JP2013013900A - Method and apparatus of treating water using fine air bubble - Google Patents

Method and apparatus of treating water using fine air bubble Download PDF

Info

Publication number
JP2013013900A
JP2013013900A JP2012233849A JP2012233849A JP2013013900A JP 2013013900 A JP2013013900 A JP 2013013900A JP 2012233849 A JP2012233849 A JP 2012233849A JP 2012233849 A JP2012233849 A JP 2012233849A JP 2013013900 A JP2013013900 A JP 2013013900A
Authority
JP
Japan
Prior art keywords
water
path
treated
reverse osmosis
concentrated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012233849A
Other languages
Japanese (ja)
Inventor
Hisahiro Takeda
尚弘 竹田
Tatsuki Nagano
竜規 永野
Yutaka Ito
裕 伊藤
Noriaki Ide
昇明 井出
Masashi Yamamoto
昌史 山本
Takayuki Hashimoto
敬行 橋本
Katsuyoshi Tanida
克義 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2012233849A priority Critical patent/JP2013013900A/en
Publication of JP2013013900A publication Critical patent/JP2013013900A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress deterioration of an RO membrane and degradation of water treatment efficiency as much as possible by reducing a washing frequency of the RO membrane with a chemical solution.SOLUTION: During filtering operation by an RO membrane device, a part of concentrated water in the RO membrane device is guided to a circulation pathway. In the circulation pathway, the concentrated water is pressurized by a second pump, air is mixed, and water to be treated and air are stirred using a static mixer to generate fine air bubbles in the water to be treated. Then, the concentrated water containing the fine air bubbles is supplied to a water feed pathway which pressurizes the water to be treated by a first pump and feeds the water to be treated to the RO membrane device.

Description

本発明は、各種の造水設備等に用いられる逆浸透膜を備えた水処理方法及び水処理装置であって、被処理水中に微細気泡を発生させることを特徴とする水処理方法及び水処理装置に関するものである。   The present invention relates to a water treatment method and a water treatment apparatus provided with a reverse osmosis membrane used for various water production facilities and the like, wherein the water treatment method and the water treatment are characterized by generating fine bubbles in the water to be treated. It relates to the device.

従来、逆浸透膜(RO膜)を利用した水処理装置(造水設備)は、海水淡水化設備、超純水製造設備、工業用水製造設備など、様々な分野で利用されている。逆浸透膜としては、例えば、スパイラル型膜モジュールが一般的に利用されるが、逆浸透膜を長期間使用する場合、被処理水中の不純物によって膜表面が詰まるため、膜の洗浄が必要となる。   Conventionally, water treatment apparatuses (desalination facilities) using reverse osmosis membranes (RO membranes) have been used in various fields such as seawater desalination facilities, ultrapure water production facilities, and industrial water production facilities. As the reverse osmosis membrane, for example, a spiral membrane module is generally used. However, when the reverse osmosis membrane is used for a long time, the membrane surface is clogged with impurities in the water to be treated, and thus the membrane needs to be washed. .

ここで、RO膜を利用する水処理装置においては、精密ろ過膜(MF膜)又は限外ろ過膜(UF膜)を利用する水処理装置の膜洗浄として用いられている、被処理水の透過側(二次側)から原水側(一次側)へ洗浄液や空気を供給し、膜表面の汚れを剥離させる洗浄方法、いわゆる逆洗(逆洗浄)を行うことができない。   Here, in the water treatment apparatus using the RO membrane, the permeation of the water to be treated used as the membrane cleaning of the water treatment apparatus using the microfiltration membrane (MF membrane) or the ultrafiltration membrane (UF membrane). It is impossible to perform a so-called backwashing (backwashing) in which a cleaning liquid or air is supplied from the side (secondary side) to the raw water side (primary side) to remove dirt on the membrane surface.

そこで、RO膜を洗浄する場合には、原水側において表面流速を上げて汚れを落とすフラッシングや、次亜塩素酸ソーダ等の薬剤で汚れを溶かす薬品洗浄が利用されている。また、洗浄時に微細気泡を供給してRO膜を洗浄する方法が提案されている(特許文献1)。   Therefore, when the RO membrane is washed, flushing that raises the surface flow velocity on the raw water side to remove the dirt and chemical washing that dissolves the dirt with a chemical such as sodium hypochlorite are used. Further, a method for cleaning the RO membrane by supplying fine bubbles at the time of cleaning has been proposed (Patent Document 1).

また、塩類を含む原水中に微細気泡を発生させ、微細気泡を含む原水をRO膜分離することにより、操作圧を低くしてもRO膜に充分な有効圧を作用させ、効率的に水を透過させる脱塩処理方法が、特許文献2に開示されている。   In addition, by generating fine bubbles in the raw water containing salts and separating RO water from the raw water containing fine bubbles, a sufficient effective pressure is applied to the RO membrane even if the operating pressure is lowered, and water is efficiently supplied. A desalting method for permeation is disclosed in Patent Document 2.

特開2006−263501号公報JP 2006-263501 A 特開2008−307522号公報JP 2008-307522 A

RO膜を薬品洗浄すれば膜表面の汚れが除去され、フラックスが回復するものの、薬品洗浄のたびにRO膜装置の運転を停止し、薬品洗浄を行わなければならない。また、薬品洗浄後、RO膜装置の処理水に薬品が混入することを防止するために洗浄運転を行う必要もあり、通常運転までの復帰に時間がかかるという問題がある。   If the RO membrane is cleaned with chemicals, the dirt on the membrane surface is removed and the flux is recovered. However, every time chemical cleaning is performed, the operation of the RO membrane device must be stopped to perform chemical cleaning. In addition, after the chemical cleaning, it is necessary to perform a cleaning operation in order to prevent the chemical from being mixed into the treated water of the RO membrane apparatus, and there is a problem that it takes time to return to the normal operation.

さらに、薬品洗浄に用いられる薬剤によりRO膜が劣化し、RO膜の寿命を縮めるおそれもある。   Further, the RO membrane may be deteriorated by the chemical used for chemical cleaning, and the life of the RO membrane may be shortened.

一方、特許文献1に開示されているように、RO膜洗浄時に微細気泡を用いる場合であっても、微細気泡によるRO膜の洗浄運転中は通常の運転を行うことはできない。また、薬品洗浄と比較して洗浄時間を短縮することが可能性であるものの、RO膜の洗浄頻度は薬液洗浄を行うRO膜装置と変わらないため、頻繁に洗浄操作を行う必要があるという問題点があった。   On the other hand, as disclosed in Patent Document 1, even when fine bubbles are used during RO membrane cleaning, normal operation cannot be performed during the RO membrane cleaning operation using fine bubbles. In addition, although it is possible to shorten the cleaning time compared with chemical cleaning, since the cleaning frequency of RO membrane is not different from that of RO membrane device that performs chemical cleaning, it is necessary to perform cleaning operation frequently There was a point.

本発明は、上述した従来技術の問題点を解決するためになされたものであり、その目的は、RO膜の薬液洗浄頻度を少なくすることにより、RO膜の劣化を極力抑制し、RO膜の長寿命化を図ることが出来る水処理装置及びその運転方法を提供することである。   The present invention has been made to solve the above-mentioned problems of the prior art, and its purpose is to reduce the RO membrane chemical cleaning frequency, thereby suppressing the deterioration of the RO membrane as much as possible. It is to provide a water treatment apparatus capable of extending the service life and an operation method thereof.

本発明者らは、RO膜によるろ過運転時に、被処理水に空気を混入してスタティックミキサーによって撹拌し、被処理水に微細気泡を含ませてRO膜に供給することにより、RO膜表面の汚れ付着抑制効果が得られることを見出し、本発明を完成させるに至った。   The present inventors mixed the air into the water to be treated and stirred by a static mixer during the filtration operation with the RO membrane, and included the fine bubbles in the water to be treated and supplied to the RO membrane, thereby The present inventors have found that a dirt adhesion suppressing effect can be obtained and have completed the present invention.

具体的に、本発明は、
被処理水を逆浸透膜装置によって処理する水処理方法であって、
逆浸透膜装置によるろ過運転時に、逆浸透膜装置の濃縮水経路を分岐して、濃縮水の一部を循環経路へと導き、
第二ポンプにより濃縮水を加圧した後で空気を混入し、スタティックミキサーを利用して濃縮水と空気とを撹拌することによって濃縮水中に微細気泡を発生させた後、
被処理水を第一ポンプにより加圧して逆浸透膜に供給する給水経路へと、微細気泡を含む濃縮水を供給した後、循環経路内の微細気泡を含む被処理水を逆浸透膜装置に供給する、
ことを特徴とする水処理方法に関する。
Specifically, the present invention
A water treatment method for treating water to be treated by a reverse osmosis membrane device,
At the time of filtration operation by the reverse osmosis membrane device, branch the concentrated water path of the reverse osmosis membrane device and lead a part of the concentrated water to the circulation path,
After pressurizing the concentrated water by the second pump, air is mixed in, and after the fine water bubbles are generated in the concentrated water by stirring the concentrated water and air using a static mixer,
After supplying the concentrated water containing fine bubbles to the water supply path that pressurizes the treated water with the first pump and supplies it to the reverse osmosis membrane, the treated water containing fine bubbles in the circulation path is supplied to the reverse osmosis membrane device. Supply,
The present invention relates to a water treatment method.

また、本発明は、
被処理水を処理する逆浸透膜装置と、
逆浸透膜装置に被処理水を供給する給水経路と、
給水経路の被処理水を加圧する第一ポンプと、
逆浸透膜装置の濃縮水経路から分岐し、逆浸透膜装置の上流で給水経路に接続される循環経路とを有し、
ここで、前記循環経路は、
濃縮水を加圧する第二ポンプと、
加圧された濃縮水に空気を混入するための空気投入手段と、
濃縮水と混入した空気とを撹拌し、微細気泡を含む濃縮水とするスタティックミキサーとを順に備え、
循環経路から給水経路へと微細気泡を含む濃縮水を供給した後、循環経路内の微細気泡を含む被処理水を逆浸透膜装置に供給する、水処理装置に関する。
The present invention also provides:
A reverse osmosis membrane device for treating water to be treated;
A water supply path for supplying treated water to the reverse osmosis membrane device;
A first pump for pressurizing the water to be treated in the water supply path;
A branch path branched from the concentrated water path of the reverse osmosis membrane device and connected to the water supply path upstream of the reverse osmosis membrane device,
Here, the circulation path is
A second pump for pressurizing the concentrated water;
Air input means for mixing air into the pressurized concentrated water;
Stir the concentrated water and the mixed air, in order with a static mixer to make concentrated water containing fine bubbles,
The present invention relates to a water treatment apparatus that supplies concentrated water containing fine bubbles from a circulation path to a water supply path, and then supplies treated water containing fine bubbles in the circulation path to a reverse osmosis membrane device.

RO膜を用いる膜分離装置では、被処理水は、RO膜による処理に適する圧力に加圧された後、RO膜分離装置の一次側に供給される。このとき、RO膜装置の濃縮水の一部を加圧して空気を混入させ、濃縮水と空気とをスタティックミキサーによって撹拌することにより、濃縮水中に微細気泡(マイクロバブル)が発生する。   In the membrane separation apparatus using the RO membrane, the water to be treated is pressurized to a pressure suitable for the treatment with the RO membrane and then supplied to the primary side of the RO membrane separation apparatus. At this time, a part of the concentrated water of the RO membrane device is pressurized to mix air, and the concentrated water and air are agitated by a static mixer, whereby fine bubbles (micro bubbles) are generated in the concentrated water.

微細気泡を含んだ濃縮水を、RO膜装置に被処理水を給水する給水経路に供給することにより、RO膜分離装置に適度なボイド率(気液二相流の中で気体の占める体積比率)で微細気泡を含有する被処理水を供給することが可能となる。その結果、通常運転時におけるRO膜の汚れを防止し、RO膜の薬液洗浄回数を削減することが可能となり、RO膜分離装置の処理効率を高めることができる。   Concentrated water containing fine bubbles is supplied to the RO membrane device through the water supply path for supplying water to be treated, so that the RO membrane separation device has an appropriate void ratio (volume ratio of gas in gas-liquid two-phase flow) ) Makes it possible to supply water to be treated containing fine bubbles. As a result, contamination of the RO membrane during normal operation can be prevented, the number of times of RO membrane chemical cleaning can be reduced, and the processing efficiency of the RO membrane separation apparatus can be increased.

逆浸透膜装置へと供給される微細気泡を含む被処理水のボイド率は、0.01%以上1%以下であることが好ましい。   The void ratio of the water to be treated containing fine bubbles supplied to the reverse osmosis membrane device is preferably 0.01% or more and 1% or less.

ボイド率が0.01%未満では、逆浸透膜装置へと供給される処理水に含まれる微細気泡が少なすぎるため、RO膜の汚れを有効に防止することができない。一方、ボイド率が10%を超えると、被処理水に含まれる微細気泡が多すぎるため、気泡流として存在せず、スラグ流になるため洗浄効果が無い。なお、RO膜装置内で気泡が溜まることを防止して処理効率を低下させず、膜の手前で気泡同士が合一することを防止するためには、ボイド率は1%以下とすることが理想的である。従って、被処理水中のボイド率は、0.01%以上10%以下とすることが好ましく、0.01%以上1%以下とすることがより好ましい。   If the void ratio is less than 0.01%, the amount of fine bubbles contained in the treated water supplied to the reverse osmosis membrane device is too small, and therefore, RO membrane contamination cannot be effectively prevented. On the other hand, if the void ratio exceeds 10%, there are too many fine bubbles contained in the water to be treated, so that it does not exist as a bubbling flow and has a cleaning effect because it becomes a slag flow. In order to prevent bubbles from accumulating in the RO membrane device and not reduce the processing efficiency, and to prevent the bubbles from coalescing before the membrane, the void ratio should be 1% or less. Ideal. Therefore, the void ratio in the water to be treated is preferably 0.01% or more and 10% or less, and more preferably 0.01% or more and 1% or less.

なお、ここでいうボイド率は、RO膜分離装置に供給される際の被処理水のボイド率、すなわち、実際にRO膜分離装置によって処理される被処理水のボイド率を意味する。   Here, the void ratio means the void ratio of the water to be treated when supplied to the RO membrane separation apparatus, that is, the void ratio of the water to be treated actually processed by the RO membrane separation apparatus.

濃縮水経路に気液分離器を設けて、濃縮水中の気泡を取り除くことが好ましい。   It is preferable to provide a gas-liquid separator in the concentrated water path to remove bubbles in the concentrated water.

給水経路の給水圧は1.0MPa以上3.0MPa以下であり、循環経路から給水経路に供給する際の微細気泡を含む濃縮水の圧力が、給水経路内の圧力よりも5kPa以上100kPa以下の範囲で高くなるように、第二ポンプの出力を調節し、濃縮水の圧力を調節することが好ましい。   The water supply pressure in the water supply path is 1.0 MPa or more and 3.0 MPa or less, and the pressure of concentrated water containing fine bubbles when supplying from the circulation path to the water supply path is higher than the pressure in the water supply path in the range of 5 kPa to 100 kPa. Thus, it is preferable to adjust the pressure of the concentrated water by adjusting the output of the second pump.

低圧RO膜分離装置の場合、被処理水は1.0MPa以上3.0MPa以下の圧力範囲に加圧されるが、RO膜分離装置の濃縮水の一部を循環経路内で第二ポンプによって加圧する場合には、スタティックミキサー通過後の循環経路の圧力が給水経路の配管を流れる被処理水に比べて、少なくとも5kPa以上高い圧力となるように濃縮水の一部を加圧することにより、微細気泡を含む濃縮水を給水経路に供給し、微細気泡を含まない被処理水と混合することが容易となる。また、微少の差圧があるために給水経路の配管を流れる被処理水と合流する際に給水経路の配管断面の全面にわたって混合されるため、混合後の被処理水中で微細気泡が偏ることなく混合される。   In the case of a low-pressure RO membrane separator, the water to be treated is pressurized to a pressure range of 1.0 MPa to 3.0 MPa, but part of the concentrated water of the RO membrane separator is pressurized by the second pump in the circulation path Contains fine bubbles by pressurizing a part of the concentrated water so that the pressure of the circulation path after passing through the static mixer is at least 5 kPa higher than the water to be treated flowing through the piping of the water supply path It becomes easy to supply the concentrated water to the water supply path and mix it with the water to be treated that does not contain fine bubbles. In addition, since there is a slight differential pressure, when mixed with the water to be treated flowing through the pipe of the water supply path, it is mixed over the entire surface of the pipe cross section of the water supply path, so that fine bubbles are not biased in the treated water after mixing. Mixed.

なお、スタティックミキサー通過後の循環経路を流れる濃縮水の圧力が、給水経路を流れる被処理水の圧力よりも低い場合、逆流が起こる可能性もある。一方で、循環経路を流れる濃縮水の圧力が給水経路を流れる被処理水の圧力に比べて大きすぎる場合、給水経路の配管と循環経路の配管とを合流させた際に逆流する可能性があり、第一ポンプの負荷が増大するため好ましくない。   In addition, when the pressure of the concentrated water flowing through the circulation path after passing through the static mixer is lower than the pressure of the water to be treated flowing through the water supply path, a backflow may occur. On the other hand, if the pressure of the concentrated water flowing through the circulation path is too large compared to the pressure of the water to be treated flowing through the water supply path, there is a possibility of backflow when the water supply path piping and the circulation path piping are merged. This is not preferable because the load on the first pump increases.

また、混合される際の圧力差により、循環経路を流れる濃縮水中に溶解していた気体が圧力低下により発泡し、合一して粗大気泡を発生する可能性もあるため、スタティックミキサー通過後の循環経路を通る濃縮水の圧力は、給水経路を流れる被処理水の圧力に比べて100kPa以下の圧力となるように、第二ポンプの出力を調節して被処理水を加圧することが好ましい。   In addition, due to the pressure difference during mixing, the gas dissolved in the concentrated water flowing through the circulation path may foam due to the pressure drop and coalesce to generate coarse bubbles. It is preferable to pressurize the water to be treated by adjusting the output of the second pump so that the pressure of the concentrated water passing through the circulation path is equal to or lower than 100 kPa compared to the pressure of the water to be treated flowing through the water supply path.

本発明の水処理装置は、逆浸透膜装置の上流に給水経路の圧力を測定する第一圧力測定器を設け、循環経路内のスタティックミキサーの下流に、循環経路の圧力を測定する第二圧力測定器を設け、第二圧力測定器と第一圧力測定器との差圧が5kPa以上100kPa以下となるように、第二ポンプにより濃縮水を加圧することが好ましい。   The water treatment apparatus of the present invention is provided with a first pressure measuring device that measures the pressure of the water supply path upstream of the reverse osmosis membrane apparatus, and a second pressure that measures the pressure of the circulation path downstream of the static mixer in the circulation path. It is preferable to provide a measuring device and pressurize the concentrated water by the second pump so that the differential pressure between the second pressure measuring device and the first pressure measuring device is 5 kPa to 100 kPa.

本発明の水処理装置は、循環経路内に、給水経路への微細気泡を含む濃縮水の供給量を調整する流量調整手段をさらに備えることが好ましい。   The water treatment apparatus of the present invention preferably further includes a flow rate adjusting means for adjusting the supply amount of concentrated water containing fine bubbles to the water supply path in the circulation path.

流量調整手段を備えることにより、給水経路に微細気泡を含む濃縮水を供給する際に、返送後の被処理水のボイド率を適正範囲に調整することが可能となる。なお、流量調整手段とは、例えば、流量計及び流量調整弁との組み合わせのように、給水経路への供給量を制御できる公知の手段を意味する。   By providing the flow rate adjusting means, it is possible to adjust the void ratio of the treated water after returning to an appropriate range when supplying concentrated water containing fine bubbles to the water supply path. In addition, a flow volume adjustment means means the well-known means which can control the supply amount to a water supply path | route, for example like the combination with a flowmeter and a flow volume adjustment valve.

本発明によれば、RO膜の薬品洗浄による洗浄頻度を低くすることができるため、薬品洗浄にかかるコストを低減することができる。また、洗浄頻度を低くすることで薬品によってRO膜が劣化することを抑制し、RO膜の長寿命化を図ることができる。さらに、RO膜による被処理水の処理効率も高い。   According to the present invention, since the frequency of RO membrane chemical cleaning can be reduced, the cost for chemical cleaning can be reduced. In addition, by reducing the frequency of cleaning, it is possible to prevent the RO membrane from being deteriorated by chemicals, thereby extending the life of the RO membrane. Furthermore, the treatment efficiency of the water to be treated by the RO membrane is high.

本発明に類似する参考例1の水処理装置の概略構成図である。It is a schematic block diagram of the water treatment apparatus of the reference example 1 similar to this invention. 特許文献1に開示されている水処理装置の概略構成図である。It is a schematic block diagram of the water treatment apparatus currently disclosed by patent document 1. FIG. 本発明に類似する水処理装置(参考例2)の概略構成図である。It is a schematic block diagram of the water treatment apparatus (reference example 2) similar to this invention. 本発明の水処理装置(実施例1)の概略構成図である。It is a schematic block diagram of the water treatment apparatus (Example 1) of this invention. 本発明の水処理装置(実施例2)の概略構成図である。It is a schematic block diagram of the water treatment apparatus (Example 2) of this invention.

以下、本発明の実施の形態について、適宜図面を参酌しながら説明する。なお、本発明は以下の記載に限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. In addition, this invention is not limited to the following description.

(参考例1)
本発明に類似する水処理装置の概略構成図を、図1に示す。参考例1の水処理装置は、第一ポンプ1、給水経路2、RO膜装置3、循環経路4、第二ポンプ5、コンプレッサー6(空気投入手段)、スタティックミキサー7を備えている。
(Reference Example 1)
A schematic diagram of a water treatment apparatus similar to the present invention is shown in FIG. The water treatment apparatus of Reference Example 1 includes a first pump 1, a water supply path 2, an RO membrane apparatus 3, a circulation path 4, a second pump 5, a compressor 6 (air input means), and a static mixer 7.

また、給水経路2及び循環経路4にはそれぞれ第二圧力計50(第二圧力測定装置)及び第一圧力計51(第一圧力測定装置)が備えられており、第一ポンプ1、第二ポンプ5、コンプレッサー6、第二圧力計50及び第一圧力計51はそれぞれ制御装置52と電気的に接続されている。   Further, the water supply path 2 and the circulation path 4 are respectively provided with a second pressure gauge 50 (second pressure measurement device) and a first pressure gauge 51 (first pressure measurement device). The pump 5, the compressor 6, the second pressure gauge 50 and the first pressure gauge 51 are each electrically connected to the control device 52.

原水(被処理水)は、給水経路2に設けられた第一ポンプ1によって加圧し、RO膜装置3へと供給される。RO膜装置3の透過水は、処理水経路8を経て系外に給水される。一方、RO膜装置3の濃縮水は、濃縮水経路9を経て排水される。なお、本発明における原水は、工場排水、河川水、湖沼水等の淡水又は塩分濃度が低い水であることが好ましく、通常、前処理として凝集沈澱処理や膜処理(MF膜やUF膜)により一次処理された水が用いられる。   The raw water (treated water) is pressurized by the first pump 1 provided in the water supply path 2 and supplied to the RO membrane device 3. The permeated water of the RO membrane device 3 is supplied outside the system through the treated water path 8. On the other hand, the concentrated water of the RO membrane device 3 is drained through the concentrated water path 9. The raw water in the present invention is preferably fresh water such as factory effluent, river water, lake water, etc., or water having a low salinity concentration, and usually by a coagulation precipitation treatment or membrane treatment (MF membrane or UF membrane) as a pretreatment. Primary treated water is used.

給水経路2には循環経路4が接続されており、第一ポンプ1によって加圧された原水の一部は、循環経路4へと供給される。循環経路4へと供給された原水は、第二ポンプ5によってさらに加圧される。循環経路4から給水経路2へと後述する微細気泡を含む原水を返送するためには、循環経路4内の圧力損失以上に循環経路4内の原水を加圧する必要があるためである。   A circulation path 4 is connected to the water supply path 2, and a part of the raw water pressurized by the first pump 1 is supplied to the circulation path 4. The raw water supplied to the circulation path 4 is further pressurized by the second pump 5. This is because it is necessary to pressurize the raw water in the circulation path 4 more than the pressure loss in the circulation path 4 in order to return the raw water containing fine bubbles to be described later from the circulation path 4 to the water supply path 2.

なお、循環経路4へ供給される割合(循環経路4を流れる水量/分岐前の給水経路2を流れる水量)は20%以下であることが好ましく、10%以下であることがより好ましい。循環経路4へ供給される水量が多くなると第二ポンプ5を大きくしなければならず、また配管径も大きくなるからである。   The ratio supplied to the circulation path 4 (amount of water flowing through the circulation path 4 / amount of water flowing through the water supply path 2 before branching) is preferably 20% or less, and more preferably 10% or less. This is because if the amount of water supplied to the circulation path 4 is increased, the second pump 5 must be enlarged and the pipe diameter is also increased.

第二ポンプ5は、スタティックミキサー7通過後の循環経路4を流れる被処理水の圧力が、給水経路2を流れる被処理水の圧力に比べて5〜100kPa低い圧力となる様に、循環経路4内の原水を加圧することが好ましい。本発明の水処理装置では、第二ポンプ5は、第一ポンプ1で加圧された給水経路2の被処理水の一部を取り出して、再度給水経路2に返水する構造であるため、スタティックミキサー7での圧力損失分を加圧すれば足りるため、ポンプの動力は小さくてすむ。   The second pump 5 is configured so that the pressure of the water to be treated flowing through the circulation path 4 after passing through the static mixer 7 is 5 to 100 kPa lower than the pressure of the water to be treated flowing through the water supply path 2. It is preferable to pressurize the raw water. In the water treatment apparatus of the present invention, the second pump 5 has a structure in which a part of the water to be treated in the water supply path 2 pressurized by the first pump 1 is taken out and returned to the water supply path 2 again. Since it is sufficient to pressurize the pressure loss in the static mixer 7, the power of the pump can be small.

なお、上記圧力調整は給水経路2に設けられた第一圧力計51、循環経路4に設けられた第二圧力計50の測定値から、制御装置52が差圧を算出し、第二ポンプ5の出力を制御することにより行われる。   In the pressure adjustment, the control device 52 calculates the differential pressure from the measured values of the first pressure gauge 51 provided in the water supply path 2 and the second pressure gauge 50 provided in the circulation path 4, and the second pump 5 This is done by controlling the output of.

第二ポンプ5によってさらに加圧された原水には、循環経路4に設けられたコンプレッサー6によって空気が混入される。その後、スタティックミキサー7によって原水と空気とが撹拌され、原水中に混入された空気が微細気泡となる。なお、空気投入手段としては、エゼクターを用いることもできる。   The raw water further pressurized by the second pump 5 is mixed with air by a compressor 6 provided in the circulation path 4. Thereafter, the raw water and air are stirred by the static mixer 7, and the air mixed into the raw water becomes fine bubbles. An ejector can also be used as the air input means.

コンプレッサー6も制御装置52と電気的に接続されており、第二ポンプ5の出力に合わせて、制御される。具体的には、第二ポンプ5を通過した被処理水の圧力よりもコンプレッサー6から吐出される空気圧が高くなるように制御され、循環経路4に空気が供給される。   The compressor 6 is also electrically connected to the control device 52 and is controlled in accordance with the output of the second pump 5. Specifically, the air pressure discharged from the compressor 6 is controlled to be higher than the pressure of the water to be treated that has passed through the second pump 5, and air is supplied to the circulation path 4.

ここで、原水と空気とを撹拌して微細気泡を発生させる手段として、特許文献1ではエゼクター、特許文献2ではコンプレッサー及びインジェクターを使用しているが、本発明ではスタティックミキサー7を使用する。エゼクター等の加圧溶解式の微細気泡発生装置では、溶解させる空気量に応じて気泡が発生するため、充分な微細気泡を発生させることが困難である。つまり、従来技術においては、加圧下で一度水中に完全に気体(空気)を溶解させた後、被処理水を減圧させることで被処理水中に溶解している気体が溶解しきれず気泡となる作用を利用しているため、単にエゼクターで空気を入れただけでは水中に溶解しない気体は粗大なまま残存する。このため、この粗大気泡を除去しない限り、微細気泡のみを得ることは困難である。   Here, as a means for stirring raw water and air to generate fine bubbles, Patent Document 1 uses an ejector, and Patent Document 2 uses a compressor and an injector, but in the present invention, a static mixer 7 is used. In a pressure dissolution type fine bubble generator such as an ejector, bubbles are generated according to the amount of air to be dissolved, and it is difficult to generate sufficient fine bubbles. In other words, in the prior art, after the gas (air) is completely dissolved in the water once under pressure, the pressure of the water to be treated is reduced, and the gas dissolved in the water to be treated cannot be completely dissolved to form bubbles. Therefore, the gas that does not dissolve in the water remains coarse even if air is simply put in the ejector. For this reason, it is difficult to obtain only fine bubbles unless these coarse bubbles are removed.

また、コンプレッサー等で導入した空気が全て微細気泡にならないため、後述するボイド率を調整することが非常に困難な上に、無駄な動力がかかり、また、十分な量の微細気泡も発生させることができない。   In addition, since all the air introduced by the compressor does not become fine bubbles, it is very difficult to adjust the void ratio, which will be described later, wasteful power is applied, and a sufficient amount of fine bubbles is generated. I can't.

これに対して、参考例1ではスタティックミキサー7を使用することにより、充分な微細気泡を発生させうる。これは、コンプレッサー6で導入した空気が全てスタティックミキサー7で微細化されるためである。このため、コンプレッサー7を通じて被処理水中に供給した空気の量と微細気泡の量がリンクしており、一定サイズ以下の微細気泡を十分に得られると共に、ボイド率を調整することが容易である。   In contrast, in Reference Example 1, sufficient static bubbles can be generated by using the static mixer 7. This is because all the air introduced by the compressor 6 is refined by the static mixer 7. For this reason, the amount of air supplied to the water to be treated through the compressor 7 and the amount of fine bubbles are linked, so that it is possible to sufficiently obtain fine bubbles of a certain size or less and to easily adjust the void ratio.

微細気泡を含む原水は、循環経路4から給水経路2へと返送される。このとき、返送後の給水経路2内の原水、換言すれば、RO膜装置3へと実際に供給される原水のボイド率は、0.01%以上1%以下となるように調整することが好ましい。   The raw water containing fine bubbles is returned from the circulation path 4 to the water supply path 2. At this time, it is preferable to adjust the void ratio of the raw water in the water supply path 2 after returning, in other words, the raw water actually supplied to the RO membrane device 3 to be 0.01% or more and 1% or less.

循環経路4内の原水圧力は、給水経路2内の原水圧力よりも高いため、給水経路2へと返送された原水中の微細気泡は、循環経路4内よりも圧力が若干低下することにより、ボイド率が変化する。このため、返送後の給水経路2内の原水のボイド率が0.01%以上1%以下となるように、循環経路4から給水経路2へと返水量を、流量計及び流量調整弁等の流量調整手段(図示せず)によって調整することが好ましい。   Since the raw water pressure in the circulation path 4 is higher than the raw water pressure in the water supply path 2, the fine bubbles in the raw water returned to the water supply path 2 are slightly lower in pressure than in the circulation path 4. Void rate changes. For this reason, the amount of water returned from the circulation path 4 to the water supply path 2 is adjusted so that the void ratio of the raw water in the water supply path 2 after returning is 0.01% or more and 1% or less, and the flow rate is adjusted using a flow meter, a flow control valve, etc. It is preferable to adjust by means (not shown).

RO膜装置3へと供給された微細気泡を含む原水は、微細気泡によってRO膜表面の汚れ付着が防止され、同じ原水量を処理してもRO膜の目詰まりが起こりにくくなる。その結果、RO膜の薬液洗浄頻度が低下し、原水処理効率を従来よりも高く維持することが可能となる。   The raw water containing fine bubbles supplied to the RO membrane device 3 is prevented from adhering to the surface of the RO membrane due to the fine bubbles, and the RO membrane is not easily clogged even if the same raw water amount is processed. As a result, the chemical cleaning frequency of the RO membrane decreases, and the raw water treatment efficiency can be maintained higher than before.

ここで、特許文献1に開示されている脱塩処理装置の概略構成図を、図2に示す。この装置では、原水を経路12に設けられたポンプ11によって加圧し、気泡生成装置13によって原水に空気を混入させ、微細気泡を含む原水を、RO膜装置15によって処理する。   Here, the schematic block diagram of the desalination processing apparatus currently disclosed by patent document 1 is shown in FIG. In this apparatus, the raw water is pressurized by the pump 11 provided in the path 12, air is mixed into the raw water by the bubble generating device 13, and the raw water containing fine bubbles is processed by the RO membrane device 15.

図2の装置では、原水の全量に空気を混入させているため、RO膜装置15への供給水として好ましいボイド率を調整することは極めて困難である。また、原水の全量を気泡生成装置15に供給するため、微細気泡を発生させるための動力も大きくならざるを得ない。   In the apparatus of FIG. 2, since air is mixed in the entire raw water, it is extremely difficult to adjust a void ratio that is preferable as supply water to the RO membrane apparatus 15. Moreover, since all the raw | natural water is supplied to the bubble production | generation apparatus 15, the motive power for generating a fine bubble must be large.

これに対して、図1に示した参考例1の水処理装置では、原水の一部を循環経路4へと抜き出し、スタティックミキサー7を用いて微細気泡を含む原水を調製し、給水経路2に返送する構成としているため、給水経路2への返水量を調整することにより、RO膜装置3に供給する原水のボイド率を好適範囲に制御することが可能である。   On the other hand, in the water treatment apparatus of Reference Example 1 shown in FIG. 1, a part of the raw water is extracted into the circulation path 4, and raw water containing fine bubbles is prepared using the static mixer 7. Since it is set as the structure which returns, it is possible to control the void rate of the raw | natural water supplied to RO membrane apparatus 3 to a suitable range by adjusting the amount of water returned to the water supply path | route 2. FIG.

また、参考例1の水処理方法は、既存の設備に対しても循環経路を設けることにより、容易に適用することができる。   In addition, the water treatment method of Reference Example 1 can be easily applied to existing facilities by providing a circulation path.

(参考例2)
本発明の水処理装置に類似する別の水処理装置の概略構成図を、図3に示す。RO膜装置による原水の処理は、図1の水処理装置と同じであるため、ここでは相違点についてのみ説明する。
(Reference Example 2)
The schematic block diagram of another water treatment apparatus similar to the water treatment apparatus of this invention is shown in FIG. Since the raw water treatment by the RO membrane device is the same as the water treatment device of FIG. 1, only the differences will be described here.

図3の水処理装置では、原水を直接循環経路26へと取り込み、第二ポンプ27によって第一ポンプ21よりも高い圧力にまで原水を加圧する。その後、コンプレッサー28を用いて原水に空気を混入させ、スタティックミキサー29を用いて原水と空気を撹拌することにより、微細気泡を発生させる。   In the water treatment apparatus of FIG. 3, raw water is directly taken into the circulation path 26, and the raw water is pressurized to a pressure higher than that of the first pump 21 by the second pump 27. Thereafter, air is mixed into the raw water using the compressor 28, and the raw water and air are stirred using the static mixer 29, thereby generating fine bubbles.

図3の水処理装置は、参考例1の水処理装置と同様の効果が得られるが、第二ポンプ27は第一ポンプ21よりも加圧動力が大きくなければならないため、第一ポンプ1によって加圧された原水を、第二ポンプ5でスタティックミキサー29での圧力損失分以上に加圧するだけで足りる図1の水処理装置よりも、第二ポンプ27の消費電力が大きくなる。   The water treatment apparatus of FIG. 3 can obtain the same effect as the water treatment apparatus of Reference Example 1, but the second pump 27 must have a higher pressurizing power than the first pump 21, so that the first pump 1 The power consumption of the second pump 27 is larger than that of the water treatment apparatus of FIG. 1 that only needs to pressurize the pressurized raw water to the pressure loss of the static mixer 29 by the second pump 5.

(実施例1)
本発明の水処理装置の概略構成図を、図4に示す。RO膜装置による原水の処理は、図1の水処理装置と同じであるため、ここでは相違点についてのみ説明する。
Example 1
The schematic block diagram of the water treatment apparatus of this invention is shown in FIG. Since the raw water treatment by the RO membrane device is the same as the water treatment device of FIG. 1, only the differences will be described here.

図4の水処理装置では、原水に空気を混入して微細気泡を発生させるのではなく、RO膜装置の濃縮水を回収し、濃縮水に微細気泡を含ませて原水に混合する。濃縮水系路35から排出されるRO膜装置33の濃縮水の一部は、循環経路37へと取り込まれ、第二ポンプ36によって加圧される。その後、コンプレッサー38を用いて加圧された濃縮水に空気を混入させ、スタティックミキサー29を用いて原水と空気を撹拌することにより、微細気泡を発生させる。   In the water treatment apparatus of FIG. 4, air is not mixed into the raw water to generate fine bubbles, but the concentrated water of the RO membrane device is collected, and the fine water is included in the concentrated water and mixed with the raw water. A part of the concentrated water of the RO membrane device 33 discharged from the concentrated water system path 35 is taken into the circulation path 37 and pressurized by the second pump 36. Thereafter, air is mixed into the concentrated water pressurized using the compressor 38, and the raw water and air are stirred using the static mixer 29, thereby generating fine bubbles.

RO膜装置33の濃縮水は、給水経路31の原水圧力が1.0MPa以上3.0MPaの場合、RO膜装置の段数にもよるが、例えば、0.5MPa〜2.5MPaの圧力がある。このため、図4の水処理装置では、第二ポンプ36の加圧動力が小さくてすむという利点を有する。   The concentrated water of the RO membrane device 33 has a pressure of 0.5 MPa to 2.5 MPa, for example, depending on the number of stages of the RO membrane device when the raw water pressure in the water supply path 31 is 1.0 MPa or more and 3.0 MPa. For this reason, the water treatment apparatus of FIG. 4 has the advantage that the pressurizing power of the second pump 36 can be small.

循環経路37から給水経路31への給水量と、濃縮水経路35から循環経路37への吸水量とを流量調整手段(図示せず)によって調整することにより、RO膜装置33へと実際に供給される被処理水(原水と濃縮水との混合水)中のボイド率を好適範囲に制御することが可能となる。   The amount of water supplied from the circulation path 37 to the water supply path 31 and the amount of water absorbed from the concentrated water path 35 to the circulation path 37 are adjusted by a flow rate adjusting means (not shown) to actually supply the RO membrane device 33. The void ratio in the treated water (mixed water of raw water and concentrated water) can be controlled within a suitable range.

なお、図4の水処理装置では、RO膜装置33の濃縮水にも微細気泡が含まれるため、濃縮水と共に微細気泡も回収される。このため、定常運転時にはコンプレッサー38を用いて混入させる空気量も少なくてすみ、コンプレッサー38は小型でも足りる。   In the water treatment apparatus of FIG. 4, since the fine bubbles are also contained in the concentrated water of the RO membrane device 33, the fine bubbles are collected together with the concentrated water. For this reason, the amount of air to be mixed using the compressor 38 can be reduced during steady operation, and the compressor 38 may be small.

(実施例2)
本発明の別の水処理装置の概略構成図を、図5に示す。濃縮水経路35に気液分離器40を備えること以外、図4の水処理装置と同じであるため、ここでは相違点についてのみ説明する。
(Example 2)
The schematic block diagram of another water treatment apparatus of this invention is shown in FIG. Since it is the same as that of the water treatment apparatus of FIG. 4 except having the gas-liquid separator 40 in the concentrated water path 35, only a different point is demonstrated here.

図5の水処理装置では、濃縮水経路35にサイクロン、静置分離等の気液分離器40が備えられている。濃縮水経路35から排水される濃縮水の圧力は、RO膜装置33の供給水よりも低くなるため、濃縮水中の微細気泡は、供給水中の微細気泡よりも大きくなる。気泡が大きくなると、第二ポンプ36内でキャビテーションが発生する畏れがあるが、濃縮水経路35に気液分離器40を設けることにより、濃縮水中の大きな気泡を取り除くことが可能である。   In the water treatment apparatus of FIG. 5, a gas / liquid separator 40 such as a cyclone or stationary separation is provided in the concentrated water path 35. Since the pressure of the concentrated water drained from the concentrated water path 35 is lower than the supply water of the RO membrane device 33, the fine bubbles in the concentrated water are larger than the fine bubbles in the supply water. When bubbles increase, cavitation may occur in the second pump 36, but by providing the gas-liquid separator 40 in the concentrated water path 35, it is possible to remove large bubbles in the concentrated water.

なお、図5では、気液分離器40は濃縮水経路35に設けられているが、循環経路37の第二ポンプ36上流側に設置してもよい。   In FIG. 5, the gas-liquid separator 40 is provided in the concentrated water path 35, but may be installed upstream of the second pump 36 in the circulation path 37.

本発明の水処理装置及び水処理装置は、飲料水製造、各種廃水処理等の分野で有用である。   The water treatment apparatus and water treatment apparatus of the present invention are useful in fields such as drinking water production and various wastewater treatment.

1,21,32:第一ポンプ
2,12,22,31:給水経路
3,15,23,33:RO膜装置
4,26,37:循環経路
5,27,36:第二ポンプ
6,28,38:コンプレッサー
7,29,39:スタティックミキサー
8,16,24,34:処理水経路
9,17,25,35:濃縮水経路
11:ポンプ
13:気泡生成装置
14:経路
40:気液分離器
50:第二圧力計
51:第一圧力計
52:制御装置
1, 21, 32: First pump 2, 12, 22, 31: Water supply path 3, 15, 23, 33: RO membrane device 4, 26, 37: Circulation path 5, 27, 36: Second pump 6, 28 , 38: Compressor 7, 29, 39: Static mixer 8, 16, 24, 34: Treated water path 9, 17, 25, 35: Concentrated water path 11: Pump 13: Bubble generating device 14: Path 40: Gas-liquid separation 50: Second pressure gauge 51: First pressure gauge 52: Control device

Claims (9)

被処理水を逆浸透膜装置によって処理する水処理方法であって、
逆浸透膜装置によるろ過運転時に、逆浸透膜装置の濃縮水経路を分岐して、濃縮水の一部を循環経路へと導き、
第二ポンプにより濃縮水を加圧した後で空気を混入し、スタティックミキサーを利用して濃縮水と空気とを撹拌することによって濃縮水中に微細気泡を発生させた後、
被処理水を第一ポンプにより加圧して逆浸透膜に供給する給水経路へと、微細気泡を含む濃縮水を供給した後、循環経路内の微細気泡を含む被処理水を逆浸透膜装置に供給する、
ことを特徴とする水処理方法。
A water treatment method for treating water to be treated by a reverse osmosis membrane device,
At the time of filtration operation by the reverse osmosis membrane device, branch the concentrated water path of the reverse osmosis membrane device and lead a part of the concentrated water to the circulation path,
After pressurizing the concentrated water by the second pump, air is mixed in, and after the fine water bubbles are generated in the concentrated water by stirring the concentrated water and air using a static mixer,
After supplying the concentrated water containing fine bubbles to the water supply path that pressurizes the treated water with the first pump and supplies it to the reverse osmosis membrane, the treated water containing fine bubbles in the circulation path is supplied to the reverse osmosis membrane device Supply,
A water treatment method characterized by the above.
前記逆浸透膜装置へと供給される前記微細気泡を含む被処理水のボイド率が0.01%以上1%以下である、請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein a void ratio of water to be treated containing the fine bubbles supplied to the reverse osmosis membrane device is 0.01% or more and 1% or less. 前記濃縮水経路に気液分離器を設けて濃縮水中の気泡を取り除く、請求項1又は2に記載の水処理方法。   The water treatment method according to claim 1 or 2, wherein a gas-liquid separator is provided in the concentrated water path to remove bubbles in the concentrated water. 前記給水経路の給水圧が1.0MPa以上3.0MPa以下であり、
前記循環経路から前記給水経路に供給する際の微細気泡を含む濃縮水の圧力が、前記給水経路内の圧力よりも5kPa以上100kPa以下の範囲で高くなるように、第二ポンプの圧力を調節する、請求項1乃至3のいずれか1項に記載の水処理方法。
The water supply pressure of the water supply path is 1.0 MPa to 3.0 MPa,
The pressure of the second pump is adjusted so that the pressure of the concentrated water containing fine bubbles when supplying from the circulation path to the water supply path is higher in the range of 5 kPa to 100 kPa than the pressure in the water supply path. The water treatment method according to any one of claims 1 to 3.
被処理水を処理する逆浸透膜装置と、
逆浸透膜装置に被処理水を供給する給水経路と、
給水経路の被処理水を加圧する第一ポンプと、
逆浸透膜装置の濃縮水経路から分岐し、逆浸透膜装置の上流で給水経路に接続される循環経路とを有し、
ここで、前記循環経路は、
濃縮水を加圧する第二ポンプと、
加圧された濃縮水に空気を混入するための空気投入手段と、
濃縮水と混入した空気とを撹拌し、微細気泡を含む濃縮水とするスタティックミキサーとを順に備え、
循環経路から給水経路へと微細気泡を含む濃縮水を供給した後、循環経路内の微細気泡を含む被処理水を逆浸透膜装置に供給する、水処理装置。
A reverse osmosis membrane device for treating water to be treated;
A water supply path for supplying treated water to the reverse osmosis membrane device;
A first pump for pressurizing the water to be treated in the water supply path;
A branch path branched from the concentrated water path of the reverse osmosis membrane device and connected to the water supply path upstream of the reverse osmosis membrane device,
Here, the circulation path is
A second pump for pressurizing the concentrated water;
Air input means for mixing air into the pressurized concentrated water;
Stir the concentrated water and the mixed air, in order with a static mixer to make concentrated water containing fine bubbles,
A water treatment apparatus that supplies concentrated water containing fine bubbles from a circulation path to a water supply path and then supplies treated water containing fine bubbles in the circulation path to a reverse osmosis membrane device.
前記逆浸透膜装置へと供給される微細気泡を含む被処理水のボイド率が0.01%以上1%以下である、請求項5に記載の水処理装置。   The water treatment device according to claim 5, wherein a void ratio of water to be treated containing fine bubbles supplied to the reverse osmosis membrane device is 0.01% or more and 1% or less. 前記濃縮水経路に濃縮水中の気泡を取り除く気液分離器をさらに備える、請求項5又は6に記載の水処理装置。   The water treatment apparatus of Claim 5 or 6 further equipped with the gas-liquid separator which removes the bubble in concentrated water in the said concentrated water path | route. 前記逆浸透膜装置の上流に前記給水経路の圧力を測定する第一圧力測定器を有し、
前記循環経路内の前記スタティックミキサーの下流に、前記循環経路の圧力を測定する第二圧力測定器を有し、
前記第二圧力測定器と前記第一圧力測定器との差圧が5kPa以上100kPa以下となるように、第二ポンプによりさらに濃縮水を加圧する、請求項5乃至7のいずれか1項に記載の水処理装置。
A first pressure measuring device for measuring the pressure of the water supply path upstream of the reverse osmosis membrane device;
A second pressure measuring device for measuring the pressure of the circulation path downstream of the static mixer in the circulation path;
The concentrated water is further pressurized by a second pump so that a differential pressure between the second pressure measuring device and the first pressure measuring device is 5 kPa or more and 100 kPa or less. Water treatment equipment.
前記循環経路内に、前記給水経路への前記微細気泡を含む濃縮水の供給水量を調整する流量調整手段をさらに備える、請求項5乃至8のいずれか1項に記載の水処理装置。   The water treatment apparatus according to any one of claims 5 to 8, further comprising a flow rate adjusting means for adjusting a supply amount of concentrated water containing the fine bubbles to the water supply path in the circulation path.
JP2012233849A 2012-10-23 2012-10-23 Method and apparatus of treating water using fine air bubble Pending JP2013013900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012233849A JP2013013900A (en) 2012-10-23 2012-10-23 Method and apparatus of treating water using fine air bubble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233849A JP2013013900A (en) 2012-10-23 2012-10-23 Method and apparatus of treating water using fine air bubble

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009214936A Division JP2011062632A (en) 2009-09-16 2009-09-16 Method and apparatus for treating water using fine air bubbles

Publications (1)

Publication Number Publication Date
JP2013013900A true JP2013013900A (en) 2013-01-24

Family

ID=47687107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233849A Pending JP2013013900A (en) 2012-10-23 2012-10-23 Method and apparatus of treating water using fine air bubble

Country Status (1)

Country Link
JP (1) JP2013013900A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103833154A (en) * 2014-03-25 2014-06-04 威士邦(厦门)环境科技有限公司 Acid and alkali resistant and anti-pollution membrane separation equipment
CN104238495A (en) * 2014-07-31 2014-12-24 惠州市泰林科技有限公司 Intelligent direct drinking water control system
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
CN105642118A (en) * 2015-12-16 2016-06-08 深圳市泉盾科技有限公司 Automatic backwash water purification system for backwash water purifier and washing method of system
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109179A (en) * 1974-02-06 1975-08-28
JPS5853203U (en) * 1981-10-02 1983-04-11 バブコツク日立株式会社 reverse osmosis equipment
JPS6295189A (en) * 1985-10-23 1987-05-01 Toray Ind Inc Purified water generator
JP2000271457A (en) * 1999-01-22 2000-10-03 Nitto Denko Corp Operation of spiral type membrane element and spiral type membrane module and spiral type membrane module
JP2002028455A (en) * 2000-07-19 2002-01-29 Nitto Denko Corp Method for operating spiral membrane element and spiral membrane module and spiral membrane module
JP2009073763A (en) * 2007-09-20 2009-04-09 Tsukishima Kankyo Engineering Ltd Method and apparatus for separating polyglycerol and polyglycerol
JP2009148673A (en) * 2007-12-19 2009-07-09 Sekisui Chem Co Ltd Membrane separation apparatus and desalination method
JP2010162505A (en) * 2009-01-16 2010-07-29 Panasonic Electric Works Co Ltd Water treatment apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109179A (en) * 1974-02-06 1975-08-28
JPS5853203U (en) * 1981-10-02 1983-04-11 バブコツク日立株式会社 reverse osmosis equipment
JPS6295189A (en) * 1985-10-23 1987-05-01 Toray Ind Inc Purified water generator
JP2000271457A (en) * 1999-01-22 2000-10-03 Nitto Denko Corp Operation of spiral type membrane element and spiral type membrane module and spiral type membrane module
JP2002028455A (en) * 2000-07-19 2002-01-29 Nitto Denko Corp Method for operating spiral membrane element and spiral membrane module and spiral membrane module
JP2009073763A (en) * 2007-09-20 2009-04-09 Tsukishima Kankyo Engineering Ltd Method and apparatus for separating polyglycerol and polyglycerol
JP2009148673A (en) * 2007-12-19 2009-07-09 Sekisui Chem Co Ltd Membrane separation apparatus and desalination method
JP2010162505A (en) * 2009-01-16 2010-07-29 Panasonic Electric Works Co Ltd Water treatment apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103833154A (en) * 2014-03-25 2014-06-04 威士邦(厦门)环境科技有限公司 Acid and alkali resistant and anti-pollution membrane separation equipment
CN103833154B (en) * 2014-03-25 2015-06-10 威士邦(厦门)环境科技有限公司 Acid and alkali resistant and anti-pollution membrane separation equipment
CN104238495A (en) * 2014-07-31 2014-12-24 惠州市泰林科技有限公司 Intelligent direct drinking water control system
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
CN105642118A (en) * 2015-12-16 2016-06-08 深圳市泉盾科技有限公司 Automatic backwash water purification system for backwash water purifier and washing method of system
CN105642118B (en) * 2015-12-16 2018-12-11 深圳市泉盾科技有限公司 It is a kind of for the automatic backwash water purification system of backwashing water purification apparatus and its purging method

Similar Documents

Publication Publication Date Title
JP2011062632A (en) Method and apparatus for treating water using fine air bubbles
JP5488466B2 (en) Fresh water generator
CN102471100B (en) Water producing system
JP5549591B2 (en) Fresh water production method and fresh water production apparatus
CN103492054B (en) Method for cleaning membrane module
JP2013013900A (en) Method and apparatus of treating water using fine air bubble
JP5908186B2 (en) Water treatment method and water treatment apparatus using membrane
WO2008053700A1 (en) Method of desalting, apparatus for desalting, and bubble generator
KR20140073312A (en) Apparatus for producing fresh water and electric power through forward osmosis, reverse osmosis and pressure retarded osmosis using treated sewage and seawater, and method for the same
JP2013158732A (en) Device for washing reverse osmosis membrane module
CN211570290U (en) Over-frequency vibration nanofiltration reverse osmosis system
JP2017113729A (en) Membrane cleaning agent, membrane cleaning liquid and cleaning method of membrane
JP2006263501A (en) System and method for cleaning membrane
JP2007330916A (en) Water treatment method of hollow fiber membrane and water treatment apparatus
US20160023166A1 (en) System for cleaning a membrane
JP2013039572A (en) Method and apparatus for treating water using fine bubble
JP6358878B2 (en) Membrane filtration device
JP6580338B2 (en) Film processing apparatus and film processing method
US10865130B2 (en) Apparatus and method for producing alkaline water for cleaning electronic device
CN208762364U (en) Dyeing waste water advanced treatment system
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
KR20120122927A (en) System and Method for Filtering
JP2011104504A (en) Washing method of water treatment facility
JP2005319375A (en) Membrane treatment method and membrane treatment apparatus
JP2005246157A (en) Water treatment method and water treatment apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401