JP6638636B2 - Method for evaluating polymer protection - Google Patents

Method for evaluating polymer protection Download PDF

Info

Publication number
JP6638636B2
JP6638636B2 JP2016241150A JP2016241150A JP6638636B2 JP 6638636 B2 JP6638636 B2 JP 6638636B2 JP 2016241150 A JP2016241150 A JP 2016241150A JP 2016241150 A JP2016241150 A JP 2016241150A JP 6638636 B2 JP6638636 B2 JP 6638636B2
Authority
JP
Japan
Prior art keywords
polymer
wafer
haze
immersed
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016241150A
Other languages
Japanese (ja)
Other versions
JP2018096817A (en
Inventor
正彬 大関
正彬 大関
薫 石井
薫 石井
三千登 佐藤
三千登 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2016241150A priority Critical patent/JP6638636B2/en
Publication of JP2018096817A publication Critical patent/JP2018096817A/en
Application granted granted Critical
Publication of JP6638636B2 publication Critical patent/JP6638636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、シリコンウェーハ表面を保護するためのポリマーの保護性評価方法に関する。   The present invention relates to a method for evaluating the protection of a polymer for protecting the surface of a silicon wafer.

半導体シリコンウェーハの加工は複数の工程を必要とするため、それに伴い工程間の搬送時あるいは保管時のウェーハ変化に注意が必要である。特に、ベアシリコンを浸水状態で次工程に搬送する場合、ベアシリコンは純水からアルカリのpH領域(pH7以上)で容易に面荒れが発生し、また、Cuなどの酸化力の高い金属により表面が局所的に反応し、ピット化してしまうことが知られている。   Since processing of a semiconductor silicon wafer requires a plurality of steps, it is necessary to pay attention to a change in the wafer during transfer or storage between the steps. In particular, when the bare silicon is transported to the next step in a submerged state, the bare silicon is easily roughened from pure water in an alkaline pH range (pH 7 or more), and the surface of the bare silicon is highly oxidized such as Cu. Is known to react locally to form pits.

これらの現象を抑制するための方策として、ベアシリコンの表面に自然酸化膜を形成する、もしくはベアシリコンの上にポリマーを吸着させる(特許文献1)等の手段でベアシリコンを保護する方策があるが、前者はオゾンなどの特別な薬液と排水設備を必要とするためコストの観点で難がある。後者はより簡便な方法でベアシリコンの表面保護を実現できるが、自然酸化膜に比べて知見が少なく、例えばどのようなポリマーでどのような吸着方法を用いると保護性が高まるか等の評価技術が確立されていない。   As a measure for suppressing these phenomena, there is a measure for protecting the bare silicon by means such as forming a natural oxide film on the surface of the bare silicon or adsorbing a polymer on the bare silicon (Patent Document 1). However, the former requires special chemicals such as ozone and a drainage facility, and is therefore difficult in terms of cost. The latter can realize bare silicon surface protection with a simpler method, but has less knowledge than natural oxide films, and is an evaluation technology for e.g. what kind of polymer and which adsorption method will increase the protection. Has not been established.

特開2016−051763号公報JP-A-2006-051763

シリコンウェーハ表面を保護するためのポリマーの保護性を評価する方法としては、例えば、TEM(透過型電子顕微鏡)等によりポリマーが吸着したウェーハを分析し、ポリマー吸着層の厚さを評価する方法が考えられるが、ポリマーは電子線により容易に壊れてしまうため、このような方法では評価は困難である。また、別の方法として、Cuなどの金属により表面にポリマーが吸着したウェーハを故意に汚染させ、その後パーティクルカウンターにて発生したピットの数を数える方法もあるが、浸漬槽、その後の洗浄槽を金属により汚染してしまい、その後の実験に影響が出るため、この方法も好ましい方法とは言えない。このように、ポリマーの保護性を安価かつ簡便に評価することは難しく、ポリマーの保護性を安価かつ簡便に評価できる方法の開発が求められていた。   As a method of evaluating the protective property of the polymer for protecting the silicon wafer surface, for example, a method of analyzing the wafer on which the polymer is adsorbed by a TEM (transmission electron microscope) or the like and evaluating the thickness of the polymer adsorption layer is known. It is conceivable, however, that such a method is difficult to evaluate because the polymer is easily broken by an electron beam. As another method, there is a method of intentionally contaminating a wafer having a polymer adsorbed on the surface thereof with a metal such as Cu and then counting the number of pits generated in a particle counter. This method is not a preferable method because it is contaminated by the metal and affects subsequent experiments. As described above, it is difficult to easily and inexpensively evaluate the protection of a polymer, and there has been a demand for the development of a method that can easily and inexpensively evaluate the protection of a polymer.

本発明は、上記問題を解決するためになされたものであり、シリコンウェーハ表面を保護するためのポリマーの保護性を安価かつ簡便に評価することが可能な評価方法を提供することを目的とする。   The present invention has been made to solve the above problems, and has as its object to provide an evaluation method capable of easily and inexpensively evaluating the protective property of a polymer for protecting a silicon wafer surface. .

上記課題を達成するために、本発明では、ウェーハ表面に吸着することでウェーハ表面を保護するポリマーの保護性を評価する方法であって、純水又は純水に任意のアルカリを溶解させたpH7以上の溶液に、前記ポリマーにより表面が保護されたウェーハの一部又は全部を浸漬させ、該浸漬後のウェーハのHazeと浸漬前のウェーハのHazeとの差、又は前記浸漬後のウェーハの浸漬部のHazeと非浸漬部のHazeとの差に基づいて前記ポリマーの保護性を評価するポリマーの保護性評価方法を提供する。   In order to achieve the above object, the present invention provides a method for evaluating the protective property of a polymer that protects a wafer surface by adsorbing on a wafer surface, the method comprising: A part or all of the wafer whose surface is protected by the polymer is immersed in the above solution, and the difference between the Haze of the wafer after immersion and the Haze of the wafer before immersion, or the immersion part of the wafer after immersion And a method for evaluating the protection of the polymer based on the difference between the Haze of the non-immersed part and the Haze of the non-immersed part.

このようなポリマーの保護性評価方法であれば、ポリマーにより表面が保護されたウェーハを純水又はpH7以上の溶液に浸漬させてエッチングを行った際の、エッチング前後のHazeの差、あるいはエッチングされた箇所とエッチングされていない箇所のHazeの差に基づいて、ポリマーの保護性を安価かつ簡便に評価することができる。   With such a method for evaluating the protective property of a polymer, when the wafer whose surface is protected by the polymer is immersed in pure water or a solution having a pH of 7 or more to perform etching, the difference in Haze before and after etching or the etching Based on the difference between the haze of the unetched portion and the haze of the unetched portion, the protection of the polymer can be evaluated easily and inexpensively.

また、前記浸漬前のウェーハのHazeを、前記ポリマーにより表面を保護する前のウェーハのHazeとすることが好ましい。   Further, it is preferable that the haze of the wafer before the immersion is the haze of the wafer before the surface is protected by the polymer.

このようにすることで、浸漬前のウェーハのHazeをより正確に測定することができ、結果として、ポリマーの保護性をより正確に評価することができる。   By doing so, the haze of the wafer before immersion can be measured more accurately, and as a result, the protection of the polymer can be more accurately evaluated.

また、本発明のポリマーの保護性評価方法では、前記ポリマーにより表面が保護されたウェーハとして、前記ポリマーを溶解させた溶液にHF洗浄により表面酸化膜を除去したウェーハを浸漬させることで表面に前記ポリマーを吸着させたウェーハ、又は前記ポリマーを溶解させた溶液を染み込ませた布製の素材と前記HF洗浄により表面酸化膜を除去したウェーハを接触させることで表面に前記ポリマーを吸着させたウェーハを用いることができる。   In the method for evaluating the protective property of a polymer according to the present invention, the wafer whose surface has been removed by HF cleaning is immersed in a solution in which the polymer is dissolved as a wafer whose surface is protected by the polymer. Use a wafer on which the polymer is adsorbed, or a wafer on which the polymer is adsorbed on the surface by contacting a wafer made of a cloth impregnated with a solution in which the polymer is dissolved and a surface oxide film removed by the HF cleaning. be able to.

本発明のポリマーの保護性評価方法では、例えばこのような方法で表面にポリマーを吸着させたウェーハを用いてポリマーの保護性を評価することができる。   In the method for evaluating the protective property of a polymer according to the present invention, for example, the protective property of the polymer can be evaluated using a wafer having the polymer adsorbed on the surface by such a method.

以上のように、本発明のポリマーの保護性評価方法であれば、ポリマーにより表面が保護されたウェーハを純水又はpH7以上の溶液に浸漬させてエッチングを行った際の、エッチング前後のHazeの差、あるいはエッチングされた箇所とエッチングされていない箇所のHazeの差に基づいて、ポリマーの保護性を安価で簡便かつ正確に評価することができる。また、複数種類のポリマーを用いて評価を行えば、ポリマーの保護性を複数のポリマー間で相対的に評価することもできる。   As described above, according to the method for evaluating the protective property of the polymer of the present invention, when the wafer whose surface is protected by the polymer is immersed in pure water or a solution having a pH of 7 or more to perform etching, the Haze before and after the etching is measured. Based on the difference or the difference between the haze of the etched portion and the haze of the unetched portion, the protection of the polymer can be evaluated cheaply, simply and accurately. In addition, when the evaluation is performed using a plurality of types of polymers, the protective properties of the polymers can be relatively evaluated among the plurality of polymers.

本発明のポリマーの保護性評価方法の一例を示すフロー図である。It is a flowchart which shows an example of the protective property evaluation method of the polymer of this invention. 本発明のポリマーの保護性評価方法の別の一例を示すフロー図である。It is a flowchart which shows another example of the protective property evaluation method of the polymer of this invention. ベアシリコンの一部を浸漬させた状態を示す概略図である。It is the schematic which shows the state which immersed a part of bare silicon. 一部を浸漬させたベアシリコンのヘイズマップの一例である。It is an example of a haze map of bare silicon in which a part was immersed. 実施例1における、浸漬部のHazeと非浸漬部のHazeの差(ΔHaze)を示すグラフである。5 is a graph showing a difference (ΔHaze) between the haze of the immersed part and the haze of the non-immersed part in Example 1. 比較例1における、Cu故意汚染によるピットの増加数を示すグラフである。9 is a graph showing the number of increased pits due to intentional Cu contamination in Comparative Example 1.

上述のように、TEM等によりポリマー吸着層の厚さを評価する方法やCu故意汚染により発生したピットの数を数える方法では、ポリマーの保護性を安価かつ簡便に評価することは難しく、ポリマーの保護性を安価かつ簡便に評価できる方法の開発が求められていた。   As described above, the method of evaluating the thickness of the polymer adsorption layer by TEM or the like or the method of counting the number of pits generated due to intentional Cu contamination makes it difficult to easily and inexpensively evaluate the protection of the polymer. There has been a demand for the development of a method that can easily and inexpensively evaluate protection.

そこで、本発明者らは、ポリマーを吸着したウェーハの粗さ変化に着目した。一般的に面方位(100)のシリコンは、HF処理等により水素終端していると、pH7以上の中性から塩基性条件下で荒れることが分かっている。この現象は(100)方向と(111)方向のエッチングレート差に起因する。   Then, the present inventors paid attention to the roughness change of the wafer on which the polymer was adsorbed. In general, it is known that silicon having a plane orientation of (100) is roughened under neutral to basic conditions of pH 7 or more when hydrogen-terminated by HF treatment or the like. This phenomenon is caused by a difference in etching rate between the (100) direction and the (111) direction.

図3に示されるように、表面酸化膜のないベアシリコン1をポリマー保護することなく、一部分のみを残して(即ち、浸漬部1aと非浸漬部1bが生じるように)純水2中に浸漬させ、その後KLAテンコール社製のパーティクルカウンターSP2を用いてHazeを測定すると、図4に示されるように浸漬部1aは白く、非浸漬部1bは黒くなり、浸漬部1aと非浸漬部1bで明瞭なコントラストが発生する。ここで、白色に見える部分はHaze悪化部分である。これは、浸漬部でエッチングが進み表面荒れが促進された結果である。一方、本発明者らが検討したところ、ベアシリコンの表面にポリマーが吸着している状態では、pH7以上の中性から塩基性条件下においても表面が荒れにくくなるため、Hazeは悪化しにくくなることが分かった。更に、本発明者らが検討したところ、ポリマーの金属汚染耐性はエッチングによる面荒れ耐性と強く相関していることが分かった。   As shown in FIG. 3, bare silicon 1 without a surface oxide film is immersed in pure water 2 without polymer protection, leaving only a part (that is, so that immersed part 1a and non-immersed part 1b are formed). After that, when the haze is measured using a particle counter SP2 manufactured by KLA Tencor Co., as shown in FIG. 4, the immersed part 1a is white, the non-immersed part 1b is black, and the immersed part 1a and the non-immersed part 1b are clear. High contrast occurs. Here, the part that looks white is a haze-deteriorated part. This is a result of the fact that the etching proceeds in the immersion part and the surface roughness is promoted. On the other hand, the present inventors have examined that, in a state where the polymer is adsorbed on the surface of bare silicon, the surface is less likely to be roughened even under neutral to basic conditions of pH 7 or more, so that Haze is hardly deteriorated. I understood that. Further, the present inventors have examined and found that the resistance to metal contamination of the polymer is strongly correlated with the resistance to surface roughness due to etching.

これらのことから、本発明者らは、ポリマーにより表面が保護されたウェーハを純水又はpH7以上の溶液に浸漬させてエッチングを行った際の、エッチング前後のHazeの差、あるいはエッチングされた箇所とエッチングされていない箇所のHazeの差(以下、「ΔHaze」とも称する)を金属汚染耐性及びエッチングによる面荒れ耐性(即ち、ポリマーの保護性)の指標とみなし、このΔHazeの多寡を評価することでポリマーの保護性を安価かつ簡便に評価できることを見出し、本発明を完成させた。   From these facts, the present inventors have found that the difference in Haze before and after etching when a wafer whose surface is protected by a polymer is immersed in pure water or a solution having a pH of 7 or more, or the etched portion The difference between the haze of the unetched portion and the haze (hereinafter also referred to as “ΔHaze”) is regarded as an index of metal contamination resistance and surface roughness resistance by etching (that is, protective property of the polymer), and the amount of ΔHaze is evaluated. And found that the protection of the polymer can be easily and inexpensively evaluated, thereby completing the present invention.

即ち、本発明は、ウェーハ表面に吸着することでウェーハ表面を保護するポリマーの保護性を評価する方法であって、純水又は純水に任意のアルカリを溶解させたpH7以上の溶液に、前記ポリマーにより表面が保護されたウェーハの一部又は全部を浸漬させ、該浸漬後のウェーハのHazeと浸漬前のウェーハのHazeとの差、又は前記浸漬後のウェーハの浸漬部のHazeと非浸漬部のHazeとの差に基づいて前記ポリマーの保護性を評価するポリマーの保護性評価方法である。   That is, the present invention is a method for evaluating the protective property of a polymer that protects the wafer surface by adsorbing on the wafer surface, wherein the solution having a pH of 7 or more in which pure water or any alkali is dissolved in pure water is used. Part or all of the wafer whose surface is protected by the polymer is immersed, and the difference between the Haze of the wafer after immersion and the Haze of the wafer before immersion, or the Haze of the immersed part of the wafer after immersion and the non-immersed part This is a method for evaluating the protection of a polymer, wherein the protection of the polymer is evaluated based on the difference from the Haze of the polymer.

以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

図1に本発明のポリマーの保護性評価方法の一例のフロー図を示す。図1の方法では、まず、ウェーハを用意し(図1の(A1)工程)、ポリマーをウェーハ表面に吸着させて、ポリマーによりウェーハ表面を保護する(図1の(A2)工程)。次に、ポリマーにより表面が保護されたウェーハの一部を(浸漬部と非浸漬部が生じるように)純水に浸漬させる(図1の(A3)工程)。次に、浸漬後のウェーハの浸漬部のHazeと非浸漬部のHazeを測定し(図1の(A4)工程)、浸漬部のHazeと非浸漬部のHazeとの差(ΔHaze)を求める(図1の(A5)工程)。そして、求めたΔHazeに基づいてポリマーの保護性を評価する(図1の(A6))。   FIG. 1 shows a flowchart of an example of the method for evaluating the protection of a polymer according to the present invention. In the method of FIG. 1, first, a wafer is prepared (step (A1) in FIG. 1), and a polymer is adsorbed on the wafer surface to protect the wafer surface with the polymer (step (A2) in FIG. 1). Next, a part of the wafer whose surface is protected by the polymer is immersed in pure water (so that an immersion part and a non-immersion part are generated) (step (A3) in FIG. 1). Next, the haze of the immersed part and the haze of the non-immersed part of the immersed wafer are measured (step (A4) in FIG. 1), and a difference (ΔHaze) between the haze of the immersed part and the haze of the non-immersed part is obtained ( (Step (A5) in FIG. 1). Then, the protective property of the polymer is evaluated based on the obtained ΔHaze ((A6) in FIG. 1).

本発明のポリマーの保護性評価方法では、このように浸漬後のウェーハの浸漬部のHazeと非浸漬部のHazeとの差(ΔHaze)に基づいて、ポリマーの保護性を評価することができる。この場合、ポリマーの保護性が高ければ、ウェーハの浸漬部におけるエッチングによる面荒れが抑制され、浸漬部のHazeが小さくなるため、ΔHazeが小さくなる。一方、ポリマーの保護性が低ければ、浸漬部におけるエッチングによる面荒れが抑制されず、浸漬部のHazeが大きくなるため、ΔHazeが大きくなる。このことから、ΔHazeが小さければ小さいほど、ポリマーの保護性が高いと評価することができる。   According to the method for evaluating the protection of a polymer of the present invention, the protection of the polymer can be evaluated based on the difference (ΔHaze) between the haze of the immersed portion of the wafer after immersion and the haze of the non-immersed portion. In this case, if the protective property of the polymer is high, the surface roughness due to the etching in the immersion part of the wafer is suppressed, and the haze of the immersion part becomes small, so that ΔHaze becomes small. On the other hand, if the protective property of the polymer is low, the surface roughness due to the etching in the immersion part is not suppressed, and the haze in the immersion part increases, so that ΔHaze increases. From this, it can be evaluated that the smaller the ΔHaze, the higher the protection of the polymer.

また、図2に本発明のポリマーの保護性評価方法の別の一例のフロー図を示す。図2の方法では、まず、ウェーハを用意し(図2の(B1)工程)、ポリマーにより表面を保護する前のウェーハのHaze(即ち、浸漬前のウェーハのHaze)を測定する(図2の(B2)工程)。次に、ポリマーをウェーハ表面に吸着させて、ポリマーによりウェーハ表面を保護する(図2の(B3)工程)。次に、ポリマーにより表面が保護されたウェーハの全部を純水に浸漬させる(図2の(B4)工程)。次に、浸漬後のウェーハのHazeを測定し(図2の(B5)工程)、浸漬後のHazeと浸漬前のHazeとの差(ΔHaze)を求める(図2の(B6)工程)。そして、求めたΔHazeに基づいてポリマーの保護性を評価する(図2の(B7))。   FIG. 2 shows a flowchart of another example of the method for evaluating the protection of a polymer according to the present invention. In the method of FIG. 2, first, a wafer is prepared (step (B1) of FIG. 2), and the haze of the wafer before the surface is protected by the polymer (that is, the haze of the wafer before immersion) is measured (FIG. 2). (B2) Step). Next, the polymer is adsorbed on the wafer surface and the wafer surface is protected by the polymer (step (B3) in FIG. 2). Next, the entire wafer whose surface is protected by the polymer is immersed in pure water (step (B4) in FIG. 2). Next, the haze of the wafer after immersion is measured (step (B5) in FIG. 2), and the difference (ΔHaze) between the haze after immersion and the haze before immersion is obtained (step (B6) in FIG. 2). Then, the protective property of the polymer is evaluated based on the obtained ΔHaze ((B7) in FIG. 2).

本発明のポリマーの保護性評価方法では、このように浸漬後のウェーハのHazeと浸漬前のウェーハのHazeとの差(ΔHaze)に基づいて、ポリマーの保護性を評価することもできる。この場合、ポリマーの保護性が高ければ、ウェーハを浸漬した際のエッチングによる面荒れが抑制され、浸漬後のウェーハのHazeが小さくなるため、ΔHazeが小さくなる。一方、ポリマーの保護性が低ければ、ウェーハを浸漬した際のエッチングによる面荒れが抑制されず、浸漬後のウェーハのHazeが大きくなるため、ΔHazeが大きくなる。このことから、ΔHazeが小さければ小さいほど、ポリマーの保護性が高いと評価することができる。   In the method for evaluating the protection of a polymer according to the present invention, the protection of the polymer can also be evaluated based on the difference (ΔHaze) between the haze of the wafer after immersion and the haze of the wafer before immersion. In this case, if the protection property of the polymer is high, the surface roughness due to the etching when the wafer is immersed is suppressed, and the haze of the wafer after immersion becomes small, so that ΔHaze becomes small. On the other hand, if the protective property of the polymer is low, the surface roughness due to the etching when the wafer is immersed is not suppressed, and the haze of the wafer after immersion increases, so that the ΔHaze increases. From this, it can be evaluated that the smaller the ΔHaze, the higher the protection of the polymer.

なお、図2のフローのように、浸漬前のウェーハのHazeを、ポリマーにより表面を保護する前のウェーハのHazeとすることで、浸漬前のウェーハのHazeをより正確に測定することができ、結果として、ポリマーの保護性をより正確に評価することができるため、好ましい。   As shown in the flow of FIG. 2, by setting the haze of the wafer before immersion to the haze of the wafer before protecting the surface with the polymer, the haze of the wafer before immersion can be measured more accurately. As a result, the protection of the polymer can be more accurately evaluated, which is preferable.

本発明のポリマーの保護性評価方法において、純水又は純水に任意のアルカリを溶解させたpH7以上の溶液に、ポリマーにより表面が保護されたウェーハを浸漬させる際には、特に限定されないが、12〜48時間程度浸漬させることが好ましく、例えば、24時間程度浸漬させることが好ましい。また、光による面荒れを抑制するために、浸漬は暗所で行うことが好ましい。   In the method for evaluating the protective property of the polymer of the present invention, when the wafer whose surface is protected by the polymer is immersed in pure water or a solution having a pH of 7 or more in which any alkali is dissolved in pure water, the method is not particularly limited. It is preferable to soak for about 12 to 48 hours, for example, it is preferable to soak for about 24 hours. In addition, in order to suppress surface roughness due to light, it is preferable to perform immersion in a dark place.

本発明のポリマーの保護性評価方法において、Hazeの測定は、特に限定されないが、例えば、KLAテンコール社製のパーティクルカウンターSP2などを用いて行うことができる。   In the method for evaluating the protection of a polymer according to the present invention, the measurement of haze is not particularly limited. For example, the haze can be measured using a particle counter SP2 manufactured by KLA Tencor.

また、本発明のポリマーの保護性評価方法において、浸漬後のウェーハのHaze測定の前には、過酸化水素を含む洗浄液(例えば、SC1など)を用いてウェーハを洗浄し、ウェーハに付着しているポリマーを除去することが好ましい。   In the method for evaluating the protective property of a polymer according to the present invention, before the haze measurement of the immersed wafer, the wafer is cleaned using a cleaning solution containing hydrogen peroxide (for example, SC1) and adhered to the wafer. It is preferred to remove any polymer present.

また、本発明のポリマーの保護性評価方法において、ポリマーをウェーハ表面に吸着させる方法は、特に限定されないが、例えば、ポリマーを溶解させた溶液にHF洗浄により表面酸化膜を除去したウェーハを浸漬させることで表面にポリマーを吸着させる方法や、ポリマーを溶解させた溶液を染み込ませた軟質の布製の素材とHF洗浄により表面酸化膜を除去したウェーハを擦り合わせる等して接触させることで表面にポリマーを吸着させる方法などを挙げることができる。   In the method for evaluating the protective property of the polymer of the present invention, the method of adsorbing the polymer on the wafer surface is not particularly limited. For example, the wafer having the surface oxide film removed by HF cleaning is immersed in a solution in which the polymer is dissolved. A method of adsorbing the polymer on the surface by contacting the surface of the polymer by rubbing a soft cloth material impregnated with a solution in which the polymer is dissolved with a wafer whose surface oxide film has been removed by HF cleaning, etc. And the like.

以上説明したような本発明のポリマーの保護性評価方法であれば、ポリマーにより表面が保護されたウェーハを純水又はpH7以上の溶液に浸漬させてエッチングを行った際の、エッチング前後のHazeの差、あるいはエッチングされた箇所とエッチングされていない箇所のHazeの差に基づいて、ポリマーの保護性を安価で簡便かつ正確に評価することができる。また、複数の種類のポリマーを用いて評価を行えば、ポリマーの保護性を複数のポリマー間で相対的に評価することもできる。   According to the method for evaluating the protective property of the polymer of the present invention as described above, when the wafer whose surface is protected by the polymer is immersed in pure water or a solution having a pH of 7 or more to perform etching, the Haze before and after the etching is measured. Based on the difference or the difference between the haze of the etched portion and the haze of the unetched portion, the protection of the polymer can be evaluated cheaply, simply and accurately. In addition, when the evaluation is performed using a plurality of types of polymers, the protection of the polymers can be relatively evaluated among the plurality of polymers.

以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

[実施例1]
浸漬部のHazeと非浸漬部のHazeとの差(ΔHaze)に基づいて、ポリマーA、ポリマーB、ポリマーCの3種類のポリマーの保護性を評価した。
[Example 1]
Based on the difference (ΔHaze) between the haze of the immersed part and the haze of the non-immersed part, the protection properties of the three types of polymers A, B and C were evaluated.

(ポリマーの吸着)
HF洗浄により表面酸化膜を除去し、更に通常の仕上げ研磨を行った直径300mmのシリコンウェーハを用意し、最終仕上げ研磨にて各ポリマーを含む水溶液を染み込ませた布を用いて、荷重10kPa、回転数10rpm、10秒間にわたって研磨を行い、シリコンウェーハの表面に各ポリマーを吸着させた。なお、各ポリマーを含む水溶液は、1.0L/minで研磨定盤に供給した。
(Polymer adsorption)
The surface oxide film was removed by HF cleaning, and a silicon wafer with a diameter of 300 mm, which was further subjected to normal finish polishing, was prepared. Using a cloth impregnated with an aqueous solution containing each polymer in the final finish polishing, rotating at a load of 10 kPa and rotating. Polishing was performed at several tens of rpm for 10 seconds to adsorb each polymer on the surface of the silicon wafer. In addition, the aqueous solution containing each polymer was supplied to the polishing platen at 1.0 L / min.

(シリコンウェーハの浸漬)
純水を貯めたピット槽を用意し、各ポリマーを吸着させたシリコンウェーハをその中に浸漬させた。その際、浸漬部と非浸漬部が生じるよう水位を調整した。浸漬は、光による表面荒れを抑制するために暗闇中にて24時間行った。
(Immersion of silicon wafer)
A pit tank storing pure water was prepared, and a silicon wafer having each polymer adsorbed thereon was immersed therein. At that time, the water level was adjusted so that an immersed part and a non-immersed part were generated. The immersion was performed in the dark for 24 hours in order to suppress surface roughness due to light.

(浸漬後のシリコンウェーハのHaze測定)
表面に付着したポリマーを除去するため、SC1を用いて浸漬後のシリコンウェーハを洗浄した。次いで、KLAテンコール社製パーティクルカウンターSP2を用いて浸漬部のHazeと非浸漬部のHazeを測定し、浸漬部のHazeと非浸漬部のHazeとの差(ΔHaze)を求めた。結果を図5に示す。
(Haze measurement of silicon wafer after immersion)
In order to remove the polymer adhering to the surface, the immersed silicon wafer was washed using SC1. Next, the haze of the immersed part and the haze of the non-immersed part were measured using a particle counter SP2 manufactured by KLA Tencor Corporation, and the difference (ΔHaze) between the haze of the immersed part and the haze of the non-immersed part was determined. FIG. 5 shows the results.

(比較用ウェーハのHazeの測定)
ポリマーの保護性を相対的に評価するために、表面酸化膜を除去していないシリコンウェーハ、及びHF洗浄により表面酸化膜を除去しその後のポリマーの吸着は行っていないシリコンウェーハにおいても、上記と同様にシリコンウェーハの浸漬及び浸漬後のシリコンウェーハのHazeの測定を行い、浸漬部のHazeと非浸漬部のHazeとの差(ΔHaze)を求めた。結果を図5に示す。
(Measurement of haze of comparative wafer)
In order to relatively evaluate the protective properties of the polymer, the above description was applied to a silicon wafer from which the surface oxide film was not removed and a silicon wafer from which the surface oxide film was removed by HF cleaning and the subsequent polymer adsorption was not performed. Similarly, the haze of the silicon wafer immersed and the immersed silicon wafer were measured, and the difference (ΔHaze) between the haze of the immersed portion and the haze of the non-immersed portion was obtained. FIG. 5 shows the results.

[比較例1]
Cu故意汚染によるピット増加数に基づいて、ポリマーA、ポリマーB、ポリマーCの3種類のポリマーの保護性を評価した。
[Comparative Example 1]
Based on the number of increased pits due to intentional Cu contamination, the protective properties of three types of polymers, polymer A, polymer B and polymer C, were evaluated.

(ポリマーの吸着とCu故意汚染によるピット増加数の測定)
実施例1と同様にして各ポリマーを吸着させたシリコンウェーハを用意し、Cuを1ppm添加した純水にシリコンウェーハを5分間浸漬させた(Cu故意汚染)後、SC1を用いて浸漬後のシリコンウェーハを洗浄し、KLAテンコール社製パーティクルカウンターSP2を用いてピットの増加数を測定した。結果を図6に示す。
(Measurement of pit increase due to polymer adsorption and intentional Cu contamination)
A silicon wafer on which each polymer was adsorbed was prepared in the same manner as in Example 1, the silicon wafer was immersed in pure water containing 1 ppm of Cu for 5 minutes (Cu intentional contamination), and then the silicon immersed using SC1. The wafer was washed, and the number of increased pits was measured using a particle counter SP2 manufactured by KLA Tencor. FIG. 6 shows the results.

(比較用ウェーハのCu故意汚染によるピット増加数の測定)
ポリマーの保護性を相対的に評価するために、表面酸化膜を除去していないシリコンウェーハ、及びHF洗浄により表面酸化膜を除去しその後のポリマーの吸着は行っていないシリコンウェーハにおいても、上記と同様にCu故意汚染及びピット増加数の測定を行った。結果を図6に示す。
(Measurement of the number of pit increases due to intentional Cu contamination of the comparative wafer)
In order to relatively evaluate the protective properties of the polymer, the above description was applied to a silicon wafer from which the surface oxide film was not removed and a silicon wafer from which the surface oxide film was removed by HF cleaning and the subsequent polymer adsorption was not performed. Similarly, Cu intentional contamination and the number of increased pits were measured. FIG. 6 shows the results.

図5に示されるように、実施例1の方法では、ポリマーAを吸着させた場合は表面酸化膜を除去していない場合と同等レベルのΔHazeであり、ポリマーBを吸着させた場合はポリマーAを吸着させた場合よりもΔHazeが大きく、ポリマーCを吸着させた場合はポリマーBを吸着させた場合よりもΔHazeが大きく、ポリマーを吸着させていない場合はポリマーCを吸着させた場合よりも大幅にΔHazeが大きい、という結果が得られた。このことから、ポリマー種によって面荒れの進行具合は異なっており、ポリマーB、Cを吸着させた場合は、ポリマーを吸着させていない場合と比べると浸漬による面荒れを大幅に抑制できているものの、ポリマーAを吸着させた場合と比べると浸漬による面荒れが進んでいることが分かる。   As shown in FIG. 5, according to the method of Example 1, when polymer A was adsorbed, ΔHaze was at the same level as when the surface oxide film was not removed, and when polymer B was adsorbed, ΔHaze is larger than when polymer C is adsorbed, ΔHaze is larger when polymer C is adsorbed than when polymer B is adsorbed, and larger than when polymer C is adsorbed when polymer is not adsorbed. ΔHaze was large. From this, the progress of surface roughness differs depending on the type of polymer, and when polymers B and C are adsorbed, surface roughness due to immersion can be significantly suppressed as compared with the case where polymers are not adsorbed. It can be seen that the surface roughness due to immersion is advanced as compared with the case where polymer A is adsorbed.

一方、図6に示されるように、比較例1の方法では、ポリマーAを吸着させた場合は表面酸化膜を除去していない場合と同等レベルのピット数であり、ポリマーBを吸着させた場合はポリマーAを吸着させた場合よりもピット増加数が多く、ポリマーCを吸着させた場合はポリマーBを吸着させた場合よりもピット増加数が多く、ポリマーを吸着させていない場合はポリマーCを吸着させた場合よりも大幅にピット増加数が多い、という結果が得られた。このことから、ポリマー種によってピットの発生具合は異なっており、ポリマーB、Cを吸着させた場合は、ポリマーを吸着させていない場合と比べるとCu故意汚染によるピットの発生を大幅に抑制できているものの、ポリマーAを吸着させた場合と比べるとCu故意汚染によるピットの発生が起こっていることが分かる。なお、比較例1の方法では、実際にCuによる故意汚染を行っているため、分析に使用する設備(浸漬槽や洗浄槽)等の金属汚染が発生していた。   On the other hand, as shown in FIG. 6, in the method of Comparative Example 1, the number of pits was about the same level when polymer A was adsorbed as when the surface oxide film was not removed, and when polymer B was adsorbed. Means that the number of pit increases is larger than that when polymer A is adsorbed, that when polymer C is adsorbed, the number of pits is larger than when polymer B is adsorbed, and that when polymer is not adsorbed, polymer C is The result obtained was that the number of pits increased significantly more than in the case of adsorption. From this, the degree of pit generation differs depending on the type of polymer, and when polymers B and C are adsorbed, the generation of pits due to Cu intentional contamination can be significantly suppressed as compared with the case where polymers are not adsorbed. However, it can be seen that pits are generated due to intentional Cu contamination as compared with the case where polymer A is adsorbed. In the method of Comparative Example 1, since intentional contamination with Cu was actually performed, metal contamination of equipment used for the analysis (immersion tank or cleaning tank) was generated.

上記の実施例1と比較例1の結果の比較から、エッチングによる面荒れ耐性の指標となる実施例1のΔHazeが、金属汚染耐性の指標となる比較例1のピット増加数と強く相関していることが分かる。つまり、実施例1のようにΔHazeを求めることによって、エッチングによる面荒れ耐性だけでなく、これと相関する金属汚染耐性も評価することができる。また、実施例1の方法では、Cuによる故意汚染を行わないため、比較例1の方法のように分析に使用する設備等の金属汚染が発生する恐れもない。更に、実施例1の方法であれば、ポリマー種間で異なる保護性を相対的に比較することができ、また、表面酸化膜を除去していない場合やポリマーを吸着させていない場合と比較することで、ポリマーの保護性を相対的に評価することもできる。   From the comparison between the results of Example 1 and Comparative Example 1, ΔHaze of Example 1 which is an index of surface roughness resistance due to etching strongly correlates with the number of pit increases of Comparative Example 1 which is an index of metal contamination resistance. You can see that there is. That is, by obtaining ΔHaze as in the first embodiment, not only the surface roughness resistance due to etching but also the metal contamination resistance correlated therewith can be evaluated. Further, in the method of Example 1, since intentional contamination by Cu is not performed, there is no possibility that metal contamination occurs in equipment used for analysis as in the method of Comparative Example 1. Furthermore, according to the method of Example 1, it is possible to relatively compare the different protective properties among the polymer types, and to compare the case where the surface oxide film is not removed or the case where the polymer is not adsorbed. Thereby, the protective property of the polymer can be relatively evaluated.

以上のことから、ΔHazeに基づいてポリマーの保護性を評価する本発明の評価方法であれば、シリコンウェーハ表面を保護するためのポリマーの保護性を安価かつ簡便に評価できることが明らかとなった。   From the above, it has been clarified that the evaluation method of the present invention in which the protective property of a polymer is evaluated based on ΔHaze can evaluate the protective property of a polymer for protecting the surface of a silicon wafer at low cost and easily.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   Note that the present invention is not limited to the above embodiment. The above embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and has the same effect. Within the technical scope of

1…ベアシリコン、 1a…浸漬部、 1b…非浸漬部、 2…純水。   1: bare silicon, 1a: immersion part, 1b: non-immersion part, 2: pure water.

Claims (3)

ウェーハ表面に吸着することでウェーハ表面を保護するポリマーの保護性を評価する方法であって、
純水又は純水に任意のアルカリを溶解させたpH7以上の溶液に、前記ポリマーにより表面が保護されたウェーハの一部又は全部を浸漬させ、該浸漬後の前記ポリマーを除去したウェーハのHazeと浸漬前のウェーハのHazeとの差、又は前記浸漬後の前記ポリマーを除去したウェーハの浸漬部のHazeと非浸漬部のHazeとの差に基づいて前記ポリマーの保護性を評価することを特徴とするポリマーの保護性評価方法。
A method for evaluating the protective properties of a polymer that protects the wafer surface by adsorbing on the wafer surface,
Part or all of the wafer whose surface is protected by the polymer is immersed in pure water or a solution having a pH of 7 or more in which pure alkali is dissolved in pure water, and the Haze of the wafer from which the polymer is removed after the immersion is removed. Evaluating the protective property of the polymer based on the difference between the Haze of the wafer before immersion or the difference between the Haze of the immersed part and the Haze of the non-immersed part of the wafer after removing the polymer after the immersion. Method for evaluating the protective properties of polymers.
前記浸漬前のウェーハのHazeを、前記ポリマーにより表面を保護する前のウェーハのHazeとすることを特徴とする請求項1に記載のポリマーの保護性評価方法。   The method of claim 1, wherein the haze of the wafer before immersion is set to the haze of the wafer before the surface is protected by the polymer. 前記ポリマーにより表面が保護されたウェーハとして、前記ポリマーを溶解させた溶液にHF洗浄により表面酸化膜を除去したウェーハを浸漬させることで表面に前記ポリマーを吸着させたウェーハ、又は前記ポリマーを溶解させた溶液を染み込ませた布製の素材と前記HF洗浄により表面酸化膜を除去したウェーハを接触させることで表面に前記ポリマーを吸着させたウェーハを用いることを特徴とする請求項1又は請求項2に記載のポリマーの保護性評価方法。   As a wafer whose surface is protected by the polymer, a wafer in which the polymer is adsorbed on the surface by immersing the wafer whose surface oxide film has been removed by HF cleaning in a solution in which the polymer is dissolved, or the polymer is dissolved 3. A wafer having the polymer adsorbed on the surface thereof by contacting a cloth material impregnated with the solution and a wafer from which a surface oxide film has been removed by the HF cleaning. A method for evaluating the protection of the described polymer.
JP2016241150A 2016-12-13 2016-12-13 Method for evaluating polymer protection Active JP6638636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016241150A JP6638636B2 (en) 2016-12-13 2016-12-13 Method for evaluating polymer protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016241150A JP6638636B2 (en) 2016-12-13 2016-12-13 Method for evaluating polymer protection

Publications (2)

Publication Number Publication Date
JP2018096817A JP2018096817A (en) 2018-06-21
JP6638636B2 true JP6638636B2 (en) 2020-01-29

Family

ID=62633393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241150A Active JP6638636B2 (en) 2016-12-13 2016-12-13 Method for evaluating polymer protection

Country Status (1)

Country Link
JP (1) JP6638636B2 (en)

Also Published As

Publication number Publication date
JP2018096817A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
KR100220926B1 (en) A cleaning method for hydrophobic silicon wafers
JP2009055020A (en) Improved alkaline chemical for post-cmp cleaning
JP5589968B2 (en) Semiconductor wafer cleaning method
WO2020075448A1 (en) Semiconductor silicon wafer cleaning treatment apparatus and cleaning method
US20110146727A1 (en) Combinatorial approach to the development of cleaning formulations for glue removal in semiconductor applications
JP5533624B2 (en) Semiconductor wafer cleaning method
KR20140048817A (en) Cleaning composition and cleaning method
JP4817887B2 (en) Semiconductor substrate cleaning method
TWI244130B (en) Method of reclaiming silicon wafers
JP6638636B2 (en) Method for evaluating polymer protection
JP2009302240A (en) Preprocessing method for recombination lifetime evaluation
CN117795649A (en) Method for cleaning semiconductor wafer and method for manufacturing semiconductor wafer
WO2013179569A1 (en) Method for cleaning semiconductor wafer
JP6572830B2 (en) Silicon wafer transfer / storage method
US20150357180A1 (en) Methods for cleaning semiconductor substrates
KR20230005174A (en) Semiconductor wafer cleaning method
CN103871843A (en) Method for overcoming defects caused by chemical acid fluid cleaning process
JP2015106647A (en) Method of manufacturing silicon wafer
JP2007042889A (en) Method for preventing boron pollution on surface of silicon wafer
KR101778368B1 (en) Method for Cleaning Wafer
JP7306373B2 (en) Cleaning solution for removing dry etching residue and semiconductor substrate manufacturing method using the same
Luo et al. Effect of De-ionized Water Rinse in AlCu Line Post Etch Asher Residue Removal Process Using Fluoride Containing Stripper
US11094525B2 (en) Method for cleaning semiconductor wafer
JP7279753B2 (en) Silicon wafer cleaning method and manufacturing method
JP2022166590A (en) Cleaning method for wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6638636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250