JP2018098448A - Manufacturing method of flexible print circuit board - Google Patents

Manufacturing method of flexible print circuit board Download PDF

Info

Publication number
JP2018098448A
JP2018098448A JP2016244408A JP2016244408A JP2018098448A JP 2018098448 A JP2018098448 A JP 2018098448A JP 2016244408 A JP2016244408 A JP 2016244408A JP 2016244408 A JP2016244408 A JP 2016244408A JP 2018098448 A JP2018098448 A JP 2018098448A
Authority
JP
Japan
Prior art keywords
fpc
cover film
circuit board
guide hole
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016244408A
Other languages
Japanese (ja)
Inventor
真司 松永
Shinji Matsunaga
真司 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016244408A priority Critical patent/JP2018098448A/en
Publication of JP2018098448A publication Critical patent/JP2018098448A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of FPC capable of manufacturing an FPC using a single type of a copper foil pattern as the base even when the dimensions of the FPCs in a length direction are different from each other.SOLUTION: The manufacturing method of FPC in an embodiment includes: a cover film bonding step SB7 to bond a cover film 5 to a base film 3 of an FPC 1; an outer shape processing step SB9 to separate each FPC 1 from the base film 3; and an opening step SB6 of a guide hole 8 used for carrying out the outer shape processing. Before the cover film bonding step SB7, the opening step SB6 of the guide hole 8 is carried out, and subsequently the cover film bonding step SB7 is carried out using the guide hole 8 and then followed by the outer shape processing.SELECTED DRAWING: Figure 1

Description

本発明はフレキシブルプリント基板の製造方法に関する。   The present invention relates to a method for manufacturing a flexible printed circuit board.

従来から液晶表示装置の液晶パネルにCOG(Chip On Glass)技術を用いて実装されるソースドライバIC(以下、S−ICと称す)の選定においては、液晶パネルの解像度すなわちソース配線の総本数に対応して、当該S−ICの出力端子数を勘案して、出力端子の余りが生じないよう選定が行われていた。   Conventionally, in selecting a source driver IC (hereinafter referred to as S-IC) that is mounted on a liquid crystal panel of a liquid crystal display device using COG (Chip On Glass) technology, the resolution of the liquid crystal panel, that is, the total number of source wirings is determined. Correspondingly, in consideration of the number of output terminals of the S-IC, selection has been made so that the remainder of the output terminals does not occur.

しかしながら、近年、多数の出力端子使用のS−ICが普及し(特許文献1の段落0010参照)、一個または複数個のS−ICの合計出力端子数と液晶パネルのソース配線の総本数が異なった場合に、例えばS−ICの出力端子に余りが生じても、低解像度から高解像度の液晶パネルに、同一のS−ICを採用する場合が多くなっている。   However, in recent years, S-ICs using a large number of output terminals have become widespread (see paragraph 0010 of Patent Document 1), and the total number of output terminals of one or a plurality of S-ICs differs from the total number of source wirings of the liquid crystal panel. In this case, for example, even if there is a surplus in the output terminal of the S-IC, the same S-IC is often used for a low-resolution to high-resolution liquid crystal panel.

また、回路基板側より液晶パネル側接続端子を介して、S−ICに信号や電源などを送る際の橋渡しの役割となるフレキシブルプリント基板(以下、FPCと称する)が周知である(特許文献2の図1参照)。従来、S−ICの入力端子配列が異なる多様なS−ICの仕様に対応して、液晶表示装置の設計毎にFPCを新規に設計、製造していた。しかし、上述したように多出力S−ICの普及によって、当該S−ICの統一化が進み、FPCの接続端子の配列も統一可能となった。その結果、回路基板側と液晶パネル間に配設するFPCは、その幅方向の外形寸法が同一のFPCを採用する事例が増えている。   In addition, a flexible printed circuit board (hereinafter referred to as FPC) that serves as a bridge when sending a signal or a power supply to the S-IC from the circuit board side via the liquid crystal panel side connection terminal is well known (Patent Document 2). FIG. 1). Conventionally, an FPC has been newly designed and manufactured for each design of a liquid crystal display device in response to various S-IC specifications with different S-IC input terminal arrangements. However, as described above, with the widespread use of multi-output S-ICs, the standardization of the S-ICs has progressed, and the arrangement of FPC connection terminals can also be unified. As a result, FPCs arranged between the circuit board side and the liquid crystal panel are increasingly used as FPCs having the same external dimensions in the width direction.

特開2012−252216号公報JP 2012-252216 A 特開2003−337550号公報JP 2003-337550 A

一方、要求仕様や製品コンセプトにより、液晶表示装置毎に厚み等が異なる場合がある。この場合、回路基板と液晶パネル間接続用FPCは、接続端子配列や幅方向の外形寸法は同じであってもバックライトと液晶パネルを組立てる際、FPCの長さ方向の外形長の過不足で新規にFPC設計を行う必要が発生する。(ここで、「FPCの長さ方向」とはFPC内の配線に沿った方向のことであり、「FPCの幅方向」とは、接続端子の配列方向のことである。)   On the other hand, depending on the required specifications and product concept, the thickness and the like may be different for each liquid crystal display device. In this case, the FPC for connecting between the circuit board and the liquid crystal panel has an excessive or insufficient outer length in the length direction of the FPC when assembling the backlight and the liquid crystal panel even if the connection terminal arrangement and the outer dimension in the width direction are the same. A new FPC design needs to be performed. (Here, “the length direction of the FPC” means a direction along the wiring in the FPC, and “the width direction of the FPC” means the arrangement direction of the connection terminals.)

このように液晶表示装置の新規開発毎にFPC設計を行った場合、開発費用が増加したり、FPCの品種数の増加などにより、FPCが高コストとなる。   Thus, when FPC design is performed for each new development of a liquid crystal display device, the cost of FPC increases due to an increase in development cost or an increase in the number of FPC types.

そこで、上記の課題を解決すべく、FPC長さ方向の寸法が異なる場合であってもベースとなる配線パターンは一種類にて対応が可能であり、生産性に優れ、かつ低コストのFPCの製造方法が求められている。   Therefore, in order to solve the above problems, even if the dimensions in the FPC length direction are different, the base wiring pattern can be handled with a single type, which is excellent in productivity and low cost. There is a need for a manufacturing method.

この発明に係るFPCの製造方法は、FPCのベースフィルムにカバーフィルムを接着するカバーフィルム接着工程と、前記ベースフィルムから前記FPCを個片化する外形加工工程と、その外形加工時のガイド穴の開口工程とを有するFPCの製造方法であって、前記カバーフィルム接着工程より前に前記ガイド穴の開口工程を実施し、前記ガイド穴を用いて前記カバーフィルム接着工程を実施し、その後、前記外形加工工程を実施することを特徴とする。   The FPC manufacturing method according to the present invention includes a cover film bonding step for bonding a cover film to a base film of the FPC, an outer shape processing step for separating the FPC from the base film, and guide holes for the outer shape processing. An opening step of the FPC, wherein the guide hole opening step is performed before the cover film bonding step, the cover film bonding step is performed using the guide hole, and then the outer shape A processing step is performed.

本発明は、カバーフィルム接着工程より前にガイド穴の開口工程を実施する事で、カバーフィルムを精度よくベースフィルムに接着することができ、所望のFPC長さのFPCを製造することができる。   In the present invention, by performing the guide hole opening step before the cover film bonding step, the cover film can be bonded to the base film with high accuracy, and an FPC having a desired FPC length can be manufactured.

実施の形態1に係るFPCの製造工程を示した工程図である。FIG. 6 is a process diagram showing a manufacturing process of the FPC according to the first embodiment. FPCのワークシート内の面付状態を示した概略図である。It is the schematic which showed the imposition state in the worksheet of FPC. 実施の形態1に係るFPCの製造途中のワークシートを示す概略図および断面図である。3A and 3B are a schematic diagram and a cross-sectional view illustrating a worksheet in the middle of manufacturing the FPC according to the first embodiment. 実施の形態1に係るFPCの外形図および断面図である。2A and 2B are an external view and a cross-sectional view of the FPC according to the first embodiment. 実施の形態2に係るFPCの外形図および断面図である。FIG. 6 is an outline view and a cross-sectional view of an FPC according to Embodiment 2.

実施の形態1.
本発明の実施の形態ついて以下に図面を参照して説明する。以下の説明は、本発明の好適な実施の形態を示すものであって、本発明の範囲が以下の実施の形態に限定されるものではない。以下の説明において、同一の符号が付されたものは実質的に同様の内容を示している。
Embodiment 1 FIG.
Embodiments of the present invention will be described below with reference to the drawings. The following description shows preferred embodiments of the present invention, and the scope of the present invention is not limited to the following embodiments. In the following description, the same reference numerals indicate substantially the same contents.

図1は実施の形態1におけるFPCの製造工程例を示したものである。この中で、図1の(a)は、従来の技術におけるFPCの製造工程例を示しており、ポリイミドなどから成るフィルム状の絶縁材料(ベースフィルム)に銅箔を貼り合わせてベース基板を作製する工程SA1、銅箔上にフォトレジスト層を形成する工程SA2、フォトレジストを紫外線などで露光して、その後現像する工程SA3、銅箔をエッチングして配線パターンを形成する工程SA4、銅箔上に残ったフォトレジス層を剥離する工程SA5、銅箔の腐食防止のため、端子部以外の銅箔上にカバーフィルムを接着する工程SA6、端子部の銅箔を金などでメッキする工程SA7、次の外形加工のため、ガイド穴を空ける工程SA8、個別のFPCに分断し、個片化する外形加工工程SA9,配線パターンの電気的チェック工程SA10、最後に端子部の裏面に補強材を貼り付け、および必要な印字を行う工程SA11の順でFPCが製作されるのが一般的である。   FIG. 1 shows an example of an FPC manufacturing process according to the first embodiment. 1 (a) shows an example of a conventional FPC manufacturing process. A base substrate is manufactured by bonding a copper foil to a film-like insulating material (base film) made of polyimide or the like. Step SA1, Step SA2 for forming a photoresist layer on the copper foil, Step SA3 for exposing the photoresist with ultraviolet light and then developing, Step SA4 for etching the copper foil to form a wiring pattern, Step SA4 on the copper foil Step SA5 for removing the remaining photoresist layer, Step SA6 for bonding the cover film on the copper foil other than the terminal portion for preventing corrosion of the copper foil, Step SA7 for plating the copper foil for the terminal portion with gold, etc. For the next outer shape processing, a step SA8 for making a guide hole, an outer shape processing step SA9 for dividing and dividing into individual FPCs, an electrical check step SA10 for wiring patterns, After pasting the reinforcement on the rear surface of the terminal portion, and the necessary printing a step SA11 of the order in FPC is manufactured in general.

図2に示したように、FPC1の製造工程においては、複数のFPC1を、所定サイズのワークシートと称するベースフィルム3上に複数個面付し、外形加工工程SA9で切り分けて個片化するのが一般的である。このワークシートの外形寸法をワークシートサイズと呼称する。SA1からSA8までの各工程では、このワークシートのままで、各工程を流れ、外形加工工程SA9で、例えば図2中に破線で示した外形で、複数のFPC1に個片化される。図2の例では、8枚のFPC1に個片化される。   As shown in FIG. 2, in the manufacturing process of the FPC 1, a plurality of FPCs 1 are surfaced on a base film 3 called a worksheet of a predetermined size and cut into individual pieces in the outer shape processing step SA9. Is common. This outer dimension of the worksheet is referred to as a worksheet size. In each process from SA1 to SA8, this work sheet is left as it is, and each process is flowed. In the outer shape processing process SA9, for example, the FPC 1 is separated into a plurality of FPCs 1 with the outer shape shown by broken lines in FIG. In the example of FIG. 2, the FPC 1 is divided into eight pieces.

次に、本実施の形態1におけるFPC1の製造工程例を図1の(b)で示す。本実施の形態においては、ベース基板製作工程SB1からフォトレジス層剥離工程SB5は、上述の従来の技術におけるFPCの製造工程例(図1の(a))と同一であるので、ここでは詳細な説明はしない。   Next, an example of a manufacturing process of the FPC 1 according to the first embodiment is shown in FIG. In the present embodiment, since the base substrate manufacturing process SB1 to the photoresist layer peeling process SB5 are the same as the FPC manufacturing process example (FIG. 1A) in the above-described conventional technology, detailed description is given here. I do not explain.

ここで、図3に実施の形態1に係るFPCのワークシート状のベース基板4を示す。本実施の形態においては、ワークシートのベース基板製作工程SB1段階において、図3の(a)に示したように、FPC1の長さに依存すること無く、配線パターン2を引き延ばして形成可能なように、長さ方向の寸法を大きめに決定する(要求される最大寸法)。なお、図中のX方向が上述の「FPCの幅方向」であり、Y方向が「FPCの長さ方向」となる。   Here, FIG. 3 shows the FPC worksheet base substrate 4 according to the first exemplary embodiment. In the present embodiment, in the base substrate manufacturing process SB1 of the worksheet, as shown in FIG. 3A, the wiring pattern 2 can be extended and formed without depending on the length of the FPC 1. Then, the dimension in the length direction is determined to be large (the maximum dimension required). The X direction in the figure is the “FPC width direction” described above, and the Y direction is the “FPC length direction”.

次に、従来と異なり、本実施の形態においては、外形加工のためのガイド穴開口工程SB6を行う。このガイド穴8は、次のカバーフィルム接着工程SB7において、カバーフィルム5をベース基板4に貼り付ける際の位置合わせ用ガイドとして使用される。図3の(a)で図示したー例では、ガイド穴8がベース基板4の四隅に穿かれている。次に、カバーフィルム5が貼られていない銅箔部分が接続端子7としてメッキされる(SB8)。   Next, unlike the prior art, in the present embodiment, a guide hole opening process SB6 for external processing is performed. The guide hole 8 is used as an alignment guide when the cover film 5 is attached to the base substrate 4 in the next cover film bonding step SB7. In the example illustrated in FIG. 3A, guide holes 8 are formed in the four corners of the base substrate 4. Next, the copper foil part to which the cover film 5 is not affixed is plated as the connection terminal 7 (SB8).

その後は、従来と同様に、外形加工(切断)工程SB9、電気的チェック工程SB10、最後に補強材接着と印字を行う工程SB11を経る。   After that, as in the conventional case, the outer shape processing (cutting) step SB9, the electrical check step SB10, and finally the step SB11 for attaching the reinforcing material and printing are performed.

ここで、本実施の形態1では、図3の(a)中のA−A’間の断面図である図3の(b)にて示したように、FPC1の入出力端子間を1対1でそれぞれ接続する導体(銅箔)として、FPC1の長さ方向の外形に平行な線状の配線パターンを複数本配置する構成となっている。図3の(b)において、符号2が銅箔の前記配線パターンであり、符号4がベース基板を示している。   Here, in the first embodiment, as shown in FIG. 3B, which is a cross-sectional view taken along line AA ′ in FIG. 3A, a pair of input / output terminals of the FPC 1 is connected. As a conductor (copper foil) connected to each other, a plurality of linear wiring patterns parallel to the outer shape of the FPC 1 in the length direction are arranged. In FIG. 3B, reference numeral 2 denotes the wiring pattern of copper foil, and reference numeral 4 denotes a base substrate.

この配線パターン2の特徴として、所望のFPC1の長さ(すなわち所望の接続用端子間の長さ)にて切断する位置に適した長さ(図中のY方向の寸法)のカバーフィルム5を貼り合わせ、その後の外形加工(切断)工程(SB9)で、所望のFPC長さで切断する事で、FPC1の長さが異なる場合でも1つの配線パターン2にてFPC1の長さ(Y方向の外形寸法)の異なるFPC1を製造する事が容易となる。図3の(a)中に破線で記載した第1のFPC外形と、一点鎖線で記載した第2のFPC外形を比較すれば明らかなように、同一のベース基板4を用いているにもかかわらず、FPC1の用途に応じて容易に外形、特に長さを変更可能である。   As a feature of the wiring pattern 2, a cover film 5 having a length (dimension in the Y direction in the drawing) suitable for a position to be cut at a desired length of the FPC 1 (ie, a desired length between connecting terminals) is provided. Even if the length of the FPC 1 is different by cutting at the desired FPC length in the subsequent outline processing (cutting) step (SB9), the length of the FPC 1 (in the Y direction) It becomes easy to manufacture FPCs 1 having different external dimensions. As is clear from comparison between the first FPC outline indicated by the broken line in FIG. 3A and the second FPC outline indicated by the alternate long and short dash line, the same base substrate 4 is used. First, the outer shape, particularly the length, can be easily changed according to the application of the FPC 1.

図4は、上記外形加工(切断)工程SB9を経て、個片化されたFPC1の外形図(図4の(a))と、同図中のB−B’間における断面図(図4の(b))である。図4の(b)において、符号2が銅箔の配線パターンであり、符号4がベース基板、符号5がカバーフィルムを示している。FPC1の端部に配置された接続端子部10に対してベースフィルム3を挟んで裏面側に貼り付けられたカバーフィルム6は、接続端子7を裏側から補強する役割を果たす。   FIG. 4 shows an outline view (FIG. 4 (a)) of the FPC 1 separated through the outline processing (cutting) step SB9 and a cross-sectional view between BB ′ in FIG. 4 (FIG. 4). (B)). In FIG. 4B, reference numeral 2 denotes a copper foil wiring pattern, reference numeral 4 denotes a base substrate, and reference numeral 5 denotes a cover film. The cover film 6 attached to the back surface side with the base film 3 interposed between the connection terminal portions 10 arranged at the end portions of the FPC 1 serves to reinforce the connection terminals 7 from the back side.

上述したように、FPC1のベース基板4のワークシートサイズの長さ方向の寸法を大きめに設定しておき、カバーフィルム接着工程SB7より前にガイド穴開口工程SB6を行うことにより、所望のFPC1の長さで切断が可能とすべく、このガイド穴8を基準として、FPC1の長さに対向した長さのカバーフィルム5とカバーフィルム6を所定の位置に、かつ高い精度で接着可能となる。そして、必要とするFPC1の長さが異なる場合でも、1つの配線パターン2を用いてFPC外形の長さの異なるFPC1を製造することができる。   As described above, by setting the dimension in the length direction of the worksheet size of the base substrate 4 of the FPC 1 larger and performing the guide hole opening process SB6 before the cover film bonding process SB7, the desired FPC 1 In order to enable cutting by length, the cover film 5 and the cover film 6 having a length opposite to the length of the FPC 1 can be bonded to each other at a predetermined position with high accuracy with the guide hole 8 as a reference. Even when the required lengths of the FPCs 1 are different, it is possible to manufacture the FPCs 1 having different FPC external lengths by using one wiring pattern 2.

その結果、1つの配線パターン2にて製造できることで、配線パターン作成用の遮光用マスク(非図示)が削減でき、マスク管理が容易になり、その結果コスト削減ができる。   As a result, since one wiring pattern 2 can be manufactured, a light shielding mask (not shown) for creating a wiring pattern can be reduced, mask management becomes easy, and as a result, costs can be reduced.

なお、上述の実施の形態1においては、図3の(a)で図示したように、ガイド穴開口工程SB6にて、ベース基板4の四隅にガイド穴8を開口した事例を示したが、ガイド穴8の配置を四隅に限定する必要はなく、位置合わせが可能であれば、余白領域(外形加工(個片化)工程SB9にて、FPCとしては残らず、捨てられる部分)の何処でもよい。   In the above-described first embodiment, as shown in FIG. 3A, the guide hole opening process SB6 has shown the example in which the guide holes 8 are opened at the four corners. It is not necessary to limit the arrangement of the holes 8 to the four corners, and as long as alignment is possible, it may be anywhere in the blank area (the portion that is discarded as an FPC in the outer shape processing (dividing) step SB9). .

実施の形態2.
図5は、実施の形態2に係るFPCの外形図および断面図であり、実施の形態1の図1で図示したFPC1の個辺の変形例である。図5において図示したように、カバーフィルム接着用ガイド穴8が、FPC1の配線領域外2カ所に穿かれている。これらガイド穴8は、上述の実施の形態1で説明したように、ガイド穴開口工程SB6で穴開け加工される。また、同時にFPC1の四隅に、貼り合わせアライメント用穴9が4カ所穿かれる。
Embodiment 2. FIG.
FIG. 5 is an outline view and a cross-sectional view of the FPC according to the second embodiment, and is a modification of the individual side of the FPC 1 illustrated in FIG. 1 of the first embodiment. As illustrated in FIG. 5, cover film bonding guide holes 8 are formed in two places outside the wiring area of the FPC 1. These guide holes 8 are drilled in the guide hole opening step SB6 as described in the first embodiment. At the same time, four bonding alignment holes 9 are made in the four corners of the FPC 1.

上述の実施の形態1にて説明したガイド穴開口工程SB6の際は、ガイド穴8の使用機会は、カバーフィルムの貼り付け工程SB7と、外形加工(個片化)工程SB9であったので、ワークシートの外形を基準としてガイド穴8を空けても問題無かった。しかしながら、本実施の形態2においては、接続端子部領域の両端に配置されたアライメント用穴9は、回路基板または表示パネル(非図示)とFPC1の貼り付け時にアライメント(接続端子同しの位置合わせ)を取るための合わせマークとして使用されるため、FPC1の接続端子7に対して高い位置精度が必要となる。   In the case of the guide hole opening step SB6 described in the first embodiment, the use opportunity of the guide hole 8 was the cover film pasting step SB7 and the outer shape processing (individualization) step SB9. There was no problem even if the guide hole 8 was made based on the outer shape of the worksheet. However, in the second embodiment, the alignment holes 9 arranged at both ends of the connection terminal area are aligned (aligned with the connection terminals) when the circuit board or the display panel (not shown) and the FPC 1 are attached. ) To be used as an alignment mark, high positional accuracy with respect to the connection terminal 7 of the FPC 1 is required.

その場合は、ベース基板4内の余白領域の適当な箇所に、銅箔のパターンにて複数個所に親アライメントマークを形成しておけば良い。例えば一定間隔で配線パターン2と並行で列状にアライメントマーク(非図示)を余白部分に形成可能である。この親アライメントマークは、配線パターン2や接続端子7用パターンと同時にエッチング工程SB4で形成できるので、接続端子7用パターンと高い位置精度を持つ。この親アライメントマークとアライメントを取って、ガイド穴開口工程SB6を行えば、接続端子部領域の両端に配置されたアライメント用穴9も接続端子7と高い位置精度を持つことができる。   In that case, a parent alignment mark may be formed at a plurality of locations in a suitable area of the blank area in the base substrate 4 with a copper foil pattern. For example, alignment marks (not shown) can be formed in a blank portion in a row in parallel with the wiring pattern 2 at regular intervals. Since the parent alignment mark can be formed in the etching step SB4 simultaneously with the wiring pattern 2 and the connection terminal 7 pattern, the parent alignment mark has high positional accuracy with the connection terminal 7 pattern. If alignment is performed with the parent alignment mark and the guide hole opening step SB6 is performed, the alignment holes 9 arranged at both ends of the connection terminal portion region can also have high positional accuracy with the connection terminal 7.

この実施の形態2は、実施の形態1にて発生する懸念、すなわちFPC1の長さが予め決まっていないため、実装用アライメントマークが配置困難であることに対する解決策である。   The second embodiment is a solution to the concern that occurs in the first embodiment, that is, since the length of the FPC 1 is not determined in advance, it is difficult to arrange the mounting alignment marks.

なお、上述の実施の形態2においては、図5の(a)で図示したように、ガイド穴開口工程SB6にて、FPC1の配線領域外にガイド穴8を開口した事例を示したが、ガイド穴8の配置を限定する必要はなく、カバーフィルムの貼り付けのための位置合わせが可能であれば、余白領域の何処でもよく、さらには、カバーフィルムの貼り付け専用のガイド穴8の形成が必須ではなく、アライメント用穴9と兼用してもよい。すなわちガイド穴8を設けず、アライメント用穴9にてカバーフィルムの貼り付けの位置合わせをしてもよい。   In the second embodiment described above, as illustrated in FIG. 5A, the guide hole 8 is opened outside the wiring area of the FPC 1 in the guide hole opening step SB6. There is no need to limit the arrangement of the holes 8, as long as the alignment for attaching the cover film is possible, it may be anywhere in the blank area, and further, the guide hole 8 dedicated for attaching the cover film may be formed. It is not essential and may be used also as the alignment hole 9. In other words, the guide hole 8 may not be provided, and the alignment of the cover film may be performed in the alignment hole 9.

また、上述の画像表示装置の説明においては、画像表示デバイスの一例として液晶表示デバイスを採用してその実施の形態を示したが、画像表示デバイスとして液晶表示デバイスである必要はなく、例えば有機EL表示デバイス、MEMS(Micro Electro Mechanical System)表示デバイスなどを採用した画像表示機器おいても、機種毎に異なる長さのFPCが多種必要になる場合が有り、その際に本発明を実施できるのは無論である。   In the above description of the image display apparatus, a liquid crystal display device is adopted as an example of the image display device, and the embodiment thereof is shown. However, the image display device does not need to be a liquid crystal display device. Even in an image display device that employs a display device, a MEMS (Micro Electro Mechanical System) display device, or the like, there are cases where various FPCs having different lengths are required for each model, and the present invention can be implemented at that time. Of course.

1 FPC
2 配線パターン
3 ベースフィルム
4 ベース基板
5、6 カバーフィルム
7 接続端子
8 ガイド穴
9 アライメント用穴
10 接続端子部
1 FPC
2 Wiring pattern 3 Base film 4 Base substrate 5, 6 Cover film 7 Connection terminal 8 Guide hole 9 Alignment hole 10 Connection terminal part

Claims (3)

フレキシブルプリント基板のベースフィルムにカバーフィルムを接着するカバーフィルム接着工程と、
前記ベースフィルムから前記フレキシブルプリント基板を個片化する外形加工工程と、
該外形加工時のガイド穴の開口工程と、を有するフレキシブルプリント基板の製造方法において、
前記カバーフィルム接着工程より前に前記ガイド穴の開口工程を実施し、
前記ガイド穴を用いて前記カバーフィルム接着工程を実施し、
その後、前記外形加工工程を実施することを特徴とする、
フレキシブルプリント基板の製造方法。
A cover film bonding process for bonding the cover film to the base film of the flexible printed circuit board;
An outer shape processing step for separating the flexible printed circuit board from the base film,
In the manufacturing method of the flexible printed circuit board having the step of opening the guide hole at the time of the outer shape processing,
Perform the guide hole opening step before the cover film bonding step,
The cover film bonding step is performed using the guide hole,
Thereafter, the outer shape processing step is performed,
A method for producing a flexible printed circuit board.
前記ガイド穴の開口工程において、
前記フレキシブルプリント基板の接続端子部に隣接して開口穴を形成することを特徴とする、請求項1に記載のフレキシブルプリント基板の製造方法。
In the step of opening the guide hole,
The method for manufacturing a flexible printed circuit board according to claim 1, wherein an opening hole is formed adjacent to a connection terminal portion of the flexible printed circuit board.
前記開口穴は、前記フレキシブルプリント基板と接続対象基板との位置合わせ用アライメントマークである、請求項1または2に記載のフレキシブルプリント基板の製造方法。   The said opening hole is a manufacturing method of the flexible printed circuit board of Claim 1 or 2 which is an alignment mark for the alignment of the said flexible printed circuit board and a connection object board | substrate.
JP2016244408A 2016-12-16 2016-12-16 Manufacturing method of flexible print circuit board Pending JP2018098448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016244408A JP2018098448A (en) 2016-12-16 2016-12-16 Manufacturing method of flexible print circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016244408A JP2018098448A (en) 2016-12-16 2016-12-16 Manufacturing method of flexible print circuit board

Publications (1)

Publication Number Publication Date
JP2018098448A true JP2018098448A (en) 2018-06-21

Family

ID=62633199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016244408A Pending JP2018098448A (en) 2016-12-16 2016-12-16 Manufacturing method of flexible print circuit board

Country Status (1)

Country Link
JP (1) JP2018098448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112613265A (en) * 2020-11-07 2021-04-06 龙南骏亚柔性智能科技有限公司 Electromagnetic film lamination alignment symbol design method
WO2021256790A1 (en) * 2020-06-17 2021-12-23 주식회사 엘지에너지솔루션 Method for manufacturing flexible printed circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256790A1 (en) * 2020-06-17 2021-12-23 주식회사 엘지에너지솔루션 Method for manufacturing flexible printed circuit board
CN112613265A (en) * 2020-11-07 2021-04-06 龙南骏亚柔性智能科技有限公司 Electromagnetic film lamination alignment symbol design method

Similar Documents

Publication Publication Date Title
CN101325844B (en) Method for preparing solder pad of printed circuit board
US20200243474A1 (en) Chip-on-film and method of manufacturing the same
JPWO2004038495A1 (en) Wiring board connection structure and LCD display panel connection structure
CN105430877A (en) Flexible circuit board, terminal and preparation method of flexible circuit board
JP2018098448A (en) Manufacturing method of flexible print circuit board
CN110687727B (en) Preparation method of display panel
EP2337434A1 (en) Assembling method of a liquid crystal display apparatus and a chip mounted wiring substrate suitable for the method
CN109429436A (en) Flexible circuit board and manufacturing method thereof
JP2007073863A (en) Semiconductor device manufacturing method and flexible circuit board
KR20090056077A (en) Printed circuit board, method for manufacturing the same, and panel for manufacturing the same
JP2006339297A (en) Printed board and method of manufacturing same
JP4488774B2 (en) Connection structure between flexible printed circuit board and rigid board
JP4260098B2 (en) Printed circuit board for plasma display and manufacturing method thereof
JP2009289844A (en) Cof tape
CN112423464B (en) Auxiliary measuring circuit of flexible circuit board
JP2016207792A (en) Flexible printed board and image display device
JP2007134411A (en) Multi-piece substrate
JP2006202957A (en) Manufacturing method of printed circuit board with reinforcing plate
JP2003289087A (en) Wiring board, semiconductor device, its manufacturing method, panel module, and electronic apparatus
JP3985140B2 (en) Wiring board manufacturing method
CN113260148B (en) Electronic device with a detachable cover
JP2008235745A (en) Method for manufacturing sheet with which two or more unit substrate is connected and sheet to which two or more unit substrate is connected
CN108934125B (en) High-efficiency low-cost wire passing hole process
JP4893947B2 (en) Manufacturing method of tape carrier for semiconductor device
CN105430879A (en) Flexible circuit board and terminal