchanged water, and an electric furnace is used. Then, the particles were dried at 80 ° C. for 20 hours under normal pressure in an air atmosphere. Then, in order to make the particle size uniform, it was crushed in an agate automatic mortar for several minutes. In this way, a hydroxide precursor having a molar ratio of Ni: Co: Mn of 55: 5: 40 was prepared.

前記水酸化物前駆体2.264gに、水酸化リチウム1水和物1.264g、フッ化リチウム0.015gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni,Co,Mn)のモル比が120:100である混合粉体を調製した。フッ化リチウムの添加比率は、Li化合物の総量に対して2mol%である。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2.5gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から900℃まで10時間かけて昇温し、900℃で4h焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、実施例1に係るリチウム遷移金属複合酸化物を作製した。 To 2.264 g of the hydroxide precursor, 1.264 g of lithium hydroxide monohydrate and 0.015 g of lithium fluoride were added and mixed well using an automatic agate mortar, and Li :( Ni, Co, Mn. ) Was prepared as a mixed powder having a molar ratio of 120: 100. The addition ratio of lithium fluoride is 2 mol% with respect to the total amount of the Li compound. It was molded at a pressure of 6 MPa using a pellet molding machine to obtain pellets having a diameter of 25 mm. The amount of the mixed powder used for pellet molding was determined by converting so that the assumed mass of the final product was 2.5 g. One of the pellets was placed on an alumina boat having a total length of about 100 mm, installed in a box-type electric furnace (model number: AMF20), and heated in an air atmosphere under normal pressure from room temperature to 900 ° C. over 10 hours. It was fired at 900 ° C. for 4 hours. The internal dimensions of the box-type electric furnace are 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction. After firing, the heater was switched off and the alumina boat was allowed to cool naturally while still in the furnace. As a result, the temperature of the furnace drops to about 200 ° C. after 5 hours, but the subsequent temperature decrease rate is rather gradual. After a day and night, after confirming that the temperature of the furnace was 100 ° C. or lower, the pellets were taken out and crushed in an automatic agate mortar for several minutes in order to make the particle size uniform. In this way, the lithium transition metal composite oxide according to Example 1 was produced.

(実施例2~5、比較例1)
水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるフッ化リチウムの添加比率を、それぞれ、Li化合物の総量に対して5、8、10、及び20モル%とした以外は実施例1と同様にして、実施例2~4、及び比較例1に係るリチウム遷移金属複合酸化物を作製した。
また、フッ化リチウムを添加しない以外は実施例1と同様にして、実施例5に係るリチウム遷移金属複合酸化物を作製した。
(Examples 2 to 5, Comparative Example 1)
The addition ratio of lithium fluoride in the mixed powder of hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was 5, 8, 10, and 20 mol% with respect to the total amount of Li compound, respectively. The lithium transition metal composite oxides according to Examples 2 to 4 and Comparative Example 1 were prepared in the same manner as in Example 1.
Further, the lithium transition metal composite oxide according to Example 5 was prepared in the same manner as in Example 1 except that lithium fluoride was not added.

(実施例6)
水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体を、950℃で焼成したこと以外は実施例2と同様にして、実施例6に係るリチウム遷移金属複合酸化物を作製した。
(Example 6)
Lithium transition metal composite oxidation according to Example 6 in the same manner as in Example 2 except that the mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was fired at 950 ° C. I made a thing.

(実施例7)
水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるLi:(Ni,Co,Mn)のモル比を、130:100に変更した以外は実施例2と同様にして、実施例7に係るリチウム遷移金属複合酸化物を作製した。
(Example 7)
Same as Example 2 except that the molar ratio of Li: (Ni, Co, Mn) in the mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was changed to 130: 100. The lithium transition metal composite oxide according to Example 7 was prepared.

(実施例8~10)
フッ化リチウムに代えて、それぞれ炭酸リチウム、フッ化ナトリウム、及び塩化ナトリウムを、リチウム化合物の総量に対して5mol%添加した混合粉体を調整した以外は実施例2と同様にして、実施例8~10に係るリチウム遷移金属複合酸化物を作製した。
(Examples 8 to 10)
Example 8 is the same as in Example 2 except that a mixed powder in which lithium carbonate, sodium fluoride, and sodium chloride are added in place of lithium fluoride in an amount of 5 mol% with respect to the total amount of the lithium compound is prepared. Lithium transition metal composite oxides according to 10 were prepared.

次に、別の組成の遷移金属化合物を使用し、リチウム遷移金属複合酸化物の製造条件を変化させた実施例11~14及び比較例2を示す。
(実施例11)
Ni:Co:Mnのモル比を40:15:45に変更して水酸化物前駆体を作製し、前記水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるLi:(Ni,Co,Mn)のモル比を、110:100に変更した以外は実施例2と同様にして、実施例11に係るリチウム遷移金属複合酸化物を作製した。
Next, Examples 11 to 14 and Comparative Example 2 in which the transition metal compound having a different composition is used and the production conditions of the lithium transition metal composite oxide are changed are shown.
(Example 11)
A hydroxide precursor was prepared by changing the molar ratio of Ni: Co: Mn to 40:15:45, and a mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was prepared. The lithium transition metal composite oxide according to Example 11 was prepared in the same manner as in Example 2 except that the molar ratio of Li: (Ni, Co, Mn) was changed to 110: 100.

(実施例12~14)
フッ化リチウムに代えて、それぞれ炭酸リチウム、フッ化ナトリウム、及び塩化ナトリウムを、リチウム化合物の総量に対して5mol%添加した添加した混合粉体を調整した以外は実施例11と同様にして、実施例12~14に係るリチウム遷移金属複合酸化物を作製した。
(Examples 12 to 14)
The procedure was carried out in the same manner as in Example 11 except that a mixed powder was prepared by adding lithium carbonate, sodium fluoride, and sodium chloride in place of lithium fluoride in an amount of 5 mol% based on the total amount of the lithium compound. Lithium transition metal composite oxides according to Examples 12 to 14 were prepared.

(比較例2)
水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるフッ化リチウムの添加比率を20モル%とした以外は実施例11と同様にして、比較例2に係るリチウム遷移金属複合酸化物を作製した。
(Comparative Example 2)
According to Comparative Example 2 in the same manner as in Example 11 except that the addition ratio of lithium fluoride in the mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was set to 20 mol%. A lithium transition metal composite oxide was prepared.

さらに、別の組成の遷移金属化合物を使用し、リチウム遷移金属複合酸化物の製造条件を変化させた実施例15~17び比較例3~7を示す。
(実施例15)
Ni:Mnのモル比を60:40に変更して水酸化物前駆体を作製した以外は実施例2と同様にして、実施例15に係るリチウム遷移金属複合酸化物を作製した。
Further, Examples 15 to 17 and Comparative Examples 3 to 7 in which the production conditions of the lithium transition metal composite oxide are changed by using a transition metal compound having a different composition are shown.
(Example 15)
The lithium transition metal composite oxide according to Example 15 was prepared in the same manner as in Example 2 except that the molar ratio of Ni: Mn was changed to 60:40 to prepare a hydroxide precursor.

(実施例16)
Ni:Co:Mnのモル比を35:15:50に変更して水酸化物前駆体を作製し、前記水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるLi:(Ni,Co,Mn)のモル比を、110:100に変更した以外は実施例2と同様にして、実施例16に係るリチウム遷移金属複合酸化物を作製した。
(Example 16)
A hydroxide precursor was prepared by changing the molar ratio of Ni: Co: Mn to 35:15:50, and a mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was prepared. The lithium transition metal composite oxide according to Example 16 was prepared in the same manner as in Example 2 except that the molar ratio of Li: (Ni, Co, Mn) was changed to 110: 100.

(実施例17)
Ni:Co:Mnのモル比を33:33:33に変更して水酸化物前駆体を作製し、前記水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるLi:(Ni,Co,Mn)のモル比を、110:100に変更した以外は実施例2と同様にして、実施例17に係るリチウム遷移金属複合酸化物を作製した。
(Example 17)
A hydroxide precursor was prepared by changing the molar ratio of Ni: Co: Mn to 33:33:33, and a mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was prepared. The lithium transition metal composite oxide according to Example 17 was prepared in the same manner as in Example 2 except that the molar ratio of Li: (Ni, Co, Mn) was changed to 110: 100.

(比較例3)
Ni:Co:Mnのモル比を30:15:55に変更して水酸化物前駆体を作製した以外は実施例2と同様にして、比較例3に係るリチウム遷移金属複合酸化物を作製した。
(Comparative Example 3)
The lithium transition metal composite oxide according to Comparative Example 3 was prepared in the same manner as in Example 2 except that the molar ratio of Ni: Co: Mn was changed to 30:15:55 to prepare a hydroxide precursor. ..

(比較例4)
Ni:Co:Mnのモル比を30:10:60に変更して水酸化物前駆体を作製し、前記水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるLi:(Ni,Co,Mn)のモル比を、130:100に変更した以外は実施例2と同様にして、比較例4に係るリチウム遷移金属複合酸化物を作製した。
(Comparative Example 4)
A hydroxide precursor was prepared by changing the molar ratio of Ni: Co: Mn to 30:10:60, and a mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride was prepared. The lithium transition metal composite oxide according to Comparative Example 4 was prepared in the same manner as in Example 2 except that the molar ratio of Li: (Ni, Co, Mn) was changed to 130: 100.

(比較例5、6)
Ni:Co:Mnのモル比を33:33:33に変更して水酸化物前駆体を作製し、前記水酸化物前駆体、及び水酸化リチウム1水和物の混合粉体にフッ化リチウムをそれぞれ添加することなく、又は添加し、Li:(Ni,Co,Mn)のモル比を、100:100に変更した以外は実施例2と同様にして、比較例5、6に係るリチウム遷移金属複合酸化物を作製した。
(Comparative Examples 5 and 6)
A hydroxide precursor was prepared by changing the molar ratio of Ni: Co: Mn to 33:33:33, and lithium fluoride was added to the mixed powder of the hydroxide precursor and lithium hydroxide monohydrate. Lithium transition according to Comparative Examples 5 and 6 in the same manner as in Example 2 except that the molar ratio of Li: (Ni, Co, Mn) was changed to 100: 100 with or without addition of each. A metal composite oxide was prepared.

(比較例7)
実施例1に係る水酸化物前駆体、水酸化リチウム1水和物、及びフッ化リチウムの混合粉体におけるLi:(Ni,Co,Mn)のモル比を、100:100に変更した以外は実施例2と同様にして、比較例7に係るリチウム遷移金属複合酸化物を作製した。
(Comparative Example 7)
Except for changing the molar ratio of Li: (Ni, Co, Mn) in the mixed powder of the hydroxide precursor, lithium hydroxide monohydrate, and lithium fluoride according to Example 1 to 100: 100. The lithium transition metal composite oxide according to Comparative Example 7 was prepared in the same manner as in Example 2.

<リチウム遷移金属複合酸化物の結晶構造の確認>
上記の実施例及び比較例に係るリチウム遷移金属複合酸化物が、α-NaFeO型結晶構造を有することを、エックス線回折測定における構造モデルと回折パターンが一致したことにより確認した。
<Confirmation of crystal structure of lithium transition metal composite oxide>
It was confirmed that the lithium transition metal composite oxide according to the above Examples and Comparative Examples had an α-NaFeO type 2 crystal structure by matching the diffraction pattern with the structural model in the X-ray diffraction measurement.

<I490/I600の評価>
また、上記の実施例及び比較例に係るリチウム遷移金属複合酸化物のラマンスペクトルを測定し、550~650cm-1の範囲での最大値I600に対する、450~520cm-1の範囲での最大値I490の比(I490/I600)を評価した。実施例1~5、及び比較例1に係るリチウム遷移金属複合酸化物のラマンスペクトルを図11に示す。
<Evaluation of I 490 / I 600 >
Further, the Raman spectrum of the lithium transition metal composite oxide according to the above Examples and Comparative Examples was measured, and the maximum value in the range of 450 to 520 cm -1 was compared with the maximum value I 600 in the range of 550 to 650 cm -1 . The ratio of I 490 (I 490 / I 600 ) was evaluated. The Raman spectra of the lithium transition metal composite oxides according to Examples 1 to 5 and Comparative Example 1 are shown in FIG.

<非水電解質二次電池用正極の作製>
上記の実施例及び比較例に係るリチウム遷移金属複合酸化物を正極活物質に用いて、以下の手順で実施例及び比較例に係る非水電解質二次電池用正極を作製した。
<Manufacturing of positive electrode for non-aqueous electrolyte secondary battery>
Using the lithium transition metal composite oxide according to the above Examples and Comparative Examples as the positive electrode active material, positive electrodes for non-aqueous electrolyte secondary batteries according to Examples and Comparative Examples were prepared by the following procedure.

N-メチルピロリドンを分散媒とし、正極活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比90:5:5の割合で混練分散されている塗布用ペーストを作製した。該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布し、正極板を作製した。なお、全ての実施例及び比較例に係る非水電解質二次電池同士で充電電気量および放電容量を求める試験条件が同一になるように、一定面積当たりに塗布されている活物質の塗布厚みを調整した。 Using N-methylpyrrolidone as a dispersion medium, a coating paste in which the positive electrode active material, acetylene black (AB) and polyvinylidene fluoride (PVdF) were kneaded and dispersed at a mass ratio of 90: 5: 5 was prepared. The coating paste was applied to one side of an aluminum foil current collector having a thickness of 20 μm to prepare a positive electrode plate. In addition, the coating thickness of the active material applied per fixed area is set so that the test conditions for obtaining the charge electricity amount and the discharge capacity are the same among the non-aqueous electrolyte secondary batteries according to all the examples and the comparative examples. It was adjusted.

<非水電解質二次電池の作製>
上記のようにして作製した非水電解質二次電池用正極は、一部を切り出し、以下の手順で非水電解質二次電池である試験電池を作製した。
正極の単独挙動を正確に観察する目的のため、対極、即ち負極には金属リチウムをニッケル箔集電体に密着させて用いた。ここで、非水電解質二次電池の容量が負極によって制限されないよう、負極には十分な量の金属リチウムを配置した。
<Manufacturing of non-aqueous electrolyte secondary battery>
A part of the positive electrode for a non-aqueous electrolyte secondary battery produced as described above was cut out, and a test battery, which is a non-aqueous electrolyte secondary battery, was produced by the following procedure.
For the purpose of accurately observing the single behavior of the positive electrode, metallic lithium was used in close contact with the nickel foil current collector for the counter electrode, that is, the negative electrode. Here, a sufficient amount of metallic lithium was placed on the negative electrode so that the capacity of the non-aqueous electrolyte secondary battery was not limited by the negative electrode.

非水電解質として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)が体積比6:7:7である混合溶媒に濃度が1mol/LとなるようにLiPFを溶解させた溶液を用いた。セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用いた。正極端子及び負極端子の開放端部が外部露出するように電極を収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代を、注液孔となる部分を除いて気密封止し、前記非水電解質を注液後、注液孔を封止した。 As a non-aqueous electrolyte, LiPF 6 was dissolved in a mixed solvent having an ethylene carbonate (EC) / ethylmethyl carbonate (EMC) / dimethyl carbonate (DMC) volume ratio of 6: 7: 7 so as to have a concentration of 1 mol / L. The solution was used. As a separator, a polypropylene micropore membrane surface-modified with polyacrylate was used. For the exterior body, a metal resin composite film made of polyethylene terephthalate (15 μm) / aluminum foil (50 μm) / metal-adhesive polypropylene film (50 μm) was used. The electrodes are housed so that the open ends of the positive electrode terminal and the negative electrode terminal are exposed to the outside, and the fusion margin where the inner surfaces of the metal resin composite film face each other is hermetically sealed except for the portion to be the liquid injection hole. After injecting the non-aqueous electrolyte, the injection holes were sealed.

<初回充放電工程>
上記手順にて組立てられた非水電解質二次電池は、初回充放電工程を経て完成される。ここで、初回充放電工程において、初回充放電条件1を適用する第1の群と、初回充放電条件2を適用する第2の群に分割した。
<Initial charge / discharge process>
The non-aqueous electrolyte secondary battery assembled by the above procedure is completed through the initial charge / discharge step. Here, in the initial charge / discharge step, the group was divided into a first group to which the initial charge / discharge condition 1 is applied and a second group to which the initial charge / discharge condition 2 is applied.

(体積当たりの放電容量の算出)
第1の群の電池を用いて、次の初回充放電条件1を適用して、初回充放電工程に供した。25℃の下、充電は、電流0.1C、電圧4.35V(vs.Li/Li)の定電流定電圧充電とし、充電終止条件は電流値が0.02Cに減衰した時点とした。このときの充電電気量を「4.35V充電時充電電気量」(mAh/g)とした。放電は、電流0.1C、終止電圧2.5V(vs.Li/Li)の定電流放電とした。この充放電を1サイクル行った。なお、充電後に10分の休止過程を設けた。
このときの質量当たりの放電容量を「4.35V充電時放電容量」(mAh/g)とした。一方、前述した条件で正極活物質粉末のプレス密度を測定し、測定したプレス密度(g/cm)と「4.35V充電時放電容量」(mAh/g)をかけ合わせることによって、体積当たりの放電容量「4.35V充電時放電容量」(mAh/cm)を算出した。ここで、「4.35V充電時放電容量」(mAh/cm)は、過充電領域が終了するまでの充電過程を一度も経ないで製造し、かつ、過充電領域が終了するまでの充電を行わずにより低い電位範囲で使用した場合の放電容量を表す指標である。
(Calculation of discharge capacity per volume)
Using the first group of batteries, the following initial charge / discharge condition 1 was applied and subjected to the initial charge / discharge step. Under 25 ° C., the charge was a constant current constant voltage charge with a current of 0.1 C and a voltage of 4.35 V (vs. Li / Li + ), and the charge termination condition was the time when the current value decreased to 0.02 C. The charging electricity amount at this time was set to "4.35V charging electricity amount" (mAh / g). The discharge was a constant current discharge with a current of 0.1 C and a final voltage of 2.5 V (vs. Li / Li + ). This charge / discharge was performed for one cycle. A 10-minute rest process was provided after charging.
The discharge capacity per mass at this time was defined as "4.35 V charge discharge capacity" (mAh / g). On the other hand, the press density of the positive electrode active material powder is measured under the above-mentioned conditions, and the measured press density (g / cm 3 ) is multiplied by the "4.35 V charge discharge capacity" (mAh / g) to per volume. The discharge capacity "4.35V charge discharge capacity" (mAh / cm 3 ) was calculated. Here, the "4.35V charge discharge capacity" (mAh / cm 3 ) is manufactured without going through the charging process until the overcharge area ends, and the charge until the overcharge area ends. It is an index showing the discharge capacity when used in a lower potential range without performing.

(体積当たりの充電電気量の算出)
第2の群の電池を用いて、次の初回充放電条件2を適用して、初回充放電工程に供した。25℃の下、充電は、電流0.1C、電圧4.6V(vs.Li/Li)の定電流定電圧充電とし、充電終止条件は電流値が0.02Cに減衰した時点とした。放電は、電流0.1C、終止電圧2.0V(vs.Li/Li)の定電流放電とした。この充放電を1サイクル行った。なお、充電後に10分の休止過程を設けた。
このときの充電電気量(mAh/g)と、上記「4.35V充電時充電電気量」(mAh/g)との差を「4.35~4.6V間の充電電気量」(mAh/g)として算出した。上記のプレス密度(g/cm)と「4.35~4.6V間の充電電気量」(mAh/g)をかけ合わせることによって、体積当たりの充電電気量「4.35~4.6V間の充電電気量」(mAh/cm)を算出した。ここで、「4.35~4.6V間の充電電気量」(mAh/cm)は、過充電領域における充電電気量を表す指標である。
(Calculation of the amount of electricity charged per volume)
Using the second group of batteries, the following initial charge / discharge condition 2 was applied and subjected to the initial charge / discharge step. Under 25 ° C., the charge was a constant current constant voltage charge with a current of 0.1 C and a voltage of 4.6 V (vs. Li / Li + ), and the charge termination condition was the time when the current value decreased to 0.02 C. The discharge was a constant current discharge with a current of 0.1 C and a final voltage of 2.0 V (vs. Li / Li + ). This charge / discharge was performed for one cycle. A 10-minute rest process was provided after charging.
The difference between the charging electricity amount (mAh / g) at this time and the above-mentioned "4.35V charging electricity amount" (mAh / g) is "the charging electricity amount between 4.35 and 4.6V" (mAh / g). It was calculated as g). By multiplying the above press density (g / cm 3 ) and "charging electricity amount between 4.35 and 4.6V" (mAh / g), the charging electricity amount per volume is "4.35 to 4.6V". The amount of electricity charged during the period ”(mAh / cm 3 ) was calculated. Here, "the amount of electricity charged between 4.35 and 4.6 V" (mAh / cm 3 ) is an index representing the amount of electricity charged in the overcharged region.

以上の結果を表1に示す。また、図12は、I490/I600と体積当たりの放電容量との関係を示しており、1<Li/MeかつMn/Me<0.55のものを●(実施例1~17及び比較例1、2)で示し、0.55≦Mn/Meのものを◇(比較例3、4)で示し、Li/Me=1.0のものを△(比較例5~7)で示す。図12から、1<Li/MeかつMn/Me<0.55の組成において、ラマンピーク強度比と体積当たりの放電容量に関して、相関がみられることがわかる。一方で、Li/Me=1.0や0.55≦Mn/Meの組成においては相関が見られていない。 The above results are shown in Table 1. Further, FIG. 12 shows the relationship between I 490 / I 600 and the discharge capacity per volume, in which 1 <Li / Me and Mn / Me <0.55 are ● (compared with Examples 1 to 17). Examples 1 and 2) are shown by ◇ (Comparative Examples 3 and 4), and Li / Me = 1.0 is shown by Δ (Comparative Examples 5 to 7). From FIG. 12, it can be seen that in the composition of 1 <Li / Me and Mn / Me <0.55, there is a correlation between the Raman peak intensity ratio and the discharge capacity per volume. On the other hand, no correlation was found in the compositions of Li / Me = 1.0 and 0.55 ≦ Mn / Me.

Figure 0007031108000002
Figure 0007031108000002

実施例1~5に係るリチウム遷移金属複合酸化物(正極活物質)は、全てNi,Co,及びMnを含む遷移金属化合物(水酸化前駆体)の組成が同一であり、Li/Me比も同一であるが、焼結助剤であるフッ化リチウムの添加の有無又は添加量が相違する。添加量が多いほどI490/I600は減少する傾向を示すが、すべて0.45を上回っており、4.35V充電時の体積当たりの放電容量が450mAh/cmを超え、過充電領域における体積当たりの充電電気量が110mAh/cmを超えていることがわかる。これに対して、フッ化リチウムの添加量がリチウム化合物の総量に対して20mol%である比較例1では、I490/I600が、0.45を下回り、4.35V充電時の体積当たりの放電容量、及び過充電領域における体積当たりの充電電気量が十分得られないことがわかる。 The lithium transition metal composite oxides (positive electrode active materials) according to Examples 1 to 5 all have the same composition of transition metal compounds (hydroxyl precursors) containing Ni, Co, and Mn, and also have a Li / Me ratio. Although they are the same, the presence or absence or amount of addition of lithium fluoride, which is a sintering aid, is different. The larger the amount added, the more I 490 / I 600 tend to decrease, but all of them exceed 0.45, and the discharge capacity per volume at 4.35 V charge exceeds 450 mAh / cm 3 in the overcharge region. It can be seen that the amount of charging electricity per volume exceeds 110 mAh / cm 3 . On the other hand, in Comparative Example 1 in which the amount of lithium fluoride added was 20 mol% with respect to the total amount of the lithium compound, I 490 / I 600 was less than 0.45, per 4.35 V charge volume. It can be seen that the discharge capacity and the amount of charge electricity per volume in the overcharge region cannot be sufficiently obtained.

実施例6、7は、実施例2における混合粉体の焼成温度を変更した、又はLi/Me比を変更した例に相当する。いずれも、I490/I600は0.45を上回り、4.35V充電時の体積当たりの放電容量が450mAh/cmを超え、過充電領域における体積当たりの充電電気量が110mAh/cmを超えていることがわかる。 Examples 6 and 7 correspond to the example in which the firing temperature of the mixed powder was changed or the Li / Me ratio was changed in Example 2. In both cases, I 490 / I 600 exceeds 0.45, the discharge capacity per volume when charging at 4.35 V exceeds 450 mAh / cm 3 , and the amount of electricity charged per volume in the overcharge region is 110 mAh / cm 3 . You can see that it exceeds.

実施例8~10は、実施例2における焼結助剤の種類を変更した例に相当し、いずれも、I490/I600が0.45を上回り、4.35V充電時の体積当たりの放電容量、及び過充電領域における体積当たりの充電電気量が高いことがわかる。
また、実施例1~4、6~10と実施例5とを比較すると、焼結助剤を添加した実施例1~4、6~10の正極活物質は、焼結助剤を添加しない実施例5の正極活物質よりもI490/I600が小さく0.85以下であり、4.35V充電時の体積当たりの放電容量が高いことがわかる。したがって、4.35V充電時の体積当たりの放電容量を高くするためには、I490/I600を0.45以上0.85以下とすることが好ましい。
Examples 8 to 10 correspond to examples in which the type of sintering aid in Example 2 is changed, and in each case, I 490 / I 600 exceeds 0.45 and discharge per volume during 4.35 V charging. It can be seen that the capacity and the amount of charge electricity per volume in the overcharge region are high.
Further, comparing Examples 1 to 4, 6 to 10 with Example 5, the positive electrode active materials of Examples 1 to 4, 6 to 10 to which the sintering aid was added did not add the sintering aid. It can be seen that I 490 / I 600 is smaller than the positive electrode active material of Example 5 and is 0.85 or less, and the discharge capacity per volume at the time of 4.35 V charging is high. Therefore, in order to increase the discharge capacity per volume during 4.35 V charging, it is preferable to set I 490 / I 600 to 0.45 or more and 0.85 or less.

実施例11~14、及び比較例2は、リチウム遷移金属複合酸化物の組成を実施例2から変更した例に相当し、実施例12~14は、さらに実施例11における焼結助剤の種類を変更した例に相当する。いずれも、I490/I600が0.45以上であり、4.35V充電時の体積当たりの放電容量、及び過充電領域における体積当たりの充電電気量が高いことがわかる。
比較例2は、実施例11における焼結助剤の添加量を増大した例に相当する。I490/I600は0.45を下回り、4.35V充電時の体積当たりの放電容量は389mAh/cmと、十分ではなかった。
Examples 11 to 14 and Comparative Example 2 correspond to an example in which the composition of the lithium transition metal composite oxide is changed from Example 2, and Examples 12 to 14 further indicate the type of sintering aid in Example 11. Corresponds to the example of changing. In each case, I 490 / I 600 is 0.45 or more, and it can be seen that the discharge capacity per volume at the time of 4.35 V charging and the charge electricity amount per volume in the overcharge region are high.
Comparative Example 2 corresponds to an example in which the amount of the sintering aid added in Example 11 was increased. I 490 / I 600 was less than 0.45, and the discharge capacity per volume when charging at 4.35 V was 389 mAh / cm 3 , which was not sufficient.

実施例15~17、及び比較例3~7は、リチウム遷移金属複合酸化物の組成を、実施例2からさらに変更した例に相当する。実施例15~17から、Mn/Me比が0.33~0.50であれば、I490/I600が0.45となる条件下で、450mAh/cmを超える4.35V充電時の体積当たりの放電容量と、110mAh/cmを超える過充電領域における体積当たりの充電電気量を有する活物質が得られたことがわかる。
これに対して、比較例3、4からは、Mn/Me比が0.55以上の場合、I490/I600が0.45以上であっても、十分な4.35V充電時の体積当たりの放電容量が得られないことがわかる。
比較例5~7は、本発明が対象としないLi/Me=1の場合の活物質である。I490/I600はいずれも0.45を下回り、4.35V充電時の体積当たりの放電容量、及び過充電領域における体積当たりの充電電気量がともに十分である活物質は得られなかった。
Examples 15 to 17 and Comparative Examples 3 to 7 correspond to examples in which the composition of the lithium transition metal composite oxide is further changed from Example 2. From Examples 15 to 17, if the Mn / Me ratio is 0.33 to 0.50, under the condition that I 490 / I 600 is 0.45, when charging at 4.35 V exceeding 450 mAh / cm 3 . It can be seen that an active material having a discharge capacity per volume and a charge electricity amount per volume in the overcharge region exceeding 110 mAh / cm 3 was obtained.
On the other hand, from Comparative Examples 3 and 4, when the Mn / Me ratio is 0.55 or more, even if I 490 / I 600 is 0.45 or more, the volume per sufficient 4.35 V charge. It can be seen that the discharge capacity of is not obtained.
Comparative Examples 5 to 7 are active substances in the case of Li / Me = 1, which is not the subject of the present invention. Both I 490 / I 600 were less than 0.45, and no active material was obtained in which both the discharge capacity per volume at 4.35 V charge and the charge electricity amount per volume in the overcharge region were sufficient.

本発明に係るリチウム遷移金属複合酸化物を含む正極活物質を用いると、過充電領域における体積当たりの充電容量が大きく、より高いSOCに至るまで電池電圧の急上昇が観察されず、かつ、体積当たりの放電容量が大きい非水電解質二次電池を提供することができる。したがって、この非水電解質二次電池は、ハイブリッド自動車用、電気自動車用、プラグインハイブリッド自動車用等の非水電解質二次電池として有用である。 When the positive electrode active material containing the lithium transition metal composite oxide according to the present invention is used, the charge capacity per volume in the overcharge region is large, a rapid increase in battery voltage is not observed until a higher SOC is observed, and the battery voltage is not observed to increase rapidly. It is possible to provide a non-aqueous electrolyte secondary battery having a large discharge capacity. Therefore, this non-aqueous electrolyte secondary battery is useful as a non-aqueous electrolyte secondary battery for hybrid vehicles, electric vehicles, plug-in hybrid vehicles, and the like.

1 非水電解質二次電池
2 電極群
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
1A、1B 測定プローブ
2A、2B 測定面
3A、3B 台座
6 側体
7 貫通孔
20 蓄電ユニット
30 蓄電装置
1 Non-aqueous electrolyte secondary battery 2 Electrode group 3 Battery container 4 Positive electrode terminal 4'Positive lead 5 Negative terminal 5'Negative lead 1A, 1B Measurement probe 2A, 2B Measurement surface 3A, 3B Pedestal 6 Side body 7 Through hole 20 Power storage unit 30 Power storage device

Claims (7)

リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、
前記リチウム遷移金属複合酸化物は、
α-NaFeO型結晶構造を有し、
遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、
遷移金属(Me)としてNi及びMn、又はNi、Co及びMnを含み、Meに対するMnのモル比Mn/Meが0.3≦Mn/Me<0.55であり、
ラマンスペクトルにおける550~650cm-1の範囲での最大値I600に対する、450~520cm-1の範囲での最大値I490の比(I490/I600)が0.45以上である、
非水電解質二次電池用正極活物質。
A positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide.
The lithium transition metal composite oxide is
It has an α-NaFeO type 2 crystal structure and has an α-NaFeO type 2 crystal structure.
The molar ratio of Li to the transition metal (Me), Li / Me, is 1 <Li / Me.
The transition metal (Me) contains Ni and Mn, or Ni, Co and Mn, and the molar ratio of Mn to Me is Mn / Me of 0.3≤Mn / Me <0.55.
The ratio (I 490 / I 600 ) of the maximum value I 490 in the range of 450 to 520 cm -1 to the maximum value I 600 in the range of 550 to 650 cm -1 in the Raman spectrum is 0.45 or more.
Non-aqueous electrolyte Positive electrode active material for secondary batteries.
請求項1に記載の非水電解質二次電池用正極活物質の製造方法であって、Ni及びMn、又はNi、Co及びMnを含み、Meに対するMnのモル比Mn/Meが0.3≦Mn/Me<0.55である遷移金属化合物に、Li化合物を混合し、焼成することにより、モル比Li/Meが1<Li/Meであるリチウム遷移金属複合酸化物を製造する際に、焼結助剤を添加する、非水電解質二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, which contains Ni and Mn, or Ni, Co and Mn, and has a molar ratio of Mn to Me of Mn / Me of 0.3 ≦. When a Li compound is mixed with a transition metal compound having Mn / Me <0.55 and fired to produce a lithium transition metal composite oxide having a molar ratio of Li / Me of 1 <Li / Me, A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, to which a sintering aid is added. 請求項1に記載の非水電解質二次電池用正極活物質を含有する非水電解質二次電池用正極。 The positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1. 請求項3に記載の非水電解質二次電池用正極を備え、前記正極に含有される正極活物質は、CuKα線を用いたエックス線回折図において20~22°の範囲に回折ピークが観察される、非水電解質二次電池。 The positive electrode for a non-aqueous electrolyte secondary battery according to claim 3 is provided, and a diffraction peak is observed in the range of 20 to 22 ° in an X-ray diffraction diagram using CuKα rays for the positive electrode active material contained in the positive electrode. , Non-aqueous electrolyte secondary battery. 請求項3に記載の非水電解質二次電池用正極を備え、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池。 The positive electrode for a non-aqueous electrolyte secondary battery according to claim 3 is provided, and when charging is performed up to a positive electrode potential of 5.0 V (vs. Li / Li + ), 4.5 to 5.0 V (vs. Li). A non-aqueous electrolyte secondary battery in which a region where the potential change is relatively flat with respect to the amount of charging electricity is observed within the positive electrode potential range of / Li + ). 4.5V(vs.Li/Li)未満の電位で使用される、請求項4又は5に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 4 or 5, which is used at a potential of less than 4.5 V (vs. Li / Li + ). 請求項4又は5に記載の非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、非水電解質二次電池の製造方法。 The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 4 or 5, wherein the maximum ultimate potential of the positive electrode in the initial charge / discharge step is less than 4.5 V (vs. Li / Li + ). How to manufacture a secondary battery.
JP2018117727A 2018-06-21 2018-06-21 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, production of positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Method Active JP7031108B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018117727A JP7031108B2 (en) 2018-06-21 2018-06-21 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, production of positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Method
PCT/JP2019/024375 WO2019244955A1 (en) 2018-06-21 2019-06-19 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method for producing non-aqueous electrolyte secondary battery, and method for use of non-aqueous electrolyte secondary battery
EP19821775.4A EP3813163A4 (en) 2018-06-21 2019-06-19 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method for producing non-aqueous electrolyte secondary battery, and method for use of non-aqueous electrolyte secondary battery
US17/252,765 US20210257665A1 (en) 2018-06-21 2019-06-19 Positive active material for nonaqueous electrolyte secondary battery, method for producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery
CN201980041784.3A CN112771695B (en) 2018-06-21 2019-06-19 Positive electrode active material, positive electrode, nonaqueous electrolyte secondary battery, and method for using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018117727A JP7031108B2 (en) 2018-06-21 2018-06-21 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, production of positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Method

Publications (2)

Publication Number Publication Date
JP2019220376A JP2019220376A (en) 2019-12-26
JP7031108B2 true JP7031108B2 (en) 2022-03-08

Family

ID=69096909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018117727A Active JP7031108B2 (en) 2018-06-21 2018-06-21 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, production of positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Method

Country Status (1)

Country Link
JP (1) JP7031108B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4112555A4 (en) * 2020-02-26 2023-08-30 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN116741974B (en) * 2023-08-15 2023-11-17 宁波容百新能源科技股份有限公司 Positive electrode material, preparation method thereof and lithium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (en) 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP4877660B2 (en) 2008-09-30 2012-02-15 株式会社Gsユアサ Active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2016190419A1 (en) 2015-05-28 2016-12-01 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary batteries and method for producing same, electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5430920B2 (en) * 2008-03-17 2014-03-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (en) 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP4877660B2 (en) 2008-09-30 2012-02-15 株式会社Gsユアサ Active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2016190419A1 (en) 2015-05-28 2016-12-01 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary batteries and method for producing same, electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2019220376A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP6197939B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery active material manufacturing method, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP6094797B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery
JP6369471B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
EP2634148B1 (en) Active material for non-aqueous electrolyte secondary battery, method for production of the active material, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6066306B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP6044809B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
EP2680348B1 (en) Positive active material for lithium secondary battery, method for production thereof, electrode for lithium secondary battery and lithium secondary battery
JP6090661B2 (en) Positive electrode active material for lithium secondary battery, precursor of the positive electrode active material, electrode for lithium secondary battery, lithium secondary battery
JP6471693B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6083505B2 (en) Positive electrode active material for lithium secondary battery, method for producing the positive electrode active material, electrode for lithium secondary battery, and lithium secondary battery
JP2015118892A (en) Positive electrode active material for lithium secondary batteries, precursor of positive electrode active material for lithium secondary batteries, lithium secondary battery electrode, lithium secondary battery, and battery module
JP2014063708A (en) Positive electrode active material for lithium secondary battery, method of manufacturing positive electrode active material, electrode for lithium secondary battery, and lithium secondary battery
JP6844156B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method, electrode for lithium secondary battery, and lithium secondary battery
JP6131760B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery
JP6036168B2 (en) Nonaqueous electrolyte secondary battery
JP7031108B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, production of positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Method
JP6354964B2 (en) Nonaqueous electrolyte secondary battery
JP2019220375A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode containing the active material, nonaqueous electrolyte secondary battery having the positive electrode, and method for manufacturing the nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220206

R150 Certificate of patent or registration of utility model

Ref document number: 7031108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150