JP2018101673A - 磁性薄膜及び磁性薄膜の製造方法 - Google Patents

磁性薄膜及び磁性薄膜の製造方法 Download PDF

Info

Publication number
JP2018101673A
JP2018101673A JP2016245883A JP2016245883A JP2018101673A JP 2018101673 A JP2018101673 A JP 2018101673A JP 2016245883 A JP2016245883 A JP 2016245883A JP 2016245883 A JP2016245883 A JP 2016245883A JP 2018101673 A JP2018101673 A JP 2018101673A
Authority
JP
Japan
Prior art keywords
underlayer
thin film
layer
ferromagnetic metal
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016245883A
Other languages
English (en)
Inventor
剛斎 関
Takeshi Seki
剛斎 関
弘毅 高梨
Koki Takanashi
弘毅 高梨
雅人 辻川
Masahito Tsujikawa
雅人 辻川
白井 正文
Masabumi Shirai
正文 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2016245883A priority Critical patent/JP2018101673A/ja
Publication of JP2018101673A publication Critical patent/JP2018101673A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Abstract

【課題】大きな磁気異方性定数を有し、ダンピング定数が小さい磁性薄膜を提供することを目的とする。【解決手段】本実施形態にかかる磁性薄膜は、基板と、前記基板の上に設けられた下地層と、前記下地層の上に設けられた強磁性金属層と、を備え、前記強磁性金属層は、Coの1原子層とNiの1原子層とを交互に有し、L11型の規則構造を有する。【選択図】図1

Description

本発明は、磁性薄膜及び磁性薄膜の製造方法に関する。
磁気抵抗効果素子として、強磁性金属層と非磁性層の積層構造からなる巨大磁気抵抗(GMR:Giant Magneto Resistive)素子、及び、非磁性層に絶縁層(トンネルバリア層、バリア層)を用いたトンネル磁気抵抗(TMR:Tunnel Magneto Resistive)素子が知られている。
磁気抵抗効果素子は、磁化固定層と磁化自由層との磁化の相対角に応じた抵抗値変化を利用した素子である。磁気抵抗効果素子は、磁気センサ素子、高周波部品、磁気ヘッド及び不揮発性磁気ランダムアクセスメモリ(MRAM:Magnetoresistive Randam Access Memory)等の種々の電子情報デバイスに用いられている。
磁気抵抗効果素子を構成する強磁性金属層には、磁気異方性エネルギーが大きいこと及び磁化反転に要する電流量が小さいことが求められる。磁気異方性エネルギーは磁気異方性定数(Ku)に依存し、磁化反転に要する電流量はダンピング定数(α)に依存する。
磁気異方性エネルギーが大きいと、熱エネルギー等の外乱に対して磁化が安定化し、磁気情報を安定的に記憶できる。またダンピング定数が小さいと、磁化反転に必要な閾値電流を低減できる。
特許文献1には、CoFeBからなる強磁性金属層が記載されている。また非特許文献1には、1原子層のCoと2原子層のNiを交互に積層した積層構造体が、垂直磁化を有することが記載されている。
特開2015−88520号公報
G.H.O.Daalderop, P.J.Kelly, and F.J.A.den Broeder,Phys.Rev.Lett.,68,682(1992).
磁気異方性エネルギーとダンピング定数は、ともにスピン軌道相互作用を起源とする物理量であるため、互いに正の相関関係を有する物質が多い。すなわち磁気異方性エネルギーが大きくなると、ダンピング定数も大きくなる。そのため、大きな磁気異方性エネルギーと小さなダンピング定数との両方を同時に実現することは難しい。
例えば特許文献1に記載のCoFeBは、磁気抵抗効果素子の強磁性金属層として広く用いられているが、磁気異方性エネルギーとダンピング定数とが正の相関関係を有する。そのため、CoFeBの磁気異方性エネルギーが大きいと、磁化反転に大きな電流が必要となる。例えば、MRAMの構造において素子の積層方向に大きな電流を流すためには、選択トランジスタを大きくする必要があり、素子の高集積化が困難となる。
これに対し、非特許文献1に記載のCoNi積層体は、磁気異方性エネルギーとダンピング定数とが正の相関関係を有さないと言われている。しかしながら、Co及びNiを用いた系において、磁化安定性を維持できるだけの大きな磁気異方性エネルギーを有する磁性薄膜の報告はされていない。
本発明は上記問題に鑑みてなされたものであり、大きな磁気異方性定数を有し、ダンピング定数が小さい磁性薄膜を提供することを目的とする。
本発明者らは、CoとNiとを1原子層ずつ交互に積層し、強磁性金属層をL1型の規則構造にすることで、大きな磁気異方性定数を有し、ダンピング定数が小さい磁性薄膜が得られることを見出し、本発明を完成させた。
すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
(1)第1の態様にかかる磁性薄膜は、基板と、前記基板の上に設けられた下地層と、前記下地層の上に設けられた強磁性金属層と、を備え、前記強磁性金属層は、Coの1原子層とNiの1原子層とを交互に有し、L1型の規則構造を有する。
(2)上記態様にかかる磁性薄膜において、前記下地層は、前記基板側の第1下地層と、前記強磁性金属層側の第2下地層とを有し、前記第1下地層は、前記基板と前記強磁性金属層との結晶構造の違いを緩和する材料を含み、前記第2下地層は、前記強磁性金属層が積層される面の平坦性を高める材料を含んでもよい。
(3)上記態様にかかる磁性薄膜において、前記第1下地層は、V、Ta、Nb、Mo、W及びCrからなる群から選択される少なくとも一つを有してもよい。
(4)上記態様にかかる磁性薄膜において、前記第2下地層は、Au、Cu、Ag、Pd及びPtからなる群から選択される少なくとも一つを有してもよい。
(5)上記態様にかかる磁性薄膜において、前記基板は単結晶基板であってもよい。
(6)上記態様にかかる磁性薄膜において、前記強磁性金属層の磁化が積層方向に配向し、結晶磁気異方性定数が5×10erg/cm以上であり、ダンピング定数が0.015以下であってもよい。
(7)第2の態様にかかる磁性薄膜の製造方法は、基板の上に下地層を積層する工程と、被成膜体を加熱しながら、前記下地層の上にCoの1原子層とNiの1原子層とを交互にエピタキシャル成長させ、L1型の規則構造を有する強磁性金属層を形成する工程と、を有する。
(8)上記態様にかかる磁性薄膜の製造方法において、前記強磁性金属層を形成する工程において、被成膜体を50℃以上300℃以下の条件で加熱する。
上記態様にかかる磁性薄膜は、大きな磁気異方性定数を有し、ダンピング定数が小さい。また上記態様にかかる磁性薄膜の製造方法によれば、大きな磁気異方性定数を有し、ダンピング定数が小さい磁性薄膜を得ることができる。
本実施形態にかかる磁性薄膜の断面模式図である。 強磁性金属層の結晶構造を示した図である。 本実施形態にかかる磁性薄膜を磁気抵抗効果素子として用いた場合の断面模式図である。 磁気異方性定数の成膜温度依存性を示した結果である。 放射光を用いたX線回折により強磁性金属層を分析した結果であり、(a)は規則格子反射を測定した結果であり、(b)は基本格子反射を測定した結果である。 強磁性金属層にCoのエネルギー吸収端に相当する波長の放射光と、エネルギー吸収端の波長と異なる波長の放射光と、を照射した結果であり、(a)は規則格子反射を測定した結果であり、(b)は基本格子反射を測定した結果である。 参考例1及び参考例2の実効的な磁気異方性定数を示した結果である。
以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
(磁性薄膜)
図1は、本実施形態にかかる磁性薄膜100の断面模式図である。図1に示すように、磁性薄膜100は、基板10と下地層20と強磁性金属層30とを備える。また強磁性金属層30の基板10と反対側には、保護層40を有していてもよい。以下、便宜上、各層の積層方向を「上」、その反対方向を「下」と言う。
基板10は、磁性薄膜100の支持体として機能する。基板10には、Si基板、熱酸化Si基板、サファイア基板等を用いることができる。基板10は、平坦性に優れることが好ましく、単結晶基板を用いることが特に好ましい。単結晶基板の具体例として、サファイア基板が挙げられる。サファイア基板の積層面は、後述する下地層20との格子整合性を高めるために、(11−20)面を用いることが好ましい。
下地層20は、基板10の上に積層されている。下地層20は、基板10と強磁性金属層30の結晶構造の違いを緩和するためのバッファ層である。下地層20は、基板10の表面平坦性を改善し、強磁性金属層30の結晶配向性等を高める。
下地層20は、強磁性金属層30と同様の結晶構造を有していることが好ましい。下地層20には、例えば、V、Ta、Nb、Al、Cr、Fe、Co、Rh、Pd、Ag、Ir、Pt、Au、Mo、Wの群から選択される少なくとも1つの元素を含む物質を用いることができる。この物質には、単体金属、合金、酸化物、窒化物等が含まれる。これらの中でも下地層20に用いる材料としては、下地層20の平坦性と強磁性金属層30の結晶配向の観点からVが特に好ましい。
下地層20は、1層でも、2層以上の複数層でもよい。図1に示す下地層20は、基板10側から第1下地層21と第2下地層22とからなる。
下地層20を複数層にすると、それぞれの層ごとに機能を分けることができる。例えば、第1下地層21に主として基板10と強磁性金属層30との結晶構造の違いを緩和する物質を用い、第2下地層22に主として強磁性金属層30が積層される積層面の平坦性を高める物質を用いることができる。このような構成とすると、第1下地層21により結晶構造が調整された後、第2下地層22により積層面が平坦化される。その結果、強磁性金属層30が積層される積層面の平坦性がより高まる。
第1下地層21に用いられる基板10と強磁性金属層30との結晶構造の違いを緩和する物質としては、V、Ta、Nb、Mo、W、Cr等が挙げられる。第1下地層21は、これらの物質の少なくとも一つを有することが好ましい。これらの中でも第1下地層21に用いる材料としては、エピタキシャル成長を実現可能で、かつ、平坦な薄膜を実現し易いNb、V又はCrがより好ましく、Vが特に好ましい。
これらの物質は体心立方格子構造(以下、bcc構造と言う)を有する。これらの物質がサファイアの(11−20)面上に積層すると、積層面の格子構造が変化する。その結果、積層面が面心立方格子構造(以下、fcc構造という)にエピタキシャル成長しやすい面となる。
第2下地層22に用いられる強磁性金属層30が積層される積層面の平坦性を高める物質としては、Au、Cu、Ag、Pd、Pt等が挙げられる。第2下地層22は、これらの物質の少なくとも一つを有することが好ましい。これらの中でも第2下地層22に用いる材料としては、Au、Cu又はAgがより好ましく、Auが特に好ましい。
これらの物質は、積層面の平坦性を高めるが、積層面の格子構造は変えない。そのため、fcc構造がエピタキシャル成長しやすい面を維持したまま、積層面が平坦化される。
また第2下地層22は、以下の2つの特性を有していることが好ましい。1つは、強磁性金属層30との格子整合性が高いことであり、もう一つはダンピング定数を大きくしないことである。
格子整合性が高いとは、積層界面において第2下地層22のもつ周期構造と、強磁性金属層30のもつ周期構造との周期単位が一致していることをいう。これらの周期単位が一致するほど積層界面における歪みは小さくなり、積層される強磁性金属層30の結晶性が高まる。この点を考慮すると、第2下地層22はAu、Cu、Pd、Ptからなる群から選択される少なくとも一つを有することが特に好ましい。
またダンピング定数は、スピン軌道相互作用の大きさに影響を受ける定数である。一般に、4d電子、5d電子又は4f電子の寄与が大きい重金属は、スピン軌道相互作用が大きいと言われている。そのため、Pd及びPt等の重金属は第2下地層22として用いないことが好ましい。
一方で、Pd及びPtの金属は、界面効果により強磁性金属層30の磁化の向きを積層面に対して垂直に向ける作用を持つ。そのため、ダンピング定数を多少犠牲にしても、磁気異方性エネルギーを高めたい場合は、Pd又はPt等を用いてもよい。
強磁性金属層30は、下地層20上に積層されている。強磁性金属層30は、Coの1原子層とNiの1原子層とが交互に積層されている。以下、Coの1原子層をCo層31、Niの1原子層をNi層32という。強磁性金属層30は、磁化が積層方向に配向した垂直磁化膜である。
図2は、強磁性金属層30の結晶構造を示した図である。図2に示すように、強磁性金属層30において1層目の原子の面内位置をAとし、2層目の原子の面内位置をBとすると、3層目の原子の面内位置がAと異なるCの位置に配置されている。すなわち、強磁性金属層30は、各層がABCABC…の順で積層されたfcc構造であり、Co1原子層とNi1原子層が交互に積層されたL1型の規則構造を有する。
強磁性金属層30のとりうる結晶構造として、六方最密構造(以下、hcp構造と言う)も考えられる。しかしながら、Niは薄膜でfcc構造をとり、Coも薄膜で準安定層としてfcc構造をとる。そのため強磁性金属層30は、fcc構造のL1型の規則構造を選択する方が安定であり、hcp構造をとらない。
合金は、組成、温度条件等によって様々な状態をとる。しかしながら、CoとNiの合金は組成、温度条件をどのように制御しても、L1型の規則構造に遷移することはできない。これは、Co−Ni系の熱平衡状態図にL1型の規則構造が存在しないためである。本実施形態にかかる強磁性金属層30は、Co層31とNi層32とを1原子層レベルで精密に制御して積層することで、人工的にL1型の規則構造を有するCoNi積層体が得られている。
強磁性金属層30が規則構造を有すると、磁気異方性定数が大きくなり磁気異方性エネルギーが高まり、ダンピング定数が小さくなる。磁気異方性エネルギーが高まるのは、規則構造が形成されることにより原子配列の乱れが減り原子層間の界面が急峻となり、Co−Ni系において磁気異方性の起源となる界面の効果が増強されるためと考えられる。一方で、ダンピング定数が小さくなるのは、規則構造の形成によりフェルミ面の状態密度が変化するためであると理論計算から考えられる。
なお、図1では、基板側からCo層31、Ni層32の順に積層しているが、積層順は特に問わず、Ni層32、Co層31の順に積層してもよい。
保護層40は、強磁性金属層30が酸化されることを防ぐ層である。そのため、保護層40に用いる物質は特に問わない。例えば、Ru、Ta、Cu、Ag、Au、Al等を用いることができる。
図3は、本実施形態にかかる磁性薄膜100を磁気抵抗効果素子101として用いた場合の断面模式図である。図3に示すように、磁気抵抗効果素子101として用いる場合は、保護層40を非磁性層41と第2強磁性金属層42とに置換できる。磁気抵抗効果素子101は、非磁性層41を挟んで、強磁性金属層30の磁化と第2強磁性金属層42の磁化との相対角の差を抵抗値として出力する。
上述のように、本実施形態にかかる磁性薄膜100は、強磁性金属層30がCoとNiが1原子層ずつ積層され、全体でL1型の規則構造を有する。その結果、磁性薄膜100の磁気異方性定数を5×10erg/cm以上とし、ダンピング定数を0.015以下にできる。
(磁性薄膜の製造方法)
以下、上述の磁性薄膜100の製造方法について説明する。磁性薄膜100の製造方法は、第1工程と第2工程とを有する。第1工程は、基板10の上に下地層20を積層する工程であり、第2工程は、被成膜体を加熱しながらCoの1原子層とNiの1原子層とを交互にエピタキシャル成長させ、規則構造を有する強磁性金属層30を形成する工程である。
第1工程では、まず基板10を準備する。基板10は、上述のように平坦性が高いことが好ましく、サファイアを用いることが好ましい。
準備した基板10上に下地層20を積層する。下地層20が複数層からなる場合は、基板10側から順に積層する。下地層20の成膜には、公知の方法を用いることができる。例えば、スパッタリング装置を用いた成膜方法等を用いることができる。またこのほか、蒸着法、パルスレーザー蒸着法、分子線エピタキシー(MBE)法等の薄膜作製法を用いることができる。
次いで、第2工程として下地層20上にCo層31とNi層32とを1原子層ずつ交互にエピタキシャル成長させる。Co層31及びNi層32をエピタキシャル成長させることで、Co原子及びNi原子が配列しながら成膜される。そして、L1規則構造を有する強磁性金属層30が形成される。
エピタキシャル成長は、電子線蒸着装置、分子線エピタキシー(MBE)装置、スパッタリング装置、パルスレーザー蒸着装置等を用いることができる。これらの中でも分子線エピタキシー(MBE)装置を用いることが最も好ましい。
分子線エピタキシー法は、10−6Pa以下の高真空中で原料を蒸発させ、蒸発した原料を被成膜体上に成膜する方法である。分子線エピタキシー法では、原料は大きな運動量を持って被成膜体に衝突するのではなく、徐々に堆積する。
被成膜体上に到達した原子は、エネルギー的に安定な位置まで移動することができ、場合によってはステップフロー成長する。その結果、1原子層ごとの結晶成長を制御することが可能となり、本実施形態にかかる強磁性金属層30のような単結晶の人工格子を作製できる。なお、Co層31とNi層32の切り替えは、原料セルのシャッター制御により行う。
一方で、スパッタリング法を用いる場合は成膜条件に留意する必要がある。スパッタリング法は、イオン化させたガスをターゲット表面に衝突させ、衝突により弾き飛んだ原子を被成膜体上に成膜する。そのため、一般に被成膜体上に到達した原子は大きな運動量を有し、衝突した箇所に成膜されやすい。
そこで、ターゲットから弾き飛んだ原子が被成膜体に至った時点で運動量が小さくなっているようにする。例えば、被成膜体とターゲットの距離を充分に離す、ターゲットに当てるイオンのエネルギーを小さくする等のスパッタリング条件の調整を行う必要がある。
その他の方法においてもCo層31及びNi層32がエピタキシャル成長するように条件出しを行う。
Co層31及びNi層32をエピタキシャル成長させる際には、被成膜体を加熱することが重要である。加熱の温度としては、50℃以上300℃以下が好ましく、100℃以上250℃以下がより好ましく、150℃以上230℃以下がさらに好ましい。
被成膜体を加熱すると、被成膜体上に到達した原子がエネルギー的に安定な位置まで移動しやすくなる。そのため、Co層31及びNi層32がエピタキシャル成長しやすくなる。すなわち、強磁性金属層30の規則性が高まり、欠陥の少ないL1規則構造が形成される。一方で、被成膜体を加熱しすぎると、強磁性金属層30がL1型の規則構造を維持することができず、不規則合金化する。
最後に、強磁性金属層30上に保護層40を成膜する。保護層40の成膜には上述の成膜方法を用いる。保護層40を設けることで、強磁性金属層30が酸化することなく、真空チャンバーから磁性薄膜100を取り出すことが可能になる。
上述のように、本実施形態にかかる磁性薄膜100の製造方法によると、強磁性金属層30を1原子層単位で制御することができる。そのため、Co層31とNi層32が交互に積層されたL1型規則構造の単結晶を人工的に作製できる。L1型規則構造はCo−Ni系の熱平衡状態図には存在しないため、Co層31とNi層32が交互に積層されたL1型規則構造は1原子層ずつの制御成膜により初めて得られるものである。
以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
(磁気異方性定数の測定)
サファイア基板の(11−20)面上に、第1下地層21としてバナジウムを10nm、第2下地層22として金を10nm積層した。
そして被成膜体を裏面から加熱しながら、分子線エピタキシー法を用いてCoとNiとを1原子層ずつ交互に成膜した。CoおよびNi各々の積層数はそれぞれ20層とした。
加熱の条件を変えた試料を準備し、それぞれの磁気異方性定数(Ku)を求めた。磁気異方性定数は、膜面垂直方向に磁場を印加した磁化曲線と面内方向の磁化曲線の差から求めた。図4は、その結果を示す。
図4に示すように、何れの温度条件でも磁気異方性定数が5×10erg/cm以上であり、非常に大きな磁気異方性定数を示した。特に、200℃までは加熱温度の増加に伴い、磁気異方性定数は増加した。
(ダンピング定数の算出)
次いで、ダンピング定数の値を第1原理計算により理論計算した。その結果、ダンピング定数は0.015と非常に小さい値を示した。なお、第1原理計算により求めた磁気異方性定数は5×10erg/cmであり、実験結果と第1原理計算の結果が対応していることを確認した。
(L1型規則構造の有無の確認)
磁気異方性定数の測定と同様の手順でCoとNiの積層体を作製した。得られたCoとNiの積層体の結晶構造を、放射光を用いたX線回折(SR−XRD:2θ−θスキャン、SPring−8)により分析した。分析結果を図5に示す。図5(a)は規則格子反射を測定した結果であり、図5(b)は基本格子反射を測定した結果である。
CoとNiが交互に積層している構造を確認するためには、CoとNiの違いをX線により判別する必要がある。CoとNiは原子番号が1しか違わず、X線の原子散乱因子が近いため、従来のX線回折の手法では判別が非常に難しい。そこで、Coのエネルギー吸収端の波長である7.71keVの放射光を用いてX線回折を行った。Coのエネルギー吸収端の波長を用いることで、Co原子におけるX線異常散乱の寄与を利用でき、Ni原子との違いを見分けることができる。
規則格子反射は、Coの散乱とNiの散乱の差分を測定している。そのため、この差分が特定のピークを持つということは、CoとNiが周期性をもって積層されていることを意味する。図5に示すように、加熱温度を200℃で作製した試料は23°付近にピークが確認された。
これに対し、室温で作製した試料には、ピークは全く確認されなかった。すなわち、加熱によりCo及びNiにおける規則構造への規則化が促進されたものと考えられる。
なお、加熱温度を100℃で作製した試料及び300℃で作製した試料にも明確なピークは確認されなかった。しかしながら、これらも図4に示すように高い磁気異方性定数を示していることから何らかの規則構造を有することが推察される。
加熱温度を300℃で作製した試料は、加熱温度が高く規則構造が崩れ出し、明確なピークが確認できなかった可能性がある。加熱温度を100℃で作製した試料は、バックグラウンドとの切り分けが上手くいかず、明確なピークが確認できなかった可能性がある。
一方で、基本格子反射は、Co原子とNi原子からの平均の反射を測定している。いずれの温度条件でも、同一の位置にピークが確認され、いずれの温度条件で作製した試料もCo及びNiが同程度存在していることが確認できる。
また図6は、加熱温度を200℃で作製した試料にCoのエネルギー吸収端に相当する波長の放射光と、エネルギー吸収端に相当する波長とは異なる波長の放射光と、を照射した結果を示す。図6(a)は規則格子反射を測定した結果であり、図6(b)は基本格子反射を測定した結果である。
図6(a)に示すように、Coのエネルギー吸収端に相当する波長の放射光を照射した場合は確認できたピークが、Coのエネルギー吸収端に相当する波長と異なる波長の放射光を照射した場合に消滅している。すなわち、Coのエネルギー吸収端に相当する波長を用いることで、規則格子反射を確認できており、このピークは規則構造の形成に由来するものだと言える。一方で、図6(b)に示すように、基本格子反射は放射光の波長を変えても同程度の大きさのピークが確認された。照射している波長が異なる為、ピークの位置はずれている。
(基板の影響)
参考例1として、サファイア基板の(11−20)面上に、第1下地層21としてバナジウムを10nm、第2下地層22として金を10nm積層した。そして被成膜体を加熱せずに室温で、分子線エピタキシー法を用いてCoとNiとを順に成膜した。
Co1原子層に対するNiの積層原子数を変えた試料を作製し、実効的な磁気異方性定数を求めた。試料は、Co1原子層とNi1原子層を交互に積層したもの、Co1原子層とNi2原子層を交互に積層したもの、Co1原子層とNi3原子層を交互に積層したもの、Co1原子層とNi4原子層を交互に積層したものを準備した。
また参考例2として基板をサファイア基板から熱酸化膜付きシリコンに変えて同様の検討を行った。
図7は、参考例1及び参考例2の実効的な磁気異方性定数を示した結果である。図7に示すように、何れの試料においてもサファイア基板上にCo及びNiを積層した試料は、熱酸化膜付きシリコン上にCo及びNiを積層した試料より高い磁気異方性を示した。単結晶やエピタキシャル成長させた薄膜の方が、原子が原子レベルで層状に配列するためと考えられる。
なお、Co1原子層とNi1原子層を交互に積層した試料の実効的な磁気異方性定数が2×10erg/cm程度であるのは、成膜条件が室温であることに起因すると考えられる。
100…磁性薄膜、10…基板、20…下地層、21…第1下地層、22…第2下地層、30…強磁性金属層、31…Co層、32…Ni層、40…保護層、101…磁気抵抗効果素子、41…非磁性層、42…第2強磁性金属層

Claims (8)

  1. 基板と、
    前記基板の上に設けられた下地層と、
    前記下地層の上に設けられた強磁性金属層と、を備え、
    前記強磁性金属層は、Coの1原子層とNiの1原子層とを交互に有し、L1型の規則構造を有する、磁性薄膜。
  2. 前記下地層は、前記基板側の第1下地層と、前記強磁性金属層側の第2下地層とを有し、
    前記第1下地層は、前記基板と前記強磁性金属層との結晶構造の違いを緩和する材料を含み、
    前記第2下地層は、前記強磁性金属層が積層される面の平坦性を高める材料を含む、請求項1に記載の磁性薄膜。
  3. 前記第1下地層は、V、Ta、Nb、Mo、W及びCrからなる群から選択される少なくとも一つを有する、請求項2に記載の磁性薄膜。
  4. 前記第2下地層は、Au、Cu、Ag、Pd及びPtからなる群から選択される少なくとも一つを有する、請求項2または3のいずれかに記載の磁性薄膜。
  5. 前記基板は単結晶基板である、請求項1〜4のいずれか一項に記載の磁性薄膜。
  6. 前記強磁性金属層の磁化が積層方向に配向し、磁気異方性定数が5×10erg/cm以上であり、ダンピング定数が0.015以下である、請求項1〜5のいずれか一項に記載の磁性薄膜。
  7. 基板の上に下地層を積層する工程と、
    被成膜体を加熱しながら、前記下地層の上にCoの1原子層とNiの1原子層とを交互にエピタキシャル成長させ、L1型の規則構造を有する強磁性金属層を形成する工程と、を有する、磁性薄膜の製造方法。
  8. 前記強磁性金属層を形成する工程において、被成膜体を50℃以上300℃以下の条件で加熱する、請求項7に記載の磁性薄膜の製造方法。
JP2016245883A 2016-12-19 2016-12-19 磁性薄膜及び磁性薄膜の製造方法 Pending JP2018101673A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016245883A JP2018101673A (ja) 2016-12-19 2016-12-19 磁性薄膜及び磁性薄膜の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016245883A JP2018101673A (ja) 2016-12-19 2016-12-19 磁性薄膜及び磁性薄膜の製造方法

Publications (1)

Publication Number Publication Date
JP2018101673A true JP2018101673A (ja) 2018-06-28

Family

ID=62714454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016245883A Pending JP2018101673A (ja) 2016-12-19 2016-12-19 磁性薄膜及び磁性薄膜の製造方法

Country Status (1)

Country Link
JP (1) JP2018101673A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315135A (ja) * 1991-04-08 1993-11-26 Alps Electric Co Ltd Co/Ni人工格子膜、磁気抵抗素子、磁気ヘッド、磁気記録媒体およびCo/Ni人工格子膜の製造方法
JP2014081981A (ja) * 2012-10-17 2014-05-08 Hitachi Ltd 垂直磁気記録媒体及び磁気記憶装置
WO2014091874A1 (ja) * 2012-12-14 2014-06-19 日本電気株式会社 磁性材料とその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315135A (ja) * 1991-04-08 1993-11-26 Alps Electric Co Ltd Co/Ni人工格子膜、磁気抵抗素子、磁気ヘッド、磁気記録媒体およびCo/Ni人工格子膜の製造方法
JP2014081981A (ja) * 2012-10-17 2014-05-08 Hitachi Ltd 垂直磁気記録媒体及び磁気記憶装置
WO2014091874A1 (ja) * 2012-12-14 2014-06-19 日本電気株式会社 磁性材料とその製造方法
US20150332818A1 (en) * 2012-12-14 2015-11-19 Nec Corporation Magnetic material and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US10749105B2 (en) Monocrystalline magneto resistance element, method for producing the same and method for using same
Ravelosona et al. Chemical order induced by ion irradiation in FePt (001) films
Weller et al. L10 Fe P t X–Y media for heat‐assisted magnetic recording
CN109560192B (zh) 层叠结构、磁阻效应元件、磁头、传感器、高频滤波器以及振荡器
US7357995B2 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
US10832719B2 (en) Underlayer for perpendicularly magnetized film, perpendicularly magnetized film structure, perpendicular MTJ element, and perpendicular magnetic recording medium using the same
JP2018073934A (ja) スピン軌道トルク型磁化反転素子及び磁気メモリ
JP7024204B2 (ja) スピン流磁化回転素子、磁気抵抗効果素子及び磁気メモリ
JP5527669B2 (ja) 強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子
JP6276588B2 (ja) 磁気トンネル接合素子
JP6647590B2 (ja) 垂直磁化膜と垂直磁化膜構造並びに磁気抵抗素子および垂直磁気記録媒体
JP2021057357A (ja) 磁気抵抗メモリ
KR101661275B1 (ko) 메모리 소자
JP2015090870A (ja) 強磁性トンネル接合体の製造方法
JP2019046976A (ja) スピン流磁化反転素子、磁気メモリ
JP2004311925A (ja) 垂直磁気異方性を有するFePt磁性薄膜とその製造方法
JPWO2016158923A1 (ja) 磁気抵抗効果素子
JP7002134B2 (ja) 磁気トンネル接合素子およびその製造方法
JP2018101673A (ja) 磁性薄膜及び磁性薄膜の製造方法
US8643130B2 (en) Magnetic stack and memory cell comprising such a stack
JP6844743B2 (ja) 強磁性積層膜、スピン流磁化回転素子、磁気抵抗効果素子及び磁気メモリ
Takahashi et al. Perpendicular Exchange Anisotropy in Mn-Ir/Fe-Co/[Pt/Co] $ _ {4} $ Multilayers
Abugri et al. Structural and Magnetic Properties of CoPd Alloys for Non-Volatile Memory Applications
Sahoo et al. Structural properties of Fe–Ni/Cu/Fe–Ni trilayers on Si (100)
Taylor et al. Sputter gas damage in nanolayered Pt/Co/Ir-based synthetic antiferromagnets for top-pinned magnetic tunnel junctions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201215