JP2018094503A - Method for generating cleaning liquid, cleaning method and facility for generating cleaning liquid - Google Patents

Method for generating cleaning liquid, cleaning method and facility for generating cleaning liquid Download PDF

Info

Publication number
JP2018094503A
JP2018094503A JP2016241359A JP2016241359A JP2018094503A JP 2018094503 A JP2018094503 A JP 2018094503A JP 2016241359 A JP2016241359 A JP 2016241359A JP 2016241359 A JP2016241359 A JP 2016241359A JP 2018094503 A JP2018094503 A JP 2018094503A
Authority
JP
Japan
Prior art keywords
cleaning liquid
stock solution
cleaning
mixed
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016241359A
Other languages
Japanese (ja)
Inventor
時夫 高橋
Tokio Takahashi
時夫 高橋
健太 冨永
Kenta TOMINAGA
健太 冨永
英夫 柄崎
Hideo Tsukazaki
英夫 柄崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Holdings Ltd
Original Assignee
Suntory Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Holdings Ltd filed Critical Suntory Holdings Ltd
Priority to JP2016241359A priority Critical patent/JP2018094503A/en
Publication of JP2018094503A publication Critical patent/JP2018094503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for generating cleaning liquid sufficiently mixed with fine bubbles without using a high-capacity pump.SOLUTION: A method for generating cleaning liquid that generates cleaning liquid mixed with fine bubbles includes: a step of mixing compressed-air to stock solution that is an undiluted solution of the cleaning liquid; a step of raising pressure of the stock solution mixed with the compressed-air, using a booster pump 12; and a step of causing post-pressure raised stock solution to transition to the cleaning liquid mixed with fine bubbles, using a pressure regulating valve 15.SELECTED DRAWING: Figure 1

Description

本発明は、洗浄液生成方法、洗浄方法及び洗浄液生成設備に係り、特に、微細気泡が混入した洗浄液の生成方法及び当該洗浄液を用いた洗浄方法、並びに当該洗浄液の生成設備に関する。   The present invention relates to a cleaning liquid generation method, a cleaning method, and a cleaning liquid generation facility, and more particularly, to a cleaning liquid generation method in which fine bubbles are mixed, a cleaning method using the cleaning liquid, and a cleaning liquid generation facility.

飲料製造設備や食品製造設備を洗浄する方式として、分解洗浄(Cleaning Out Place:COP)と定置洗浄(Cleaning In Place:CIP、以下「CIP」という。)がある。分解洗浄は、当該設備を分解した後、各部品ごと又は各部分ごとに洗浄する方式である。他方、定置洗浄は、設備を分解することなく洗浄する方式であり、当該設備に洗浄機構を組み込むことにより行われる他、特に飲料製造設備等においては、外部から高圧の洗浄液を配管内に通水することで洗浄が行われている。CIPにおいて微細気泡(マイクロバブル)が混入した洗浄液が用いられていること、及び、微細気泡が混入した洗浄液の生成方法及び当該洗浄液を用いた洗浄方法は、既に知られており、その一例として特許文献1に記載の技術が挙げられる。特許文献1には、微細気泡発生装置によって液体流体中に微細気泡を発生させること、及び、微細気泡が混入した液体流体によって洗浄を行うことが開示されている。   As methods for washing beverage production equipment and food production equipment, there are decomposition cleaning (Cleaning Out Place: COP) and stationary cleaning (Cleaning In Place: CIP, hereinafter referred to as “CIP”). Disassembly cleaning is a method of cleaning each part or each part after disassembling the equipment. On the other hand, stationary cleaning is a method of cleaning without disassembling the equipment, and is performed by incorporating a cleaning mechanism into the equipment. In particular, in beverage production equipment, etc., a high-pressure cleaning liquid is passed through the pipe from the outside. The cleaning is done. The use of a cleaning liquid in which fine bubbles (microbubbles) are mixed in CIP, the generation method of the cleaning liquid in which fine bubbles are mixed, and the cleaning method using the cleaning liquid are already known. The technique described in Document 1 can be cited. Patent Document 1 discloses that a fine bubble is generated in a liquid fluid by a fine bubble generator, and that cleaning is performed using a liquid fluid in which the fine bubble is mixed.

特開2008−237995号公報JP 2008-237995 A

ところで、CIPにおいて、微細気泡が混入した洗浄液による洗浄効率は、洗浄液を送液する際の流速に依存する。つまり、同じ流速で洗浄液を送液する場合には、微細気泡をより多く含むほど、洗浄効率を維持しながら、洗浄に必要な液量を削減することが可能となる。洗浄液における気泡量を増やすためには、気体を高い圧力で導入する必要がある。このため、気体を洗浄液の原液に混入させるにあたり、比較的高い性能のポンプを用いて洗浄液の原液の圧力を上げることが必要になる。   By the way, in CIP, the cleaning efficiency by the cleaning liquid in which fine bubbles are mixed depends on the flow rate when the cleaning liquid is fed. That is, when the cleaning liquid is fed at the same flow rate, the more fine bubbles are included, the more the amount of liquid necessary for cleaning can be reduced while maintaining the cleaning efficiency. In order to increase the amount of bubbles in the cleaning liquid, it is necessary to introduce the gas at a high pressure. For this reason, when mixing the gas into the stock solution of the cleaning solution, it is necessary to increase the pressure of the stock solution of the cleaning solution using a relatively high performance pump.

しかしながら、一般の工場において導入されている標準的な圧縮空気供給ポンプは、その規格容量が0.7kPa程度であるため、実際の気体導入部における圧縮空気の導入圧力は0.4〜0.5kPa程度にしかならず、現実的には十分な気泡量を得ることができなかった。高容量のポンプを用いることも考えられるが、導入コストが嵩んでしまうという課題がある。また、液圧を所定圧まで上げたとしても、気体を混入するまでの間に圧力損失等によって液圧が幾分低下する可能性がある。このような場合、気体が十分に取り込めなくなる結果、洗浄液における気泡量が十分に得られなくなってしまう。   However, since the standard capacity of the standard compressed air supply pump introduced in a general factory is about 0.7 kPa, the pressure for introducing compressed air in the actual gas introduction section is 0.4 to 0.5 kPa. However, in reality, a sufficient amount of bubbles could not be obtained. Although it is conceivable to use a high-capacity pump, there is a problem that the introduction cost increases. Moreover, even if the hydraulic pressure is increased to a predetermined pressure, the hydraulic pressure may decrease somewhat due to pressure loss or the like until gas is mixed. In such a case, the amount of bubbles in the cleaning liquid cannot be obtained sufficiently as a result of insufficient gas uptake.

そこで、本発明は、上記の問題に鑑みてなされたものであり、その目的は、高容量のポンプを用いることなく、微細気泡が十分に混入した洗浄液の生成方法及び生成設備を提供することにある。また、本発明の他の目的は、洗浄液による洗浄の効率を向上させることである。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a cleaning liquid generation method and generation equipment in which fine bubbles are sufficiently mixed without using a high-capacity pump. is there. Another object of the present invention is to improve the efficiency of cleaning with a cleaning liquid.

前記課題は、本発明の洗浄液生成方法によれば、微細気泡が混入した洗浄液を生成する洗浄液生成方法であって、(A)前記洗浄液の原液に気体を混入させる工程と、(B)前記気体が混入した前記原液を昇圧する工程と、(C)昇圧後の前記原液を前記微細気泡が混入した前記洗浄液へ遷移させる工程と、を有することにより解決される。   According to the cleaning liquid generating method of the present invention, the object is a cleaning liquid generating method for generating a cleaning liquid mixed with fine bubbles, wherein (A) a step of mixing a gas into the stock solution of the cleaning liquid, and (B) the gas It is solved by having a step of increasing the pressure of the stock solution mixed with water and (C) a step of transitioning the stock solution after pressure rising to the cleaning solution mixed with the fine bubbles.

本発明の洗浄液生成方法であれば、洗浄液の原液に気体を混入させてから当該原液を昇圧する。このような方法であれば、洗浄液の原液を昇圧させてから気体を混入させる場合に比べて、より高い圧力の気体混合液(気体が混入した洗浄液原液)が得られるようになる。この結果、より多くの微細気泡が混入した洗浄液を生成することが可能となる。   In the cleaning liquid production method of the present invention, gas is mixed into the stock solution of the cleaning solution and then the pressure of the stock solution is increased. With such a method, a gas mixed liquid having a higher pressure (cleaning liquid stock solution mixed with gas) can be obtained as compared with a case where gas is mixed after the stock solution of the cleaning solution is pressurized. As a result, it is possible to generate a cleaning liquid in which more fine bubbles are mixed.

また、上記の構成において、前記原液を圧送ポンプによって圧送する工程を更に有し、
前記原液に気体を混入させる工程では、前記原液を圧送する際の流路中、前記圧送ポンプよりも下流側に位置する混入箇所にて、該混入箇所における前記原液の圧力よりも高い圧力で気体を前記原液に混入させると好適である。
上記の構成であれば、洗浄液の原液に気体を混入させる際に適切に混入させることが可能となる。
Further, in the above configuration, the method further includes a step of pumping the stock solution by a pump.
In the step of mixing the gas into the stock solution, the gas at a pressure higher than the pressure of the stock solution at the mixing location in the mixing location located downstream of the pressure pump in the flow path when the stock solution is pumped. Is preferably mixed in the stock solution.
If it is said structure, it will become possible to mix appropriately when mixing gas in the undiluted | stock solution of a washing | cleaning liquid.

また、上記の構成において、昇圧後の前記原液を前記微細気泡が混入した前記洗浄液へ遷移させる工程では、昇圧後の前記原液が流れる流路中に設けられた圧力調整機構にて昇圧後の前記原液の圧力を調整すると尚好適である。
上記の構成であれば、昇圧した気体混合液(気体が混入した洗浄液原液)を微細気泡が混入した洗浄液へ適切に遷移させることが可能となる。
Further, in the above configuration, in the step of transitioning the stock solution after pressurization to the cleaning solution in which the fine bubbles are mixed, the pressure after the pressurization is performed by a pressure adjustment mechanism provided in a flow path through which the stock solution after pressurization flows. It is still preferred to adjust the pressure of the stock solution.
If it is said structure, it will become possible to make the gas mixture liquid (gas | cleaning liquid undiluted | mixed liquid which gas mixed) pressurized appropriately transfer to the washing | cleaning liquid mixed with the fine bubble.

また、前述の課題は、本発明の洗浄方法によれば、微細気泡が混入した洗浄液を用いて洗浄する洗浄方法であって、(A)前記洗浄液の原液に気体を混入させる工程と、(B)前記気体が混入した前記原液を昇圧する工程と、(C)昇圧後の前記原液を前記微細気泡が混入した前記洗浄液へ遷移させる工程と、(D)前記微細気泡が混入した前記洗浄液を洗浄対象物に向けて送液する工程と、を有することにより解決される。
上述した方法によって生成される洗浄液は、より多くの微細気泡を含むようになる。そのような洗浄液を用いることにより、より効率よく洗浄を行うことが可能となる。
The above-described problem is a cleaning method for cleaning using a cleaning liquid mixed with fine bubbles according to the cleaning method of the present invention, wherein (A) a step of mixing a gas into the stock solution of the cleaning liquid, and (B ) Pressurizing the stock solution mixed with the gas; (C) transitioning the stock solution after pressurization to the cleaning solution mixed with the fine bubbles; and (D) cleaning the cleaning solution mixed with the fine bubbles. And a step of feeding the liquid toward the object.
The cleaning liquid generated by the above-described method includes more fine bubbles. By using such a cleaning liquid, it becomes possible to perform cleaning more efficiently.

また、前述の課題は、本発明の洗浄液生成設備によれば、微細気泡が混入した洗浄液を生成する洗浄液生成設備であって、(A)前記洗浄液の原液に気体を混入させる気体混入部と、(B)前記気体が混入した前記原液を昇圧する昇圧部と、(C)昇圧後の前記原液を前記微細気泡が混入した前記洗浄液へ遷移させる遷移部と、を有することにより解決される。
本発明の洗浄液生成設備であれば、より多くの微細気泡が混入した洗浄液を生成することが可能となる。
Further, the above-described problem is a cleaning liquid generation facility that generates a cleaning liquid in which fine bubbles are mixed according to the cleaning liquid generation facility of the present invention, and (A) a gas mixing unit that mixes gas into the stock solution of the cleaning liquid; (B) It is solved by having a pressurizing unit that pressurizes the stock solution mixed with the gas, and (C) a transition unit that transitions the stock solution after pressurization to the cleaning solution mixed with the fine bubbles.
If it is the washing | cleaning-liquid production | generation equipment of this invention, it will become possible to produce | generate the washing | cleaning liquid in which more fine bubbles were mixed.

本発明によれば、高容量のポンプを用いることなく、より多くの微細気泡が混入した洗浄液を生成することが可能となる。また、上記の洗浄液を用いることにより、より効率よく洗浄を行うことが可能となる。   According to the present invention, it is possible to generate a cleaning liquid in which more fine bubbles are mixed without using a high-capacity pump. Moreover, it becomes possible to wash | clean more efficiently by using said washing | cleaning liquid.

本発明の一実施形態に係る洗浄液生成設備の構成を示す図である。It is a figure which shows the structure of the washing | cleaning liquid production | generation equipment which concerns on one Embodiment of this invention.

<<本発明の一実施形態に係る構成>>
以下、本発明の一実施形態(本実施形態)について図1を参照しながら説明する。なお、以下に説明する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。すなわち、本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは勿論である。
<< Configuration according to an embodiment of the present invention >>
Hereinafter, an embodiment (this embodiment) of the present invention will be described with reference to FIG. In addition, embodiment described below is for making an understanding of this invention easy, and does not limit this invention. That is, the present invention can be changed and improved without departing from the gist thereof, and the present invention includes its equivalents.

本実施形態に係る洗浄液生成設備、これを用いた洗浄液生成方法、及び、生成された洗浄液を用いた洗浄方法は、例えば、食品、清涼飲料水、化学製品等の生産現場における配管や当該配管に接続された機器の定置洗浄(CIP)に用いられる。   The cleaning liquid generating facility according to the present embodiment, the cleaning liquid generating method using the cleaning liquid generating method, and the cleaning method using the generated cleaning liquid are, for example, pipes and production pipes in production sites of food, soft drinks, chemical products, and the like. Used for in-place cleaning (CIP) of connected equipment.

本実施形態では、洗浄液として、微細気泡が混入した水(以下、洗浄水)を生成することとする。すなわち、本実施形態では、水(原水)を洗浄液の原液として利用する。なお、これに限定されるものではなく、水以外の液体、または水に何らかの物質を付加した液体を洗浄液の原液として利用してもよい。   In the present embodiment, water in which fine bubbles are mixed (hereinafter referred to as cleaning water) is generated as the cleaning liquid. That is, in this embodiment, water (raw water) is used as a stock solution for the cleaning liquid. In addition, it is not limited to this, You may utilize liquids other than water, or the liquid which added some substance to water as a stock solution of a washing | cleaning liquid.

洗浄液生成設備(以下、本設備S)の構成について説明すると、本設備Sは、図1に示すように、原水を貯蔵したタンク1から洗浄対象物X(洗浄対象の機器や配管)に向かって敷設された流路中で洗浄水を生成するものである。流路中を洗浄対象物Xに到達した洗浄水がその内部を流れることで洗浄対象物X内が洗浄される。   The configuration of the cleaning liquid generation facility (hereinafter referred to as the present facility S) will be described. As illustrated in FIG. 1, the present facility S is directed from the tank 1 storing raw water toward the cleaning object X (equipment or piping to be cleaned). The washing water is generated in the installed flow path. The inside of the cleaning object X is cleaned by the flow of cleaning water that has reached the cleaning object X in the flow path.

タンク1から、洗浄対象となる流路領域(以下「洗浄対象物X」という。)まで連続的に敷設された流路は、タンク1から給水ポンプ4までの間を水平方向に延びる流路(以下、第一流路2)と、給水ポンプ4から昇圧ポンプ12までの間を鉛直方向に延びる流路(以下、第二流路5)と、昇圧ポンプ12から洗浄対象物Xまでの間を鉛直方向及び垂直方向に延びる流路(以下、第三流路13)とを備えている。なお、各流路は、パイプによって構成されており、流路内の液体、すなわち、原水や洗浄水は、洗浄対象物X内を流れて洗浄対象物Xの外へ排出されるまで大気と接触しない。   A flow path continuously laid from the tank 1 to a flow path area to be cleaned (hereinafter referred to as “cleaning object X”) is a flow path extending in the horizontal direction from the tank 1 to the water supply pump 4 ( Hereinafter, the first flow path 2), the flow path extending in the vertical direction from the feed water pump 4 to the booster pump 12 (hereinafter referred to as the second flow path 5), and the vertical path from the booster pump 12 to the object X to be cleaned. And a channel (hereinafter, third channel 13) extending in the direction and the vertical direction. Each flow path is constituted by a pipe, and the liquid in the flow path, that is, raw water or cleaning water, contacts the atmosphere until it flows through the cleaning object X and is discharged out of the cleaning object X. do not do.

また、各流路には、それぞれ開閉弁3、6、17が設けられている。第一流路2内に設置された開閉弁3は、本装置Sの稼働中、開状態で維持される。   Each flow path is provided with on-off valves 3, 6, and 17, respectively. The on-off valve 3 installed in the first flow path 2 is maintained in an open state during the operation of the apparatus S.

給水ポンプ4は、圧送ポンプであり、タンク1中の原水を第一流路2を介して吸引し所定の吐出圧にて吐出する。給水ポンプ4から吐出された原水は、第二流路5を通じて圧送されることになる。なお、給水ポンプ4は、例えば渦流ポンプからなり、その流量(吐出量)が制御可能となるように構成されている。また、給水ポンプ4によって吐出される原水の流量や吐出圧は、給水ポンプ4の吐出口の下流側(二次側)に設けられた開閉弁6の開度によって調整することが可能である。なお、原水の流量や吐出圧については、第二流路5において開閉弁6の二次側に設置された流量計7及び圧力計8を通じて確認することが可能である。   The feed water pump 4 is a pressure feed pump, and sucks the raw water in the tank 1 through the first flow path 2 and discharges it at a predetermined discharge pressure. The raw water discharged from the water supply pump 4 is pumped through the second flow path 5. In addition, the feed water pump 4 consists of a vortex pump, for example, and is comprised so that the flow volume (discharge amount) can be controlled. The flow rate and discharge pressure of the raw water discharged by the feed water pump 4 can be adjusted by the opening degree of the on-off valve 6 provided on the downstream side (secondary side) of the discharge port of the feed water pump 4. Note that the flow rate and discharge pressure of the raw water can be confirmed through the flow meter 7 and the pressure gauge 8 installed on the secondary side of the on-off valve 6 in the second flow path 5.

また、第二流路5において開閉弁6と昇圧ポンプ12との間に位置する箇所(本実施形態では、流量計7及び圧力計8よりも下流側の位置であって、図1中、記号Tが付された継手部分)には、気体としての圧縮空気が流れる送気路10が連結されている。この継手部分Tは、送気路10内を流れてきた圧縮空気が原水に混入される混入箇所に相当する。つまり、圧縮空気は、送気路10内を流れて上記の混入箇所Tにて原水に混入される。なお、封入される気体については、圧縮空気に限定されるものではなく、空気以外の他の気体(例えば、窒素ガス等)であってもよい。本実施形態では、給水ポンプ4の上流側(一次側)に圧縮空気を導入するものではないため、給水ポンプ4がキャビテーションに起因した運転不良を起こすことはない。また、昇圧ポンプ12の上流側(一次側)の原水は給水ポンプ4によって加圧されているため、昇圧ポンプ12にはある程度以上の押込み圧力が作用し、大気圧以下となることがないため、継手部分Tにおいて高い圧力で圧縮空気を導入しても昇圧ポンプ12がキャビテーションに起因した運転不良を起こすことはない。   Further, in the second flow path 5, a position located between the on-off valve 6 and the booster pump 12 (in this embodiment, a position downstream of the flow meter 7 and the pressure gauge 8, the symbol An air supply path 10 through which compressed air as a gas flows is connected to the joint portion (T). The joint portion T corresponds to a mixed portion where the compressed air flowing through the air supply path 10 is mixed into the raw water. That is, the compressed air flows through the air supply path 10 and is mixed into the raw water at the mixing point T. In addition, about the gas enclosed, it is not limited to compressed air, Gas other than air (for example, nitrogen gas etc.) may be sufficient. In this embodiment, since compressed air is not introduced to the upstream side (primary side) of the feed water pump 4, the feed water pump 4 does not cause malfunction due to cavitation. Further, since the raw water on the upstream side (primary side) of the booster pump 12 is pressurized by the feed water pump 4, a pressing pressure of a certain level or more acts on the booster pump 12, and it does not become below atmospheric pressure. Even if compressed air is introduced at a high pressure in the joint portion T, the booster pump 12 does not cause a malfunction due to cavitation.

ちなみに、圧縮空気は、圧縮空気源9から供給される。この圧縮空気源9は、第二流路5とともに本発明の「気体混入部」として機能しており、例えば、コンプレッサ、レシーバタンク若しくはガスボンベによって構成されている。なお、送気路10には開閉弁11が設けられており、本設備Sの稼働中、所定の開度にて維持されている。   Incidentally, the compressed air is supplied from the compressed air source 9. This compressed air source 9 functions as the “gas mixing part” of the present invention together with the second flow path 5 and is constituted by, for example, a compressor, a receiver tank, or a gas cylinder. The air supply passage 10 is provided with an on-off valve 11 and is maintained at a predetermined opening degree while the facility S is in operation.

また、上記の混入箇所Tでは、圧縮空気の圧力が原水の圧力を上回っている。換言すると、圧縮空気源9は、混入箇所Tにおける圧縮空気の圧力が同地点における原水の圧力を超えるように圧縮空気を供給する。この結果、混入箇所Tでは、同時点における原水の圧力よりも高い圧力で圧縮空気が原水に混入されることになる。なお、混入箇所Tにおける原水及び圧縮空気のそれぞれの圧力については、開閉弁6、11の開度によって調整可能である。   Moreover, in the said mixing location T, the pressure of compressed air is over the pressure of raw | natural water. In other words, the compressed air source 9 supplies the compressed air so that the pressure of the compressed air at the mixing point T exceeds the pressure of the raw water at the same point. As a result, at the mixing point T, the compressed air is mixed into the raw water at a pressure higher than the pressure of the raw water at the same point. In addition, about each pressure of the raw | natural water and compressed air in the mixing location T, it can adjust with the opening degree of the on-off valves 6 and 11. FIG.

昇圧ポンプ12は、本発明の「昇圧部」として機能し、圧縮空気が混入した原水(以下、空気混入水)を吸引して所定の圧力まで昇圧する。この昇圧ポンプ12によって昇圧されることで、空気混入水中の液相の圧力を、気相(圧縮空気)を十分に溶解させるのに必要な圧力へ調整することが可能である。なお、昇圧ポンプ12は、例えば渦流ポンプからなり、その吐出圧が制御可能となるように構成されている。なお、昇圧ポンプ12の吐出圧については、昇圧ポンプ12の二次側に設置された圧力計14を通じて確認することが可能である。本実施例では、昇圧ポンプ12の上流側において原水に圧縮空気を導入し、その後、昇圧ポンプ12により加圧しているため、圧縮空気供給ポンプの容量を特に大きくする必要はなく、一般の工場において導入されている標準的な、規格容量が0.7kPa程度のポンプをそのまま利用することができる。   The pressure booster pump 12 functions as a “pressure booster” of the present invention, and sucks raw water mixed with compressed air (hereinafter referred to as “air mixed water”) to increase the pressure to a predetermined pressure. By boosting the pressure by the booster pump 12, the pressure of the liquid phase in the aerated water can be adjusted to a pressure necessary to sufficiently dissolve the gas phase (compressed air). The booster pump 12 is composed of, for example, a vortex pump, and is configured such that its discharge pressure can be controlled. The discharge pressure of the booster pump 12 can be confirmed through a pressure gauge 14 installed on the secondary side of the booster pump 12. In this embodiment, compressed air is introduced into the raw water on the upstream side of the booster pump 12 and then pressurized by the booster pump 12, so there is no need to particularly increase the capacity of the compressed air supply pump. A standard pump having a standard capacity of about 0.7 kPa can be used as it is.

また、第三流路13には圧力調整弁15が設置されている。この圧力調整弁15は、圧力調整機構の一例であり、本発明の「遷移部」として機能している。具体的に説明すると、圧力調整弁15は、第三流路13において昇圧ポンプ12よりも幾分下流側に位置している。そして、昇圧ポンプ12によって昇圧された空気混入水が圧力調整弁15内を通過すると、空気混入水中の液相の圧力が低下する。これにより、液相中に溶解していた空気(圧縮空気)が液相外へ放出される。この際、圧縮空気が微細気泡として放出される。以上のように、圧力調整弁15の圧力調整がなされることで、昇圧された空気混入水は、微細気泡が混入した洗浄水へと遷移する。   Further, a pressure regulating valve 15 is installed in the third flow path 13. The pressure adjustment valve 15 is an example of a pressure adjustment mechanism and functions as a “transition part” of the present invention. More specifically, the pressure regulating valve 15 is located somewhat downstream of the booster pump 12 in the third flow path 13. Then, when the aerated water boosted by the booster pump 12 passes through the pressure regulating valve 15, the liquid phase pressure in the aerated water decreases. Thereby, the air (compressed air) dissolved in the liquid phase is released out of the liquid phase. At this time, the compressed air is released as fine bubbles. As described above, by adjusting the pressure of the pressure regulating valve 15, the pressurized air-entrained water transitions to washing water in which fine bubbles are mixed.

圧力調整弁15による圧力調整量は、その後に洗浄水を洗浄対象物Xまで適切な流速にて圧送し、かつ、十分な気泡量を確保するのに必要な圧力となるように設定されている。調整後の圧力については、第三流路13において圧力調整弁15の二次側に設置された圧力計16を通じて確認することが可能である。   The pressure adjustment amount by the pressure adjustment valve 15 is set so as to be a pressure necessary for pumping the cleaning water to the cleaning object X at an appropriate flow rate and securing a sufficient amount of bubbles thereafter. . The adjusted pressure can be confirmed through a pressure gauge 16 installed on the secondary side of the pressure regulating valve 15 in the third flow path 13.

なお、本実施形態では、遷移部として圧力調整弁15を用いることとしたが、これに限定されるものではなく、例えば、分散器(具体的には、静的な分散器)を用いてもよい。   In the present embodiment, the pressure regulating valve 15 is used as the transition unit. However, the present invention is not limited to this. For example, a disperser (specifically, a static disperser) may be used. Good.

次に、本設備Sによって実現される洗浄水生成方法、及び、生成された洗浄水を用いた洗浄方法について説明する。先ず、タンク1内の原水が第一流路2を通じて給水ポンプ4へ送られ、給水ポンプ4が所定の吐出圧にて原水を吐出する。これにより、原水が第二流路5内を所定の流量にて圧送されるようになる。   Next, a cleaning water generation method realized by the facility S and a cleaning method using the generated cleaning water will be described. First, the raw water in the tank 1 is sent to the feed water pump 4 through the first flow path 2, and the feed water pump 4 discharges the raw water at a predetermined discharge pressure. As a result, the raw water is pumped through the second flow path 5 at a predetermined flow rate.

そして、第二流路5内で原水が圧送されている期間中、第二流路5中の混入箇所Tにて原水に圧縮空気源9からの圧縮空気を混入させる。この際、混入箇所Tにおける原水の圧力よりも高い圧力にて圧縮空気を原水に混入させる。これにより、第二流路5中、混入箇所Tよりも下流側に位置する範囲では、圧縮空気が混入した原水(すなわち、空気混入水)が圧送されるようになる。   Then, during the period when the raw water is being pumped in the second flow path 5, the compressed air from the compressed air source 9 is mixed into the raw water at the mixing point T in the second flow path 5. At this time, the compressed air is mixed into the raw water at a pressure higher than the pressure of the raw water at the mixing point T. Thereby, in the range located downstream from the mixing location T in the second flow path 5, the raw water mixed with compressed air (that is, air-mixed water) is pumped.

その後、空気混入水は、昇圧ポンプ12に吸い込まれて所定の圧力まで昇圧される。ちなみに、本実施形態では、圧力計14が示すゲージ圧が0.8〜1.0MPaとなるように昇圧することとしているが、昇圧後の圧力については、圧縮空気を液中に十分に溶解させるのに必要な圧力となっていればよく、特に限定されるものではない。   Thereafter, the aerated water is sucked into the booster pump 12 and is pressurized to a predetermined pressure. Incidentally, in the present embodiment, the pressure is increased so that the gauge pressure indicated by the pressure gauge 14 is 0.8 to 1.0 MPa, but the compressed air is sufficiently dissolved in the liquid for the pressure after the pressure increase. The pressure is not particularly limited as long as the pressure is necessary.

昇圧された空気混入水は、昇圧ポンプ12から吐出されて第三流路13内を流れるようになり、第三流路13の途中位置で圧力調整弁15内を通過する。この圧力調整弁15によって空気混入水の圧力が調整されることにより、空気混入水中の溶存空気が微細気泡として放出されるようになる。つまり、昇圧された空気混入水が、微細気泡が混入した洗浄水に遷移する。   The pressurized aerated water is discharged from the booster pump 12 and flows through the third flow path 13, and passes through the pressure regulating valve 15 at a midpoint of the third flow path 13. By adjusting the pressure of the aerated water by the pressure adjusting valve 15, the dissolved air in the aerated water is released as fine bubbles. That is, the pressurized air-containing water transitions to cleaning water in which fine bubbles are mixed.

その後、微細気泡が混入した洗浄水は、引き続き第三流路13内を流れて洗浄対象物Xまで圧送される。そして、洗浄水が洗浄対象物X内を流れることにより洗浄対象物X(厳密には洗浄対象物Xの内壁)が洗浄されるようになる。そして、本実施形態では、洗浄水における微細気泡の混入量が従来の混入量よりも多くなっているため(例えば、「気相/(液相+気相)」の値を20%程度とすることができた。)、より少ない水量にて効率よく洗浄対象物Xを洗浄することが可能である。   Thereafter, the cleaning water mixed with the fine bubbles continues to flow through the third flow path 13 and is pumped to the cleaning object X. Then, as the cleaning water flows through the cleaning object X, the cleaning object X (strictly, the inner wall of the cleaning object X) comes to be cleaned. In the present embodiment, the amount of fine bubbles mixed in the cleaning water is larger than the conventional amount (for example, the value of “gas phase / (liquid phase + gas phase)” is set to about 20%. The cleaning object X can be efficiently cleaned with a smaller amount of water.

1 タンク
2 第一流路
3 開閉弁
4 給水ポンプ(圧送ポンプ)
5 第二流路
6 開閉弁
7 流量計
8 圧力計
9 圧縮空気源(気体混入部)
10 送気路
11 開閉弁
12 昇圧ポンプ(昇圧部)
13 第三流路
14 圧力計
15 圧力調整弁(圧力調整機構、遷移部)
16 圧力計
17 開閉弁
S 本設備(洗浄液生成設備)
X 洗浄対象物
1 tank 2 first flow path 3 on-off valve 4 water supply pump (pressure feed pump)
5 Second flow path 6 On-off valve 7 Flow meter 8 Pressure gauge 9 Compressed air source (gas mixing part)
10 Air Supply Path 11 Open / Close Valve 12 Booster Pump (Pressure Booster)
13 Third flow path 14 Pressure gauge 15 Pressure adjustment valve (pressure adjustment mechanism, transition section)
16 Pressure gauge 17 On-off valve S This equipment (cleaning liquid production equipment)
X Object to be cleaned

Claims (5)

微細気泡が混入した洗浄液を生成する洗浄液生成方法であって、
前記洗浄液の原液に気体を混入させる工程と、
前記気体が混入した前記原液を昇圧する工程と、
昇圧後の前記原液を前記微細気泡が混入した前記洗浄液へ遷移させる工程と、を有することを特徴とする洗浄液生成方法。
A cleaning liquid generation method for generating a cleaning liquid mixed with fine bubbles,
Mixing gas into the stock solution of the cleaning liquid;
Pressurizing the stock solution mixed with the gas;
And a step of transitioning the stock solution after pressurization to the cleaning solution mixed with the fine bubbles.
前記原液を圧送ポンプによって圧送する工程を更に有し、
前記原液に気体を混入させる工程では、前記原液を圧送する際の流路中、前記圧送ポンプよりも下流側に位置する混入箇所にて、該混入箇所における前記原液の圧力よりも高い圧力で気体を前記原液に混入させることを特徴とする請求項1に記載の洗浄液生成方法。
Further comprising the step of pumping the stock solution with a pump.
In the step of mixing the gas into the stock solution, the gas at a pressure higher than the pressure of the stock solution at the mixing location in the mixing location located downstream of the pressure pump in the flow path when the stock solution is pumped. The cleaning liquid production method according to claim 1, wherein the raw liquid is mixed in the stock solution.
昇圧後の前記原液を前記微細気泡が混入した前記洗浄液へ遷移させる工程では、昇圧後の前記原液が流れる流路中に設けられた圧力調整機構にて昇圧後の前記原液の圧力を調整することを特徴とする請求項1又は2に記載の洗浄液生成方法。   In the step of transitioning the stock solution after pressurization to the cleaning solution mixed with the fine bubbles, the pressure of the stock solution after pressurization is adjusted by a pressure adjustment mechanism provided in a flow path through which the stock solution after pressurization flows. The method for producing a cleaning liquid according to claim 1 or 2. 微細気泡が混入した洗浄液を用いて洗浄する洗浄方法であって、
前記洗浄液の原液に気体を混入させる工程と、
前記気体が混入した前記原液を昇圧する工程と、
昇圧後の前記原液を前記微細気泡が混入した前記洗浄液へ遷移させる工程と、
前記微細気泡が混入した前記洗浄液を洗浄対象物に向けて送液する工程と、を有することを特徴とする洗浄方法。
A cleaning method for cleaning using a cleaning liquid mixed with fine bubbles,
Mixing gas into the stock solution of the cleaning liquid;
Pressurizing the stock solution mixed with the gas;
Transitioning the stock solution after pressurization to the cleaning liquid mixed with the fine bubbles;
A step of feeding the cleaning liquid mixed with the fine bubbles toward an object to be cleaned.
微細気泡が混入した洗浄液を生成する洗浄液生成設備であって、
前記洗浄液の原液に気体を混入させる気体混入部と、
前記気体が混入した前記原液を昇圧する昇圧部と、
昇圧後の前記原液を前記微細気泡が混入した前記洗浄液へ遷移させる遷移部と、を有することを特徴とする洗浄液生成設備。

A cleaning liquid generating facility for generating a cleaning liquid mixed with fine bubbles,
A gas mixing part for mixing gas into the stock solution of the cleaning liquid;
A pressurizing unit that pressurizes the stock solution mixed with the gas;
And a transition section for transitioning the stock solution after the pressure increase to the cleaning liquid mixed with the fine bubbles.

JP2016241359A 2016-12-13 2016-12-13 Method for generating cleaning liquid, cleaning method and facility for generating cleaning liquid Pending JP2018094503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016241359A JP2018094503A (en) 2016-12-13 2016-12-13 Method for generating cleaning liquid, cleaning method and facility for generating cleaning liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016241359A JP2018094503A (en) 2016-12-13 2016-12-13 Method for generating cleaning liquid, cleaning method and facility for generating cleaning liquid

Publications (1)

Publication Number Publication Date
JP2018094503A true JP2018094503A (en) 2018-06-21

Family

ID=62631557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241359A Pending JP2018094503A (en) 2016-12-13 2016-12-13 Method for generating cleaning liquid, cleaning method and facility for generating cleaning liquid

Country Status (1)

Country Link
JP (1) JP2018094503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467184B2 (en) 2020-03-19 2024-04-15 株式会社レゾナック・ガスプロダクツ Cleaning device and cleaning method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077625A1 (en) * 2005-01-18 2006-07-27 Civil Chemical Engineering Co., Ltd. Method of purifying polluted ground
JP2008080230A (en) * 2006-09-27 2008-04-10 Dainippon Screen Mfg Co Ltd Apparatus and method of treating substrate
JP2009202068A (en) * 2008-02-27 2009-09-10 Dainichi Kogyo:Kk Fine bubble generator
JP2011072950A (en) * 2009-09-30 2011-04-14 Shibaura Mechatronics Corp Treatment apparatus
JP2011088979A (en) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd Cleaning liquid, cleaning method, and cleaning liquid production device
JP2014087772A (en) * 2012-10-31 2014-05-15 Daikyonishikawa Corp Oil strainer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077625A1 (en) * 2005-01-18 2006-07-27 Civil Chemical Engineering Co., Ltd. Method of purifying polluted ground
JP2008080230A (en) * 2006-09-27 2008-04-10 Dainippon Screen Mfg Co Ltd Apparatus and method of treating substrate
JP2009202068A (en) * 2008-02-27 2009-09-10 Dainichi Kogyo:Kk Fine bubble generator
JP2011072950A (en) * 2009-09-30 2011-04-14 Shibaura Mechatronics Corp Treatment apparatus
JP2011088979A (en) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd Cleaning liquid, cleaning method, and cleaning liquid production device
JP2014087772A (en) * 2012-10-31 2014-05-15 Daikyonishikawa Corp Oil strainer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467184B2 (en) 2020-03-19 2024-04-15 株式会社レゾナック・ガスプロダクツ Cleaning device and cleaning method

Similar Documents

Publication Publication Date Title
US20070257381A1 (en) Cavitation generating system
CN107529912B (en) Method and steam lance for producing, in particular, milk froth
JP5038600B2 (en) Microbubble generator
KR102386188B1 (en) In-line carbonation of water-base beverages
FR2882530B1 (en) METHOD AND DEVICE FOR DELIVERING A MIXTURE OF FLUIDS AT HIGH PRESSURE AND USING THE METHOD
JP6804855B2 (en) Micro / nano bubble generator and pipe cleaning method
JP2007331801A (en) Cleaning device of beverage filling machine
JP4914399B2 (en) Nanobubble generating method and nanobubble generating apparatus
CA2947145C (en) Systems and methods for dissolving a gas into a liquid
TW201313308A (en) Gas-liquid mixed fluid production apparatus, gas-liquid mixed fluid production method, treatment device and treatment method
JP2009154049A (en) Liquid mixing apparatus
CN207811449U (en) A kind of oxygen-dissolving apparatus
KR20140065745A (en) Forced fluids collision injection type micro bubble instrument
JPH11207604A (en) Slurry mixing device and manufacture thereof
JP2011062632A (en) Method and apparatus for treating water using fine air bubbles
JP2009195813A (en) Ozone water manufacturing device
JP2008104983A (en) Ultra-fine air bubble generating apparatus and system
JP2018094503A (en) Method for generating cleaning liquid, cleaning method and facility for generating cleaning liquid
TW589226B (en) Ozone mixing device and ozone mixing method
JP2010022955A (en) Apparatus for generating microbubble
JP5709095B2 (en) Method for removing dissolved oxygen in liquid and apparatus for removing dissolved oxygen in liquid
JP2013013900A (en) Method and apparatus of treating water using fine air bubble
CN113242828B (en) water treatment equipment
TW201729892A (en) Functional water producing apparatus and functional water producing method
JP2013221035A (en) Grout manufacturing device and method of manufacturing grout

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210420