JP2018096817A - Method of evaluating protective performance of polymer - Google Patents

Method of evaluating protective performance of polymer Download PDF

Info

Publication number
JP2018096817A
JP2018096817A JP2016241150A JP2016241150A JP2018096817A JP 2018096817 A JP2018096817 A JP 2018096817A JP 2016241150 A JP2016241150 A JP 2016241150A JP 2016241150 A JP2016241150 A JP 2016241150A JP 2018096817 A JP2018096817 A JP 2018096817A
Authority
JP
Japan
Prior art keywords
polymer
wafer
haze
immersion
protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016241150A
Other languages
Japanese (ja)
Other versions
JP6638636B2 (en
Inventor
正彬 大関
Masaaki Ozeki
正彬 大関
薫 石井
Kaoru Ishii
薫 石井
三千登 佐藤
Michito Sato
三千登 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2016241150A priority Critical patent/JP6638636B2/en
Publication of JP2018096817A publication Critical patent/JP2018096817A/en
Application granted granted Critical
Publication of JP6638636B2 publication Critical patent/JP6638636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method with which it is possible to evaluate simply at low cost the protective performance of a polymer for protecting a silicon wafer surface.SOLUTION: Provided is a method for evaluating the protective performance of a polymer that protects a wafer surface by being absorbed to the wafer surface, the method being characterized by: immersing the whole or part of a wafer whose surface is protected by the polymer into pure water or a solution of pH 7 or greater in which discretionary alkali is dissolved in pure water; and evaluating the protective performance of the polymer on the basis of a difference between a wafer haze after the immersion and a wafer haze before the immersion or a difference between a haze of the immersed portion and a haze of the non-immersed portion of the wafer after the immersion.SELECTED DRAWING: Figure 1

Description

本発明は、シリコンウェーハ表面を保護するためのポリマーの保護性評価方法に関する。   The present invention relates to a polymer protective property evaluation method for protecting a silicon wafer surface.

半導体シリコンウェーハの加工は複数の工程を必要とするため、それに伴い工程間の搬送時あるいは保管時のウェーハ変化に注意が必要である。特に、ベアシリコンを浸水状態で次工程に搬送する場合、ベアシリコンは純水からアルカリのpH領域(pH7以上)で容易に面荒れが発生し、また、Cuなどの酸化力の高い金属により表面が局所的に反応し、ピット化してしまうことが知られている。   Since processing of a semiconductor silicon wafer requires a plurality of processes, it is necessary to pay attention to changes in the wafer during transport or storage between the processes. In particular, when bare silicon is transported to the next process in a submerged state, bare silicon is easily roughened from pure water to an alkaline pH region (pH 7 or higher), and the surface is made of a metal having high oxidizing power such as Cu. Is known to react locally and form pits.

これらの現象を抑制するための方策として、ベアシリコンの表面に自然酸化膜を形成する、もしくはベアシリコンの上にポリマーを吸着させる(特許文献1)等の手段でベアシリコンを保護する方策があるが、前者はオゾンなどの特別な薬液と排水設備を必要とするためコストの観点で難がある。後者はより簡便な方法でベアシリコンの表面保護を実現できるが、自然酸化膜に比べて知見が少なく、例えばどのようなポリマーでどのような吸着方法を用いると保護性が高まるか等の評価技術が確立されていない。   As a measure for suppressing these phenomena, there is a measure to protect bare silicon by means such as forming a natural oxide film on the surface of bare silicon or adsorbing a polymer on bare silicon (Patent Document 1). However, since the former requires special chemicals such as ozone and drainage facilities, it is difficult in terms of cost. The latter can realize surface protection of bare silicon by a simpler method, but has less knowledge than natural oxide film, for example, evaluation technology such as what kind of polymer and what kind of adsorption method improves protection Is not established.

特開2016−051763号公報JP, 2006-051763, A

シリコンウェーハ表面を保護するためのポリマーの保護性を評価する方法としては、例えば、TEM(透過型電子顕微鏡)等によりポリマーが吸着したウェーハを分析し、ポリマー吸着層の厚さを評価する方法が考えられるが、ポリマーは電子線により容易に壊れてしまうため、このような方法では評価は困難である。また、別の方法として、Cuなどの金属により表面にポリマーが吸着したウェーハを故意に汚染させ、その後パーティクルカウンターにて発生したピットの数を数える方法もあるが、浸漬槽、その後の洗浄槽を金属により汚染してしまい、その後の実験に影響が出るため、この方法も好ましい方法とは言えない。このように、ポリマーの保護性を安価かつ簡便に評価することは難しく、ポリマーの保護性を安価かつ簡便に評価できる方法の開発が求められていた。   As a method for evaluating the protection property of the polymer for protecting the silicon wafer surface, for example, there is a method of analyzing the wafer on which the polymer is adsorbed by TEM (transmission electron microscope) and evaluating the thickness of the polymer adsorbing layer. Although it is conceivable, since the polymer is easily broken by the electron beam, evaluation by such a method is difficult. As another method, there is a method of intentionally contaminating a wafer having a polymer adsorbed on the surface with a metal such as Cu, and then counting the number of pits generated by a particle counter. This method is not preferable because it is contaminated with metal and affects subsequent experiments. Thus, it is difficult to evaluate the protective properties of the polymer at low cost and simply, and development of a method capable of evaluating the protective properties of the polymer at low cost and in a simple manner has been demanded.

本発明は、上記問題を解決するためになされたものであり、シリコンウェーハ表面を保護するためのポリマーの保護性を安価かつ簡便に評価することが可能な評価方法を提供することを目的とする。   The present invention has been made to solve the above-described problem, and an object of the present invention is to provide an evaluation method capable of inexpensively and simply evaluating the protective properties of a polymer for protecting the silicon wafer surface. .

上記課題を達成するために、本発明では、ウェーハ表面に吸着することでウェーハ表面を保護するポリマーの保護性を評価する方法であって、純水又は純水に任意のアルカリを溶解させたpH7以上の溶液に、前記ポリマーにより表面が保護されたウェーハの一部又は全部を浸漬させ、該浸漬後のウェーハのHazeと浸漬前のウェーハのHazeとの差、又は前記浸漬後のウェーハの浸漬部のHazeと非浸漬部のHazeとの差に基づいて前記ポリマーの保護性を評価するポリマーの保護性評価方法を提供する。   In order to achieve the above object, the present invention is a method for evaluating the protective property of a polymer that protects a wafer surface by adsorbing to the wafer surface, and has a pH of 7 in which any alkali is dissolved in pure water or pure water. A part or all of the wafer whose surface is protected by the polymer is immersed in the above solution, and the difference between the haze of the wafer after the immersion and the haze of the wafer before the immersion, or the immersion part of the wafer after the immersion There is provided a method for evaluating the protective property of a polymer, wherein the protective property of the polymer is evaluated based on the difference between the haze of the polymer and the haze of the non-immersed part.

このようなポリマーの保護性評価方法であれば、ポリマーにより表面が保護されたウェーハを純水又はpH7以上の溶液に浸漬させてエッチングを行った際の、エッチング前後のHazeの差、あるいはエッチングされた箇所とエッチングされていない箇所のHazeの差に基づいて、ポリマーの保護性を安価かつ簡便に評価することができる。   With such a method for evaluating the protective property of a polymer, the difference in Haze before and after etching when a wafer whose surface is protected by a polymer is immersed in pure water or a solution of pH 7 or higher, or etching is performed. The protective properties of the polymer can be evaluated inexpensively and easily based on the difference in haze between the spot and the part not etched.

また、前記浸漬前のウェーハのHazeを、前記ポリマーにより表面を保護する前のウェーハのHazeとすることが好ましい。   Moreover, it is preferable that the haze of the wafer before the immersion is the haze of the wafer before the surface is protected by the polymer.

このようにすることで、浸漬前のウェーハのHazeをより正確に測定することができ、結果として、ポリマーの保護性をより正確に評価することができる。   By doing in this way, the haze of the wafer before immersion can be measured more accurately, and as a result, the protective properties of the polymer can be more accurately evaluated.

また、本発明のポリマーの保護性評価方法では、前記ポリマーにより表面が保護されたウェーハとして、前記ポリマーを溶解させた溶液にHF洗浄により表面酸化膜を除去したウェーハを浸漬させることで表面に前記ポリマーを吸着させたウェーハ、又は前記ポリマーを溶解させた溶液を染み込ませた布製の素材と前記HF洗浄により表面酸化膜を除去したウェーハを接触させることで表面に前記ポリマーを吸着させたウェーハを用いることができる。   Further, in the polymer protective evaluation method of the present invention, as the wafer whose surface is protected by the polymer, the wafer from which the surface oxide film has been removed by HF cleaning is immersed in a solution in which the polymer is dissolved, and the wafer is immersed in the surface. A wafer having a polymer adsorbed on the surface thereof is used by contacting a wafer on which a polymer is adsorbed or a cloth material soaked with a solution in which the polymer is dissolved with a wafer from which a surface oxide film has been removed by HF cleaning. be able to.

本発明のポリマーの保護性評価方法では、例えばこのような方法で表面にポリマーを吸着させたウェーハを用いてポリマーの保護性を評価することができる。   In the polymer protective property evaluation method of the present invention, for example, the protective property of the polymer can be evaluated using a wafer having the polymer adsorbed on the surface by such a method.

以上のように、本発明のポリマーの保護性評価方法であれば、ポリマーにより表面が保護されたウェーハを純水又はpH7以上の溶液に浸漬させてエッチングを行った際の、エッチング前後のHazeの差、あるいはエッチングされた箇所とエッチングされていない箇所のHazeの差に基づいて、ポリマーの保護性を安価で簡便かつ正確に評価することができる。また、複数種類のポリマーを用いて評価を行えば、ポリマーの保護性を複数のポリマー間で相対的に評価することもできる。   As described above, in the polymer protective evaluation method of the present invention, the Haze before and after etching when etching is performed by immersing a wafer whose surface is protected by the polymer in pure water or a solution of pH 7 or higher. Based on the difference or the difference in Haze between the etched part and the non-etched part, the protective property of the polymer can be evaluated inexpensively, simply and accurately. Moreover, if evaluation is performed using a plurality of types of polymers, the protective properties of the polymers can be relatively evaluated among the plurality of polymers.

本発明のポリマーの保護性評価方法の一例を示すフロー図である。It is a flowchart which shows an example of the protective evaluation method of the polymer of this invention. 本発明のポリマーの保護性評価方法の別の一例を示すフロー図である。It is a flowchart which shows another example of the polymer protective property evaluation method of this invention. ベアシリコンの一部を浸漬させた状態を示す概略図である。It is the schematic which shows the state which immersed a part of bare silicon. 一部を浸漬させたベアシリコンのヘイズマップの一例である。It is an example of the haze map of the bare silicon in which a part was immersed. 実施例1における、浸漬部のHazeと非浸漬部のHazeの差(ΔHaze)を示すグラフである。It is a graph which shows the difference ((DELTA) Haze) of Haze of an immersion part and Haze of a non-immersion part in Example 1. FIG. 比較例1における、Cu故意汚染によるピットの増加数を示すグラフである。6 is a graph showing the number of pits increased due to Cu intentional contamination in Comparative Example 1.

上述のように、TEM等によりポリマー吸着層の厚さを評価する方法やCu故意汚染により発生したピットの数を数える方法では、ポリマーの保護性を安価かつ簡便に評価することは難しく、ポリマーの保護性を安価かつ簡便に評価できる方法の開発が求められていた。   As described above, the method for evaluating the thickness of the polymer adsorbing layer by TEM or the like and the method for counting the number of pits generated by Cu intentional contamination make it difficult to evaluate the protective properties of the polymer at low cost and easily. Development of a method that can easily and inexpensively evaluate the protective property has been demanded.

そこで、本発明者らは、ポリマーを吸着したウェーハの粗さ変化に着目した。一般的に面方位(100)のシリコンは、HF処理等により水素終端していると、pH7以上の中性から塩基性条件下で荒れることが分かっている。この現象は(100)方向と(111)方向のエッチングレート差に起因する。   Therefore, the present inventors paid attention to the change in roughness of the wafer that adsorbed the polymer. In general, it is known that silicon having a plane orientation (100) is roughened under neutral to basic conditions at pH 7 or higher when hydrogen-terminated by HF treatment or the like. This phenomenon is caused by a difference in etching rate between the (100) direction and the (111) direction.

図3に示されるように、表面酸化膜のないベアシリコン1をポリマー保護することなく、一部分のみを残して(即ち、浸漬部1aと非浸漬部1bが生じるように)純水2中に浸漬させ、その後KLAテンコール社製のパーティクルカウンターSP2を用いてHazeを測定すると、図4に示されるように浸漬部1aは白く、非浸漬部1bは黒くなり、浸漬部1aと非浸漬部1bで明瞭なコントラストが発生する。ここで、白色に見える部分はHaze悪化部分である。これは、浸漬部でエッチングが進み表面荒れが促進された結果である。一方、本発明者らが検討したところ、ベアシリコンの表面にポリマーが吸着している状態では、pH7以上の中性から塩基性条件下においても表面が荒れにくくなるため、Hazeは悪化しにくくなることが分かった。更に、本発明者らが検討したところ、ポリマーの金属汚染耐性はエッチングによる面荒れ耐性と強く相関していることが分かった。   As shown in FIG. 3, the bare silicon 1 having no surface oxide film is immersed in pure water 2 without polymer protection, leaving only a part (that is, so that the immersion part 1a and the non-immersion part 1b are generated). Then, when the haze is measured using a particle counter SP2 manufactured by KLA Tencor, the immersion part 1a is white and the non-immersion part 1b is black as shown in FIG. 4, and the immersion part 1a and the non-immersion part 1b are clear. Contrast occurs. Here, the portion that appears white is a haze-deteriorating portion. This is a result of the progress of etching and the surface roughness being promoted in the immersion part. On the other hand, when the present inventors examined, in the state which the polymer adsorb | sucked to the surface of bare silicon, since the surface becomes difficult to be rough under neutral to basic conditions of pH 7 or more, Haze is not easily deteriorated. I understood that. Furthermore, as a result of studies by the present inventors, it has been found that the metal contamination resistance of the polymer is strongly correlated with the surface roughness resistance due to etching.

これらのことから、本発明者らは、ポリマーにより表面が保護されたウェーハを純水又はpH7以上の溶液に浸漬させてエッチングを行った際の、エッチング前後のHazeの差、あるいはエッチングされた箇所とエッチングされていない箇所のHazeの差(以下、「ΔHaze」とも称する)を金属汚染耐性及びエッチングによる面荒れ耐性(即ち、ポリマーの保護性)の指標とみなし、このΔHazeの多寡を評価することでポリマーの保護性を安価かつ簡便に評価できることを見出し、本発明を完成させた。   From these facts, the present inventors found that the difference in Haze before and after etching or the etched portion when the wafer whose surface was protected by the polymer was immersed in pure water or a solution of pH 7 or higher was etched. The difference between the haze and the unetched portion (hereinafter also referred to as “ΔHaze”) is regarded as an index of metal contamination resistance and surface roughness resistance due to etching (that is, polymer protection), and the amount of ΔHaze is evaluated. Thus, the inventors have found that the protective properties of the polymer can be evaluated inexpensively and simply, and completed the present invention.

即ち、本発明は、ウェーハ表面に吸着することでウェーハ表面を保護するポリマーの保護性を評価する方法であって、純水又は純水に任意のアルカリを溶解させたpH7以上の溶液に、前記ポリマーにより表面が保護されたウェーハの一部又は全部を浸漬させ、該浸漬後のウェーハのHazeと浸漬前のウェーハのHazeとの差、又は前記浸漬後のウェーハの浸漬部のHazeと非浸漬部のHazeとの差に基づいて前記ポリマーの保護性を評価するポリマーの保護性評価方法である。   That is, the present invention is a method for evaluating the protective properties of a polymer that protects a wafer surface by adsorbing to the wafer surface, and the pure water or a solution having a pH of 7 or more in which arbitrary alkali is dissolved in pure water, A part or all of the wafer whose surface is protected by the polymer is immersed, and the difference between the Haze of the wafer after the immersion and the Haze of the wafer before the immersion, or the Haze and the non-immersion part of the immersion part of the wafer after the immersion This is a polymer protective evaluation method for evaluating the protective properties of the polymer based on the difference from Haze.

以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

図1に本発明のポリマーの保護性評価方法の一例のフロー図を示す。図1の方法では、まず、ウェーハを用意し(図1の(A1)工程)、ポリマーをウェーハ表面に吸着させて、ポリマーによりウェーハ表面を保護する(図1の(A2)工程)。次に、ポリマーにより表面が保護されたウェーハの一部を(浸漬部と非浸漬部が生じるように)純水に浸漬させる(図1の(A3)工程)。次に、浸漬後のウェーハの浸漬部のHazeと非浸漬部のHazeを測定し(図1の(A4)工程)、浸漬部のHazeと非浸漬部のHazeとの差(ΔHaze)を求める(図1の(A5)工程)。そして、求めたΔHazeに基づいてポリマーの保護性を評価する(図1の(A6))。   FIG. 1 shows a flow chart of an example of the method for evaluating the protective properties of the polymer of the present invention. In the method of FIG. 1, first, a wafer is prepared (step (A1) in FIG. 1), the polymer is adsorbed on the wafer surface, and the wafer surface is protected by the polymer (step (A2) in FIG. 1). Next, a part of the wafer whose surface is protected by the polymer is immersed in pure water (so that an immersion part and a non-immersion part are generated) (step (A3) in FIG. 1). Next, the haze of the immersed part of the wafer after immersion and the haze of the non-immersed part are measured (step (A4) in FIG. 1), and the difference (ΔHaze) between the haze of the immersed part and the haze of the non-immersed part is obtained ( Step (A5) in FIG. Then, the protective properties of the polymer are evaluated based on the obtained ΔHaze ((A6) in FIG. 1).

本発明のポリマーの保護性評価方法では、このように浸漬後のウェーハの浸漬部のHazeと非浸漬部のHazeとの差(ΔHaze)に基づいて、ポリマーの保護性を評価することができる。この場合、ポリマーの保護性が高ければ、ウェーハの浸漬部におけるエッチングによる面荒れが抑制され、浸漬部のHazeが小さくなるため、ΔHazeが小さくなる。一方、ポリマーの保護性が低ければ、浸漬部におけるエッチングによる面荒れが抑制されず、浸漬部のHazeが大きくなるため、ΔHazeが大きくなる。このことから、ΔHazeが小さければ小さいほど、ポリマーの保護性が高いと評価することができる。   In the polymer protective property evaluation method of the present invention, the protective property of the polymer can be evaluated based on the difference (ΔHaze) between the haze of the immersed portion and the non-immersed portion of the wafer after immersion. In this case, if the protection property of the polymer is high, surface roughness due to etching in the immersion part of the wafer is suppressed, and the haze of the immersion part is reduced, so that ΔHaze is reduced. On the other hand, if the protection property of the polymer is low, surface roughness due to etching in the immersion part is not suppressed, and the haze of the immersion part increases, so ΔHaze increases. From this, it can be evaluated that the smaller the ΔHaze, the higher the protection of the polymer.

また、図2に本発明のポリマーの保護性評価方法の別の一例のフロー図を示す。図2の方法では、まず、ウェーハを用意し(図2の(B1)工程)、ポリマーにより表面を保護する前のウェーハのHaze(即ち、浸漬前のウェーハのHaze)を測定する(図2の(B2)工程)。次に、ポリマーをウェーハ表面に吸着させて、ポリマーによりウェーハ表面を保護する(図2の(B3)工程)。次に、ポリマーにより表面が保護されたウェーハの全部を純水に浸漬させる(図2の(B4)工程)。次に、浸漬後のウェーハのHazeを測定し(図2の(B5)工程)、浸漬後のHazeと浸漬前のHazeとの差(ΔHaze)を求める(図2の(B6)工程)。そして、求めたΔHazeに基づいてポリマーの保護性を評価する(図2の(B7))。   FIG. 2 shows a flow chart of another example of the polymer protective evaluation method of the present invention. In the method of FIG. 2, first, a wafer is prepared (step (B1) in FIG. 2), and the haze of the wafer before the surface is protected by the polymer (that is, the haze of the wafer before immersion) is measured (FIG. 2). (B2) Step). Next, the polymer is adsorbed on the wafer surface, and the wafer surface is protected by the polymer (step (B3) in FIG. 2). Next, the entire wafer whose surface is protected by the polymer is immersed in pure water (step (B4) in FIG. 2). Next, the haze of the wafer after immersion is measured (step (B5) in FIG. 2), and the difference (ΔHaze) between the haze after immersion and the haze before immersion is obtained (step (B6) in FIG. 2). Then, the protective properties of the polymer are evaluated based on the obtained ΔHaze ((B7) in FIG. 2).

本発明のポリマーの保護性評価方法では、このように浸漬後のウェーハのHazeと浸漬前のウェーハのHazeとの差(ΔHaze)に基づいて、ポリマーの保護性を評価することもできる。この場合、ポリマーの保護性が高ければ、ウェーハを浸漬した際のエッチングによる面荒れが抑制され、浸漬後のウェーハのHazeが小さくなるため、ΔHazeが小さくなる。一方、ポリマーの保護性が低ければ、ウェーハを浸漬した際のエッチングによる面荒れが抑制されず、浸漬後のウェーハのHazeが大きくなるため、ΔHazeが大きくなる。このことから、ΔHazeが小さければ小さいほど、ポリマーの保護性が高いと評価することができる。   In the polymer protective property evaluation method of the present invention, the protective property of the polymer can also be evaluated based on the difference (ΔHaze) between the haze of the wafer after immersion and the haze of the wafer before immersion. In this case, if the protective property of the polymer is high, surface roughness due to etching when the wafer is immersed is suppressed, and the haze of the wafer after immersion is reduced, so that ΔHaze is reduced. On the other hand, if the protective property of the polymer is low, surface roughness due to etching when the wafer is immersed is not suppressed, and the haze of the wafer after immersion increases, so ΔHaze increases. From this, it can be evaluated that the smaller the ΔHaze, the higher the protection of the polymer.

なお、図2のフローのように、浸漬前のウェーハのHazeを、ポリマーにより表面を保護する前のウェーハのHazeとすることで、浸漬前のウェーハのHazeをより正確に測定することができ、結果として、ポリマーの保護性をより正確に評価することができるため、好ましい。   As shown in the flow of FIG. 2, by setting the Haze of the wafer before immersion to the Haze of the wafer before protecting the surface with the polymer, the Haze of the wafer before immersion can be measured more accurately. As a result, the protective properties of the polymer can be more accurately evaluated, which is preferable.

本発明のポリマーの保護性評価方法において、純水又は純水に任意のアルカリを溶解させたpH7以上の溶液に、ポリマーにより表面が保護されたウェーハを浸漬させる際には、特に限定されないが、12〜48時間程度浸漬させることが好ましく、例えば、24時間程度浸漬させることが好ましい。また、光による面荒れを抑制するために、浸漬は暗所で行うことが好ましい。   In the polymer protective property evaluation method of the present invention, when the wafer whose surface is protected by the polymer is immersed in pure water or a solution of pH 7 or higher in which an arbitrary alkali is dissolved in pure water, it is not particularly limited. It is preferable to immerse for about 12 to 48 hours, for example, it is preferable to immerse for about 24 hours. Moreover, in order to suppress the surface roughness by light, it is preferable to perform immersion in a dark place.

本発明のポリマーの保護性評価方法において、Hazeの測定は、特に限定されないが、例えば、KLAテンコール社製のパーティクルカウンターSP2などを用いて行うことができる。   In the polymer protective property evaluation method of the present invention, the measurement of Haze is not particularly limited, but can be performed using, for example, a particle counter SP2 manufactured by KLA Tencor.

また、本発明のポリマーの保護性評価方法において、浸漬後のウェーハのHaze測定の前には、過酸化水素を含む洗浄液(例えば、SC1など)を用いてウェーハを洗浄し、ウェーハに付着しているポリマーを除去することが好ましい。   In the polymer protective property evaluation method of the present invention, before the haze measurement of the wafer after immersion, the wafer is washed with a cleaning solution containing hydrogen peroxide (for example, SC1) and adhered to the wafer. It is preferable to remove the polymer.

また、本発明のポリマーの保護性評価方法において、ポリマーをウェーハ表面に吸着させる方法は、特に限定されないが、例えば、ポリマーを溶解させた溶液にHF洗浄により表面酸化膜を除去したウェーハを浸漬させることで表面にポリマーを吸着させる方法や、ポリマーを溶解させた溶液を染み込ませた軟質の布製の素材とHF洗浄により表面酸化膜を除去したウェーハを擦り合わせる等して接触させることで表面にポリマーを吸着させる方法などを挙げることができる。   In the polymer protective property evaluation method of the present invention, the method for adsorbing the polymer to the wafer surface is not particularly limited. For example, the wafer from which the surface oxide film is removed by HF cleaning is immersed in a solution in which the polymer is dissolved. By adsorbing the polymer to the surface, or by bringing the soft cloth material soaked with the solution in which the polymer is dissolved into the wafer with the surface oxide film removed by HF cleaning, the polymer is brought into contact with the surface. And the like.

以上説明したような本発明のポリマーの保護性評価方法であれば、ポリマーにより表面が保護されたウェーハを純水又はpH7以上の溶液に浸漬させてエッチングを行った際の、エッチング前後のHazeの差、あるいはエッチングされた箇所とエッチングされていない箇所のHazeの差に基づいて、ポリマーの保護性を安価で簡便かつ正確に評価することができる。また、複数の種類のポリマーを用いて評価を行えば、ポリマーの保護性を複数のポリマー間で相対的に評価することもできる。   If it is the protection evaluation method of the polymer of this invention which was demonstrated above, the wafer of which the surface was protected by the polymer was etched by immersing the wafer in pure water or a solution of pH 7 or higher. Based on the difference or the difference in Haze between the etched part and the non-etched part, the protective property of the polymer can be evaluated inexpensively, simply and accurately. Moreover, if evaluation is performed using a plurality of types of polymers, the protective properties of the polymers can be relatively evaluated among the plurality of polymers.

以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example and a comparative example, this invention is not limited to these.

[実施例1]
浸漬部のHazeと非浸漬部のHazeとの差(ΔHaze)に基づいて、ポリマーA、ポリマーB、ポリマーCの3種類のポリマーの保護性を評価した。
[Example 1]
Based on the difference (ΔHaze) between the haze of the immersion part and the haze of the non-immersion part, the protective properties of the three types of polymers A, B and C were evaluated.

(ポリマーの吸着)
HF洗浄により表面酸化膜を除去し、更に通常の仕上げ研磨を行った直径300mmのシリコンウェーハを用意し、最終仕上げ研磨にて各ポリマーを含む水溶液を染み込ませた布を用いて、荷重10kPa、回転数10rpm、10秒間にわたって研磨を行い、シリコンウェーハの表面に各ポリマーを吸着させた。なお、各ポリマーを含む水溶液は、1.0L/minで研磨定盤に供給した。
(Polymer adsorption)
A silicon wafer with a diameter of 300 mm prepared by removing the surface oxide film by HF cleaning and further subjected to normal finish polishing is prepared. Using a cloth soaked with an aqueous solution containing each polymer in the final finish polishing, a load of 10 kPa is rotated. Polishing was performed for several 10 rpm for 10 seconds, and each polymer was adsorbed on the surface of the silicon wafer. In addition, the aqueous solution containing each polymer was supplied to the polishing platen at 1.0 L / min.

(シリコンウェーハの浸漬)
純水を貯めたピット槽を用意し、各ポリマーを吸着させたシリコンウェーハをその中に浸漬させた。その際、浸漬部と非浸漬部が生じるよう水位を調整した。浸漬は、光による表面荒れを抑制するために暗闇中にて24時間行った。
(Immersion of silicon wafer)
A pit tank storing pure water was prepared, and a silicon wafer adsorbing each polymer was immersed therein. At that time, the water level was adjusted so that an immersion part and a non-immersion part were generated. The immersion was performed for 24 hours in the dark in order to suppress surface roughness due to light.

(浸漬後のシリコンウェーハのHaze測定)
表面に付着したポリマーを除去するため、SC1を用いて浸漬後のシリコンウェーハを洗浄した。次いで、KLAテンコール社製パーティクルカウンターSP2を用いて浸漬部のHazeと非浸漬部のHazeを測定し、浸漬部のHazeと非浸漬部のHazeとの差(ΔHaze)を求めた。結果を図5に示す。
(Haze measurement of silicon wafer after immersion)
In order to remove the polymer adhering to the surface, the silicon wafer after immersion was cleaned using SC1. Next, the haze of the immersion part and the haze of the non-immersion part were measured using a particle counter SP2 manufactured by KLA Tencor, and the difference (ΔHaze) between the haze of the immersion part and the haze of the non-immersion part was determined. The results are shown in FIG.

(比較用ウェーハのHazeの測定)
ポリマーの保護性を相対的に評価するために、表面酸化膜を除去していないシリコンウェーハ、及びHF洗浄により表面酸化膜を除去しその後のポリマーの吸着は行っていないシリコンウェーハにおいても、上記と同様にシリコンウェーハの浸漬及び浸漬後のシリコンウェーハのHazeの測定を行い、浸漬部のHazeと非浸漬部のHazeとの差(ΔHaze)を求めた。結果を図5に示す。
(Measurement of Haze of comparative wafer)
In order to relatively evaluate the protective property of the polymer, the silicon wafer from which the surface oxide film was not removed and the silicon wafer from which the surface oxide film was removed by HF cleaning and the subsequent polymer adsorption was not performed Similarly, the haze of the silicon wafer after immersion and the immersion of the silicon wafer was measured, and the difference (ΔHaze) between the haze of the immersion part and the haze of the non-immersion part was obtained. The results are shown in FIG.

[比較例1]
Cu故意汚染によるピット増加数に基づいて、ポリマーA、ポリマーB、ポリマーCの3種類のポリマーの保護性を評価した。
[Comparative Example 1]
Based on the number of pits increased due to intentional Cu contamination, the protective properties of three types of polymers A, B and C were evaluated.

(ポリマーの吸着とCu故意汚染によるピット増加数の測定)
実施例1と同様にして各ポリマーを吸着させたシリコンウェーハを用意し、Cuを1ppm添加した純水にシリコンウェーハを5分間浸漬させた(Cu故意汚染)後、SC1を用いて浸漬後のシリコンウェーハを洗浄し、KLAテンコール社製パーティクルカウンターSP2を用いてピットの増加数を測定した。結果を図6に示す。
(Measurement of pit increase due to polymer adsorption and Cu intentional contamination)
A silicon wafer on which each polymer was adsorbed was prepared in the same manner as in Example 1, and the silicon wafer was immersed for 5 minutes in pure water to which 1 ppm of Cu was added (Cu intentional contamination), and then the silicon after immersion using SC1. The wafer was washed, and the number of pits increased was measured using a particle counter SP2 manufactured by KLA Tencor. The results are shown in FIG.

(比較用ウェーハのCu故意汚染によるピット増加数の測定)
ポリマーの保護性を相対的に評価するために、表面酸化膜を除去していないシリコンウェーハ、及びHF洗浄により表面酸化膜を除去しその後のポリマーの吸着は行っていないシリコンウェーハにおいても、上記と同様にCu故意汚染及びピット増加数の測定を行った。結果を図6に示す。
(Measurement of the number of pit increase due to intentional Cu contamination of comparative wafer)
In order to relatively evaluate the protective property of the polymer, the silicon wafer from which the surface oxide film was not removed and the silicon wafer from which the surface oxide film was removed by HF cleaning and the subsequent polymer adsorption was not performed Similarly, the intentional contamination of Cu and the number of pit increases were measured. The results are shown in FIG.

図5に示されるように、実施例1の方法では、ポリマーAを吸着させた場合は表面酸化膜を除去していない場合と同等レベルのΔHazeであり、ポリマーBを吸着させた場合はポリマーAを吸着させた場合よりもΔHazeが大きく、ポリマーCを吸着させた場合はポリマーBを吸着させた場合よりもΔHazeが大きく、ポリマーを吸着させていない場合はポリマーCを吸着させた場合よりも大幅にΔHazeが大きい、という結果が得られた。このことから、ポリマー種によって面荒れの進行具合は異なっており、ポリマーB、Cを吸着させた場合は、ポリマーを吸着させていない場合と比べると浸漬による面荒れを大幅に抑制できているものの、ポリマーAを吸着させた場合と比べると浸漬による面荒れが進んでいることが分かる。   As shown in FIG. 5, in the method of Example 1, when the polymer A was adsorbed, the ΔHaze was the same level as when the surface oxide film was not removed, and when the polymer B was adsorbed, the polymer A ΔHaze is larger than when adsorbing polymer, ΔHaze is greater when polymer C is adsorbed than when polymer B is adsorbed, and significantly greater than when polymer C is adsorbed when polymer is not adsorbed As a result, ΔHaze was large. From this, the progress of surface roughness varies depending on the polymer type, and when the polymers B and C are adsorbed, the surface roughness due to immersion can be greatly suppressed as compared with the case where the polymer is not adsorbed. It can be seen that the surface roughness due to immersion is more advanced than when the polymer A is adsorbed.

一方、図6に示されるように、比較例1の方法では、ポリマーAを吸着させた場合は表面酸化膜を除去していない場合と同等レベルのピット数であり、ポリマーBを吸着させた場合はポリマーAを吸着させた場合よりもピット増加数が多く、ポリマーCを吸着させた場合はポリマーBを吸着させた場合よりもピット増加数が多く、ポリマーを吸着させていない場合はポリマーCを吸着させた場合よりも大幅にピット増加数が多い、という結果が得られた。このことから、ポリマー種によってピットの発生具合は異なっており、ポリマーB、Cを吸着させた場合は、ポリマーを吸着させていない場合と比べるとCu故意汚染によるピットの発生を大幅に抑制できているものの、ポリマーAを吸着させた場合と比べるとCu故意汚染によるピットの発生が起こっていることが分かる。なお、比較例1の方法では、実際にCuによる故意汚染を行っているため、分析に使用する設備(浸漬槽や洗浄槽)等の金属汚染が発生していた。   On the other hand, as shown in FIG. 6, in the method of Comparative Example 1, when the polymer A was adsorbed, the number of pits was the same level as when the surface oxide film was not removed, and when the polymer B was adsorbed Has more pit increases than when polymer A is adsorbed, and when polymer C is adsorbed there are more pit increases than when polymer B is adsorbed, and polymer C is adsorbed when no polymer is adsorbed. The result was that the number of pits increased significantly compared to the case of adsorption. From this, the pit generation condition varies depending on the polymer type, and when the polymers B and C are adsorbed, the generation of pits due to the intentional contamination of Cu can be significantly suppressed as compared with the case where the polymer is not adsorbed. However, compared with the case where the polymer A is adsorbed, it can be seen that pits are generated due to Cu intentional contamination. In addition, in the method of Comparative Example 1, since intentional contamination with Cu was actually performed, metal contamination of facilities (immersion tank and washing tank) used for analysis occurred.

上記の実施例1と比較例1の結果の比較から、エッチングによる面荒れ耐性の指標となる実施例1のΔHazeが、金属汚染耐性の指標となる比較例1のピット増加数と強く相関していることが分かる。つまり、実施例1のようにΔHazeを求めることによって、エッチングによる面荒れ耐性だけでなく、これと相関する金属汚染耐性も評価することができる。また、実施例1の方法では、Cuによる故意汚染を行わないため、比較例1の方法のように分析に使用する設備等の金属汚染が発生する恐れもない。更に、実施例1の方法であれば、ポリマー種間で異なる保護性を相対的に比較することができ、また、表面酸化膜を除去していない場合やポリマーを吸着させていない場合と比較することで、ポリマーの保護性を相対的に評価することもできる。   From the comparison of the results of Example 1 and Comparative Example 1 above, ΔHaze of Example 1 which is an index of surface roughness resistance by etching strongly correlates with the number of pit increases of Comparative Example 1 which is an index of metal contamination resistance. I understand that. That is, by obtaining ΔHaze as in Example 1, it is possible to evaluate not only the surface roughness resistance due to etching but also the metal contamination resistance correlated therewith. Further, in the method of Example 1, since intentional contamination with Cu is not performed, there is no possibility that metal contamination of facilities used for analysis, etc., as in the method of Comparative Example 1 will occur. Furthermore, with the method of Example 1, it is possible to relatively compare different protective properties between polymer species, and to compare with the case where the surface oxide film is not removed or the case where the polymer is not adsorbed. Thus, the protective properties of the polymer can be relatively evaluated.

以上のことから、ΔHazeに基づいてポリマーの保護性を評価する本発明の評価方法であれば、シリコンウェーハ表面を保護するためのポリマーの保護性を安価かつ簡便に評価できることが明らかとなった。   From the above, it has been clarified that the protection method of the polymer for protecting the silicon wafer surface can be evaluated inexpensively and easily by the evaluation method of the present invention in which the protection property of the polymer is evaluated based on ΔHaze.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

1…ベアシリコン、 1a…浸漬部、 1b…非浸漬部、 2…純水。   DESCRIPTION OF SYMBOLS 1 ... Bare silicon, 1a ... Immersion part, 1b ... Non-immersion part, 2 ... Pure water.

Claims (3)

ウェーハ表面に吸着することでウェーハ表面を保護するポリマーの保護性を評価する方法であって、
純水又は純水に任意のアルカリを溶解させたpH7以上の溶液に、前記ポリマーにより表面が保護されたウェーハの一部又は全部を浸漬させ、該浸漬後のウェーハのHazeと浸漬前のウェーハのHazeとの差、又は前記浸漬後のウェーハの浸漬部のHazeと非浸漬部のHazeとの差に基づいて前記ポリマーの保護性を評価することを特徴とするポリマーの保護性評価方法。
A method for evaluating the protective properties of a polymer that protects the wafer surface by adsorbing to the wafer surface,
A part or all of the wafer whose surface is protected by the polymer is immersed in pure water or a solution of pH 7 or higher in which an arbitrary alkali is dissolved in pure water. The haze of the wafer after immersion and the wafer before immersion A method for evaluating the protective property of a polymer, comprising evaluating the protective property of the polymer based on a difference from Haze, or a difference between a haze in a dipped portion of the wafer after dipping and a haze in a non-dipped portion.
前記浸漬前のウェーハのHazeを、前記ポリマーにより表面を保護する前のウェーハのHazeとすることを特徴とする請求項1に記載のポリマーの保護性評価方法。   2. The polymer protective evaluation method according to claim 1, wherein the haze of the wafer before immersion is the haze of the wafer before the surface is protected by the polymer. 前記ポリマーにより表面が保護されたウェーハとして、前記ポリマーを溶解させた溶液にHF洗浄により表面酸化膜を除去したウェーハを浸漬させることで表面に前記ポリマーを吸着させたウェーハ、又は前記ポリマーを溶解させた溶液を染み込ませた布製の素材と前記HF洗浄により表面酸化膜を除去したウェーハを接触させることで表面に前記ポリマーを吸着させたウェーハを用いることを特徴とする請求項1又は請求項2に記載のポリマーの保護性評価方法。   As a wafer whose surface is protected by the polymer, a wafer from which the surface oxide film has been removed by HF cleaning is immersed in a solution in which the polymer is dissolved, or the polymer is adsorbed on the surface, or the polymer is dissolved. 3. A wafer having the polymer adsorbed on its surface by contacting a fabric material soaked with a solution and a wafer from which a surface oxide film has been removed by HF cleaning is used. The polymer protective property evaluation method of description.
JP2016241150A 2016-12-13 2016-12-13 Method for evaluating polymer protection Active JP6638636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016241150A JP6638636B2 (en) 2016-12-13 2016-12-13 Method for evaluating polymer protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016241150A JP6638636B2 (en) 2016-12-13 2016-12-13 Method for evaluating polymer protection

Publications (2)

Publication Number Publication Date
JP2018096817A true JP2018096817A (en) 2018-06-21
JP6638636B2 JP6638636B2 (en) 2020-01-29

Family

ID=62633393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241150A Active JP6638636B2 (en) 2016-12-13 2016-12-13 Method for evaluating polymer protection

Country Status (1)

Country Link
JP (1) JP6638636B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214398A (en) * 2002-12-27 2004-07-29 Sumitomo Mitsubishi Silicon Corp Method of manufacturing semiconductor wafer
US20070148917A1 (en) * 2005-12-22 2007-06-28 Sumco Corporation Process for Regeneration of a Layer Transferred Wafer and Regenerated Layer Transferred Wafer
JP2009019102A (en) * 2007-07-11 2009-01-29 Mitsui Chemicals Inc Molded product for clean room and container
JP2010109257A (en) * 2008-10-31 2010-05-13 Hitachi High-Technologies Corp Reference wafer for calibration of dark field inspection system, method of manufacturing the same, method of calibration of dark field inspection system, the dark field inspection system, and wafer inspection method
JP2014129484A (en) * 2012-12-28 2014-07-10 Asahi Kasei Chemicals Corp Acrylic latex composition for coating
WO2014119267A1 (en) * 2013-01-31 2014-08-07 日本板硝子株式会社 Glass plate with low reflection coating and method for manufacturing same
JP2015183163A (en) * 2014-03-26 2015-10-22 東レ株式会社 polyester resin composition
JP2016051763A (en) * 2014-08-29 2016-04-11 株式会社Sumco Method for polishing silicon wafer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214398A (en) * 2002-12-27 2004-07-29 Sumitomo Mitsubishi Silicon Corp Method of manufacturing semiconductor wafer
US20070148917A1 (en) * 2005-12-22 2007-06-28 Sumco Corporation Process for Regeneration of a Layer Transferred Wafer and Regenerated Layer Transferred Wafer
JP2009019102A (en) * 2007-07-11 2009-01-29 Mitsui Chemicals Inc Molded product for clean room and container
JP2010109257A (en) * 2008-10-31 2010-05-13 Hitachi High-Technologies Corp Reference wafer for calibration of dark field inspection system, method of manufacturing the same, method of calibration of dark field inspection system, the dark field inspection system, and wafer inspection method
JP2014129484A (en) * 2012-12-28 2014-07-10 Asahi Kasei Chemicals Corp Acrylic latex composition for coating
WO2014119267A1 (en) * 2013-01-31 2014-08-07 日本板硝子株式会社 Glass plate with low reflection coating and method for manufacturing same
JP2015183163A (en) * 2014-03-26 2015-10-22 東レ株式会社 polyester resin composition
JP2016051763A (en) * 2014-08-29 2016-04-11 株式会社Sumco Method for polishing silicon wafer

Also Published As

Publication number Publication date
JP6638636B2 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
JP5589968B2 (en) Semiconductor wafer cleaning method
KR100220926B1 (en) A cleaning method for hydrophobic silicon wafers
KR20090036715A (en) Method for cleaning silicon wafer
WO2020075448A1 (en) Semiconductor silicon wafer cleaning treatment apparatus and cleaning method
JP5533624B2 (en) Semiconductor wafer cleaning method
WO2016203681A1 (en) Silicon wafer washing method
TWI244130B (en) Method of reclaiming silicon wafers
JP4817887B2 (en) Semiconductor substrate cleaning method
KR20230005174A (en) Semiconductor wafer cleaning method
JP2013251461A (en) Method of cleaning semiconductor wafer
JP6638636B2 (en) Method for evaluating polymer protection
JP6572830B2 (en) Silicon wafer transfer / storage method
JP6529715B2 (en) Method of manufacturing silicon wafer
CN103871843A (en) Method for overcoming defects caused by chemical acid fluid cleaning process
JP4753656B2 (en) Method for suppressing boron contamination on silicon wafer surface
JPH0583520B2 (en)
KR101778368B1 (en) Method for Cleaning Wafer
JPH0831781A (en) Washing chemicals
JP7279753B2 (en) Silicon wafer cleaning method and manufacturing method
JP2016080037A (en) Method of application of wafer storage container
JP2018170366A (en) Method of cleaning semiconductor wafer
JP2011129830A (en) Method of cleaning silicon wafer, and cleaning liquid
Luo et al. Effect of De-ionized Water Rinse in AlCu Line Post Etch Asher Residue Removal Process Using Fluoride Containing Stripper
JPH07273076A (en) Semiconductor wafer washing method
KR20240051142A (en) Silicon wafer cleaning and manufacturing methods, hydrogen peroxide concentration evaluation method in cleaning solution, and hydrogen peroxide concentration management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6638636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250