JP4817887B2 - Semiconductor substrate cleaning method - Google Patents

Semiconductor substrate cleaning method Download PDF

Info

Publication number
JP4817887B2
JP4817887B2 JP2006056412A JP2006056412A JP4817887B2 JP 4817887 B2 JP4817887 B2 JP 4817887B2 JP 2006056412 A JP2006056412 A JP 2006056412A JP 2006056412 A JP2006056412 A JP 2006056412A JP 4817887 B2 JP4817887 B2 JP 4817887B2
Authority
JP
Japan
Prior art keywords
cleaning
silicon wafer
oxide film
ozone
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006056412A
Other languages
Japanese (ja)
Other versions
JP2007234964A (en
JP2007234964A5 (en
Inventor
良弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic AG
Original Assignee
Siltronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltronic AG filed Critical Siltronic AG
Priority to JP2006056412A priority Critical patent/JP4817887B2/en
Publication of JP2007234964A publication Critical patent/JP2007234964A/en
Publication of JP2007234964A5 publication Critical patent/JP2007234964A5/ja
Application granted granted Critical
Publication of JP4817887B2 publication Critical patent/JP4817887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体基板、特にシリコンウエハの洗浄方法に関する。   The present invention relates to a method for cleaning a semiconductor substrate, particularly a silicon wafer.

半導体製造工程において、半導体基板、特にシリコンウエハ表面に付着したパーティクル(ゴミ)や金属は、それぞれ配線不良や電気特性劣化を引き起こすことが広く知られている。このため、従来より、これらの汚染物質を除去するための薬液洗浄が多用されている。代表的な薬液の1つとしてアンモニア−過酸化水素水混合液(APM、又はSC1)が挙げられる。またアンモニア−過酸化水素水混合液を用いた洗浄においても、さらに洗浄効果を向上させる目的で錯形成剤や界面活性剤等の有機化合物を添加して使用する場合も多い(非特許文献1、2)。   In a semiconductor manufacturing process, it is widely known that particles (dust) and metal adhering to the surface of a semiconductor substrate, particularly a silicon wafer, cause wiring defects and deterioration of electrical characteristics, respectively. For this reason, chemical cleaning for removing these contaminants has been frequently used. One typical chemical solution is an ammonia-hydrogen peroxide solution mixture (APM or SC1). Further, even in cleaning using an ammonia-hydrogen peroxide solution mixture, an organic compound such as a complexing agent or a surfactant is often used for the purpose of further improving the cleaning effect (Non-Patent Document 1, 2).

一方、特にCZ法によるシリコン結晶中には、いわゆるgrown−in欠陥の一つとして空孔が存在することが知られており、その存在は例えばMOSダイオードの酸化膜耐圧特性等に望ましくない影響を与えることも知られている。かかる空孔は、TEM観察等によると、1個または2個対の(111)面で囲まれた8面体ボイドであることが示されている。この空孔がウエハ加工により表面にピットとして現れたものが一般にCOPと呼ばれている。COPはSC1洗浄などのエッチング処理をすることにより大きさが拡大されるので、エッチング処理が長くなるとそれまで問題のない小ささだったものが大きくなって検出されるようになり、結果としてCOPの検出個数が増える。また、SC1洗浄などのエッチング処理は上記のように既に表面に顔を出しているCOPのサイズを成長させるのみならず、シリコンウエハそのものもエッチングするため、表面からおおむね500nm以内のバルク中に埋もれている空孔を露出させ、結果としてCOPの検出個数が増える(非特許文献3)。このように、空孔の存在するシリコンウエハをSC1等でエッチング処理すると、ウエハ品質上問題となる一定サイズ以上のCOP検出数が増加し、ウエハ品質を悪化させるという問題があった。
K.Mori et al., 1993 Semiconductor Pure Water and Chemicals Conference, Santa Clara, 1993 Chemical Proceedings, p.122 S.Ojima et al., 信学技報 Technical Report of IEICE, SDM95−86, p.105, 1995 ウエハ表面完全性の創成・評価技術、株式会社サイエンスフォーラム発行、1998年、25〜26頁、36〜40頁
On the other hand, it is known that vacancies exist as one of so-called grown-in defects, particularly in silicon crystals obtained by the CZ method, and the presence thereof has an undesirable effect on, for example, the oxide film breakdown voltage characteristics of MOS diodes. It is also known to give. According to TEM observation or the like, it is shown that such holes are octahedral voids surrounded by one or two pairs of (111) planes. A structure in which these holes appear as pits on the surface by wafer processing is generally called COP. Since the size of the COP is increased by performing an etching process such as SC1 cleaning, when the etching process becomes longer, the smaller one that has no problem until then becomes larger, and as a result, the COP is detected. The number of detection increases. Further, the etching process such as SC1 cleaning not only grows the size of the COP that has already been exposed on the surface as described above, but also etches the silicon wafer itself, so that it is buried in a bulk within about 500 nm from the surface. As a result, the number of detected COPs is increased (Non-patent Document 3). As described above, when a silicon wafer having vacancies is etched with SC1 or the like, the number of COP detections of a certain size or more, which is a problem in wafer quality, increases, and the wafer quality is deteriorated.
K. Mori et al. , 1993 Semiconductor Pure Water and Chemicals Conference, Santa Clara, 1993 Chemical Processings, p. 122 S. Ojima et al. , IEICE Technical Report, Technical Report of IEICE, SDM95-86, p. 105, 1995 Wafer surface integrity creation and evaluation technology, published by Science Forum, Inc., 1998, pages 25-26, pages 36-40

ウエハ表面のCOP(数、密度)の増加を効果的に抑制できる、シリコンウエハの洗浄方法を提供する。   Provided is a silicon wafer cleaning method capable of effectively suppressing an increase in COP (number and density) on a wafer surface.

本発明者は、上記問題のないシリコンウエハの洗浄方法を実現するべく鋭意研究した結果、オゾンによるシリコンウエハ表面の酸化膜が、SC1洗浄液に対して特異的な耐エッチング性を有することを見出し、かかる知見に基づき本発明を完成した。   As a result of diligent research to realize a silicon wafer cleaning method without the above problems, the present inventors have found that an oxide film on the silicon wafer surface by ozone has a specific etching resistance with respect to the SC1 cleaning solution, Based on this finding, the present invention has been completed.

すなわち、本発明に係るシリコンウエハの洗浄方法、シリコンウエハの表面に、オゾンを含む溶液により表面に初期酸化膜形成し、次に前記オゾンによって形成された初期酸化膜を、アンモニア、水酸化テトラメチルアンモニウム、コリンのうちいずれか一種以上の薬品と過酸化水素との混合液エッチングすることを特徴とする。 That is , in the silicon wafer cleaning method according to the present invention , an initial oxide film is formed on the surface of the silicon wafer with a solution containing ozone , and then the initial oxide film formed by the ozone is converted into ammonia, hydroxylated. tetramethylammonium, characterized by etching with a mixed solution of any one or more chemicals and hydrogen peroxide of choline.

また、前記混合液によるエッチング量が、前記オゾンによって形成された初期酸化膜の厚さ未満であることを特徴とする。 The etching amount by the mixed solution, it characterized der Rukoto less than the thickness of the initial oxide film formed me by the ozone.

さらに、前記オゾンを含む溶液におけるオゾン濃度が、10〜200ppmであることを特徴とする。Furthermore, the ozone concentration in the solution containing ozone is 10 to 200 ppm.

本発明によれば、オゾンにより形成された酸化膜を有するシリコンウエハを、アンモニア、水酸化テトラメチルアンモニウム、コリンのうちいずれか一種以上の薬品と過酸化水素との混合液でエッチングすることにより、新たなCOPの出現を効果的に抑制しつつ、シリコンウエハ表面のパーティクル、重金属等による汚染を完全に除去することができる。 According to the present invention, a silicon wafer having an oxide film formed by ozone is etched with a mixture of one or more chemicals of ammonia, tetramethylammonium hydroxide, and choline and hydrogen peroxide , Contamination due to particles, heavy metals, etc. on the silicon wafer surface can be completely removed while effectively suppressing the appearance of a new COP.

以下本発明の方法を実施するための最良の形態につき詳しく説明する。   The best mode for carrying out the method of the present invention will be described in detail below.

(シリコンウエハ)
本発明のかかる洗浄方法(以下「本洗浄方法」とする。)により洗浄可能な表面を有するシリコンウエハについては特に制限はない。通常公知の製造方法により製造されたシリコン単結晶から得られたシリコンウエハであれば適用可能である。またシリコンウエハのサイズ、形状についても特に制限はない。具体的には直径100〜300mmの円形状シリコンウエハが挙げられる。
(Silicon wafer)
There is no particular limitation on the silicon wafer having a surface that can be cleaned by the cleaning method of the present invention (hereinafter referred to as “the present cleaning method”). A silicon wafer obtained from a silicon single crystal produced by a generally known production method is applicable. There is no particular limitation on the size and shape of the silicon wafer. Specifically, a circular silicon wafer having a diameter of 100 to 300 mm can be mentioned.

本洗浄方法におけるCOPとは、シリコン結晶中に存在するgrown−in欠陥の一種である8面体ボイドがウエハ表面に露出することによりピットとして観察される表面欠陥を意味する。表面に露出したピットのサイズ及び数は種々の測定方法により測定が可能であり、例えば公知のレーザーパーティクルカウンタが使用可能である。通常レーザーパーティクルカウンタは検出可能な最小粒径に制限があるため、現実にはウエハ品質上問題となる特定の大きさ以上のCOPを計測することが望ましい。例えば0.08μm以上のCOPを計測する。さらに具体的には、レーザーパーティクルカウンタを用いて0.08、0.09、0.10、0.11μm以上等に分けてサイズ分布も含めて測定することが可能である。   COP in this cleaning method means a surface defect observed as a pit when an octahedral void which is a kind of grown-in defect present in a silicon crystal is exposed on the wafer surface. The size and number of pits exposed on the surface can be measured by various measuring methods. For example, a known laser particle counter can be used. In general, since the laser particle counter has a limit on the minimum detectable particle size, in reality, it is desirable to measure a COP having a specific size or more that causes a problem in wafer quality. For example, COP of 0.08 μm or more is measured. More specifically, it is possible to measure using a laser particle counter including 0.08, 0.09, 0.10, 0.11 μm or more in size distribution.

(不純物)
また本洗浄方法で洗浄除去されるシリコンウエハ表面の不純物には、前工程において発生し付着した不純物だけでなく、本洗浄工程中において発生付着する可能性のある不純物をも含む。本洗浄工程中において発生付着する可能性のある不純物には、本発明で使用するSC1洗浄液に添加して使用する錯形成剤や界面活性剤等も含まれる。不純物には、有機性、無機性の両方の性質を有する物を含む。さらには、種々のサイズや形状の固体状の付着物(パーティクル)や有機性、又は無機性のイオン種の付着、吸着物をも含む。さらには、シリコンウエハ表面の不純物は、シリコンウエハの表面に化学吸着して存在するもののみならず物理吸着したものをも含む。さらには、表面からおおむね100nm以内の深さに拡散している不純物をも含む。
(impurities)
Further, the impurities on the surface of the silicon wafer that are cleaned and removed by the cleaning method include not only impurities generated and deposited in the previous process but also impurities that may be generated and deposited during the cleaning process. Impurities that may be generated and adhered during the main cleaning step include complexing agents and surfactants used by adding to the SC1 cleaning liquid used in the present invention. Impurities include those having both organic and inorganic properties. Furthermore, solid deposits (particles) of various sizes and shapes, deposits of organic or inorganic ionic species, and adsorbates are also included. Furthermore, the impurities on the surface of the silicon wafer include not only those chemically adsorbed on the surface of the silicon wafer but also those physically adsorbed. Further, it also contains impurities that are diffused to a depth of approximately 100 nm or less from the surface.

(オゾンによる酸化膜)
本発明はSC1洗浄に使用するシリコンウエハの表面にあらかじめ酸化膜を形成することが特徴である。さらにかかる酸化膜がオゾンにより形成されることが特徴である。オゾンによるシリコンウエハ表面に酸化膜を形成する方法についてはとくに制限はなく、公知の種々の方法が好ましく使用できる。具体的にはオゾンを含有する溶液、オゾンを含む不活性ガスが挙げられる。オゾンを含有する溶液としては、オゾン水溶液、他の酸を含むオゾン水溶液が挙げられる。オゾン水溶液のオゾン濃度については特に制限はないが、10〜200ppmの範囲が好ましい。
(Oxide film by ozone)
The present invention is characterized in that an oxide film is formed in advance on the surface of a silicon wafer used for SC1 cleaning. Further, the oxide film is formed by ozone. The method for forming an oxide film on the silicon wafer surface by ozone is not particularly limited, and various known methods can be preferably used. Specific examples include a solution containing ozone and an inert gas containing ozone. Examples of the solution containing ozone include an aqueous ozone solution and an aqueous ozone solution containing other acids. Although there is no restriction | limiting in particular about the ozone concentration of ozone aqueous solution, The range of 10-200 ppm is preferable.

オゾンによる酸化膜は、膜の厚さ、表面均一性の物理的性質の他、以下説明するようにSC1によるエッチングに対する化学的性質においても特徴的である。膜の厚さ、表面均一性の物理的性質についてはエリプソメトリーやX線光電子分光法で測定することができる。本発明の酸化膜の厚さは特に制限はないが、シリコンの化学酸化は反応種の拡散に支配されるため、酸化膜の厚さは自動的におおむね1nm程度となることが知られている。   In addition to the physical properties of film thickness and surface uniformity, the oxide film by ozone is also characteristic in the chemical properties for etching by SC1, as will be described below. The physical properties of film thickness and surface uniformity can be measured by ellipsometry or X-ray photoelectron spectroscopy. Although the thickness of the oxide film of the present invention is not particularly limited, it is known that the thickness of the oxide film is automatically about 1 nm because chemical oxidation of silicon is governed by diffusion of reactive species. .

(洗浄方法)
本洗浄方法で使用するSC1洗浄液には、通常公知のアンモニアと過酸化水素が含まれる洗浄液であり、APMとも略称されている洗浄液がすべて含まれる。また、アンモニアの代わりに水酸化テトラメチルアンモニウムやコリンなどの有機アルカリを使用した液も含まれる。またシリコンウエハ用SC1洗浄液として市販されているものも好ましく使用可能である。本洗浄方法で使用するSC1洗浄液に含まれるアンモニアの濃度は0.01〜5%の範囲であり、過酸化水素の濃度は0.01〜5%の範囲であることが好ましい。さらに、アンモニアと過酸化水素の他に種々の添加剤を含む洗浄剤も含まれる。
(Cleaning method)
The SC1 cleaning liquid used in this cleaning method is a cleaning liquid that contains generally known ammonia and hydrogen peroxide, and includes all cleaning liquids that are also abbreviated as APM. Moreover, the liquid which uses organic alkalis, such as tetramethylammonium hydroxide and choline, instead of ammonia is also contained. Moreover, what is marketed as SC1 washing | cleaning liquid for silicon wafers can also be used preferably. The concentration of ammonia contained in the SC1 cleaning liquid used in this cleaning method is preferably in the range of 0.01 to 5%, and the concentration of hydrogen peroxide is preferably in the range of 0.01 to 5%. Further, cleaning agents containing various additives in addition to ammonia and hydrogen peroxide are also included.

SC1洗浄液が、予め表面に化学酸化膜を有するシリコンウエハを洗浄する際にシリコンウエハ表面全体をエッチングすることは知られている。しかしながらこのエッチング量は通常1分間に0.1〜1nm程度であることは知られていたが、定量的な測定に基づく知見は全くなされてなかった。また、特にSC1洗浄液によるエッチング量が、酸化膜形成のための酸化剤に依存するという知見は全くなされてなかった。   It is known that the SC1 cleaning solution etches the entire silicon wafer surface when cleaning a silicon wafer having a chemical oxide film on the surface in advance. However, it has been known that the etching amount is usually about 0.1 to 1 nm per minute, but no knowledge based on quantitative measurement has been made. In particular, there has been no knowledge that the etching amount with the SC1 cleaning solution depends on the oxidizing agent for forming the oxide film.

本発明者等は、SC1洗浄液によるシリコンウエハ表面の化学酸化膜のエッチング挙動を詳しく調べた結果、SC1洗浄液によるシリコンウエハ表面の化学酸化膜のエッチング量が、酸化膜を形成するために用いた酸化剤の種類に依存することを見出した。すなわち、過酸化水素(H)、フッ化水素−オゾン(HF/O)、オゾン水(O)により形成された同じ厚さの酸化膜に対して、同じ組成のSC1洗浄液に所定の時間浸漬した後シリコンウエハのエッチング量を測定した結果を図1に示す。この結果から次のことが分かる。なおここでシリコンウエハのエッチング量は、予め耐エッチング性マスクを形成しておいたウエハを洗浄し、洗浄後にマスクを除去した後にAFMで段差を測定することにより求めた。
(1)H、HF/O、Oの順に時間当たりのエッチング量が少ない。
(2)Hは浸漬時間に対し直線的にエッチング量が増加するが、HF/O及びOは浸漬初期に誘導期間が見られる。
(3)O濃度が高いほど浸漬初期に誘導期間が長く、結果としてエッチング量が小さくなる。
As a result of detailed examination of the etching behavior of the chemical oxide film on the silicon wafer surface by the SC1 cleaning liquid, the present inventors have determined that the amount of etching of the chemical oxide film on the silicon wafer surface by the SC1 cleaning liquid is the oxidation used to form the oxide film. It was found that it depends on the type of agent. That is, an SC1 cleaning solution having the same composition is applied to an oxide film having the same thickness formed by hydrogen peroxide (H 2 O 2 ), hydrogen fluoride-ozone (HF / O 3 ), and ozone water (O 3 ). The result of measuring the etching amount of the silicon wafer after immersion for a predetermined time is shown in FIG. From this result, the following can be understood. Here, the etching amount of the silicon wafer was determined by cleaning a wafer on which an etching resistant mask had been formed in advance, removing the mask after cleaning, and then measuring the level difference with AFM.
(1) The etching amount per hour is small in the order of H 2 O 2 , HF / O 3 , and O 3 .
(2) The etching amount of H 2 O 2 increases linearly with respect to the immersion time, but HF / O 3 and O 3 have an induction period in the initial stage of immersion.
(3) The higher the O 3 concentration, the longer the induction period at the beginning of immersion, and the smaller the etching amount as a result.

特にO濃度が46ppmで処理した場合、浸漬時間が約100秒未満においては実質的にエッチングが進行しないことがわかる。 In particular, when the treatment is performed at an O 3 concentration of 46 ppm, it is understood that the etching does not substantially proceed when the immersion time is less than about 100 seconds.

従って、同じ時間SC1洗浄液で処理する場合、O含有洗浄液で形成された酸化膜のエッチング量は極めて小さいため、SC1洗浄によるエッチングのため生じるCOPの増加を実質的に抑制することができる。 Therefore, when processing at the same time SC1 cleaning solution, since O 3 etching of oxide film formed by containing washing solution is extremely small, it is possible to substantially suppress an increase in COP occurring for etching by SC1 cleaning.

またシリコンウエハのSC1洗浄の時間についても特に制限はなく、除去する汚染の種類や量と所望するCOP増加抑制能力とのバランスにより、適当な洗浄時間を選択することができる。あまり洗浄時間が短いと十分な汚染の除去ができないが、あまりに洗浄時間が長いと酸化膜のエッチングが過度に進行し、COPの増加をもたらす結果となる。具体的には標準の故意汚染を施したシリコンウエハを用いて所定の時間オゾン処理して酸化膜を形成し、そのシリコンウエハを用いて所定の時間SC1洗浄を行った後、実際に汚染の除去を測定することによりオゾン処理の程度、およびSC1洗浄の時間を最適化することができる。ただし、SC1洗浄前に存在していた酸化膜を完全に除去すると、酸化膜形成手段がオゾン処理だったかどうかに関係なくエッチングが進んでしまい、COP増加抑制という当初の目的を達成できなくなることは自明である。したがって、SC1洗浄によるエッチング量が、SC1洗浄前に存在していた酸化膜の初期厚さ(通常は1nm)未満となるように条件を設定する必要がある。   The SC1 cleaning time of the silicon wafer is not particularly limited, and an appropriate cleaning time can be selected according to the balance between the type and amount of contamination to be removed and the desired COP increase suppression capability. If the cleaning time is too short, sufficient contamination cannot be removed, but if the cleaning time is too long, the etching of the oxide film proceeds excessively, resulting in an increase in COP. Specifically, a silicon wafer subjected to standard intentional contamination is subjected to ozone treatment for a predetermined time to form an oxide film, and the silicon wafer is used for SC1 cleaning for a predetermined time, and then the contamination is actually removed. Can be optimized to optimize the degree of ozone treatment and SC1 cleaning time. However, if the oxide film that existed before the SC1 cleaning is completely removed, etching proceeds regardless of whether the oxide film forming means is ozone treatment, and the initial purpose of suppressing the increase in COP cannot be achieved. It is self-explanatory. Therefore, it is necessary to set conditions so that the etching amount by SC1 cleaning is less than the initial thickness (usually 1 nm) of the oxide film existing before SC1 cleaning.

例えば、Siパーティクルで故意に汚染したシリコンウエハの場合、25ppmオゾン水で4.5分処理し、後SC1洗浄を2分程度施すことで十分な洗浄効果とCOP増加抑制効果を示す。 For example, in the case of a silicon wafer intentionally contaminated with Si 3 N 4 particles, a sufficient cleaning effect and a COP increase suppressing effect are exhibited by treating with a 25 ppm ozone water for 4.5 minutes and performing a subsequent SC1 cleaning for about 2 minutes.

以下実施例に基づき本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。例えば、COP以外のボイド欠陥やビット状欠陥についても、COP同様にその増加あるいは拡大抑制能力があるものと予想される。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these Examples. For example, void defects and bit-like defects other than COP are expected to have the ability to suppress or increase the same as COP.

(実施例1) パーティクル汚染除去
試料として8インチのシリコンウエハを用いた。シリコンウエハ表面に、Si粒子(三津和化学薬品社製)をディップ法にて、約200〜800個のφ0.20μm以上のパーティクル数となるよう調製した。シリコンウエハ表面のパーティクルの測定はレーザー散乱式表面異物計(KLA−Tencor社製SurfScan6200、レーザー散乱法)を用いた。オゾン処理条件は25ppmオゾン水で室温にて4.5分処理して酸化膜を形成した。また比較のため3%過酸化水素水で60℃にて4.5分処理したシリコンウエハに酸化膜を形成した。これらのシリコンウエハを60℃のAPM(1:5:50)洗浄液に2分間浸漬して洗浄した。この条件において、25ppmオゾン水により酸化膜を形成したウエハのSC1によるエッチング量は約0.05nmであり、初期酸化膜厚の1nmに比べて十分に小さかった。得られたシリコンウエハの表面のパーティクル除去率を表1に示す。
Example 1 Particle Contamination Removal An 8-inch silicon wafer was used as a sample. Si 3 N 4 particles (manufactured by Mitsuwa Chemicals Co., Ltd.) were prepared on the surface of the silicon wafer by a dip method so that the number of particles was about 200 to 800 particles of φ0.20 μm or more. Measurement of particles on the surface of the silicon wafer was performed using a laser scattering surface foreign object meter (SurfScan 6200, manufactured by KLA-Tencor, laser scattering method). As the ozone treatment conditions, an oxide film was formed by treatment with 25 ppm ozone water at room temperature for 4.5 minutes. For comparison, an oxide film was formed on a silicon wafer treated with 3% hydrogen peroxide solution at 60 ° C. for 4.5 minutes. These silicon wafers were cleaned by immersing them in an APM (1: 5: 50) cleaning solution at 60 ° C. for 2 minutes. Under this condition, the etching amount by SC1 of the wafer on which the oxide film was formed with 25 ppm ozone water was about 0.05 nm, which was sufficiently smaller than the initial oxide film thickness of 1 nm. Table 1 shows the particle removal rate on the surface of the obtained silicon wafer.

Figure 0004817887
Figure 0004817887

この結果から、過酸化水素による酸化膜でも、オゾンによる酸化膜でも2分間の洗浄にてほぼ同じ程度パーティクルが除去されていることが分かる。   From this result, it can be seen that the particles are removed to the same extent by washing for 2 minutes in both the oxide film using hydrogen peroxide and the oxide film using ozone.

また得られたシリコンウエハの表面のCOP増加を図2に示す。この結果から、オゾンによる酸化膜の場合にはCOPの増加が大きく抑制されることが分かる。この結果は、オゾンによる酸化膜形成がSC1洗浄により特に初期段階でエッチングされにくい性質を有することから説明される。すなわち酸化膜表面が必要以上にエッチングされることなく汚染物が除去され、かつ表面に存在したCOPであるピットのエッチングも抑制される。   The increase in COP on the surface of the obtained silicon wafer is shown in FIG. From this result, it can be seen that the increase in COP is greatly suppressed in the case of an oxide film by ozone. This result is explained by the fact that the oxide film formation by ozone has the property that it is difficult to be etched at the initial stage by the SC1 cleaning. That is, contaminants are removed without etching the surface of the oxide film more than necessary, and etching of pits, which are COPs existing on the surface, is also suppressed.

(実施例2) 金属吸着抑制
試料として8インチのシリコンウエハを希フッ酸(0.5%)で洗浄して表面の自然酸化膜を除去し、そのウエハを60℃のAPM洗浄液または10ppmのオゾン水にて各4.5分処理して酸化膜を形成した。これらのウエハを、1ppbのCaを含有した超純水に10分間浸漬後、清浄な超純水で10分間リンスし、スピンドライヤーで乾燥させた。乾燥後のウエハの表面のCa付着量を、気相分解(VPD)−原子吸光分析(AAS)にて定量した。結果を図3に示す。オゾン水で形成させた酸化膜はCaの吸着量が少ないことがわかった。これは酸化膜中のCa吸着サイトが少ないことを意味していると考えられ、オゾン水で形成させた酸化膜はその後のCa汚染を抑制する特性を有するといえる。
(Example 2) Suppression of metal adsorption As a sample, an 8-inch silicon wafer was cleaned with dilute hydrofluoric acid (0.5%) to remove the natural oxide film on the surface, and the wafer was subjected to APM cleaning solution at 60 ° C or 10 ppm ozone. An oxide film was formed by treatment with water for 4.5 minutes each. These wafers were immersed in ultrapure water containing 1 ppb of Ca for 10 minutes, rinsed with clean ultrapure water for 10 minutes, and dried with a spin dryer. The amount of Ca deposited on the surface of the dried wafer was quantified by vapor phase decomposition (VPD) -atomic absorption analysis (AAS). The results are shown in FIG. It was found that the oxide film formed with ozone water has a small amount of Ca adsorption. This is considered to mean that there are few Ca adsorption sites in an oxide film, and it can be said that the oxide film formed with ozone water has the characteristic of suppressing subsequent Ca contamination.

本発明の方法によれば、シリコンウエハ表面の汚染物が充分に除去され、かつ表面のCOP数(密度)の増加も抑制され、極めて有用なシリコンウエハ洗浄方法である。   According to the method of the present invention, contaminants on the surface of the silicon wafer are sufficiently removed, and an increase in the number of COPs (density) on the surface is suppressed, which is an extremely useful silicon wafer cleaning method.

図1は、種々の酸化剤で形成した酸化膜のSC1洗浄液によるエッチングの測定結果を示す。FIG. 1 shows the measurement results of etching with an SC1 cleaning solution of oxide films formed with various oxidizing agents. 図2は、実施例1のシリコンウエハの表面のCOP増加を示す。FIG. 2 shows the COP increase on the surface of the silicon wafer of Example 1. 図3は、実施例2のシリコンウエハ表面のCa付着量を示す。FIG. 3 shows the amount of Ca deposited on the silicon wafer surface of Example 2.

Claims (3)

シリコンウエハの表面に、オゾンを含む溶液により初期酸化膜形成し、次に前記オゾンによって形成された初期酸化膜を、アンモニア、水酸化テトラメチルアンモニウム、コリンのうちいずれか一種以上の薬品と過酸化水素との混合液でエッチングすることを特徴とする、シリコンウエハの洗浄方法。 An initial oxide film is formed on the surface of the silicon wafer with a solution containing ozone , and then the initial oxide film formed by ozone is treated with one or more chemicals selected from ammonia, tetramethylammonium hydroxide, and choline. Etching with a mixed solution with hydrogen oxide, a method for cleaning a silicon wafer. 前記混合液によるエッチング量が、前記オゾンによって形成された初期酸化膜の厚さ未満であることを特徴とする、請求項1記載のシリコンウエハの洗浄方法。 The etching amount due to the mixture, characterized in der thickness less than Rukoto initial oxide film formed by the ozone, the method of cleaning a silicon wafer according to claim 1, wherein. 前記オゾンを含む溶液におけるオゾン濃度が、10〜200ppmであることを特徴とする、請求項1記載のシリコンウエハの洗浄方法。2. The method for cleaning a silicon wafer according to claim 1, wherein an ozone concentration in the solution containing ozone is 10 to 200 ppm.
JP2006056412A 2006-03-02 2006-03-02 Semiconductor substrate cleaning method Active JP4817887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056412A JP4817887B2 (en) 2006-03-02 2006-03-02 Semiconductor substrate cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056412A JP4817887B2 (en) 2006-03-02 2006-03-02 Semiconductor substrate cleaning method

Publications (3)

Publication Number Publication Date
JP2007234964A JP2007234964A (en) 2007-09-13
JP2007234964A5 JP2007234964A5 (en) 2009-04-02
JP4817887B2 true JP4817887B2 (en) 2011-11-16

Family

ID=38555225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056412A Active JP4817887B2 (en) 2006-03-02 2006-03-02 Semiconductor substrate cleaning method

Country Status (1)

Country Link
JP (1) JP4817887B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233277B2 (en) * 2007-12-25 2013-07-10 富士通セミコンダクター株式会社 Semiconductor substrate processing method and semiconductor device manufacturing method
CN104022014A (en) * 2013-03-01 2014-09-03 中芯国际集成电路制造(上海)有限公司 Wet cleaning method
JP2015041753A (en) * 2013-08-23 2015-03-02 株式会社東芝 Wafer cleaning method
WO2018037691A1 (en) * 2016-08-22 2018-03-01 東京エレクトロン株式会社 Coating method, coating device, and storage medium
CN108597986A (en) * 2018-05-02 2018-09-28 厦门大学深圳研究院 A kind of preparation method of the silicon nanowire array based on pre-oxidation treatment
JP7251419B2 (en) * 2019-09-11 2023-04-04 信越半導体株式会社 Bonded SOI wafer manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111660A (en) * 1997-10-01 1999-04-23 Toshiba Corp Cleaning method
JPH11233476A (en) * 1997-12-01 1999-08-27 Mitsubishi Electric Corp Treatment of semiconductor substrate
JPH11260778A (en) * 1998-03-06 1999-09-24 Sony Corp Sheet style surface cleaning method and equipment
KR100567530B1 (en) * 2003-12-30 2006-04-03 주식회사 하이닉스반도체 Method of forming a oxide layer in a semiconductor device

Also Published As

Publication number Publication date
JP2007234964A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP5315596B2 (en) Manufacturing method of bonded SOI wafer
JP4817887B2 (en) Semiconductor substrate cleaning method
KR101774843B1 (en) Method for cleaning semiconductor wafer
JP6729632B2 (en) Silicon wafer cleaning method
TWI244130B (en) Method of reclaiming silicon wafers
JP3957264B2 (en) Semiconductor substrate cleaning method
JP2008244434A (en) Method for removing bulk metal contamination from iii-v semiconductor substrate
JP2006505132A (en) Semiconductor surface treatment and compounds used in it
JP2003218085A (en) Cleaning method of semiconductor substrate
JP4753656B2 (en) Method for suppressing boron contamination on silicon wafer surface
JP2776583B2 (en) Semiconductor substrate processing solution and processing method
JP2000208578A (en) Evaluation method for silicon wafer and silicon wafer
JP2007150196A (en) Cleaning method and manufacturing method of semiconductor wafer
JPH0831781A (en) Washing chemicals
JP7279753B2 (en) Silicon wafer cleaning method and manufacturing method
JP6520777B2 (en) Evaluation method of silicon single crystal wafer
JP2001217215A (en) Composition and method for treating surface of semiconductor substrate
KR20100049856A (en) Method for cleaning a substrate
JP2012109289A (en) Silicon wafer cleaning rinse liquid preparation method
WO2022190830A1 (en) Method for cleaning silicon wafer, method for producing silicon wafer, and silicon wafer
WO2023218828A1 (en) Cleaning solution and wafer cleaning method
JP2008021924A (en) Method for removing impurity on silicon wafer surface
JPH09298180A (en) Silicon wafer washing method
JP2008166404A (en) Wash water for hydrophobic silicon wafer, and cleaning method using the same
JP2022138089A (en) Method of cleaning silicon wafer, method of manufacturing silicon wafer, and silicon wafer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250