JP2018098779A - 光転送ネットワークにおけるスペクトル反転による非線形ノイズ緩和 - Google Patents

光転送ネットワークにおけるスペクトル反転による非線形ノイズ緩和 Download PDF

Info

Publication number
JP2018098779A
JP2018098779A JP2017222483A JP2017222483A JP2018098779A JP 2018098779 A JP2018098779 A JP 2018098779A JP 2017222483 A JP2017222483 A JP 2017222483A JP 2017222483 A JP2017222483 A JP 2017222483A JP 2018098779 A JP2018098779 A JP 2018098779A
Authority
JP
Japan
Prior art keywords
optical
dispersion
transmission links
transmission
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017222483A
Other languages
English (en)
Other versions
JP7031245B2 (ja
Inventor
キム・インウン
Inwoong Kim
ヴァシリーヴァ・オルガ
Olga I Vassilieva
パラチャーラ・パパラオ
Palacharla Paparao
池内 公
Akira Ikeuchi
公 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JP2018098779A publication Critical patent/JP2018098779A/ja
Application granted granted Critical
Publication of JP7031245B2 publication Critical patent/JP7031245B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Optical Communication System (AREA)
  • Computing Systems (AREA)

Abstract

【課題】光路についての全体的なNLNレベルを低減する。【解決手段】方法およびシステムが、光転送ネットワークにおいてスペクトル反転を使って光路についての非線形ノイズ(NLN)ペナルティーを緩和しうる。光経路中の各スパンにおける光増幅器をもつ調整可能分散補償器を使って、光路に沿った分散が、各スパンについての正規化された分散に修正されうる。このようにして、NLN累積に関連する分散がNLN補償によって均衡させられ、光路についての全体的なNLNレベルを低減しうる。【選択図】図10

Description

本開示は概括的には光通信ネットワークに、より詳細には、光転送ネットワークにおけるスペクトル反転による非線形ノイズ緩和に関する。
遠隔通信システム、ケーブル・テレビジョン・システムおよびデータ通信ネットワークは、遠隔点の間で大量の情報を高速に伝達するために光ネットワークを使う。光ネットワークでは、情報は光ファイバーを通じて光信号の形で伝達される。光ネットワークは、ネットワーク内でさまざまな動作を実行するよう構成された増幅器、分散補償器、マルチプレクサ/デマルチプレクサフィルタ、波長選択スイッチ、スペクトル反転器、カプラなどといった、さまざまなサブシステムを含むことがある。
所与のデータ・レートについて光増幅器を用いて光信号が伝送されることができる距離は、伝送システムにおける損傷に依存する。典型的には、データ・レートが高く、波長間隔が密であるほど、伝送システムは損傷に敏感になる。損傷は、累積した増幅された自発放射(ASE: amplified spontaneous emission)ノイズ、色分散(CD: chromatic dispersion)、非線形光学効果(非線形ノイズなど)、偏光モード分散および偏光依存損失を含むことができる。コヒーレントな光受信器におけるデジタル信号処理(DSP)は、CD、偏光モード分散および偏光依存損失のような線形損傷を効果的に補償しうる。チャネル内の非線形損傷も、DSPを備えたコヒーレントな光受信器においてデジタル逆伝搬を使って補償されうるが、そのような補償は、光信号帯域幅とともに増す比較的大量の計算資源に関わることがあり、経済的に望ましくない。
非線形ノイズ(NLN)は、光信号が複数のスパンを横断して伝送されるとき、ミッドスパンでのスペクトル反転によって緩和されうる。ミッドスパンでのスペクトル反転は、光学的に(光パラメトリック過程に基づく光位相共役を使って)または電子的に(光‐電気‐光(OEO)変換を使って)達成されうる。よって、スペクトル反転器は、スペクトル反転実行後に波長を変えるまたは維持することがありうる。光信号の累積したCDおよびNLNは、スペクトル変換が実行された後、反転されることがある。よって、CDおよびNLNの最適な補償をするためには、スペクトル反転器の配置が典型的には、伝送リンクの中心位置(中点)に限定されていた。それにより、リンクがスペクトル反転に関して厳密に対称的になるのである。現実世界のシステムでは、伝送リンクの厳密な対称性は実現可能でないまたは実際的でないことがありうる。
ある側面では、開示される方法は、光路について光転送ネットワークにおける非線形ノイズを緩和するためのものである。スペクトル反転ノードの前にM個の伝送リンクを、該スペクトル反転ノードの後にN個の伝送リンクをもつ光路において、各伝送リンクは調整可能分散補償器に結合された光増幅器で始まり、本方法は、それらM+N個の伝送リンクのそれぞれについて正規化された分散を決定することを含んでいてもよい。光信号の累積された分散は、前記M個の伝送リンクのそれぞれに沿って伝搬距離に関して線形に増大し、前記N個の伝送リンクのそれぞれに沿って伝搬距離に関して線形に減少する。前記M個の伝送リンクの二番目の伝送リンクから始まって、M−1個の伝送リンクのそれぞれにおいて、本方法は、前記調整可能分散補償器を使って、それぞれ直前の伝送リンクを通じて増大した分散を前記正規化された分散に修正することをも含んでいてもよい。前記N個の伝送リンクの二番目の伝送リンクから始まって、N−1個の伝送リンクのそれぞれにおいて、前記調整可能分散補償器を使って、それぞれ直前の伝送リンクを通じて減少した分散を前記正規化された分散に修正する。
本方法の開示される実施形態のいずれにおいても、MはNに等しくてもよく、一方、M+N個の伝送リンクのそれぞれの光投入パワーは等しくてもよい。
本方法の開示される実施形態のいずれにおいても、スペクトル反転ノードはさらに、分散補償モジュールを含んでいてもよい。スペクトル反転ノードにおいて、本方法はさらに、前記分散補償モジュールを使って、スペクトル反転ノードの直前のM番目の伝送リンクに沿って少なくともいくらかの分散を補償することを含んでいてもよい。
本方法の開示される実施形態のいずれにおいても、前記分散補償モジュールは、スパン長からM番目の伝送リンクについての有効長さを引いて計算される第一の伝搬距離を補償してもよい。本方法では、非線形ノイズが主として該有効長さに沿って累積しうる。
本方法の開示される実施形態のいずれにおいても、分散を修正することは、分散を増すことを含んでいてもよい。
本方法の開示される実施形態のいずれにおいても、分散を修正することは、分散を減らすことを含んでいてもよい。
本方法の開示される実施形態のいずれにおいても、正規化された分散は、M+N個の伝送リンクの平均長さに基づいていてもよい。
本方法の開示される実施形態のいずれにおいても、正規化された分散は、M+N個の伝送リンクの最小長さに基づいていてもよい。
本方法の開示される実施形態のいずれにおいても、正規化された分散は、M+N個の伝送リンクの最大長さに基づいていてもよい。
もう一つの側面では、開示されるネットワーク管理システムが、光経路について光転送ネットワークにおける非線形ノイズを緩和するための前記方法を実行する。
本発明ならびにその特徴および利点の、より完全な理解のために、ここで、以下の記述が参照される。該記述は付属の図面と一緒に参照される。
光転送ネットワークのある実施形態の選択された要素のブロック図である。 光制御プレーン・システムのある実施形態の選択された要素のブロック図である。 スペクトル反転を使った伝送線モデルのある実施形態の選択された要素の概略図である。 スペクトル反転を使った線形ネットワーク・モデルのある実施形態の選択された要素の概略図である。 スペクトル反転を使ったスーパーチャネル・モデルのある実施形態の選択された要素の概略図である。 パワーおよび分散マップのある実施形態の選択された要素の概略図である。 非線形ノイズ・ペナルティーのプロットである。 パワーおよび分散マップのある実施形態の選択された要素の概略図である。 非線形ノイズ・ペナルティーのプロットである。 パワーおよび分散マップのある実施形態の選択された要素の概略図である。 スペクトル反転による非線形ノイズ緩和のための方法のある実施形態の選択された要素のフローチャートである。
以下の記述において、開示される主題の議論を容易にするために例として詳細が記述されるが、当業者には、開示される実施形態が例示的であり、あらゆる可能な実施形態を網羅したものではないことは明白であるはずである。
本稿での用法では、参照符号のハイフン付きの形は要素の個別的なインスタンスを指し、該参照符号のハイフンなしの形は該要素を集団的または一般的に指す。よって、例として、装置「72−1」は、装置「72」とまとめて称されうる装置クラスのあるインスタンスを指し、それらの装置の任意のものは一般的に装置「72」と称されうる。
ここで図面に目を転じると、図1は、光通信システムを表わしていてもよい光転送ネットワーク(OTN: optical transport network)の例示的な実施形態を示している。光転送ネットワーク101は、光転送ネットワーク101のコンポーネントによって通信される一つまたは複数の光信号を転送するために一つまたは複数の光ファイバー106を含んでいる。光転送ネットワーク101の、ファイバー106によって一緒に結合されたネットワーク要素は、一つまたは複数の送信器(Tx)102、一つまたは複数のマルチプレクサ(MUX)104、一つまたは複数の光増幅器108、一つまたは複数の光挿入分岐マルチプレクサ(OADM: optical add/drop multiplexer)110、一つまたは複数のデマルチプレクサ(DEMUX)105および一つまたは複数の受信器(Rx)112を有していてもよい。
光転送ネットワーク101は、端末ノードをもつポイントツーポイントの光ネットワーク、リング光ネットワーク、メッシュ光ネットワークまたは他の任意の好適な光ネットワークもしくは光ネットワークの組み合わせでありうる。光転送ネットワーク101は、短距離都市圏ネットワーク、長距離都市間ネットワークまたは他の任意の好適なネットワークもしくはネットワークの組み合わせにおいて使用されうる。光転送ネットワーク101の容量はたとえば、100Gbits/s、400Gbits/sまたは1Tbits/sを含んでいてもよい。光ファイバー106は、非常に低い損失で長距離にわたって信号を通信することのできる細いガラスの糸であってもよい。光ファイバー106は、光伝送のために多様な異なるファイバーから選択された好適な型のファイバーを含んでいてもよい。光ファイバー106は、標準的な単一モード・ファイバー(SMF: Single-Mode Fiber)、向上大有効面積ファイバー(ELEAF: Enhanced Large Effective Area Fiber)またはトゥルーウェーブ(登録商標)低減傾斜(TW-RS: TrueWave Reduced Slope)ファイバーといったいかなる好適な型のファイバーを含んでいてもよい。
光転送ネットワーク101は、光ファイバー106を通じて光信号を伝送するための諸装置を含んでいてもよい。情報は、該情報を波長でエンコードする光の一つまたは複数の波長の変調によって、光転送ネットワーク101を通じて送受信されうる。光ネットワークでは、光の波長は、光信号に含まれる「チャネル」と称されることもある。各チャネルは、光転送ネットワーク101を通じてある量の情報を搬送しうる。
光転送ネットワーク101の情報容量および転送機能を高めるために、複数のチャネルで伝送される複数の信号が単一の広帯域幅の光信号に組み合わされてもよい。複数のチャネルで情報を通信するプロセスは、光学では、波長分割多重(WDM: wavelength division multiplexing)と称される。低密度波長分割多重(CWDM: coarse wavelength division multiplexing)は、通例20nm超かつ16波長未満の、少数のチャネルをもつ、広い間隔の諸波長を多重化することをいう。高密度波長分割多重(DWDM: dense wavelength division multiplexing)は、通例0.8nm未満の間隔で40より多くの波長の、密な間隔の、多数のチャネルをもつ諸波長をファイバー中に多重化することをいう。WDMまたは他の多波長多重化伝送技法は、光ファイバー当たりの総合帯域幅を増すために光ネットワークにおいて用いられている。WDMなしでは、光ネットワークにおける帯域幅は一波長だけのビット・レートに限定されてしまうことがある。より多くの帯域幅では、光ネットワークは、より多量の情報を伝送することができる。光転送ネットワーク101はWDMまたは他の何らかの好適な多チャネル多重化技法を使って異種のチャネルを伝送し、多チャネル信号を増幅してもよい。
近年、DWDMにおける進展は、所望される容量の複合光信号を生成するためにいくつかの光搬送波を組み合わせることを可能にした。複数搬送波光信号の一つのそのような例は、スーパーチャネルである。これは、100Gb/s以上の伝送レートを達成しうる高いスペクトル効率(SE: spectral efficiency)の例である。こうして、スーパーチャネルにおいては、サブ搬送波が密にパックされ、通常のDWDMよりも少ない光スペクトルを消費する。スーパーチャネルのもう一つの顕著な特徴は、あるスーパーチャネルにおける諸サブ搬送波は、同じ起点から同じ宛先に進み、伝送中にOADMを使って挿入されたり除去されたりしないということである。光ネットワークにおいて高いスペクトル効率(SE)を達成するための技法は、100Gb/s以上のデータ・レートでの長距離伝送のための、二偏光直交位相偏移符号化(DP-QPSK)を使って変調されたスーパーチャネルの使用を含みうる。個別的実施形態では、スーパーチャネルにおいて、ナイキスト波長分割多重(N-WDM)が使われてもよい。N-WDMでは、ほぼ長方形スペクトルをもつ光パルスが周波数領域で一緒にパックされ、ボーレート(Baud rate)に近づく帯域幅をもつ。
光転送ネットワーク101は、特定の波長またはチャネルにおいて光転送ネットワーク101を通じて光信号を送信するための一つまたは複数の光送信器(Tx)102を含んでいてもよい。送信器102は、電気信号を光信号に変換して該光信号を送信するシステム、装置またはデバイスを含んでいてもよい。たとえば、送信器102はそれぞれレーザーおよび変調器を有していて、電気信号を受け取って、該電気信号に含まれる情報を特定の波長でレーザーによって生成される光のビーム上に変調して、該ビームを送信することによって、光転送ネットワーク101を通じて信号を搬送してもよい。
マルチプレクサ104が送信器102に結合されてもよく、これは送信機102によってそれぞれの個別の波長で送信された信号をWDM信号に組み合わせるシステム、装置またはデバイスであってもよい。
光増幅器108は、光転送ネットワーク101内のマルチチャネルの信号を増幅してもよい。光増幅器108は、ある長さのファイバー106の前および後に位置されてもよく、これは「インライン増幅」と称される。光増幅器108は、光信号を増幅するシステム、装置またはデバイスを含んでいてもよい。たとえば、光増幅器108は、光信号を増幅する光リピーターを含んでいてもよい。この増幅は、光‐電気または電気‐光変換を用いて実行されてもよい。いくつかの実施形態では、光増幅器108は、希土類元素をドープされた光ファイバーを含んでいて、ドープ型ファイバー増幅素子を形成してもよい。信号が該ファイバーを通過するとき、外部エネルギーがポンプ信号の形で加えられて、光ファイバーのドープされた部分の原子を励起してもよく、これが光信号の強度を増す。一例として、光増幅器108は、エルビウム添加ファイバー増幅器(EDFA)を有していてもよい。しかしながら、半導体光増幅器(SOA: semiconductor optical amplifier)のような他の任意の好適な増幅器が使用されてもよい。
OADM 110がファイバー106を介して光転送ネットワーク101に結合されてもよい。OADM 110は、ファイバー106の(個々の波長の)光信号を挿入し、分岐するためのシステム、装置またはデバイスを含んでいてもよい挿入/分岐モジュールを有する。OADM 110を通過したのち、光信号はファイバー106に沿って直接宛先に進んでもよく、あるいは信号は、宛先に到達する前に、一つまたは複数の追加的なOADM 110および光増幅器108を通されてもよい。このようにして、OADM 110は、異なるリングおよび異なる線形スパンのような異なる光転送ネットワーク技術を一緒に接続することを可能にしうる。
光転送ネットワーク101のある種の実施形態では、OADM 110は、WDM信号の個別のまたは複数の波長を挿入または分岐できる再構成可能型OADM(ROADM: reconfigurable OADM)を表わしていてもよい。その個別のまたは複数の波長は、たとえばROADMに含まれていてもよい波長選択スイッチ(WSS: wavelength selective switch)(図示せず)を使って光領域で挿入または分岐されてもよい。
多くの既存の光ネットワークは、光挿入分岐マルチプレクサ(OADM)の通常の実装およびデマルチプレクサ105の通常の実装と互換な、固定グリッド間隔としても知られる国際電気通信連合(ITU)規格の波長グリッドに従って、10ギガビット毎秒(Gbps)または40Gbpsの信号レートで、50ギガヘルツ(GHz)のチャネル間隔をもって動作させられる。しかしながら、データ・レートが100Gbps以上にまで増大すると、そのようなより高いデータ・レートの信号の、より広いスペクトルの要求がしばしばチャネル間隔の増大を要求する。異なるレートの信号をサポートする伝統的な固定グリッド・ネットワーキング・システムでは、ネットワーク・システム全体が典型的には、最も高いレートの信号を受け入れることのできる最も粗いチャネル間隔(100GHz、200GHzなど)で動作させられる必要がある。これは、より低いレートの信号についての過剰装備(over-provisioned)チャネル・スペクトルおよびより低い全体的なスペクトル利用につながりうる。
そこで、ある種の実施形態では、光転送ネットワーク101は、チャネル当たり特定の周波数スロットを指定することを可能にする柔軟グリッド光ネットワーキングと互換なコンポーネントを用いてもよい。たとえば、WDM伝送の各波長チャネルは、少なくとも一つの周波数スロットを使って割り当てられてもよい。よって、シンボル・レートが低い波長チャネルには一つの周波数スロットが割り当てられてもよく、一方、シンボル・レートが高い波長チャネルには複数の周波数スロットが割り当てられてもよい。こうして、光転送ネットワーク101においては、ROADM 110は、光領域で挿入または分岐されるべきデータ・チャネルを担持するWDM、DWDMまたはスーパーチャネル信号の個別のまたは複数の波長を挿入または分岐できてもよい。ある種の実施形態では、ROADM 110は、波長選択スイッチ(WSS)を含んでいてもよく、または波長選択スイッチ(WSS)に結合されていてもよい。
図1に示されるように、光転送ネットワーク101は、ネットワーク101の一つまたは複数の宛先において一つまたは複数のデマルチプレクサ105をも含んでいてもよい。デマルチプレクサ105は、単一の複合WDM信号をそれぞれの波長における個々のチャネルに分割することによってデマルチプレクサとして作用するシステム、装置またはデバイスを有していてもよい。たとえば、光転送ネットワーク101は40チャネルのDWDM信号を伝送および搬送してもよい。デマルチプレクサ105は、その単一の40チャネルDWDM信号をそれら40個の異なるチャネルに従って40個の別個の信号に分割してもよい。さまざまな実施形態において、異なる数のチャネルまたはサブ搬送波が光転送ネットワーク101において伝送され、多重分離されてもよいことが理解されるであろう。
図1では、光転送ネットワーク101は、デマルチプレクサ105に結合された受信器112をも含んでいてもよい。各受信器112は、特定の波長またはチャネルにおいて伝送される光信号を受信し、該光信号が含んでいる情報(データ)を得る(復調する)よう該光信号を処理してもよい。よって、ネットワーク101は、ネットワークのすべてのチャネルについて少なくとも一つの受信器112を含んでいてもよい。
図1における光転送ネットワーク101のような光ネットワークは、光ファイバーを通じて光信号において情報を伝達するための変調方式を用いてもよい。そのような変調方式は、位相偏移符号化(「PSK」)、周波数偏移符号化(「FSK」)、振幅偏移符号化(「ASK」)および直交振幅変調(「QAM」)を含んでいてもよい。変調技法の例は他にもある。PSKでは、光信号によって搬送される情報は、搬送波または単にキャリアとしても知られる参照信号の位相を変調することによって伝達されうる。情報は、二レベルまたは二状態位相偏移符号化(BPSK)、四レベルまたは直交位相偏移符号化(QPSK)、マルチレベル位相偏移符号化(M-PSK)および差動位相偏移符号化(DPSK)を使って信号自身の位相を変調することによって伝達されてもよい。QAMでは、光信号によって搬送される情報は、搬送波の振幅および位相の両方を変調することによって伝達されうる。PSKは、搬送波の振幅が一定に維持されるようなQAMの部分集合と考えられてもよい。
PSKおよびQAM信号は、実軸および虚軸をもつ複素平面を使って配位図〔コンステレーション図〕上で表現されてもよい。情報を搬送するシンボルを表わす配位図上の点は、図の原点のまわりに一様な角度間隔をもって位置されてもよい。PSKおよびQAMを使って変調されるシンボルの数は増やされてもよく、よって搬送できる情報を増してもよい。信号の数は2の倍数で与えられてもよい。追加的なシンボルが加えられる際、原点のまわりに一様な仕方で配置されてもよい。PSK信号は、配位図上の円内のそのような配置を含みうる。つまり、PSK信号はすべてのシンボルについて一定のパワーをもつ。QAM信号はPSK信号と同じ角度的な配置をもちうるが、異なる振幅配置を含みうる。QAM信号は、そのシンボルが、複数の円のまわりに配置されうる。つまり、QAM信号は異なるシンボルについての異なるパワーを含む。この配置は、シンボルが可能な限り大きな距離で隔てられるので、ノイズのリスクを下げうる。ここで、シンボル数「m」が使われてもよく、「m-PSK」または「m-QAM」と記されてもよい。
異なる数のシンボルをもつPSKおよびQAMの例は、配位図上で0°および180°(またはラジアンで0およびπ)の二つの位相を使う二状態PSK(BPSKまたは2-PSK);または0°、90°、180°および270°(またはラジアンで0、π/2、πおよび3π/2)の四つの位相を使う直交PSK(QPSK、4-PSKまたは4-QAM)を含む。そのような信号における位相はオフセットされてもよい。2-PSKおよび4-PSK信号のそれぞれは、配位図上に配置されうる。ある種のm-PSK信号は、別個のm-PSK信号がそれらの信号を直交方向に偏光させることによって多重化される二偏光QPSK(DP-QPSK)のような技法を使って偏光にされてもよい。また、m-QAMも、別個のm-QAM信号がそれらの信号を直交方向に偏光させることによって多重化される二偏光16-QAM(DP-16-QAM)のような技法を使って偏光にされてもよい。
変更分割多重(PDM)と称されることもある二偏光技術は、情報伝送のための、より大きなビット・レートを達成することを許容する。PDM伝送は、情報をチャネルに関連付けられた光信号のさまざまな偏光成分に同時に変調し、それにより公称上、偏光成分の数の倍率だけ伝送レートを増すことを含む。光信号の偏向は、光信号の振動の方向を指してもよい。用語「偏光」は一般には、空間におけるある点において電場ベクトルの先端によって描かれる経路を指しうる。電場ベクトルは光信号の伝搬方向に垂直である。
ある種の実施形態では、光転送ネットワーク101はスーパーチャネルを伝送してもよい。スーパーチャネルにおいては、複数のサブ搬送波信号(またはサブチャネルまたはチャネル)が固定した帯域幅の帯域において密にパックされていて、400Gb/s、1Tb/sまたはそれ以上のような非常に高いデータ・レートで伝送されうる。さらに、スーパーチャネルは、たとえば数百キロメートルなど、非常に長距離の伝送に好適でありうる。典型的なスーパーチャネルは、一つのエンティティとして光転送ネットワーク101を通じて伝送される単一チャネルを形成するために周波数多重された一組のサブ搬送波を含んでいてもよい。スーパーチャネル内のサブ搬送波は、高いスペクトル効率を達成するために、密にパックされてもよい。
図1における光転送ネットワーク101のような光ネットワークでは、管理プレーン(management plane)、制御プレーン(control plane)および転送〔トランスポート〕プレーン(transport plane)(時に物理層とも呼ばれる)に言及することが典型的である。管理プレーンには中央管理ホスト(図示せず)が存在してもよく、制御プレーンのコンポーネントを構成設定および監督してもよい。管理プレーンは、すべての転送プレーンおよび制御プレーンのエンティティ(たとえばネットワーク要素)に対する最終的な制御を含む。例として、管理プレーンは、一つまたは複数の処理資源、データ記憶コンポーネントなどを含む中央処理センター(たとえば中央管理ホスト)からなっていてもよい。管理プレーンは制御プレーンの要素と電気通信してもよく、転送プレーンの一つまたは複数のネットワーク要素とも電気通信してもよい。管理プレーンは、全体的なシステムのための管理機能を実行してもよく、ネットワーク要素、制御プレーンおよび転送プレーンの間の協調を提供してもよい。例として、管理プレーンは、一つまたは複数のネットワーク要素を該要素の視点から扱う要素管理システム(EMS: element management system)、多くのデバイスをネットワークの視点から扱うネットワーク管理システム(NMS: network management system)またはネットワーク全般の動作を扱う動作支援システム(OSS: operational support system)を含んでいてもよい。
本開示の範囲から外れることなく、光転送ネットワーク101に修正、追加または省略がなされてもよい。たとえば、光転送ネットワーク101は図1に描かれているより多くのまたは少ない要素を含んでいてもよい。また、上述したように、ポイントツーポイント・ネットワークとして描かれているものの、光転送ネットワーク101は光信号を伝送するためのリング、メッシュまたは階層式ネットワーク・トポロジーのようないかなる好適なネットワーク・トポロジーを有していてもよい。
動作では、光転送ネットワーク101は、スペクトル反転(SI: spectral inversion)を実行するノードを含んでいてもよい。スペクトル反転は、光信号を位相共役光信号に変換する。スペクトル反転は、非線形歪みを緩和することによって、光到達距離を延長できる。上記のように、スペクトル反転は、典型的には、本稿で線形ノイズおよび非線形ノイズとも称される累積した線形および非線形の歪みを反転させるよう、伝送リンク(光路)の中心位置において実行されうる。多くの事例において、伝送リンクの中心位置以外の他の位置がスペクトル反転のために備えられてもよい。そのようなスペクトル反転は「非対称」スペクトル反転と称され、経済上または実際的な理由のために望ましいことがありうる。さらに、スペクトル反転ノードは、スペクトル反転ノードの前のある分散を補償する(図6も参照)ために分散補償モジュール(DCM: dispersion compensation module)を含んでいてもよい。これは、事前分散されたスペクトル反転(PSI: pre-dispersed spectral inversion)と称されてもよい。
現代の光転送ネットワークでは、16QAMのような高次の変調フォーマットの光到達距離は、QPSKのような低次の変調フォーマットと比べて相対的に短いことがある。これは、より高い光信号対雑音比(OSNR)と、高次の変調フォーマットに関連する、より小さなNLN許容度とのためである。OSNRを改善して投入パワー(launching power)を増す一つの通常の方法は、結果として生じるNLNの増加が望ましくないため、しばしば利用可能ではない。NLNペナルティーを緩和するもう一つの通常の方法は、デジタル逆伝搬であり、これは受信器112においてDSPを使った大きな計算資源に関わる。上記のように、ミッドスパンでのスペクトル反転はCDおよび関連するNLNを補償することが知られているが、スペクトル反転ノードの前および後の光路スパンにおける厳密な対称性は、現実世界の光転送ネットワークにおいては実際的ではないことがしばしばである。このことが、NLNノイズを緩和することにおけるスペクトル反転の有用性を制限する。
本稿でさらに詳細に述べるように、光転送ネットワーク101上でのスペクトル反転によるNLN緩和のための方法およびシステムが開示される。スペクトル反転によるNLN緩和のための本稿に開示される方法およびシステムは、現実世界の条件に対応して、光路長においてある種の変動を許容することによって、スペクトル反転の、より広範な使用を可能にしうる。スペクトル反転によるNLN緩和のための本稿に開示される方法およびシステムは、各光増幅器108において使用される調整可能分散補償器(TDC: tunable dispersion compensator)に依拠しうる。これは、既存の光転送ネットワークに適合させることのできる比較的安価で単純な方法である。スペクトル反転によるNLN緩和のための本稿に開示される方法およびシステムは、一様な伝送リンクで観察されるNLN緩和に匹敵するレベルのNLN緩和を非一様な伝送リンクで提供しうる。
ここで図2を参照するに、たとえば光転送ネットワーク101(図1参照)のような光ネットワークにおける制御プレーン機能を実装する制御システム200のある実施形態の選択された要素のブロック図が示されている。制御プレーン(またはネットワーク管理システム)は、ネットワーク知能および制御のための機能を含み、さらに詳細に述べるように、発見、ルーティング、経路計算および信号伝達のためのアプリケーションおよびモジュールを含む、ネットワーク・サービスを確立する能力をサポートするアプリケーションを有していてもよい。制御システム200によって実行される制御プレーン・アプリケーションは、光ネットワーク内で諸サービスを自動的に確立するために一緒に機能しうる。発見モジュール212は、近隣に接続するローカルなリンクを発見してもよい。ルーティング・モジュール210は、データベース204にデータを入れながら、諸光ネットワーク・ノードに対して、ローカルなリンク情報をブロードキャストしてもよい。光ネットワークからサービス要求が受領されると、データベース204を使ってネットワーク経路を計算するために経路計算エンジン202が呼び出されてもよい。このネットワーク経路は次いで、要求されたサービスを確立するために信号伝達モジュール206に提供されてもよい。
図2に示されるように、制御システム200はプロセッサ208およびメモリ媒体220を含む。メモリ媒体220は、メモリ媒体220へのアクセスをもつプロセッサ208によって実行可能であってもよい実行可能命令(実行可能コードなど)を記憶していてもよい。プロセッサ208は、制御システム200に本稿に記載される機能および動作を実行させる命令を実行してもよい。本開示の目的のためには、メモリ媒体220は、少なくともある時間期間にわたってデータおよび命令を記憶する非一時的なコンピュータ可読媒体を含んでいてもよい。メモリ媒体220は、持続性および揮発性媒体、固定および取り外し可能媒体ならびに磁気および半導体媒体を含みうる。メモリ媒体220は、限定なしに、記憶媒体、たとえば直接アクセス記憶デバイス(たとえばハードディスクドライブまたはフロッピーディスク)、順次アクセス記憶デバイス(たとえばテープディスクドライブ)、コンパクトディスク(CD)、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、CD-ROM、デジタル多用途ディスク(DVD)、電気的に消去可能なプログラム可能型読み出し専用メモリ(EEPROM)およびフラッシュメモリ;非一時的媒体または上記のさまざまな組み合わせを含んでいてもよい。示したようなメモリ媒体220は、実行可能なコンピュータ・プログラム、つまり経路計算エンジン202、信号伝達モジュール206、発見モジュール212およびルーティング・モジュール210を表わしうる命令の集合またはシーケンスを含む。
図2には制御システム200と一緒に含まれているものとして、ネットワーク・インターフェース214が示されている。これは、プロセッサ208とネットワーク230との間のインターフェースのはたらきをするよう動作可能な好適なシステム、装置またはデバイスでありうる。ネットワーク・インターフェース214は、制御システム200が好適な伝送プロトコルまたは規格を使ってネットワーク230を通じて通信できるようにしてもよい。いくつかの実施形態では、ネットワーク・インターフェース214は、ネットワーク230を介してネットワーク記憶資源に通信上結合されてもよい。いくつかの実施形態では、ネットワーク230は光転送ネットワーク101の少なくともある部分を表わす。ネットワーク230は、ガルバーニ的(galvanic)または電子的媒体を使うネットワークのある部分を含んでいてもよい。ある種の実施形態では、ネットワーク230は、インターネットのような公共ネットワークの少なくともある部分を含んでいてもよい。ネットワーク230は、ハードウェア、ソフトウェアまたはそれらのさまざまな組み合わせを使って実装されてもよい。
ある実施形態では、制御システム200は、人(ユーザー)とインターフェースをもち、光信号伝送経路についてのデータを受け取るよう構成されてもよい。たとえば、制御システム200は、ユーザーから光信号伝送経路についてのデータを受け取ることを容易にし、ユーザーに結果を出力するために、一つまたは複数の入力装置および出力装置を含んでいたり、あるいはそれに結合されていたりしてもよい。一つまたは複数の入力または出力装置(図示せず)は、キーボード、マウス、タッチパッド、マイクロフォン、ディスプレイ、タッチスクリーン・ディスプレイ、オーディオ・スピーカーなどを含むがそれに限定されなくてもよい。代替的または追加的に、制御システム200は、光信号伝送経路についてのデータを、別のコンピューティング装置またはネットワーク要素のような装置から、たとえばネットワーク230を介して受け取るよう構成されていてもよい。
図2に示されるように、いくつかの実施形態では、発見モジュール212は、光ネットワークにおける光信号伝送経路に関するデータを受け取るよう構成されていてもよく、近隣者および近隣者間のリンクの発見を受け持ってもよい。換言すれば、発見モジュール212は、発見プロトコルに従って発見メッセージを送ってもよく、光信号伝送経路についてのデータを受け取ってもよい。いくつかの実施形態では、発見モジュール212は:他にもあるが、ファイバー型、ファイバー長、コンポーネントの数および型、データ・レート、データの変調フォーマット、光信号の入力パワー、信号搬送波長(すなわちチャネル)の数、チャネル間隔、トラフィック需要およびネットワーク・トポロジーなどだがそれに限られない特徴を決定してもよい。
図2に示されるよう、ルーティング・モジュール210は、光転送ネットワーク101のような光ネットワーク内のさまざまなノードにリンク接続性情報を伝搬させることを受け持ってもよい。個別的実施形態では、ルーティング・モジュール210は、データベース204に、トラフィック・エンジニアリングをサポートする資源情報を入れてもよく、該情報はリンク帯域幅利用可能性を含んでいてもよい。よって、データベース204は、ルーティング・モジュール210によって、光ネットワークのネットワーク・トポロジーを決定するために使用可能な情報を入れられてもよい。
経路計算エンジン202は、ルーティング・モジュール210によってデータベース204に提供された情報を、光信号伝送経路の伝送特性を決定するために使うよう構成されていてもよい。光信号伝送経路の伝送特性は、伝送劣化因子、たとえば他にもあるが色分散(CD)、非線形(NL)効果、偏光効果、たとえば偏光モード分散(PMD)および偏光依存損失(PDL)および増幅された自発放射(ASE)が光信号伝送経路内で光信号にどのように影響しうるかについての洞察を提供しうる。光信号伝送経路の伝送特性を決定するために、経路計算エンジン202は伝送劣化因子間の相互作用を考慮してもよい。さまざまな実施形態において、経路計算エンジン202は、特定の伝送劣化因子についての値を生成してもよい。経路計算エンジン202はさらに、光信号伝送経路を記述するデータをデータベース204に記憶してもよい。
図2では、信号伝達モジュール206は、光転送ネットワーク101のような光ネットワークにおいてエンドツーエンドのネットワーク・サービスをセットアップし、修正し、取り壊すことに関わる機能を提供してもよい。たとえば、光ネットワークにおける進入(ingress)ノードがサービス要求を受け取るとき、制御システム100は、帯域幅、コストなどといった種々の基準に従って最適化されうるネットワーク経路を経路計算エンジン202から要求するために、信号伝達モジュール206を用いてもよい。所望されるネットワーク経路が同定されると、要求されたネットワーク・サービスを確立するために、信号伝達モジュール206はそのネットワーク経路に沿ったそれぞれのノードと通信してもよい。種々の実施形態において、信号伝達モジュール206は、ネットワーク経路に沿った諸ノードへのおよび該諸ノードからのその後の通信を伝搬させるために、信号伝達プロトコルを用いてもよい。
制御システム200の動作において、経路計算エンジン202は、図1における光転送ネットワーク101のような光ネットワークにおいて源および宛先ノードの所与の対について諸候補経路を評価し、決定するための機能を提供してもよい。この努力において、経路計算エンジン202は、スペクトル反転(SI)ノードの配置について、NLNペナルティー推定値を使ってもよい。SIノードを用いて、光転送ネットワーク101において分散を調整〔チューニング〕するために増幅器108とともにTDCが使われるとき、下記でさらに詳細に述べるスペクトル反転を用いてNLN緩和を実装するために、たとえば信号伝達モジュール206が使われてもよい。
ここで図3を参照するに、伝送線モデル300のある実施形態の選択された要素の概略図が示されている。図のように、伝送線モデル300は、間にスペクトル反転ノードSIが配置される源ノードSと宛先ノードDとの間の単純な伝送リンク(光ファイバー経路)を表わしていてもよい。リンク302は源ノードSとスペクトル反転ノードSIとの間にまたがる〔スパンする〕。一方、リンク304はスペクトル反転ノードSIと宛先ノードDとの間にまたがる。伝送線モデル300においてリンク302、304に沿った伝搬距離は、伝搬方向における光ファイバー経路に沿った軸zによって表わされる。ここで、源ノードSは距離z0に位置しており、スペクトル反転ノードSIは距離z1に位置しており、宛先ノードDは距離z2に位置している。伝送線モデル300におけるスペクトル反転の厳密に対称的な実装では、リンク302と304は同じ長さであり、z1=z2である。これは、現実世界の状況では達成するのが難しい条件である。
ここで図4を参照するに、線形ネットワーク・モデル400のある実施形態の選択された要素の概略図が示されている。図のように、線形ネットワーク・モデル400は、複数のリンクおよび中心に位置するスペクトル反転ノードSIを有する光ファイバー経路を表わしていてもよい。図4に示される特定の例示的実施形態では、線形ネットワーク・モデル400は四つのリンク402−1、402−2、402−3、402−4を含んでいてもよい。ある種のリンクの間には、信号振幅を維持するために汎用リピーター408が配置されている。汎用リピーター408は、さまざまな実施形態において、TDCを含む光増幅器であってもよい(図5参照)。リンク402−2と402−3の間では、スペクトル反転ノード(SI)が、利得等化のための光増幅器とともに動作させられている。線形ネットワーク・モデル400におけるスペクトル反転ノードSIは、DCMを使ってスペクトル反転ノードSIの前に分散が補償される、事前分散されたスペクトル反転(PSI)であってもよいことを注意しておく。このようにして、パワーおよび累積した分散に関する改善された対称性が得られてもよい。さらに、線形ネットワーク400においては、大半のNLNはリンク402−1および402−2のいわゆる「有効長さ」において累積しうることが注目される。ファイバー・スパンが十分長いときのファイバー中の減衰のためである。たとえば、減衰が0.2dB/kmであれば、75kmのスパン長さについては、有効長さは21.03kmであってもよく、60kmのスパン長さについては有効長さは20.34kmであってもよい。
ここで図5を参照するに、光転送ネットワーク500のある実施形態の選択された要素の概略図が示されている。図のように、光転送ネットワーク500は、送信器502から受信器512にスーパーチャネルを送信する光転送ネットワークを表わしていてもよい。さまざまな実施形態では、光転送ネットワーク500は、光転送ネットワーク101(図1参照)または線形ネットワーク・モデル400(図4参照)を表わしうる。具体的には、スーパーチャネル・モデル500は、送信器502の後かつスペクトル反転ノードSIの前の、理想的な光増幅器508およびリンク510を有するM個の伝送リンクと、スペクトル反転ノードSIの後の、理想的な光増幅器508/リンク510のN個の伝送リンクとを有する。変数MおよびNは、光転送ネットワーク500についてのさまざまな異なるサイズおよび配置を表わすために使われる。たとえば、MおよびNは2より大きい整数であってもよい。図5に示されるように、記述目的のためにM個およびN個のリンクの明示的な図示を省いて図面を単純にし、光転送ネットワーク500における任意の異なる数のリンクを表わすために、破線が使われている。
やはり光転送ネットワーク500に示されるように、各光増幅器508は、ある程度の分散制御を可能にするそれぞれのTDC 514を含む。TDC 514によって提供される分散制御は、分散を加えるには正であってもよく、分散を減らすには負であってもよい。NLNの累積および補償は累積した分散に直接関係しているので(図6参照)、TDC 514は、本稿で開示されるように、スペクトル反転によるNLN緩和のために使われてもよい。
ここで図6を参照するに、パワーおよび分散マップ600のある実施形態の選択された要素の概略図が示されている。パワーおよび分散マップ600は縮尺どおりに描かれておらず、概略表現であることを注意しておく。パワーおよび分散マップ600はM=N=3であってスペクトル反転ノードSI(図6には示さず;図5参照)が対応するTDC 514をもつ四番目の光増幅器の前に置かれている光転送ネットワーク500に基づいている。いくつかの実施形態ではスペクトル反転ノードSIが、先述したようにDCMを含むPSIノードであってもよいことを注意しておく。パワーおよび分散マップ600では、光パワーおよび累積した分散およびNLNが、光増幅器508の間の伝送リンク(スパン)の数によって与えられる伝送距離に対してプロットされている。
パワーおよび分散マップ600では、三番目のスパン(M=3)において、スパン長610をもつ三番目の伝送リンクの有効長さ611が、すべてのスパンのための代表的な概略例として、パワー・マップ部分(上のプロット)に示されている。スパン長610における残りの距離をなす伝搬距離612も示されている。パワーおよび分散マップ600に対応する光転送ネットワークは、六つの描かれているスパンを横断して一様なスパン長さ610(等しい伝搬距離をもつ伝送リンク)をもつことが想定されてもよい。各伝送リンクについて、パワー・マップ部分は、各伝送リンクにおける伝搬距離が次の伝送リンクに向かって増大するにつれて、六つの伝送リンクすべてについて一様であると想定される光投入パワー(optical launch power)622までの光パワーの増大と、それに続く光パワーの減衰とを示している。
パワーおよび分散マップ600では、分散マップ(下のプロット)は、分散(実線)が最初の三つのスパン(M=1,2,3)にわたって伝搬距離とともに線形に増大し、PSIノード(図示せず)後の最後の三つのスパン(N=1,2,3)にわたって伝搬とともに線形に減少する様子を示している。事前補償されたスペクトル反転(precompensated spectral inversion)ノードPSIは四番目のスパン(N=1、図6では4とラベル付けされている)の前に位置しているので、PSIノードに含まれるDCMは、下のプロットにおいて補償分散614として示される、三番目のスパンにおける伝搬距離612における分散を補償してもよい。さらに、NLN累積616は、それぞれのスパン(M=1,2,3)において有効長さ611のところに現われる白丸として示されており、一方、NLN補償618は、それぞれのスパン(N=1,2,3)において有効長さ611のところに現われる灰色の丸として示されている。すべてのスパン長さ610は一様であり、光投入パワー622はすべてのスパンについて一定なので、補償分散614は、それぞれのスパンにおいて、NLN累積616を、対応するNLN補償618とマッチさせるのに十分である。したがって、スパン当たりの平均分散620も、NLN累積616およびNLN補償618の両方について、一定値である。このように、パワーおよび分散マップ600の場合には、たとえTDC 514を用いて分散補償が実行されないときでさえ、NLN緩和は非常に良好であることが期待される。図6の非常に良好なNLN緩和は、同じ累積した分散に起因する、光信号の同様のパルス形状の結果でありうる。それが、マッチするNLN累積の効果的なNLN補償を可能にするのである。
図7を参照するに、NLNペナルティーのプロット700が描かれている。プロット700は、図6に関して上記で記述したパワーおよび分散マップ600に対応する。ただし、プロット700は、5サブ搬送波スーパーチャネルにおける中央のサブ搬送波について、それぞれ60kmの20個の一様な伝送リンクについての実際のデータを示している。プロット700において、dB単位での非線形Qペナルティーがスパン番号に対してプロットされている。スペクトル反転SIなしのQペナルティーが定数線702によって示され、一方、サブ搬送波間NLNが定数線704によって示されている。プロット700では、スペクトル反転SI(プロット中の×印)では、NL Qペナルティーが線702に比して低減されることがわかる。しかしながら、PSI(プロット中の丸印)では、NL Qペナルティーが線704より下に低減されることがわかる。これは図6に関して述べた一様なスパンおよびパワー・レベルの場合におけるNLN緩和の非常に良好なレベルを示している。
ここで図8を参照するに、パワーおよび分散マップ800のある実施形態の選択された要素の概略図が示されている。パワーおよび分散マップ800は縮尺どおりに描かれておらず、概略表現であることを注意しておく。パワーおよび分散マップ800はM=N=3であってスペクトル反転ノードSI(図8には示さず;図5参照)が対応するTDC 514をもつ四番目の光増幅器の前に置かれている光転送ネットワーク500に基づいている。いくつかの実施形態ではスペクトル反転ノードSIが、先述したようにDCMを含むPSIノードであってもよいことを注意しておく。パワーおよび分散マップ800では、光パワーおよび累積した分散およびNLNが、光増幅器508の間の伝送リンク(スパン)の数によって与えられる伝送距離に対してプロットされている。
パワーおよび分散マップ800では、図6におけるパワーおよび分散マップ600と同様の特徴および要素が呈示されているが、図8では、最後の三つのスパン(N=1,2,3)が最初の三つのスパン(M=1,2,3)よりも長いと想定される。こうして、最初の三つの伝送リンクはスパン長さ810(有効長さ811、補償された伝搬距離812をもつ)をもち、一方、最後の三つの伝送リンクは、スパン長さ810より大きいスパン長さ802をもつ。下のプロットでは、NLN累積616は不変のままで、図6と同じ補償される分散614をもつ。だが、パワーおよび分散マップ800では、五番目および六番目のスパンにおけるNLN補償818−5および818−6はもはや(一番目および二番目のスパンにおける)対応するNLN累積616と同じ分散レベルにはない。結果として、NLN緩和は不均衡であり、TDC 514を用いて分散補償が実行されないときは、あまり良好ではないことがある。図8における比較的貧弱なNLN緩和は、累積した分散における差に起因する、光信号の異なるパルス形状の結果でありうる。それが、マッチしないNLN累積のため、効果的なNLN補償を妨げるのである。
図9を参照するに、NLNペナルティーのプロット900が描かれている。プロット900は、図8に関して上記で記述したパワーおよび分散マップ800に対応する。ただし、プロット900は、5サブ搬送波スーパーチャネルにおける中央のサブ搬送波について、それぞれ60kmの10個の伝送リンクおよびそれに続くそれぞれ75kmの10個の伝送リンクについての実際のデータを示している。プロット900において、dB単位での非線形Qペナルティーがスパン番号に対してプロットされている。スペクトル反転SIなしのQペナルティーが定数線702によって示されている。一方、サブ搬送波間NLNが定数線704によって示されている。プロット900では、スペクトル反転SI(プロット中の×印)では、NL Qペナルティーが線702に比して低減されることがわかる。しかしながら、PSI(プロット中の丸印)では、NL Qペナルティーは線704より実質的に下には低減されないことがわかる。これは図6に関して述べ図7に示した一様なスパンおよびパワー・レベルの場合に比べて、より低いレベルのNLN緩和を示している。
ここで図10を参照するに、パワーおよび分散マップ1000のある実施形態の選択された要素の概略図が示されている。パワーおよび分散マップ1000は縮尺どおりに描かれておらず、概略表現であることを注意しておく。パワーおよび分散マップ1000はM=N=3であって事前補償されたスペクトル反転ノードPSI(図10には示さず;図5参照)が対応するTDC 514をもつ四番目の光増幅器の前に置かれている光転送ネットワーク500に基づいている。PSIノードは、先述したようにDCMを含むことを注意しておく。パワーおよび分散マップ1000では、光パワーおよび累積した分散およびNLNが、光増幅器508の間の伝送リンク(スパン)の数によって与えられる伝送距離に対してプロットされている。
パワーおよび分散マップ1000では、個々のスパンについてのスパン長さ1010はある程度変動し、スパン長さは一様ではないと想定されてもよい。下のブロット部分では、一番目のスパン(M=1)におけるNLN累積1061−1と二番目のスパン(M=2)におけるNLN累積1061−1はTDC 514によって補償されないままであってもよく、その差は正規化された、スパン当たりの分散1020に対応してもよい。さまざまな実施形態において、正規化された、スパン当たりの分散1020は、光路におけるスパンの任意の集合または部分集合についての、平均分散、最大分散または最小分散であってもよい。二番目のスパンは一番目のスパンよりいくらか短いことがあるので、三番目のスパン(M=3)におけるNLN累積1016−3は、NLN累積1016−2に関する正規化された、スパン当たりの分散1020より低くてもよい。この場合、TDC 514は、NLN累積を正規化された、スパン当たりの分散1020に揃えるために三番目のスパン(M=3)において分散修正1022を適用してもよい。同様に、TDCは、NLN累積1018−6を正規化された、スパン当たりの分散1020に揃えるために六番目のスパン(N=3、スパン6として図示)において分散修正1024を適用してもよい。NLN補償1018−4および1018−5は不変のままであってもよい。分散は、距離に対して線形のままであり、図10は概略的であり、縮尺どおりに描かれていないことを注意しておく。図10では、正の分散修正1022、1024を示す例示的実施形態が二つのスパンにおいて示されているが、所望に応じて各スパンにおいて、TDC 514による正または負の分散修正が実行されうることは理解されるであろう。分散修正1022、1024は一般に、分散補償614より絶対値が小さい。それぞれの光増幅器508におけるTDC 514による分散修正1022、1024の結果として、NLN累積1016は今や累積的分散に関してNLN補償1018と揃い、図7に示されるような、対応する光信号についてのNL Qペナルティーにおける対応する低減が期待され、達成されうる。このようにして、パワーおよび分散マップ1000では、SIまたはPSIと一緒に使われる非一様なスパン長さが、図6に示した一様なスパン長さに匹敵するNLN緩和を達成するよう、補償されうる。
ここで図11を参照するに、スペクトル反転によるNLN緩和のための方法1100がフローチャートの形で示されている。図のように、方法1100は、制御システム200における他にもある要素のうち、個別的実施形態では、信号伝達モジュール206を使って光転送ネットワーク101(図1参照)のために実行されてもよい。方法1100に関して記述される動作は、異なる実施形態では、省略されたり、または再配列されたりしてもよいことを注意しておく。
方法1100は、段階1102において、SIノードの前にM個の伝送リンクを、該SIノードの後にN個の伝送リンクをもつ光路を提供することによって始まってもよい。各伝送リンクはTDCに結合された光増幅器で始まる。SIノードはPSIノードであってもよい。段階1104では、それらM+N個の伝送リンクについて正規化された分散が決定されてもよい。段階1106では、前記M個の伝送リンクの二番目の伝送リンクから始まって、M−1個の伝送リンクのそれぞれにおいて、TDCを使って、それぞれ直前の伝送リンクを通じて増大した分散を前記正規化された分散に修正する。段階1108では、前記N個の伝送リンクの二番目の伝送リンクから始まって、N−1個の伝送リンクのそれぞれにおいて、TDCを使って、それぞれ直前の伝送リンクを通じて減少した分散を前記正規化された分散に修正する。段階1106、1108のいくつかの事例では、TDCは分散の修正を実行しない。
本稿に開示されるように、方法およびシステムは、光転送ネットワークにおいて、スペクトル反転を使って光路についての非線形ノイズ(NLN)ペナルティーを緩和しうる。光路中の各スパンにおける光増幅器と一緒に調整可能分散補償器を使うことによって、光路に沿った分散が、各スパンについての正規化された分散に修正されうる。このようにして、NLN累積に関連する分散がNLN補償によって均衡させられて、光路についての全体的なNLNレベルを低減しうる。
本明細書の主題は一つまたは複数の例示的実施形態との関連で記述されてきたが、いずれかの請求項を記載される特定の形に限定することは意図されていない。逆に、本開示に向けられるどの請求項も、その精神および範囲内に含まれうるような代替、修正および等価物をカバーすることが意図されている。
以上の実施例を含む実施形態に関し、さらに以下の付記を開示する。
(付記1)
光路について光転送ネットワークにおける非線形ノイズを緩和する方法であって:
スペクトル反転ノードの前にM個の伝送リンクを、該スペクトル反転ノードの後にN個の伝送リンクをもつ光路において、各伝送リンクは調整可能分散補償器に結合された光増幅器で始まり、当該方法は、
それらM+N個の伝送リンクのそれぞれについて正規化された分散を決定する段階であって、光信号の累積された分散は、前記M個の伝送リンクのそれぞれに沿って伝搬距離に関して線形に増大し、前記N個の伝送リンクのそれぞれに沿って伝搬距離に関して線形に減少する、段階と;
前記M個の伝送リンクの二番目の伝送リンクから始まって、M−1個の伝送リンクのそれぞれにおいて、前記調整可能分散補償器を使って、それぞれ直前の伝送リンクを通じて増大した分散を前記正規化された分散に修正する段階と;
前記N個の伝送リンクの二番目の伝送リンクから始まって、N−1個の伝送リンクのそれぞれにおいて、前記調整可能分散補償器を使って、それぞれ直前の伝送リンクを通じて減少した分散を前記正規化された分散に修正する段階とを含む、
方法。
(付記2)
前記M+N個の伝送リンクのそれぞれの光投入パワーは等しい、付記1記載の方法。
(付記3)
前記スペクトル反転ノードはさらに分散補償モジュールを有しており、
前記スペクトル反転ノードにおいて、前記分散補償モジュールを使って、前記スペクトル反転ノードの直前のM番目の伝送リンクに沿っての少なくともいくらかの分散を補償することを含む、
付記1記載の方法。
(付記4)
前記分散補償モジュールは、スパン長からM番目の伝送リンクについての有効長さを引いて計算される第一の伝搬距離について補償し、非線形ノイズが主として前記有効長さに沿って累積する、付記3記載の方法。
(付記5)
前記分散を修正することは、分散を増すことを含む、付記1記載の方法。
(付記6)
前記分散を修正することは、分散を減らすことを含む、付記1記載の方法。
(付記7)
前記正規化された分散は、前記M+N個の伝送リンクの平均長さに基づく、付記1記載の方法。
(付記8)
前記正規化された分散は、前記M+N個の伝送リンクのうちの最小長さに基づく、付記1記載の方法。
(付記9)
前記正規化された分散は、前記M+N個の伝送リンクのうちの最大長さに基づく、付記1記載の方法。
(付記10)
光路について光転送ネットワークにおける非線形ノイズを推定するための、プロセッサを有するネットワーク管理システムであって:
前記プロセッサは前記プロセッサによって実行可能な命令を記憶しているメモリ媒体にアクセスできるようにされており、スペクトル反転ノードの前にM個の伝送リンクを、該スペクトル反転ノードの後にN個の伝送リンクをもつ光路において、各伝送リンクは調整可能分散補償器に結合された光増幅器で始まり、
前記プロセッサによって実行可能な命令は、
それらM+N個の伝送リンクのそれぞれについて正規化された分散を決定する段階であって、光信号の累積された分散は、前記M個の伝送リンクのそれぞれに沿って伝搬距離に関して線形に増大し、前記N個の伝送リンクのそれぞれに沿って伝搬距離に関して線形に減少する、段階と;
前記M個の伝送リンクの二番目の伝送リンクから始まって、M−1個の伝送リンクのそれぞれにおいて、前記調整可能分散補償器を使って、それぞれ直前の伝送リンクを通じて増大した分散を前記正規化された分散に修正する段階と;
前記N個の伝送リンクの二番目の伝送リンクから始まって、N−1個の伝送リンクのそれぞれにおいて、前記調整可能分散補償器を使って、それぞれ直前の伝送リンクを通じて減少した分散を前記正規化された分散に修正する段階とを実行するためのものである、
ネットワーク管理システム。
(付記11)
前記M+N個の伝送リンクのそれぞれの光投入パワーは等しい、付記10記載のネットワーク管理システム。
(付記12)
前記スペクトル反転ノードはさらに分散補償モジュールを有しており、
前記スペクトル反転ノードにおいて、前記分散補償モジュールを使って、前記スペクトル反転ノードの直前のM番目の伝送リンクに沿っての少なくともいくらかの分散を補償するための命令をさらに有する、
付記10記載のネットワーク管理システム。
(付記13)
前記分散補償モジュールは、スパン長からM番目の伝送リンクについての有効長さを引いて計算される第一の伝搬距離について補償し、非線形ノイズが主として前記有効長さに沿って累積する、付記12記載のネットワーク管理システム。
(付記14)
前記分散を修正することは、分散を増すことを含む、付記10記載のネットワーク管理システム。
(付記15)
前記分散を修正することは、分散を減らすことを含む、付記10記載のネットワーク管理システム。
(付記16)
前記正規化された分散は、前記M+N個の伝送リンクの平均長さに基づく、付記10記載のネットワーク管理システム。
(付記17)
前記正規化された分散は、前記M+N個の伝送リンクのうちの最小長さに基づく、付記10記載のネットワーク管理システム。
(付記18)
前記正規化された分散は、前記M+N個の伝送リンクのうちの最大長さに基づく、付記10記載のネットワーク管理システム。
200 制御システム
202 経路計算エンジン
204 データベース
206 信号伝達モジュール
208 プロセッサ
210 ルーティング・モジュール
212 発見モジュール
214 ネットワーク・インターフェース
220 メモリ媒体
230 ネットワーク
300 伝送線
400 線形ネットワーク
500 スーパーチャネル
1100 スペクトル反転による非線形ノイズ緩和のための方法
1102 SIノードの前にM個の伝送リンクを、該SIノードの後にN個の伝送リンクをもつ光路を提供。各伝送リンクはTDCに結合された光増幅器で始まる
1104 M+N個の伝送リンクについて正規化された分散を決定
1106 M個の伝送リンクのうち二番目の伝送リンクから始まって、M−1個の伝送リンクのそれぞれにおいて、TDCを使って、それぞれ直前の伝送リンクを通じて増大した分散を前記正規化された分散に修正
1108 N個の伝送リンクのうち二番目の伝送リンクから始まって、N−1個の伝送リンクのそれぞれにおいて、TDCを使って、それぞれ直前の伝送リンクを通じて減少した分散を前記正規化された分散に修正

Claims (18)

  1. 光路について光転送ネットワークにおける非線形ノイズを緩和する方法であって:
    スペクトル反転ノードの前にM個の伝送リンクを、該スペクトル反転ノードの後にN個の伝送リンクをもつ光路において、各伝送リンクは調整可能分散補償器に結合された光増幅器で始まり、当該方法は、
    それらM+N個の伝送リンクのそれぞれについて正規化された分散を決定する段階であって、光信号の累積された分散は、前記M個の伝送リンクのそれぞれに沿って伝搬距離に関して線形に増大し、前記N個の伝送リンクのそれぞれに沿って伝搬距離に関して線形に減少する、段階と;
    前記M個の伝送リンクの二番目の伝送リンクから始まって、M−1個の伝送リンクのそれぞれにおいて、前記調整可能分散補償器を使って、それぞれ直前の伝送リンクを通じて増大した分散を前記正規化された分散に修正する段階と;
    前記N個の伝送リンクの二番目の伝送リンクから始まって、N−1個の伝送リンクのそれぞれにおいて、前記調整可能分散補償器を使って、それぞれ直前の伝送リンクを通じて減少した分散を前記正規化された分散に修正する段階とを含む、
    方法。
  2. 前記M+N個の伝送リンクのそれぞれの光投入パワーは等しい、請求項1記載の方法。
  3. 前記スペクトル反転ノードはさらに分散補償モジュールを有しており、
    前記スペクトル反転ノードにおいて、前記分散補償モジュールを使って、前記スペクトル反転ノードの直前のM番目の伝送リンクに沿っての少なくともいくらかの分散を補償することを含む、
    請求項1記載の方法。
  4. 前記分散補償モジュールは、スパン長からM番目の伝送リンクについての有効長さを引いて計算される第一の伝搬距離について補償し、非線形ノイズが主として前記有効長さに沿って累積する、請求項3記載の方法。
  5. 前記分散を修正することは、分散を増すことを含む、請求項1記載の方法。
  6. 前記分散を修正することは、分散を減らすことを含む、請求項1記載の方法。
  7. 前記正規化された分散は、前記M+N個の伝送リンクの平均長さに基づく、請求項1記載の方法。
  8. 前記正規化された分散は、前記M+N個の伝送リンクのうちの最小長さに基づく、請求項1記載の方法。
  9. 前記正規化された分散は、前記M+N個の伝送リンクのうちの最大長さに基づく、請求項1記載の方法。
  10. 光路について光転送ネットワークにおける非線形ノイズを推定するための、プロセッサを有するネットワーク管理システムであって:
    前記プロセッサは前記プロセッサによって実行可能な命令を記憶しているメモリ媒体にアクセスできるようにされており、スペクトル反転ノードの前にM個の伝送リンクを、該スペクトル反転ノードの後にN個の伝送リンクをもつ光路において、各伝送リンクは調整可能分散補償器に結合された光増幅器で始まり、
    前記プロセッサによって実行可能な命令は、
    それらM+N個の伝送リンクのそれぞれについて正規化された分散を決定する段階であって、光信号の累積された分散は、前記M個の伝送リンクのそれぞれに沿って伝搬距離に関して線形に増大し、前記N個の伝送リンクのそれぞれに沿って伝搬距離に関して線形に減少する、段階と;
    前記M個の伝送リンクの二番目の伝送リンクから始まって、M−1個の伝送リンクのそれぞれにおいて、前記調整可能分散補償器を使って、それぞれ直前の伝送リンクを通じて増大した分散を前記正規化された分散に修正する段階と;
    前記N個の伝送リンクの二番目の伝送リンクから始まって、N−1個の伝送リンクのそれぞれにおいて、前記調整可能分散補償器を使って、それぞれ直前の伝送リンクを通じて減少した分散を前記正規化された分散に修正する段階とを実行するためのものである、
    ネットワーク管理システム。
  11. 前記M+N個の伝送リンクのそれぞれの光投入パワーは等しい、請求項10記載のネットワーク管理システム。
  12. 前記スペクトル反転ノードはさらに分散補償モジュールを有しており、
    前記スペクトル反転ノードにおいて、前記分散補償モジュールを使って、前記スペクトル反転ノードの直前のM番目の伝送リンクに沿っての少なくともいくらかの分散を補償するための命令をさらに有する、
    請求項10記載のネットワーク管理システム。
  13. 前記分散補償モジュールは、スパン長からM番目の伝送リンクについての有効長さを引いて計算される第一の伝搬距離について補償し、非線形ノイズが主として前記有効長さに沿って累積する、請求項12記載のネットワーク管理システム。
  14. 前記分散を修正することは、分散を増すことを含む、請求項10記載のネットワーク管理システム。
  15. 前記分散を修正することは、分散を減らすことを含む、請求項10記載のネットワーク管理システム。
  16. 前記正規化された分散は、前記M+N個の伝送リンクの平均長さに基づく、請求項10記載のネットワーク管理システム。
  17. 前記正規化された分散は、前記M+N個の伝送リンクのうちの最小長さに基づく、請求項10記載のネットワーク管理システム。
  18. 前記正規化された分散は、前記M+N個の伝送リンクのうちの最大長さに基づく、請求項10記載のネットワーク管理システム。
JP2017222483A 2016-12-08 2017-11-20 光転送ネットワークにおけるスペクトル反転による非線形ノイズ緩和 Active JP7031245B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/372,539 2016-12-08
US15/372,539 US9838123B1 (en) 2016-12-08 2016-12-08 Nonlinear noise mitigation with spectral inversion in optical transport networks

Publications (2)

Publication Number Publication Date
JP2018098779A true JP2018098779A (ja) 2018-06-21
JP7031245B2 JP7031245B2 (ja) 2022-03-08

Family

ID=60452244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017222483A Active JP7031245B2 (ja) 2016-12-08 2017-11-20 光転送ネットワークにおけるスペクトル反転による非線形ノイズ緩和

Country Status (2)

Country Link
US (1) US9838123B1 (ja)
JP (1) JP7031245B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089694A1 (ja) * 2021-11-17 2023-05-25 日本電信電話株式会社 光伝送システム、光伝送方法及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696243B (zh) * 2018-11-23 2020-07-14 武汉光迅科技股份有限公司 一种光噪声测量方法及装置、计算机可读存储介质
CN111800194B (zh) * 2020-06-22 2021-06-18 北京理工大学 针对少模多芯oam光纤传输概率分布的非线性补偿方法
US11658746B2 (en) * 2021-05-10 2023-05-23 Fujitsu Limited Routing of optical signals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0895106A (ja) * 1994-09-23 1996-04-12 At & T Corp 光信号変換装置及び方法
JP2003032195A (ja) * 2001-07-11 2003-01-31 Nec Corp 光ファイバー伝送路
US20050220399A1 (en) * 2002-03-22 2005-10-06 Francesco Alberti Optical transmission system using an optical phase conjugation device
JP2006340403A (ja) * 1995-11-22 2006-12-14 Fujitsu Ltd 光位相共役を用いた光ファイバ通信システム
JP2009232101A (ja) * 2008-03-21 2009-10-08 Fujitsu Ltd 光伝送システム及びその分散補償方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389881B1 (en) * 2001-12-20 2003-07-04 Samsung Electronics Co Ltd Developing device of image forming apparatus using electrophotography and method for forming image using the same
US9344190B2 (en) * 2014-05-14 2016-05-17 Fujitsu Limited Flexible placement of spectral inverters in optical networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0895106A (ja) * 1994-09-23 1996-04-12 At & T Corp 光信号変換装置及び方法
JP2006340403A (ja) * 1995-11-22 2006-12-14 Fujitsu Ltd 光位相共役を用いた光ファイバ通信システム
JP2003032195A (ja) * 2001-07-11 2003-01-31 Nec Corp 光ファイバー伝送路
US20050220399A1 (en) * 2002-03-22 2005-10-06 Francesco Alberti Optical transmission system using an optical phase conjugation device
JP2009232101A (ja) * 2008-03-21 2009-10-08 Fujitsu Ltd 光伝送システム及びその分散補償方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089694A1 (ja) * 2021-11-17 2023-05-25 日本電信電話株式会社 光伝送システム、光伝送方法及びプログラム

Also Published As

Publication number Publication date
US9838123B1 (en) 2017-12-05
JP7031245B2 (ja) 2022-03-08

Similar Documents

Publication Publication Date Title
JP6878997B2 (ja) 光通信システムのための変調フォーマットのコンステレーションシェーピング
JP7073884B2 (ja) 不均等サブキャリア間隔を用いるマルチキャリアチャネルの到達距離拡張
JP7287087B2 (ja) 変調方式及びサブキャリア数の制御を通じた光ネットワークについての到達距離拡大
JP6729071B2 (ja) トーン変調された光信号を識別する周期的光フィルタリングのための方法及びシステム
JP6299358B2 (ja) 可変的サブキャリア電力レベルを利用する光ネットワークにおけるクロストーク低減
US9100137B2 (en) Crosstalk reduction in optical networks using variable subcarrier spectral allocation
JP6638539B2 (ja) 伝送基準に基づくスーパーチャネルパワーフリープリエンファシス
US9768878B2 (en) Methods and systems for superchannel power pre-emphasis
US10601517B1 (en) Probabilistic shaping on eight-dimensional super-symbols
JP6930118B2 (ja) 混合ボーレートサブキャリアを有するスーパーチャネル
US10530490B1 (en) Probabilistic constellation shaping for optical networks with diverse transmission media
US10511388B1 (en) Reducing variance in reach of WDM channels in an optical network
US11265086B2 (en) Low rate loss bit-level distribution matcher for constellation shaping
JP6932994B2 (ja) 異なる変調フォーマットを有するスーパーチャネルを運ぶネットワークの最適化
JP7031245B2 (ja) 光転送ネットワークにおけるスペクトル反転による非線形ノイズ緩和
JP6711103B2 (ja) 光トランスポートネットワークにおけるスペクトル反転を用いる非線形ペナルティ推定
US9941994B2 (en) Wavelength shift elimination during spectral inversion in optical networks
JP7200686B2 (ja) キャリア抑圧マルチレベルパルス振幅変調
JP2017017707A (ja) 周波数変調トーンを用いるスーパーチャネルサブキャリア監視のための方法及びシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R150 Certificate of patent or registration of utility model

Ref document number: 7031245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150