WO2008053700A1 - Method of desalting, apparatus for desalting, and bubble generator - Google Patents

Method of desalting, apparatus for desalting, and bubble generator Download PDF

Info

Publication number
WO2008053700A1
WO2008053700A1 PCT/JP2007/070126 JP2007070126W WO2008053700A1 WO 2008053700 A1 WO2008053700 A1 WO 2008053700A1 JP 2007070126 W JP2007070126 W JP 2007070126W WO 2008053700 A1 WO2008053700 A1 WO 2008053700A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
raw water
aspirator
fine bubbles
gas
Prior art date
Application number
PCT/JP2007/070126
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Osugi
Yoichi Ikemoto
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Publication of WO2008053700A1 publication Critical patent/WO2008053700A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31242Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow the main flow being injected in the central area of the venturi, creating an aspiration in the circumferential part of the conduit
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • Desalination treatment method Desalination treatment method, desalination treatment apparatus, and bubble generation apparatus
  • the present invention relates to a technique for separating impurities from a liquid containing impurities using membrane separation, and in particular, a desalination treatment method and desalting suitable for desalination of seawater or brine (low-concentration brine).
  • the present invention relates to a salt processing apparatus and a bubble generating apparatus that can be directly used for carrying out the method. Background art
  • a membrane separation method using a filtration membrane is widely known as a method for selectively separating a specific substance from a liquid containing impurities.
  • filtration membranes include microfiltration membranes with a pore size of approximately 10 m to 5 nm, ultrafiltration membranes with a pore size of 200 nm to 2 nm, and reverse osmosis membranes with a pore size of 2 nm or less. is there.
  • materials for these filtration membranes acetic acid cell mouths and aromatic polyamides are generally used.
  • the reverse osmosis membrane is a membrane that has the property of allowing water to pass through impurities other than water, such as S ions and salts! /.
  • reverse osmosis membranes those with pore sizes of 1 to 2 nm and an ion or salt rejection of approximately 70% or less, especially those that are called nanofilters or NF membranes, are basically the same as reverse osmosis membranes. The same.
  • module units containing reverse osmosis membranes are provided in multiple stages and connected in series, and the concentrated water obtained from the previous reverse osmosis membrane module unit is further pressurized. Technologies have been proposed to reduce the operating energy and processing costs by supplying them to the reverse osmosis membrane module unit in the subsequent stage.
  • Patent Document 1 JP-A-9 276663
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-051663
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-252659
  • the present invention provides a method in which a sufficient effective pressure acts on a reverse osmosis membrane and other filtration membranes to efficiently permeate water even when the operation pressure applied to the raw water side is lowered,
  • the present invention provides a desalination treatment method capable of allowing more water to permeate under pressure, and a desalination treatment apparatus that can be used for carrying out the method, thereby further reducing the desalination treatment cost.
  • the present invention is directly used for the implementation of power, a method of desalinating treatment and a desalting treatment apparatus.
  • the present invention provides an air bubble generating device.
  • the inventors of the present invention have found that the filtration efficiency is remarkably improved by causing bubbles to act on the raw water side during the filtration and separation operation using a reverse osmosis membrane or the like.
  • the desalination treatment method of the present invention (Claim 1) is characterized in that fine bubbles are generated in raw water containing salts, and the raw water containing the fine bubbles is separated by filtration membrane to obtain water.
  • the effective effective pressure can be increased only by generating fine bubbles in the raw water immediately before the separation of the filtration membrane.
  • significant economic effects such as saving operating energy and reducing the pressure-resistant load of the filtration membrane are achieved.
  • the desalination treatment apparatus of the present invention (Claim 4) is supplied through the storage means, pressurization means, and supply means of raw water containing salts, etc., and the storage means, pressurization means, and supply means. It is characterized by comprising bubble generating means for generating fine bubbles in the raw water and separation means provided on the downstream side of the bubble generating means for separating the raw water containing the fine bubbles by filtration membrane.
  • this desalting apparatus the above-described desalting method can be suitably implemented.
  • This desalination apparatus is a conventional general filtration membrane separation apparatus equipped with raw water storage means, pressurization means, supply means, and separation means, and bubble generation means is added to the previous stage (upstream side) of the filtration membrane separation process. It can be configured simply by doing. Therefore, it can be implemented economically by effectively utilizing existing filtration membrane separation devices.
  • a reverse osmosis membrane (RO membrane or NF membrane) can be particularly preferably used as the filtration membrane in the desalination treatment method and desalination treatment apparatus invention (claims 2 and 5).
  • the fine bubbles preferably used in the invention of the desalting treatment method and desalting treatment apparatus are microbubbles having a diameter of several tens of meters or less, or nanobubbles having a smaller diameter (1 m or less) than the microbubbles. It is. If the diameter of the bubbles is several tens or less, they will rise in a short time and remain in the raw water for a long time without defoaming. The smaller the bubbles, the greater the effect of improving the filtration efficiency.
  • the "storage means of raw water” "For example, when the seawater is pumped directly from the ocean, which is a reservoir or reservoir, the ocean corresponds to the storage means."
  • the “pressure unit” of the raw water is, for example, a pump for pressurizing the raw water
  • the “supply unit” of the raw water is a supply pipe for connecting the storage unit and the pressurizing unit described above.
  • These storage means, pressurizing means, and supply means are equipment elements that are appropriately designed according to the scale of the processing equipment, the installation environment, and the like, and the specific configuration thereof is not particularly limited in the present invention.
  • the bubble generating means can be provided in any of the storing means, the pressurizing means, and the supply means as long as it is upstream of the separating means.
  • the raw water containing fine bubbles generated by the bubble generating means needs to be supplied to the separation means before the fine bubbles disappear.
  • the microbubbles are contained without interposing other processing steps (for example, precipitation, aggregation, mixing of additives, heating, cooling, etc.) between the bubble generating means and the separating means. It is desirable that the bubble generating means and the separating means are simply directly connected by a pipe or the like so that the raw water can be directly sent to the separating means.
  • the fine bubbles in the raw water may disappear, and the effect of improving the filtration efficiency at the filtration membrane separation stage may be reduced. is there.
  • a rough filtration process using a filter with large pores or a floating separation process using large-sized air bubbles that are generated simultaneously with the generation of air bubbles can be performed while the fine bubbles in the raw water remain.
  • it may be interposed between the bubble generating means and the separating means.
  • the raw water is previously pressurized in the raw water. It is preferable that fine bubbles are generated and the raw water is separated by filtration membrane at an operating pressure equivalent to or slightly lower than the pressurization condition (Claim 3). Therefore, when a pressurizing means such as a pump is provided on the path of the supply means, the bubble generating means is provided downstream of the pressurizing means, that is, between the pressurizing means and the separating means. Is more desirable (claims 6 and 7).
  • the pressure energy of the concentrated water discharged from the separating means may be used for driving the bubble generating means.
  • the main part of the present invention is that fine bubbles are generated in the raw water before the filtration membrane separation.
  • the fine bubbles are desirably generated under a pressure condition equal to or higher than the operation pressure at the time of filtration membrane separation.
  • Examples of the bubble generation method include a generation method using a bench lily effect, a generation method using a swirl flow, a generation method using pressure dissolution, and the like.
  • a bubble generation method that can support continuous operation of filtration and separation is preferable. Masle.
  • the present invention employs the following technical configuration (claim 9) as a bubble generating device capable of continuously generating a certain amount of fine bubbles in a liquid in a pressurized state. .
  • the bubble generating device of the present invention includes an aspirator interposed in a pipe line through which a pressurized liquid flows, and a pressure equalizing container connected to the aspirator, and the aspirator has a substantially cylindrical shape. None, one end in the axial direction is connected to the upstream side of the pipe, the other end is connected to the downstream side of the pipe, and a throttle is formed between the upstream half and the downstream half in the cylinder
  • the pressure equalizing vessel has an air supply passage for supplying pressurized gas into the pressure equalizing vessel, and a liquid passage communicating with the upstream half of the aspirator, through the air supply passage.
  • the gas supplied into the pressure vessel and the liquid flowing into the pressure equalization vessel through the liquid passage form a gas phase portion and a liquid phase portion in the pressure equalization vessel that have substantially the same pressure as the inside of the aspirator.
  • the gas in the gas phase part passes through the air supply path connected to the aspirator. It is injected upstream of the throttle subordinates upstream end portion by, characterized in that to generate fine bubbles in the liquid in the Asupireta of.
  • the aspirator is a device having a constricted portion in the flow path for creating a reduced pressure state by a bench lily effect using a fluid, and is used in combination with a swirling flow or a pressure dissolution method. Sometimes it is done.
  • the pressure equalizing container in this bubble generating device is always in communication with the upstream half of the aspirator through the liquid passage, and is maintained at the same pressure as in the upstream half.
  • the present invention is configured such that the gas is self-supplied in the flow path by the flow of liquid rather than supplying the gas directly into the flow path of the pressurized liquid by a compressor or the like.
  • the hydraulic pressure in the flow path may fluctuate within a certain range depending on the operating condition of the pump, etc.In the method of supplying gas directly to the flow path with a compressor, etc., the gas pressure varies depending on the fluctuation of the hydraulic pressure. If the supply amount is not controlled, the amount of generated bubbles becomes unstable.
  • the amount of generated bubbles becomes unstable because the generation state of bubbles affects the effective pressure of the filtration membrane separation.
  • the upstream half of the aspirator and the pressure equalizing vessel communicate with each other through the liquid passage, so that the gas phase portion and the liquid phase portion in the pressure equalizing vessel are connected to the upstream half of the aspirator.
  • the gas pressure is always maintained, while gas is supplied so that the gas phase is balanced with the aspirator pressure-reducing section upstream of the downstream end of the throttle section, so the fluid pressure in the flow path fluctuates. Even then, a certain amount of gas is always supplied into the liquid.
  • the gas supply into the pressure equalizing vessel does not need to be continuously performed at a constant pressure.
  • the air supply passage is closed, the gas in the gas phase will be supplied into the aspirator through the air supply passage until there is no more gas trapped in the pressure equalization vessel.
  • the gas in the pressure equalization vessel decreases, the interface between the gas phase portion and the liquid phase portion rises. Therefore, the gas supply path is opened again at an appropriate timing, and the gas may be added to the pressure equalization vessel.
  • the gas is supplied intermittently, it is possible to save the operating energy of the pump for pressurizing the gas.
  • all or part of the pressure equalization container is made of a transparent material, it will be easier to visually check the air supply status.
  • the amount of bubbles generated in the aspirator is mainly determined by the hydraulic pressure, flow velocity, cross-sectional shape in the vicinity of the throttle portion, etc. in the aspirator. It is also affected by the inner diameter and opening position of the air passage that communicates with each other. Therefore, in order to stably obtain a desired bubble generation state, for example, a function for adjusting the gas flow rate is provided in the middle of the air supply path, or the opening position of the air supply path in the aspirator can be moved. May be.
  • the invention's effect [0024] According to the desalination treatment method and the desalination treatment apparatus of the present invention configured as described above, even if the operation pressure acting on the raw water side is lowered by causing bubbles to act during the filtration and separation operation, Effectively high effective pressure can be obtained compared to the conventional method, or more water can be permeated with the same operating pressure, and membrane separation can be performed efficiently. Therefore, a high recovery rate can be obtained with less operating energy than in the past, and the entire processing apparatus can be easily reduced in size and simplified. Furthermore, the reduction of the operating pressure acting on the filtration membrane can greatly improve the problem of pressure resistance in the filtration membrane.
  • the bubble generating device of the present invention a certain amount of bubbles is continuously generated in a liquid such as salt water in a pressurized state with less energy without requiring a troublesome pressure adjustment operation. That power S.
  • the desalting treatment method and the desalting treatment apparatus can be carried out efficiently.
  • FIG. 1 is a schematic configuration diagram of a desalting apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram showing an example of a bubble generating device used in the desalting apparatus.
  • FIG. 3 is a schematic configuration diagram of a desalting apparatus according to a second embodiment of the present invention.
  • FIG. 4 is a schematic configuration diagram of a desalting apparatus according to a third embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram of a bubble generation device according to an embodiment of the present invention.
  • FIG. 1 shows a schematic configuration of a desalting apparatus according to a first embodiment of the present invention.
  • the storage tank 1 as raw water, for example, seawater or the like that has been subjected to appropriate pretreatment such as removal of impurities or sterilization is stored.
  • the raw water is pressurized by the high pressure pump 3 through the supply pipe 2 connected to the storage tank 1 and sent to the reverse osmosis membrane module unit 4.
  • the storage tank 1 constitutes a storage means
  • the supply pipe 2 constitutes a supply means
  • the high-pressure pump 3 constitutes a pressurization means
  • the reverse osmosis membrane module unit 4 constitutes a separation means. ! /
  • the reverse osmosis membrane module unit 4 is obtained by processing a reverse osmosis membrane having a known material strength such as cellulose acetate or polyamide into a known shape such as a flat spiral membrane or a hollow fiber membrane.
  • the structure is not particularly limited in the present invention.
  • a supply pipe 2 is connected to the inlet side of the reverse osmosis membrane module unit 4.
  • the outlet side of the reverse osmosis membrane module unit 4 is connected to a water collection pipe 5 for taking out desalted purified water and a discharge nozzle 6 for discharging concentrated water.
  • the water collecting pipe 5 is connected to the purified water tank 7, and after that, the purified water is post-treated in a post process (not shown).
  • bubble generating means is provided in the storage means.
  • the bubble generating means is constituted by a so-called “fill-in” bubble generating device 8 provided in the storage tank 1.
  • the throw-in type bubble generating device mentioned here is a device that generates bubbles by throwing it into the current water. However, for example, it also includes a device that feeds only raw water into raw water and circulates and supplies raw water containing bubbles via an external pump. A configuration example of such a bubble generating device 8 is shown in FIG. Shown in
  • the main body 81 of the bubble generating device 8 has a long cylindrical shape, one end (the left end in the figure) is closed, and the other end (the right end in the figure) is opened.
  • the substantially half portion on the closed end side is an inflow portion 83 having a uniform cross section, and the substantially half portion on the open end side is enlarged in a taper shape toward the tip (right end in the figure).
  • An outflow portion 84 is formed, and a narrow diameter constriction portion 85 is formed at the boundary between the inflow portion 83 and the outflow portion 84.
  • An inlet pipe 86 connected to the pump is connected to the middle part of the main body 81 so as to be orthogonal to the longitudinal direction of the main body 81, and raw water is injected from the inlet pipe 86 into the inflow part 83.
  • an air supply pipe 87 protruding into the inflow portion 83 is provided on the closed end side, and air is injected into the inflow portion 83 from a professional tube (not shown).
  • the pressure of the raw water injected into the inflow part 83 together with the air rapidly decreases by passing through the constriction part 85, and a shock wave is generated in the outflow part 84 on the downstream side of the constriction part 85.
  • the air mixed in the raw water is refined into bubbles.
  • FIG. 3 shows a schematic configuration of a desalting apparatus according to the second embodiment of the present invention.
  • the storage tank 1 constitutes a storage means
  • the supply pipe 2 constitutes a supply means
  • the high-pressure pump 3 constitutes a pressurization means
  • the reverse osmosis membrane module unit 4 constitutes a separation means. is doing.
  • the bubble generating device 8 constituting the bubble generating means is connected to the supply pipe.
  • the bubble generating device 8 is a so-called “inline type”. It is.
  • an in-line type bubble generating apparatus that can be used for such a configuration, for example, OHR line mixer (static type mixer) manufactured by Seika Sangyo Co., Ltd., micro bubble generating nozzle manufactured by Aura Tech Co., Ltd. and the like are known.
  • an appropriate water tank or container (not shown) is provided between the high-pressure pump 3 and the reverse osmosis membrane module unit 4, and the above-mentioned input type bubble generating device is installed in the water tank or container. It can also be implemented.
  • FIG. 4 shows a schematic configuration of a desalting apparatus according to the third embodiment of the present invention.
  • the basic configuration of this embodiment is the same as that of the second embodiment described above.
  • the storage tank 1 constitutes a storage means
  • the supply pipe 2 constitutes a supply means
  • the high-pressure pump 3 constitutes a pressurization means.
  • the reverse osmosis membrane module unit 4 constitutes the separation means!
  • the bubble generating device 8 constituting the bubble generating means is provided between the high pressure pump 3 and the reverse osmosis membrane module unit 4.
  • the discharge pipe 6 connected to the outlet side of the reverse osmosis membrane module unit 4 is connected to the bubble generating device 8, and further connected from the bubble generating device 8 to the pressure recovery turbine 10.
  • a part of the pressure energy of the concentrated water taken out through the discharge pipe 6 is used as a driving force for generating fine bubbles in the bubble generating device 8. Further, the remaining pressure energy is recovered by the pressure recovery turbine 10 and used to boost the raw water supplied through the supply pipe 2. In this way, the pressure energy of the discharged concentrated water can be used effectively.
  • FIG. 5 shows a configuration of a novel bubble generating apparatus 100 that can be suitably used in the desalting apparatus shown in the second embodiment or the third embodiment.
  • reference numerals 101 and 102 denote conduits through which raw water or other liquid containing salts flows in a pressurized state.
  • the aspirator 110 is installed in the middle of the pipe lines 101 and 102.
  • the aspirator 110 is formed of a substantially cylindrical pressure vessel, and one end in the axial direction thereof is connected to the upstream pipe 101 and the other end is connected to the downstream pipe 102. ing. Inside the aspirator 110, in order from the upstream side to the downstream side, an upstream steady portion 111 having a uniform cross-sectional area substantially the same as the cross-sectional area of the container, and a tapered reduced portion in which the cross-sectional area decreases at a constant inclination.
  • the constricted portion 113, the tapered enlarged portion 114 whose cross-sectional area increases at a constant inclination, and the downstream steady portion 115 having a uniform cross-sectional area substantially the same as the cross-sectional area of the container are coaxially continuous. It is formed so that.
  • the upstream side that is, the upstream steady portion 111 and the contracting portion 112, which are divided from the throttle portion 113 as a boundary, are collectively referred to as the upstream half
  • the downstream side that is, the expanding portion 114 and the downstream portion.
  • the side stationary part 115 is collectively referred to as a downstream half part.
  • the axial lengths of the upstream half and the downstream half are not necessarily the same.
  • a pressure equalizing vessel 120 is connected to the outside of the aspirator 110.
  • the pressure equalizing container 120 in the illustrated embodiment is substantially cylindrical, and is attached so that the bottom of the container is in contact with the top of the aspirator 110 with its axial direction being substantially parallel to the axial direction of the aspirator 110.
  • An air supply path 121 is connected to the pressure equalizing vessel 120. Air or other gas pressurized by a pressure pump (not shown) or the like is supplied into the pressure equalizing vessel 120 through the air supply path 121.
  • the air supply path 121 can be arbitrarily switched between a ventilation state and a closed state by operating an on-off valve (not shown) or the like.
  • a liquid passage 122 that connects the pressure equalizing vessel 120 and the upstream half of the aspirator 110 is provided so as to penetrate a portion where the pressure equalizing vessel 120 and the aspirator 110 are in contact with each other.
  • the liquid passage 122 is always open, and the liquid in the upstream half of the aspirator 110 flows into the pressure equalizing vessel 120 through the liquid passage 122.
  • the gas in the gas phase section 123 is introduced into the aspirator 110 through the air inlet path 125.
  • One end of the air supply path 125 opens to the upper part of the pressure equalizing vessel 120 and faces the gas phase part 123, and the other end opens to a position near the upper end of the throttle 113 in the aspirator 110.
  • a negative pressure is generated in the throttle 113 due to the bench-lily effect. Due to the negative pressure, the gas in the gas phase section 123 is drawn into the aspirator 110 through the air inlet path 125 and passes through the throttle section 113 to generate fine bubbles.
  • the bubble generating device 100 it is not necessary to continuously supply the gas into the pressure equalizing vessel 120 at a constant pressure. After supplying an appropriate amount of gas into the pressure equalizing vessel 120, if the air supply passage 121 is closed, the pressure balance between the gas phase portion 123 and the liquid phase portion 124 until the gas trapped in the pressure equalizing vessel 120 disappears. State is maintained. The gas in the gas phase section 123 is gradually supplied into the aspirator 110, and the interface between the gas phase section 123 and the liquid phase section 124 gradually rises. Therefore, the air supply path 121 is opened again at an appropriate timing. A gas may be added to the pressure equalizing vessel 120.
  • the pressure equalizing vessel 120 may not be directly attached to the aspirator 110, but the pressure equalizing vessel 120 may be arranged separately from the aspirator 110, and the liquid passage 122 and the air intake passage 125 may be extended and connected. .
  • the air supply passage 125 may be connected to the aspirator 110 after being drawn out of the pressure equalizing vessel 120 without passing through the liquid phase portion 124 as in the exemplary embodiment.
  • the amount of bubbles generated in the aspirator 110 and the particle size of the generated bubbles are determined not only by the hydraulic pressure and flow velocity in the aspirator 110, the cross-sectional shape in the vicinity of the throttle 113, but also the inner diameter of the air inlet passage 125. It is defined by the opening position etc. in the vibrator. These plural types of design elements may be selectively determined as appropriate according to the required amount of bubbles generated and the particle size.
  • the opening position of the air injection path 125 into the aspirator 110 may be within the range from the vicinity of the reduction part 112 to the downstream end of the throttle part 113 (the boundary between the throttle part 113 and the enlarged part 114). However, the opening position may be moved along the axial direction of the aspirator 110, or a function of adjusting the gas flow rate may be provided in the air supply passage 125.
  • Example 1 it was carried out by the desalting apparatus which applied the power to the configuration of the first embodiment (FIG. 1). .
  • raw water salt water adjusted to a salt concentration of 0.1% by adding salt to distilled water was used.
  • a bubble generator 8 as shown in Fig. 2 is put into the storage tank 1, and about 1L of air is sent to 20L (liter) of raw water every minute for 5 minutes while continuing to circulate the raw water. Bubbles were generated.
  • the raw water was pressurized to 0.2 MPa with the high-pressure pump 3 and supplied to the reverse osmosis membrane module unit 4.
  • the reverse osmosis membrane module unit 4 one low pressure spiral RO element “NTR-759HR” manufactured by Nitto Denko Corporation was used. Purified water with a salt concentration of 0.01% or less could be obtained through the operation of this desalination treatment equipment. The treatment amount per membrane area at this time was 8 L / hr'm 2 .
  • Example 1 in the same apparatus configuration as in Example 1 above, the bubble generating device 8 was not operated at all, and the raw water containing no fine bubbles was subjected to desalting treatment at the same operating pressure of 0.2 MPa. It was. As a result, it was possible to obtain purified water having a salt concentration of 0.01% or less.
  • the treatment amount per membrane area at this time was 5 L / hr'm 2 .
  • Example 2 was carried out by a desalting apparatus that applied power to the configuration of the second embodiment (FIG. 3).
  • the raw water used was salt water adjusted to a salt concentration of 3.5% by adding salt to distilled water.
  • the above raw water is pressurized to 3.2 MPa with a high-pressure pump and connected to the bubble generating device 8, and approximately 1 L of air is sent to 10 L of raw water per minute under the caloric pressure condition to generate fine bubbles in the raw water. Made.
  • the raw water was supplied to the reverse osmosis membrane module unit 4 while maintaining the pressure of 2 MPa.
  • the reverse osmosis membrane module unit 4 uses one low pressure spiral RO element “NTR-759HR” manufactured by Nitto Denko Corporation. Purified water with a salt concentration of 0.1% or less could be obtained through the operation of this desalting apparatus. Throughput per membrane area in this case the thickness is 25L hr'm 2.
  • Example 2 As Comparative Example 2 with respect to Example 2 above, in the same apparatus configuration as in Example 2 above, the bubble generating device 8 was not operated at all, and the same 3.2 MPa operation was performed on raw water containing no fine bubbles. Desalination treatment was performed under pressure. However, the raw water did not pass through the reverse osmosis membrane module unit 4 and purified water could not be obtained.
  • Example 3 was carried out with a desalting apparatus that was effective in the configuration of the second embodiment (FIG. 3).
  • raw water salt water adjusted to a salt concentration of 0.1% by adding salt to distilled water was used.
  • the above raw water is pressurized to IMPa with a high-pressure pump and connected to the bubble generating device 8, and about 1L of air is sent to 10L of raw water per minute under pressurized conditions to generate fine bubbles in the raw water. It was.
  • the raw water was supplied to the reverse osmosis membrane module unit 4 while maintaining the pressure of IMPa.
  • the reverse osmosis membrane module unit 4 used a single low-pressure spiral RO element “NTR-759HR” manufactured by Nitto Denko Corporation. By operating the desalting apparatus, purified water having a salt concentration of 0.01% or less could be obtained. The throughput per membrane area at this time was 60 L hr'm.
  • Example 3 As Comparative Example 3 with respect to Example 3 above, in the same apparatus configuration as in Example 3 above, the bubble generating device 8 was not operated at all, and the raw water containing no fine bubbles was subjected to desalting treatment at the same operating pressure of IMPa. went.
  • the raw water had a force S that passed through the reverse osmosis membrane module unit 4, and the treatment amount per membrane area at this time was 35 L / hr'm 2 .
  • the desalination treatment method and desalination treatment apparatus of the present invention remove seawater desalination, impurities other than water from natural water such as lake water, river water, rainwater, and mixed solutions of various inorganic salts. Thus, it can be widely used in technologies for obtaining fresh water for industrial use, agricultural use, drinking and the like.
  • the bubble generating apparatus of the present invention can be suitably used for the implementation of the desalinating treatment method and desalinating apparatus as described above, as well as general water purification, breeding of aquatic organisms, health It can also be widely used in the manufacture of health drinks and health appliances that use air bubbles.

Abstract

A method of desalting which comprises generating fine bubbles in a raw water containing a salt and subjecting the raw water containing the fine bubbles to filter membrane separation. By the method, even when an operating pressure to be applied on the raw-water side is low, a sufficient effective pressure acts on the filter membrane to enable the water to be efficiently filtered. Even with an operating pressure on almost the same level as conventional ones, treated water can be obtained in a larger amount. Also provided is a desalting apparatus which comprises a storage means (1), a supply means (2), and a bubble generator (8) which generates fine bubbles in a raw water to be fed through a pressurizing means (3), and in which the raw water containing the fine bubbles is separated with a filter membrane by means of a separation means (4) disposed downstream from the bubble generator (8).

Description

明 細 書  Specification
脱塩処理方法、脱塩処理装置及び気泡生成装置  Desalination treatment method, desalination treatment apparatus, and bubble generation apparatus
技術分野  Technical field
[0001] 本発明は、膜分離を利用して不純物を含む液体から該不純物を分離する技術に 関し、特に、海水やかん水(低濃度の塩水)の淡水化に適した脱塩処理方法及び脱 塩処理装置と、該方法 '装置の実施に直接、利用し得る気泡生成装置に関する。 背景技術  [0001] The present invention relates to a technique for separating impurities from a liquid containing impurities using membrane separation, and in particular, a desalination treatment method and desalting suitable for desalination of seawater or brine (low-concentration brine). The present invention relates to a salt processing apparatus and a bubble generating apparatus that can be directly used for carrying out the method. Background art
[0002] 従来、不純物を含む液体から特定の物質を選択的に分離する方法として、濾過膜 を用いた膜分離法が広く知られている。かかる濾過膜には、孔の大きさが概ね 10 m〜5nmの精密濾過膜、孔の大きさが 200nm〜2nmの限外濾過膜、孔の大きさが 2nm以下の逆浸透膜等の種類がある。これらの濾過膜の素材としては、酢酸セル口 ースゃ芳香族ポリアミドが一般的である。これらのうち、特に逆浸透膜 (RO膜)は、水 は通す力 Sイオンや塩類など水以外の不純物は透過しな!/、性質を持つ膜で、海水や かん水から工業用、農業用、飲用等の淡水 (真水)を得る脱塩処理に広く利用されて いる。逆浸透膜のうち、孔の大きさが l〜2nmでイオンや塩類の阻止率が概ね 70% 以下のものは、特にナノフィルター又は NF膜とも呼ばれる力 作用や利用法は逆浸 透膜と基本的に同様である。  Conventionally, a membrane separation method using a filtration membrane is widely known as a method for selectively separating a specific substance from a liquid containing impurities. Such filtration membranes include microfiltration membranes with a pore size of approximately 10 m to 5 nm, ultrafiltration membranes with a pore size of 200 nm to 2 nm, and reverse osmosis membranes with a pore size of 2 nm or less. is there. As materials for these filtration membranes, acetic acid cell mouths and aromatic polyamides are generally used. Of these, the reverse osmosis membrane (RO membrane) is a membrane that has the property of allowing water to pass through impurities other than water, such as S ions and salts! /. From the seawater and brine to industrial, agricultural, It is widely used for desalination to obtain fresh water for drinking. Among reverse osmosis membranes, those with pore sizes of 1 to 2 nm and an ion or salt rejection of approximately 70% or less, especially those that are called nanofilters or NF membranes, are basically the same as reverse osmosis membranes. The same.
[0003] 逆浸透膜による脱塩処理では、逆浸透膜を隔てて浸透平衡にある原水(例えば、 海水等)と水に対して、原水の浸透圧よりも高い圧力(「操作圧」と呼ぶ。)を原水側か ら加えることにより、原水中の水分子を水側へ移行させる。操作圧と原水の浸透圧と の差が「有効圧」となる。  [0003] In a desalination treatment using a reverse osmosis membrane, the pressure of raw water (for example, seawater) and water that are in osmotic equilibrium across the reverse osmosis membrane is higher than the osmotic pressure of the raw water (referred to as "operation pressure"). )) From the raw water side, the water molecules in the raw water are transferred to the water side. The difference between the operating pressure and the osmotic pressure of the raw water is the “effective pressure”.
[0004] 逆浸透膜を透過できない塩類は膜面近傍に滞留して、膜面近傍での塩濃度が上 昇する。これをそのまま滞留させると、原水側の浸透圧が限りなく上昇して濾過できな くなるので、塩類や不純物が濃縮された水(「濃縮水」と呼ぶ。)を連続的に排出する 必要がある。したがって、逆浸透法では、原水の全量を濾過して取り出すことはでき ない。  [0004] Salts that cannot permeate the reverse osmosis membrane stay in the vicinity of the membrane surface, and the salt concentration near the membrane surface increases. If this is retained as it is, the osmotic pressure on the raw water side will rise as much as possible and filtration will not be possible, so it will be necessary to continuously discharge water enriched in salts and impurities (referred to as “concentrated water”). is there. Therefore, the total amount of raw water cannot be filtered out by reverse osmosis.
[0005] 逆浸透法では、原水の塩濃度が高いほど、また、濃縮水を減らそうとするほど、原 水に高い操作圧をかけて濾過する必要がある。例えば、平均的な塩濃度 3.5%の海 水から日本の飲料水基準に適合する塩濃度 0. 01 %の淡水を、水の回収率 40% ( 残りの 60%は濃縮水として捨てる。)で得る場合、近年の技術水準では約 5. 5〜6. 5MPa程度の操作圧が必要とされて!/、る。 [0005] In the reverse osmosis method, the higher the salt concentration of the raw water and the more the concentrated water is reduced, It is necessary to filter the water under high operating pressure. For example, from seawater with an average salt concentration of 3.5%, fresh water with a salt concentration of 0.01% that meets Japanese drinking water standards, with a water recovery rate of 40% (the remaining 60% is discarded as concentrated water). In order to obtain this, an operating pressure of about 5.5 to 6.5 MPa is required in recent technical levels!
[0006] 原水に高い操作圧をかけるには、高圧ポンプを運転するための大きなエネルギー が必要になり、得られる淡水のコストが高くなる。現実的には、逆浸透法による海水の 淡水化処理において、処理コストの半分程度が高圧ポンプを運転するための電気使 用料によって占められると言われている。  [0006] In order to apply a high operating pressure to raw water, a large amount of energy is required to operate the high-pressure pump, and the cost of the obtained fresh water increases. In reality, it is said that in the desalination treatment of seawater by the reverse osmosis method, about half of the treatment cost is accounted for by the electricity charges for operating the high-pressure pump.
[0007] そこで、例えば特許文献 1〜3には、逆浸透膜を収容したモジュールユニットを多段 に設けて直列的に接続し、前段の逆浸透膜モジュールユニットから得られる濃縮水 をさらに昇圧して後段の逆浸透膜モジュールユニットに供給することにより、運転エネ ルギーや処理コストを低減させようとする技術が提案されている。  Therefore, for example, in Patent Documents 1 to 3, module units containing reverse osmosis membranes are provided in multiple stages and connected in series, and the concentrated water obtained from the previous reverse osmosis membrane module unit is further pressurized. Technologies have been proposed to reduce the operating energy and processing costs by supplying them to the reverse osmosis membrane module unit in the subsequent stage.
特許文献 1 :特開平 9 276663号公報  Patent Document 1: JP-A-9 276663
特許文献 2:特開 2000— 051663号公報  Patent Document 2: Japanese Unexamined Patent Publication No. 2000-051663
特許文献 3:特開 2001— 252659号公報  Patent Document 3: Japanese Patent Laid-Open No. 2001-252659
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかしながら、上記のように逆浸透膜モジュールユニットを多段配置するとなると、必 然的に処理装置全体が大型化、複雑化せざるを得ない。また、逆浸透膜モジュール ユニットを多段配置しても、後段のモジュールユニットには一層大きな操作圧(上記 文献記載の実施例では 7〜9MPa程度)が作用することになるので、上記特許文献 3 でも指摘されてレ、る逆浸透膜モジュールユニットの耐圧負担とレ、つた問題は十分に 解決されない。 However, when the reverse osmosis membrane module units are arranged in multiple stages as described above, the entire processing apparatus inevitably becomes large and complicated. Even if the reverse osmosis membrane module unit is arranged in multiple stages, a larger operating pressure (about 7 to 9 MPa in the embodiment described in the above document) acts on the subsequent module unit. It is pointed out that the pressure-resistant burden and problems of reverse osmosis membrane module units cannot be solved sufficiently.
[0009] そこで、本発明は、原水側に作用させる操作圧を低くしても逆浸透膜その他の濾過 膜に十分な有効圧が作用して効率的に水を透過させることや、同等の操作圧でより 多くの水を透過させることのできる脱塩処理方法と、該方法の実施に利用しうる脱塩 処理装置を提供し、脱塩処理コストをさらに低減させようとするものである。  [0009] Therefore, the present invention provides a method in which a sufficient effective pressure acts on a reverse osmosis membrane and other filtration membranes to efficiently permeate water even when the operation pressure applied to the raw water side is lowered, The present invention provides a desalination treatment method capable of allowing more water to permeate under pressure, and a desalination treatment apparatus that can be used for carrying out the method, thereby further reducing the desalination treatment cost.
[0010] 併せて本発明は、力、かる脱塩処理方法及び脱塩処理装置の実施に直接、利用し 得る気泡生成装置を提供するものである。 [0010] In addition, the present invention is directly used for the implementation of power, a method of desalinating treatment and a desalting treatment apparatus. The present invention provides an air bubble generating device.
課題を解決するための手段  Means for solving the problem
[0011] 本発明者らは、逆浸透膜等による濾過分離操作時に、原水側に気泡を作用させる ことで濾過効率が著しく向上することを見出した。 [0011] The inventors of the present invention have found that the filtration efficiency is remarkably improved by causing bubbles to act on the raw water side during the filtration and separation operation using a reverse osmosis membrane or the like.
[0012] すなわち、本発明の脱塩処理方法 (請求項 1)は、塩類を含む原水中に微細気泡を 生成させ、該微細気泡を含んだ原水を濾過膜分離して水を得ることを特徴とする。こ の脱塩処理方法によれば、濾過膜分離の直前に、原水中に微細気泡を生成させる のみで、実質的な有効圧を上昇させることができる。これにより、従来よりも小さい操 作圧で従来と同等以上の淡水回収率を得たり、従来と同等の操作圧で従来以上の 淡水回収率を得ることが可能になる。これにより、運転エネルギーの節約や濾過膜の 耐圧負担軽減等、大きな経済的効果が奏される。  [0012] That is, the desalination treatment method of the present invention (Claim 1) is characterized in that fine bubbles are generated in raw water containing salts, and the raw water containing the fine bubbles is separated by filtration membrane to obtain water. And According to this desalting method, the effective effective pressure can be increased only by generating fine bubbles in the raw water immediately before the separation of the filtration membrane. As a result, it is possible to obtain a fresh water recovery rate that is equal to or higher than that of the conventional method with a lower operating pressure than that of the conventional method, or a fresh water recovery rate that is higher than that of the conventional method with an operating pressure that is equal to that of the conventional method. As a result, significant economic effects such as saving operating energy and reducing the pressure-resistant load of the filtration membrane are achieved.
[0013] また、本発明の脱塩処理装置 (請求項 4)は、塩類等を含む原水の貯留手段、加圧 手段、及び供給手段と、上記貯留手段、加圧手段、及び供給手段を通じて供給され る原水中に微細気泡を生成させる気泡生成手段と、上記気泡生成手段の下流側に 設けられて上記微細気泡を含む原水を濾過膜分離する分離手段とを備えることを特 徴とする。この脱塩処理装置により、上記した脱塩処理方法を好適に実施することが できる。この脱塩処理装置は、原水の貯留手段、加圧手段、供給手段及び分離手段 を備えた従来一般の濾過膜分離装置において、濾過膜分離工程の前段階 (上流側 )に気泡生成手段を追加するだけで構成することができる。したがって、既存の濾過 膜分装置を有効に活用して経済的に実施することができる。  [0013] Further, the desalination treatment apparatus of the present invention (Claim 4) is supplied through the storage means, pressurization means, and supply means of raw water containing salts, etc., and the storage means, pressurization means, and supply means. It is characterized by comprising bubble generating means for generating fine bubbles in the raw water and separation means provided on the downstream side of the bubble generating means for separating the raw water containing the fine bubbles by filtration membrane. With this desalting apparatus, the above-described desalting method can be suitably implemented. This desalination apparatus is a conventional general filtration membrane separation apparatus equipped with raw water storage means, pressurization means, supply means, and separation means, and bubble generation means is added to the previous stage (upstream side) of the filtration membrane separation process. It can be configured simply by doing. Therefore, it can be implemented economically by effectively utilizing existing filtration membrane separation devices.
上記脱塩処理方法及び脱塩処理装置の発明における濾過膜としては、逆浸透膜( RO膜又は NF膜)を特に好適に利用することができる(請求項 2、請求項 5)。  A reverse osmosis membrane (RO membrane or NF membrane) can be particularly preferably used as the filtration membrane in the desalination treatment method and desalination treatment apparatus invention (claims 2 and 5).
[0014] 上記脱塩処理方法及び脱塩処理装置の発明にて好適に利用される微細気泡とは 、直径数十 m以下のマイクロバブル、又はマイクロバブルよりもさらに小径(1 m 以下)のナノバブルである。気泡の直径が数十 以下であれば、短時間では上昇 して消泡することなぐ原水中に長時間残存する。そして、気泡が小さいほど濾過効 率の向上効果が大きくなる。  [0014] The fine bubbles preferably used in the invention of the desalting treatment method and desalting treatment apparatus are microbubbles having a diameter of several tens of meters or less, or nanobubbles having a smaller diameter (1 m or less) than the microbubbles. It is. If the diameter of the bubbles is several tens or less, they will rise in a short time and remain in the raw water for a long time without defoaming. The smaller the bubbles, the greater the effect of improving the filtration efficiency.
[0015] 本発明の脱塩処理装置にかかる特定事項 (請求項 4)において、原水の「貯留手段 」とは、例えば貯留槽ゃ貯留池である力 海洋から直接、海水を汲み上げる場合は、 海洋が貯留手段に相当する。また、原水の「加圧手段」とは、例えば原水を加圧する ためのポンプ等であり、原水の「供給手段」とは、上記した貯留手段や加圧手段を接 続する供給パイプ等である。これら貯留手段、加圧手段、及び供給手段は、処理装 置の規模や設置環境等に応じて適宜に設計される設備要素であり、本発明におい て、これらの具体的構成は特に限定しない。 [0015] In the specific matter (claim 4) according to the desalination apparatus of the present invention, the "storage means of raw water" "For example, when the seawater is pumped directly from the ocean, which is a reservoir or reservoir, the ocean corresponds to the storage means." The “pressure unit” of the raw water is, for example, a pump for pressurizing the raw water, and the “supply unit” of the raw water is a supply pipe for connecting the storage unit and the pressurizing unit described above. . These storage means, pressurizing means, and supply means are equipment elements that are appropriately designed according to the scale of the processing equipment, the installation environment, and the like, and the specific configuration thereof is not particularly limited in the present invention.
[0016] 気泡生成手段は、分離手段よりも上流側であれば、貯留手段、加圧手段、供給手 段のいずれに設けることも可能である。しかし、気泡生成手段によって生成された微 細気泡を含む原水は、微細気泡が消滅してしまわないうちに分離手段まで供給され る必要がある。この意味では、気泡生成手段と分離手段との間に、他の処理工程 (例 えば、不純物の沈殿、凝集、添加剤の混入、加熱、冷却等の工程)を挟まず、微細気 泡を含んだ原水をそのまま直接、分離手段に送れるように、気泡生成手段と分離手 段とをパイプ等で単純に直結するのが望ましい。気泡生成手段と分離手段との間に 上記のような処理工程が介在すれば、原水中の微細気泡が消滅して、濾過膜分離 段階での濾過効率の向上効果が低減するおそれがあるからである。ただし、例えば 孔の大きいフィルターによる粗濾過処理や、気泡生成時に同時に生成する大きな粒 径の気泡を利用した浮上分離工程など、原水中の微細気泡を残存させたままで処理 し得るような工程であれば、気泡生成手段と分離手段との間に介在してもよい。  [0016] The bubble generating means can be provided in any of the storing means, the pressurizing means, and the supply means as long as it is upstream of the separating means. However, the raw water containing fine bubbles generated by the bubble generating means needs to be supplied to the separation means before the fine bubbles disappear. In this sense, the microbubbles are contained without interposing other processing steps (for example, precipitation, aggregation, mixing of additives, heating, cooling, etc.) between the bubble generating means and the separating means. It is desirable that the bubble generating means and the separating means are simply directly connected by a pipe or the like so that the raw water can be directly sent to the separating means. If the above treatment process is interposed between the bubble generation means and the separation means, the fine bubbles in the raw water may disappear, and the effect of improving the filtration efficiency at the filtration membrane separation stage may be reduced. is there. However, for example, a rough filtration process using a filter with large pores or a floating separation process using large-sized air bubbles that are generated simultaneously with the generation of air bubbles can be performed while the fine bubbles in the raw water remain. For example, it may be interposed between the bubble generating means and the separating means.
[0017] また、原水中に生成した微細気泡の消滅を防ぐという観点からは、原水中に微細気 泡を生成させてから原水を加圧するよりも、あらかじめ原水を加圧した状態で原水中 に微細気泡を生成させておき、その加圧条件と同等乃至それよりもやや低い操作圧 で原水を濾過膜分離するほうが好ましい (請求項 3)。したがって、供給手段の経路上 にポンプ等の加圧手段を設ける場合には、気泡生成手段が加圧手段の下流側、つ まり加圧手段と分離手段との間に位置するように設けられるのが、より望ましい(請求 項 6、 7)。  [0017] From the viewpoint of preventing the disappearance of the fine bubbles generated in the raw water, rather than pressurizing the raw water after generating fine bubbles in the raw water, the raw water is previously pressurized in the raw water. It is preferable that fine bubbles are generated and the raw water is separated by filtration membrane at an operating pressure equivalent to or slightly lower than the pressurization condition (Claim 3). Therefore, when a pressurizing means such as a pump is provided on the path of the supply means, the bubble generating means is provided downstream of the pressurizing means, that is, between the pressurizing means and the separating means. Is more desirable (claims 6 and 7).
本発明の脱塩処理装置のさらなる構成 (請求項 8)としては、分離手段から排出され る濃縮水の圧力エネルギーが、気泡生成手段の駆動に利用されてもよい。こうして濃 縮水が有する高い圧力を有効活用することにより、脱塩処理装置全体の運転エネル ギーをさらに節約することができる。 As a further configuration of the desalting apparatus of the present invention (Claim 8), the pressure energy of the concentrated water discharged from the separating means may be used for driving the bubble generating means. By effectively utilizing the high pressure of concentrated water in this way, the operating energy of the entire desalination treatment equipment Gee can be further saved.
このように、本発明の要部は、濾過膜分離の前段階で原水中に微細気泡を生成す る点にある。その微細気泡は、濾過膜分離時の操作圧と同等以上の加圧条件下で 生成させるのが望ましい。気泡の生成方法としては、ベンチユリ効果を利用した生成 方法、旋回流を利用した生成方法、加圧溶解を利用した生成方法等が挙げられるが 、濾過分離の連続操作に対応できる気泡生成方法が好ましレ、。  As described above, the main part of the present invention is that fine bubbles are generated in the raw water before the filtration membrane separation. The fine bubbles are desirably generated under a pressure condition equal to or higher than the operation pressure at the time of filtration membrane separation. Examples of the bubble generation method include a generation method using a bench lily effect, a generation method using a swirl flow, a generation method using pressure dissolution, and the like. A bubble generation method that can support continuous operation of filtration and separation is preferable. Masle.
[0018] そこで、本発明は、加圧状態にある液体中に、連続的に一定量の微細気泡を生成 させることのできる気泡生成装置として、以下の技術的構成 (請求項 9)を採用する。  [0018] Therefore, the present invention employs the following technical configuration (claim 9) as a bubble generating device capable of continuously generating a certain amount of fine bubbles in a liquid in a pressurized state. .
[0019] すなわち、本発明の気泡生成装置は、加圧された液体が流れる管路に介装される ァスピレータと、該ァスビレータに接続される均圧容器とを具備し、ァスピレータは略 筒状をなし、その軸方向における一端部が管路の上流側に、他端部が管路の下流 側にそれぞれ接続され、筒内の上流側半部と下流側半部との間に絞り部が形成され てなり、均圧容器は、加圧された気体を均圧容器内に供給する給気路と、上記ァスピ レータの上流側半部内に連通する液通路とを有し、上記給気路を通じて圧容器内に 供給される気体と上記液通路を通じて均圧容器内に流入する液体とが均圧容器内 でァスピレータ内と略同圧の気相部及び液相部を形成するように構成され、上記気 相部の気体が、ァスピレータに接続された注気路を通じてァスピレータ内の絞り部下 流端部よりも上流側に注入されることにより、ァスピレータ内の液体中に微細気泡を 生成させることを特徴とする。  That is, the bubble generating device of the present invention includes an aspirator interposed in a pipe line through which a pressurized liquid flows, and a pressure equalizing container connected to the aspirator, and the aspirator has a substantially cylindrical shape. None, one end in the axial direction is connected to the upstream side of the pipe, the other end is connected to the downstream side of the pipe, and a throttle is formed between the upstream half and the downstream half in the cylinder Thus, the pressure equalizing vessel has an air supply passage for supplying pressurized gas into the pressure equalizing vessel, and a liquid passage communicating with the upstream half of the aspirator, through the air supply passage. The gas supplied into the pressure vessel and the liquid flowing into the pressure equalization vessel through the liquid passage form a gas phase portion and a liquid phase portion in the pressure equalization vessel that have substantially the same pressure as the inside of the aspirator. The gas in the gas phase part passes through the air supply path connected to the aspirator. It is injected upstream of the throttle subordinates upstream end portion by, characterized in that to generate fine bubbles in the liquid in the Asupireta of.
[0020] ここで、ァスピレータとは、流体を利用してベンチユリ効果によって減圧状態を作り 出すための、流路内に絞り部をもつ装置であり、旋回流や加圧溶解法と組合わせて 利用されることもある。この気泡生成装置における均圧容器は、液通路を通じて、ァ スピレータの上流側半部と常時、連通しており、該上流側半部内と同じ圧力に保持さ れる。この均圧容器内に気体を密閉すると、その気体と均圧容器内に流入した液体 とが圧力均衡を生じて、均圧容器内に略同圧の気相部及び液相部が形成される。そ の気相部内の空気を、注気路を通じてァスピレータの絞り部近傍に連通させると、絞 り部を通過する液体が奏するベンチユリ効果によって液体中に気体が連続的に供給 される。 [0021] すなわち、この発明は、加圧された液体の流路中にコンプレッサ等で直接的に気 体を供給するのではなぐ液体の流れによって流路内に気体が自給されるように構成 したものである。流路内の液圧は、ポンプの運転状況等により一定範囲内で変動す ることがある力 流路中にコンプレッサ等で直接的に気体を供給する方法では、液圧 の変動に応じて気体の供給量を制御しないと、気泡の生成量が不安定になる。本発 明の脱塩処理方法及び装置にお!/、ては、気泡の生成状態が濾過膜分離の有効圧 に影響を及ぼすので、気泡の生成量が不安定になるのは好ましくない。上記気泡生 成装置によれば、ァスピレータの上流側半部と均圧容器とが液通路を通じて連通す ることにより、均圧容器内の気相部及び液相部がァスピレータの上流側半部と常に圧 力均衡状態を保持し、一方で気相部は絞り部の下流端部よりも上流側のァスピレー タ減圧部とバランスするように気体が供給されるので、流路内の液圧が変動しても、 それに連動して常に一定量の気体が液体中に供給される。 [0020] Here, the aspirator is a device having a constricted portion in the flow path for creating a reduced pressure state by a bench lily effect using a fluid, and is used in combination with a swirling flow or a pressure dissolution method. Sometimes it is done. The pressure equalizing container in this bubble generating device is always in communication with the upstream half of the aspirator through the liquid passage, and is maintained at the same pressure as in the upstream half. When a gas is sealed in the pressure equalizing vessel, the gas and the liquid flowing into the pressure equalizing vessel create a pressure balance, and a gas phase portion and a liquid phase portion having substantially the same pressure are formed in the pressure equalizing vessel. . When the air in the gas phase part is communicated with the vicinity of the throttle part of the aspirator through the air supply passage, the gas is continuously supplied into the liquid by the bench lily effect produced by the liquid passing through the throttle part. That is, the present invention is configured such that the gas is self-supplied in the flow path by the flow of liquid rather than supplying the gas directly into the flow path of the pressurized liquid by a compressor or the like. Is. The hydraulic pressure in the flow path may fluctuate within a certain range depending on the operating condition of the pump, etc.In the method of supplying gas directly to the flow path with a compressor, etc., the gas pressure varies depending on the fluctuation of the hydraulic pressure. If the supply amount is not controlled, the amount of generated bubbles becomes unstable. In the desalination treatment method and apparatus according to the present invention, it is not preferable that the amount of generated bubbles becomes unstable because the generation state of bubbles affects the effective pressure of the filtration membrane separation. According to the bubble generating device, the upstream half of the aspirator and the pressure equalizing vessel communicate with each other through the liquid passage, so that the gas phase portion and the liquid phase portion in the pressure equalizing vessel are connected to the upstream half of the aspirator. The gas pressure is always maintained, while gas is supplied so that the gas phase is balanced with the aspirator pressure-reducing section upstream of the downstream end of the throttle section, so the fluid pressure in the flow path fluctuates. Even then, a certain amount of gas is always supplied into the liquid.
[0022] 上記の構成に係る気泡生成装置にお!/、て、均圧容器内への気体の供給は、一定 の圧力で連続的に行われる必要はない。適量の気体を均圧容器内に供給した後、 給気路を閉じれば、均圧容器内に閉じ込められた気体が無くなるまでの間、気相部 内の気体が注気路を通じてァスピレータ内に供給され続ける。均圧容器内の気体が 減少すると、気相部と液相部との界面が上昇するので、適当なタイミングで再度、給 気路を開いて、均圧容器内に気体を追加すればよい。こうして、気体を断続的に供 給するようにすれば、気体を加圧するためのポンプの運転エネルギーを節約すること 力できる。さらに、均圧容器の全体または一部を透明な材料で形成しておけば、給気 状況を視覚的にも確認しやすくなる。  [0022] In the bubble generating apparatus according to the above configuration, the gas supply into the pressure equalizing vessel does not need to be continuously performed at a constant pressure. After supplying an appropriate amount of gas into the pressure equalization vessel, if the air supply passage is closed, the gas in the gas phase will be supplied into the aspirator through the air supply passage until there is no more gas trapped in the pressure equalization vessel. Continue to be. When the gas in the pressure equalization vessel decreases, the interface between the gas phase portion and the liquid phase portion rises. Therefore, the gas supply path is opened again at an appropriate timing, and the gas may be added to the pressure equalization vessel. Thus, if the gas is supplied intermittently, it is possible to save the operating energy of the pump for pressurizing the gas. Furthermore, if all or part of the pressure equalization container is made of a transparent material, it will be easier to visually check the air supply status.
[0023] なお、ァスピレータ内での気泡の生成量は、主としてァスピレータ内の液圧、流速、 絞り部近傍の断面形状等によって決定されるが、均圧容器内の気相部とァスピレー タ内とを連通する注気路の内径や開口位置等にも影響される。よって、所望の気泡 生成状態を安定的に得るためには、例えば、注気路の途中に気体の流量を調整す る機能を設けたり、ァスピレータ内における注気路の開口位置を動かせるように構成 してもよい。  [0023] Note that the amount of bubbles generated in the aspirator is mainly determined by the hydraulic pressure, flow velocity, cross-sectional shape in the vicinity of the throttle portion, etc. in the aspirator. It is also affected by the inner diameter and opening position of the air passage that communicates with each other. Therefore, in order to stably obtain a desired bubble generation state, for example, a function for adjusting the gas flow rate is provided in the middle of the air supply path, or the opening position of the air supply path in the aspirator can be moved. May be.
発明の効果 [0024] 上述のように構成される本発明の脱塩処理方法及び脱塩処理装置によれば、濾過 分離操作時に気泡を作用させることで、原水側に作用させる操作圧を低くしても、従 来に比して実質的に高い有効圧が得られたり、同等の操作圧でより多くの水を透過さ せること力 Sでき、効率的に膜分離が行われる。したがって、従来よりも少ない運転エネ ルギ一で高い回収率を得ることができ、また、処理装置全体を従来よりも小型化、簡 素化することが容易になる。さらに、濾過膜に作用する操作圧の低下により、濾過膜 における耐圧負担の問題も大いに改善することができる。 The invention's effect [0024] According to the desalination treatment method and the desalination treatment apparatus of the present invention configured as described above, even if the operation pressure acting on the raw water side is lowered by causing bubbles to act during the filtration and separation operation, Effectively high effective pressure can be obtained compared to the conventional method, or more water can be permeated with the same operating pressure, and membrane separation can be performed efficiently. Therefore, a high recovery rate can be obtained with less operating energy than in the past, and the entire processing apparatus can be easily reduced in size and simplified. Furthermore, the reduction of the operating pressure acting on the filtration membrane can greatly improve the problem of pressure resistance in the filtration membrane.
[0025] また、本発明の気泡生成装置によれば、加圧状態にある塩水等の液体中に、面倒 な圧力調整操作等を要することなぐ少ないエネルギーで一定量の気泡を連続的に 生成させること力 Sできる。これにより、上記脱塩処理方法及び脱塩処理装置を効率的 に実施することができる。  [0025] Further, according to the bubble generating device of the present invention, a certain amount of bubbles is continuously generated in a liquid such as salt water in a pressurized state with less energy without requiring a troublesome pressure adjustment operation. That power S. As a result, the desalting treatment method and the desalting treatment apparatus can be carried out efficiently.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]本発明の第一実施形態に係る脱塩処理装置の概略構成図である。  FIG. 1 is a schematic configuration diagram of a desalting apparatus according to a first embodiment of the present invention.
[図 2]上記脱塩処理装置に用いられる気泡生成装置の一例を示す概略構成図であ  FIG. 2 is a schematic configuration diagram showing an example of a bubble generating device used in the desalting apparatus.
[図 3]本発明の第二実施形態に係る脱塩処理装置の概略構成図である。 FIG. 3 is a schematic configuration diagram of a desalting apparatus according to a second embodiment of the present invention.
[図 4]本発明の第三実施形態に係る脱塩処理装置の概略構成図である。  FIG. 4 is a schematic configuration diagram of a desalting apparatus according to a third embodiment of the present invention.
[図 5]本発明の実施形態に係る気泡生成装置の概略構成図である。  FIG. 5 is a schematic configuration diagram of a bubble generation device according to an embodiment of the present invention.
符号の説明  Explanation of symbols
[0027] 1 貯留槽 (貯留手段) [0027] 1 Reservoir (storage means)
2 供給パイプ (供給手段)  2 Supply pipe (supply means)
3 高圧ポンプ (加圧手段)  3 High pressure pump (Pressurizing means)
4 逆浸透膜モジュールユニット (分離手段)  4 Reverse osmosis membrane module unit (separation means)
8 気泡生成装置 (気泡生成手段)  8 Bubble generator (bubble generator)
100 気泡生成装置  100 Bubble generator
101 管路 (上流側)  101 pipeline (upstream side)
102 管路 (下流側)  102 pipeline (downstream)
110 ァスピレータ 113 絞り部 110 Aspirator 113 Aperture
120 均圧容器  120 pressure equalization vessel
121 給気路  121 Air supply path
122 液通路  122 Liquid passage
123 気相部  123 Gas phase
124 液相部  124 Liquid phase
125 注気路  125 Airway
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、本発明の実施形態について、図を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0029] 図 1は、本発明の第一実施形態に係る脱塩処理装置の概略構成を示す。貯留槽 1 には、原水として、例えば、不純物の除去や殺菌など適宜の前処理をした海水等が 貯留される。原水は、貯留槽 1に接続された供給パイプ 2を通じ、高圧ポンプ 3により 加圧されて、逆浸透膜モジュールユニット 4に送られる。この実施形態においては、 貯留槽 1が貯留手段を構成し、供給パイプ 2が供給手段を構成し、高圧ポンプ 3が加 圧手段を構成し、逆浸透膜モジュールユニット 4が分離手段を構成して!/、る。 [0029] FIG. 1 shows a schematic configuration of a desalting apparatus according to a first embodiment of the present invention. In the storage tank 1, as raw water, for example, seawater or the like that has been subjected to appropriate pretreatment such as removal of impurities or sterilization is stored. The raw water is pressurized by the high pressure pump 3 through the supply pipe 2 connected to the storage tank 1 and sent to the reverse osmosis membrane module unit 4. In this embodiment, the storage tank 1 constitutes a storage means, the supply pipe 2 constitutes a supply means, the high-pressure pump 3 constitutes a pressurization means, and the reverse osmosis membrane module unit 4 constitutes a separation means. ! /
[0030] 逆浸透膜モジュールユニット 4は、例えば、酢酸セルロース系やポリアミド系など公 知の材料力もなる逆浸透膜を、平膜スパイラル状、あるいは中空糸膜状など適宜公 知の形態に加工して圧力容器内に収容したもので、本発明においては特にその構 造は限定しない。 [0030] The reverse osmosis membrane module unit 4 is obtained by processing a reverse osmosis membrane having a known material strength such as cellulose acetate or polyamide into a known shape such as a flat spiral membrane or a hollow fiber membrane. The structure is not particularly limited in the present invention.
[0031] 逆浸透膜モジュールユニット 4の入口側には供給パイプ 2が接続される。逆浸透膜 モジュールユニット 4の出口側には、脱塩された精製水を取り出すための集水パイプ 5と、濃縮水を排出するための排出ノイプ 6が接続される。集水パイプ 5は精製水槽 7 に接続され、これ以降、図示しない後工程にて精製水の後処理が行われる。  A supply pipe 2 is connected to the inlet side of the reverse osmosis membrane module unit 4. The outlet side of the reverse osmosis membrane module unit 4 is connected to a water collection pipe 5 for taking out desalted purified water and a discharge nozzle 6 for discharging concentrated water. The water collecting pipe 5 is connected to the purified water tank 7, and after that, the purified water is post-treated in a post process (not shown).
本実施形態においては、貯留手段に気泡生成手段が設けられている。気泡生成 手段は、貯留槽 1内に設けられた、いわゆる「投入型」の気泡生成装置 8によって構 成される。ここで言う投入型の気泡生成装置とは、現水中に投入して気泡を生成する 装置である。ただし、例えば取水部のみを原水中に投入し、外部のポンプを経由して 気泡を含む原水を循環供給する装置も含む。かかる気泡生成装置 8の構成例を図 2 に示す。 In the present embodiment, bubble generating means is provided in the storage means. The bubble generating means is constituted by a so-called “fill-in” bubble generating device 8 provided in the storage tank 1. The throw-in type bubble generating device mentioned here is a device that generates bubbles by throwing it into the current water. However, for example, it also includes a device that feeds only raw water into raw water and circulates and supplies raw water containing bubbles via an external pump. A configuration example of such a bubble generating device 8 is shown in FIG. Shown in
[0032] 気泡生成装置 8の本体 81は長筒形状をなし、その一端(図示左端)が閉塞され、他 端(図示右端)が開口している。本体 81内の貫通孔 82は、閉塞端側の略半部が均 一断面の流入部 83となされ、開口端側の略半部が先端(図示右端)に向かってテー パ状に拡径した流出部 84となされており、流入部 83と流出部 84との境目には小径 の絞り部 85が形成されている。本体 81の途中部には、ポンプに接続された入口管 8 6が本体 81の長軸方向と直交するように接続され、この入口管 86から原水が流入部 83に注入される。  [0032] The main body 81 of the bubble generating device 8 has a long cylindrical shape, one end (the left end in the figure) is closed, and the other end (the right end in the figure) is opened. In the through hole 82 in the main body 81, the substantially half portion on the closed end side is an inflow portion 83 having a uniform cross section, and the substantially half portion on the open end side is enlarged in a taper shape toward the tip (right end in the figure). An outflow portion 84 is formed, and a narrow diameter constriction portion 85 is formed at the boundary between the inflow portion 83 and the outflow portion 84. An inlet pipe 86 connected to the pump is connected to the middle part of the main body 81 so as to be orthogonal to the longitudinal direction of the main body 81, and raw water is injected from the inlet pipe 86 into the inflow part 83.
[0033] また、閉塞端側には流入部 83内に突出する注気管 87が設けられ、図示しないプロ ヮから流入部 83に空気が注入される。流入部 83に空気とともに注入された原水の圧 力は、絞り部 85を通過することによって急激に低下し、絞り部 85の下流側である流出 部 84内に衝撃波を発生させる。これにより、原水中に混入された空気が微細化して 気泡になる。  [0033] In addition, an air supply pipe 87 protruding into the inflow portion 83 is provided on the closed end side, and air is injected into the inflow portion 83 from a professional tube (not shown). The pressure of the raw water injected into the inflow part 83 together with the air rapidly decreases by passing through the constriction part 85, and a shock wave is generated in the outflow part 84 on the downstream side of the constriction part 85. As a result, the air mixed in the raw water is refined into bubbles.
[0034] このような気泡生成装置 8を通じて貯留槽 1内の原水を循環させることにより、原水 内に微細気泡が連続的に生成される。原水は、微細気泡を含んだまま、高圧ポンプ 3を介して逆浸透膜モジュールユニット 4に送られ、脱塩処理が行われる。なお、投入 型の気泡生成装置としては、例示のような構造の装置以外にも、例えば、株式会社 多自然テクノワークス製の『ナノバブル DBON (商標)』や、株式会社二クニ製のバブ ルジェネレータ、株式会社協和機設製の『バヴィタス(商標)』など、公知の微細気泡 生成装置を利用することができる。  [0034] By circulating the raw water in the storage tank 1 through such a bubble generating device 8, fine bubbles are continuously generated in the raw water. The raw water is sent to the reverse osmosis membrane module unit 4 through the high-pressure pump 3 while containing fine bubbles, and desalting is performed. As the input type bubble generating device, in addition to the device having the structure as illustrated, for example, “Nano Bubble DBON (trademark)” manufactured by Tanano Techno Works Co., Ltd., or a bubble generator manufactured by Nikuni Co., Ltd. A well-known microbubble generator such as “Bavitas (trademark)” manufactured by Kyowa Kikai Co., Ltd. can be used.
図 3は、本発明の第二実施形態に係る脱塩処理装置の概略構成を示す。上記した 第一実施形態と共通する構成要素には共通の符号を付して、詳細な説明は省略す る。この実施形態においても、貯留槽 1が貯留手段を構成し、供給パイプ 2が供給手 段を構成し、高圧ポンプ 3が加圧手段を構成し、逆浸透膜モジュールユニット 4が分 離手段を構成している。  FIG. 3 shows a schematic configuration of a desalting apparatus according to the second embodiment of the present invention. Components common to the first embodiment described above are denoted by common reference numerals, and detailed description thereof is omitted. Also in this embodiment, the storage tank 1 constitutes a storage means, the supply pipe 2 constitutes a supply means, the high-pressure pump 3 constitutes a pressurization means, and the reverse osmosis membrane module unit 4 constitutes a separation means. is doing.
[0035] 本実施形態においては、気泡生成手段を構成する気泡発生装置 8が、供給パイプ  In the present embodiment, the bubble generating device 8 constituting the bubble generating means is connected to the supply pipe.
2の経路上の中間部、より詳細には、高圧ポンプ 3と逆浸透膜モジュールユニット 4と の間に設けられている。この形態に係る気泡生成装置 8は、いわゆる「インライン型」 である。このような構成に利用し得るインライン型の気泡生成装置としては、例えば、 西華産業株式会社製の OHRラインミキサー(スタティック型ミキサー)、オーラテック 社製のマイクロバブル発生ノズル等が公知である。また、高圧ポンプ 3と逆浸透膜モ ジュールユニット 4との間に適当な水槽又は容器(図示せず)を設け、その水槽又は 容器内に上述した投入型の気泡生成装置を設置するという構成で実施することも可 能である。 It is provided in the middle of the two paths, more specifically, between the high pressure pump 3 and the reverse osmosis membrane module unit 4. The bubble generating device 8 according to this embodiment is a so-called “inline type”. It is. As an in-line type bubble generating apparatus that can be used for such a configuration, for example, OHR line mixer (static type mixer) manufactured by Seika Sangyo Co., Ltd., micro bubble generating nozzle manufactured by Aura Tech Co., Ltd. and the like are known. In addition, an appropriate water tank or container (not shown) is provided between the high-pressure pump 3 and the reverse osmosis membrane module unit 4, and the above-mentioned input type bubble generating device is installed in the water tank or container. It can also be implemented.
図 4は、本発明の第三実施形態に係る脱塩処理装置の概略構成を示す。本実施 形態の基本的な構成は、上記第二実施形態と同様であり、貯留槽 1が貯留手段を構 成し、供給パイプ 2が供給手段を構成し、高圧ポンプ 3が加圧手段を構成し、逆浸透 膜モジュールユニット 4が分離手段を構成して!/、る。気泡生成手段を構成する気泡発 生装置 8は、高圧ポンプ 3と逆浸透膜モジュールユニット 4との間に設けられている。  FIG. 4 shows a schematic configuration of a desalting apparatus according to the third embodiment of the present invention. The basic configuration of this embodiment is the same as that of the second embodiment described above. The storage tank 1 constitutes a storage means, the supply pipe 2 constitutes a supply means, and the high-pressure pump 3 constitutes a pressurization means. The reverse osmosis membrane module unit 4 constitutes the separation means! The bubble generating device 8 constituting the bubble generating means is provided between the high pressure pump 3 and the reverse osmosis membrane module unit 4.
[0036] 本実施形態においては、逆浸透膜モジュールユニット 4の出口側に接続された排 出パイプ 6が気泡生成装置 8に接続され、さらに、気泡生成装置 8から圧力回収ター ビン 10へと接続されている。排出パイプ 6を通じて取り出された濃縮水の圧力エネル ギ一は、その一部が気泡生成装置 8において微細気泡を生成するための駆動力とし て利用される。さらに、残余の圧力エネルギーは、圧力回収タービン 10によって回収 され、供給パイプ 2を通じて供給される原水の昇圧に利用される。こうして、排出され る濃縮水の圧力エネルギーを有効活用することができる。  [0036] In the present embodiment, the discharge pipe 6 connected to the outlet side of the reverse osmosis membrane module unit 4 is connected to the bubble generating device 8, and further connected from the bubble generating device 8 to the pressure recovery turbine 10. Has been. A part of the pressure energy of the concentrated water taken out through the discharge pipe 6 is used as a driving force for generating fine bubbles in the bubble generating device 8. Further, the remaining pressure energy is recovered by the pressure recovery turbine 10 and used to boost the raw water supplied through the supply pipe 2. In this way, the pressure energy of the discharged concentrated water can be used effectively.
図 5は、上記第二実施形態や第三実施形態に示した脱塩処理装置において好適 に利用しうる、新規な気泡生成装置 100の構成を示す。  FIG. 5 shows a configuration of a novel bubble generating apparatus 100 that can be suitably used in the desalting apparatus shown in the second embodiment or the third embodiment.
[0037] 図 5において、符号 101、 102は、塩類を含む原水その他の液体が加圧された状 態で流れる管路である。この管路 101、 102の途中にァスピレータ 110が介装される [0037] In FIG. 5, reference numerals 101 and 102 denote conduits through which raw water or other liquid containing salts flows in a pressurized state. The aspirator 110 is installed in the middle of the pipe lines 101 and 102.
Yes
[0038] ァスピレータ 110は、略円筒状をなす耐圧容器によって形成され、その軸方向にお ける一端部が上流側の管路 101に、他端部が下流側の管路 102に、それぞれ接続 されている。ァスピレータ 110の内部には、上流側から下流側にかけて順に、容器の 断面積と略同一の一様断面積を有する上流側定常部 111と、断面積が一定の傾斜 で減少するテーパ状の縮小部 112と、縮小された断面積が一定寸法わたって連続 する絞り部 113と、断面積が一定の傾斜で増大するテーパ状の拡大部 114と、容器 の断面積と略同一の一様断面積を有する下流側定常部 115とが、同軸上に連続す るように形成されている。本発明においては、絞り部 113を境にして区分されたうちの 上流側、つまり上流側定常部 111及び縮小部 112を合わせて上流側半部と呼び、下 流側、つまり拡大部 114及び下流側定常部 115を合わせて下流側半部と呼ぶ。ただ し、それら上流側半部と下流側半部の軸長は、必ずしも同じでなくてよい。 [0038] The aspirator 110 is formed of a substantially cylindrical pressure vessel, and one end in the axial direction thereof is connected to the upstream pipe 101 and the other end is connected to the downstream pipe 102. ing. Inside the aspirator 110, in order from the upstream side to the downstream side, an upstream steady portion 111 having a uniform cross-sectional area substantially the same as the cross-sectional area of the container, and a tapered reduced portion in which the cross-sectional area decreases at a constant inclination. 112 and the reduced cross-sectional area is continuous over a certain dimension The constricted portion 113, the tapered enlarged portion 114 whose cross-sectional area increases at a constant inclination, and the downstream steady portion 115 having a uniform cross-sectional area substantially the same as the cross-sectional area of the container are coaxially continuous. It is formed so that. In the present invention, the upstream side, that is, the upstream steady portion 111 and the contracting portion 112, which are divided from the throttle portion 113 as a boundary, are collectively referred to as the upstream half, and the downstream side, that is, the expanding portion 114 and the downstream portion. The side stationary part 115 is collectively referred to as a downstream half part. However, the axial lengths of the upstream half and the downstream half are not necessarily the same.
[0039] ァスピレータ 110の外部には均圧容器 120が接続される。例示形態における均圧 容器 120は略円筒状をなし、その軸方向をァスピレータ 110の軸方向と略並行にし て、容器の底部をァスピレータ 110の上部に接するように取り付けられている。  A pressure equalizing vessel 120 is connected to the outside of the aspirator 110. The pressure equalizing container 120 in the illustrated embodiment is substantially cylindrical, and is attached so that the bottom of the container is in contact with the top of the aspirator 110 with its axial direction being substantially parallel to the axial direction of the aspirator 110.
[0040] 均圧容器 120には給気路 121が接続されている。この給気路 121を通じて、図示し ない加圧ポンプ等により加圧された空気その他の気体が均圧容器 120内に供給され る。給気路 121は、図示しない開閉弁等の操作によって、通気状態と閉止状態とを任 意に切り替えることができるようになつている。  [0040] An air supply path 121 is connected to the pressure equalizing vessel 120. Air or other gas pressurized by a pressure pump (not shown) or the like is supplied into the pressure equalizing vessel 120 through the air supply path 121. The air supply path 121 can be arbitrarily switched between a ventilation state and a closed state by operating an on-off valve (not shown) or the like.
[0041] また、均圧容器 120とァスピレータ 110とが接する部分を貫通するようにして、均圧 容器 120とァスピレータ 110の上流側半部とを連通する液通路 122とが設けられてい る。この液通路 122は常時、開通しており、この液通路 122を通じて、ァスピレータ 11 0の上流側半部内の液体が均圧容器 120内に流入する。  [0041] In addition, a liquid passage 122 that connects the pressure equalizing vessel 120 and the upstream half of the aspirator 110 is provided so as to penetrate a portion where the pressure equalizing vessel 120 and the aspirator 110 are in contact with each other. The liquid passage 122 is always open, and the liquid in the upstream half of the aspirator 110 flows into the pressure equalizing vessel 120 through the liquid passage 122.
[0042] 給気路 121を通じて均圧容器 120内に適量の気体が供給された後、給気路 121が 閉じられると、均圧容器 120内に密閉された気体と、液通路 122を通じて均圧容器 1 20内に流入する液体とが圧力均衡を生じて、均圧容器 120内に略同圧の気相部 12 3及び液相部 124が形成される。  [0042] After an appropriate amount of gas has been supplied into the pressure equalizing vessel 120 through the air supply passage 121, when the air supply passage 121 is closed, the gas sealed in the pressure equalizing vessel 120 and the pressure equalized through the liquid passage 122 The liquid flowing into the container 120 creates a pressure balance, and a gas phase part 123 and a liquid phase part 124 having substantially the same pressure are formed in the pressure equalizing container 120.
[0043] そして、上記気相部 123の気体が、注気路 125を通じてァスピレータ 110内に導入 される。注気路 125は、その一端部が均圧容器 120内の上部に開口して気相部 123 に臨み、他端部がァスピレータ 110における絞り部 113の上端部寄りの位置に開口 している。ァスピレータ 110内の液体が絞り部 113を通過する際、ベンチユリ効果によ つて絞り部 113内に負圧が生じる。その負圧により、気相部 123内の気体が注気路 1 25を通じてァスピレータ 110内に引き込まれ、絞り部 113を通過して微細気泡を生じ [0044] この気泡生成装置 100では、均圧容器 120内に気体を一定の圧力で連続的に供 給する必要がない。適量の気体を均圧容器 120内に供給した後、給気路 121を閉じ れば、均圧容器 120内に閉じ込められた気体が無くなるまで気相部 123と液相部 12 4との圧力均衡状態が保持される。気相部 123内の気体はァスピレータ 110内に少し ずつ供給され、気相部 123と液相部 124との界面が徐々に上昇するので、適当なタ イミングで再度、給気路 121を開いて、均圧容器 120内に気体を追加すればよい。こ うして、均圧容器 120に対しては気体を断続的に供給することにより、気体を加圧す るためのポンプの運転エネルギーを節約することができる。また、液体の圧力が、例 えば数%程度の幅で変動したとしても、それに合わせて気体の供給圧力を頻繁に調 整する必要がなぐ一定の供給圧力を保持すれば足りる。 [0043] The gas in the gas phase section 123 is introduced into the aspirator 110 through the air inlet path 125. One end of the air supply path 125 opens to the upper part of the pressure equalizing vessel 120 and faces the gas phase part 123, and the other end opens to a position near the upper end of the throttle 113 in the aspirator 110. When the liquid in the aspirator 110 passes through the throttle 113, a negative pressure is generated in the throttle 113 due to the bench-lily effect. Due to the negative pressure, the gas in the gas phase section 123 is drawn into the aspirator 110 through the air inlet path 125 and passes through the throttle section 113 to generate fine bubbles. [0044] In the bubble generating device 100, it is not necessary to continuously supply the gas into the pressure equalizing vessel 120 at a constant pressure. After supplying an appropriate amount of gas into the pressure equalizing vessel 120, if the air supply passage 121 is closed, the pressure balance between the gas phase portion 123 and the liquid phase portion 124 until the gas trapped in the pressure equalizing vessel 120 disappears. State is maintained. The gas in the gas phase section 123 is gradually supplied into the aspirator 110, and the interface between the gas phase section 123 and the liquid phase section 124 gradually rises. Therefore, the air supply path 121 is opened again at an appropriate timing. A gas may be added to the pressure equalizing vessel 120. Thus, by intermittently supplying the gas to the pressure equalizing vessel 120, it is possible to save the operating energy of the pump for pressurizing the gas. Moreover, even if the liquid pressure fluctuates within a range of, for example, several percent, it is sufficient to maintain a constant supply pressure that does not require frequent adjustment of the gas supply pressure.
[0045] なお、上記の実施形態は一例であり、本発明は、流体に生じる作用効果が同等に なる範囲内で、形態を若干、変更して実施することもできる。例えば、均圧容器 120 をァスピレータ 110に対して直接、取り付けるのではなぐ均圧容器 120をァスピレー タ 110から離隔させて配置し、液通路 122や注気路 125を延長させて接続してもよい 。また、注気路 125は、例示形態のように液相部 124内を経由させず、均圧容器 120 の外側に引き出されてからァスピレータ 110に接続されてもよい。  Note that the above-described embodiment is an example, and the present invention can be implemented by slightly changing the form within a range where the effects produced in the fluid are equivalent. For example, the pressure equalizing vessel 120 may not be directly attached to the aspirator 110, but the pressure equalizing vessel 120 may be arranged separately from the aspirator 110, and the liquid passage 122 and the air intake passage 125 may be extended and connected. . In addition, the air supply passage 125 may be connected to the aspirator 110 after being drawn out of the pressure equalizing vessel 120 without passing through the liquid phase portion 124 as in the exemplary embodiment.
[0046] ァスピレータ 110内での気泡の生成量や、生成される気泡の粒径は、ァスピレータ 110内の液圧、流速、絞り部 113近傍の断面形状のほか、注気路 125の内径ゃァス ビレータ内への開口位置等によって規定される。これら複数種類の設計要素は、必 要とする気泡の生成量や粒径に応じて、適宜、選択的に決定されればよい。ァスピレ ータ 110内への注気路 125の開口位置は、縮小部 112の近傍から絞り部 113の下 流端部(絞り部 113と拡大部 114との境目)までの範囲内であればよいが、その開口 位置をァスピレータ 110の軸方向に沿って動かせるようにしたり、注気路 125の途中 に気体の流量を調整する機能を設けたりしてもよい。  [0046] The amount of bubbles generated in the aspirator 110 and the particle size of the generated bubbles are determined not only by the hydraulic pressure and flow velocity in the aspirator 110, the cross-sectional shape in the vicinity of the throttle 113, but also the inner diameter of the air inlet passage 125. It is defined by the opening position etc. in the vibrator. These plural types of design elements may be selectively determined as appropriate according to the required amount of bubbles generated and the particle size. The opening position of the air injection path 125 into the aspirator 110 may be within the range from the vicinity of the reduction part 112 to the downstream end of the throttle part 113 (the boundary between the throttle part 113 and the enlarged part 114). However, the opening position may be moved along the axial direction of the aspirator 110, or a function of adjusting the gas flow rate may be provided in the air supply passage 125.
実施例  Example
[0047] 上記実施形態の脱塩処理装置による実施例を以下に示す。  [0047] An example of the desalting apparatus of the above embodiment will be described below.
[0048] [実施例 1] [0048] [Example 1]
実施例 1として、第一実施形態(図 1)の構成に力、かる脱塩処理装置により実施した 。原水には、蒸留水に塩を添加して塩濃度 0. 1 %に調整した塩水を用いた。図 2に 示すような気泡生成装置 8を貯留槽 1内に投入し、原水 20L (リットル)に対して毎分 約 1Lの空気を 5分間送り込みながら原水を循環させ続けることにより、原水中に微細 気泡を生成した。 As Example 1, it was carried out by the desalting apparatus which applied the power to the configuration of the first embodiment (FIG. 1). . As raw water, salt water adjusted to a salt concentration of 0.1% by adding salt to distilled water was used. A bubble generator 8 as shown in Fig. 2 is put into the storage tank 1, and about 1L of air is sent to 20L (liter) of raw water every minute for 5 minutes while continuing to circulate the raw water. Bubbles were generated.
[0049] そして、上記の原水を高圧ポンプ 3で 0. 2MPaまで加圧し、逆浸透膜モジュールュ ニット 4に供給した。逆浸透膜モジュールユニット 4には、 日東電工株式会社製の低 圧スパイラル型 ROエレメント『NTR— 759HR』を 1基用いた。この脱塩処理装置の 運転により、塩濃度 0. 01 %以下の精製水を得ることができた。このときの膜面積当た りの処理量は 8L/hr'm2であった。 Then, the raw water was pressurized to 0.2 MPa with the high-pressure pump 3 and supplied to the reverse osmosis membrane module unit 4. For the reverse osmosis membrane module unit 4, one low pressure spiral RO element “NTR-759HR” manufactured by Nitto Denko Corporation was used. Purified water with a salt concentration of 0.01% or less could be obtained through the operation of this desalination treatment equipment. The treatment amount per membrane area at this time was 8 L / hr'm 2 .
[0050] [比較例 1]  [0050] [Comparative Example 1]
また、比較例 1として、上記実施例 1と同様の装置構成において気泡生成装置 8を 一切運転せず、微細気泡を含まない原水に対し、同じ 0. 2MPaの操作圧で脱塩処 理を行った。その結果、塩濃度 0. 01 %以下の精製水を得ることができた力 このとき の膜面積当たりの処理量は 5L/hr'm2であった。 Further, as Comparative Example 1, in the same apparatus configuration as in Example 1 above, the bubble generating device 8 was not operated at all, and the raw water containing no fine bubbles was subjected to desalting treatment at the same operating pressure of 0.2 MPa. It was. As a result, it was possible to obtain purified water having a salt concentration of 0.01% or less. The treatment amount per membrane area at this time was 5 L / hr'm 2 .
[実施例 2]  [Example 2]
実施例 2として、第二実施形態(図 3)の構成に力、かる脱塩処理装置により実施した 。原水には、蒸留水に塩を添加して、塩濃度 3. 5%に調整した塩水を用いた。上記 の原水を高圧ポンプで 3. 2MPaまで加圧した状態で気泡生成装置 8に接続し、カロ 圧条件下で原水 10Lに対して毎分約 1Lの空気を送り込み、原水中に微細気泡を生 成した。  Example 2 was carried out by a desalting apparatus that applied power to the configuration of the second embodiment (FIG. 3). The raw water used was salt water adjusted to a salt concentration of 3.5% by adding salt to distilled water. The above raw water is pressurized to 3.2 MPa with a high-pressure pump and connected to the bubble generating device 8, and approximately 1 L of air is sent to 10 L of raw water per minute under the caloric pressure condition to generate fine bubbles in the raw water. Made.
[0051] そして、 3. 2MPaの圧力を保持したまま、原水を逆浸透膜モジュールユニット 4に 供給した。逆浸透膜モジュールユニット 4には、 日東電工株式会社製の低圧スパイラ ル型 ROエレメント『NTR—759HR』を 1基用いた。この脱塩処理装置の運転により、 塩濃度 0. 1 %以下の精製水を得ることができた。このときの膜面積当たりの処理量は 25L hr'm2であつに。 [0051] Then, the raw water was supplied to the reverse osmosis membrane module unit 4 while maintaining the pressure of 2 MPa. The reverse osmosis membrane module unit 4 uses one low pressure spiral RO element “NTR-759HR” manufactured by Nitto Denko Corporation. Purified water with a salt concentration of 0.1% or less could be obtained through the operation of this desalting apparatus. Throughput per membrane area in this case the thickness is 25L hr'm 2.
[0052] [比較例 2]  [0052] [Comparative Example 2]
上記実施例 2に対する比較例 2として、上記実施例 2と同様の装置構成において気 泡生成装置 8を一切運転せず、微細気泡を含まない原水に対し、同じ 3. 2MPaの操 作圧で脱塩処理を行った。しかし、原水は逆浸透膜モジュールユニット 4を透過せず 、精製水は得られなかった。 As Comparative Example 2 with respect to Example 2 above, in the same apparatus configuration as in Example 2 above, the bubble generating device 8 was not operated at all, and the same 3.2 MPa operation was performed on raw water containing no fine bubbles. Desalination treatment was performed under pressure. However, the raw water did not pass through the reverse osmosis membrane module unit 4 and purified water could not be obtained.
[実施例 3]  [Example 3]
実施例 3として、第二実施形態(図 3)の構成に力、かる脱塩処理装置により実施した 。原水には、蒸留水に塩を添加して、塩濃度 0. 1 %に調整した塩水を用いた。上記 の原水を高圧ポンプで IMPaまで加圧した状態で気泡生成装置 8に接続し、加圧条 件下で原水 10Lに対して毎分約 1Lの空気を送り込み、原水中に微細気泡を生成し た。  Example 3 was carried out with a desalting apparatus that was effective in the configuration of the second embodiment (FIG. 3). As raw water, salt water adjusted to a salt concentration of 0.1% by adding salt to distilled water was used. The above raw water is pressurized to IMPa with a high-pressure pump and connected to the bubble generating device 8, and about 1L of air is sent to 10L of raw water per minute under pressurized conditions to generate fine bubbles in the raw water. It was.
[0053] そして、 IMPaの圧力を保持したまま、原水を逆浸透膜モジュールユニット 4に供給 した。逆浸透膜モジュールユニット 4には、 日東電工株式会社製の低圧スパイラル型 ROエレメント『NTR— 759HR』を 1基用いた。この脱塩処理装置の運転により、塩濃 度 0. 01 %以下の精製水を得ることができた。このときの膜面積当たりの処理量は 60 L hr'mであった。  [0053] Then, the raw water was supplied to the reverse osmosis membrane module unit 4 while maintaining the pressure of IMPa. The reverse osmosis membrane module unit 4 used a single low-pressure spiral RO element “NTR-759HR” manufactured by Nitto Denko Corporation. By operating the desalting apparatus, purified water having a salt concentration of 0.01% or less could be obtained. The throughput per membrane area at this time was 60 L hr'm.
[0054] [比較例 3]  [0054] [Comparative Example 3]
上記実施例 3に対する比較例 3として、上記実施例 3と同様の装置構成において気 泡生成装置 8を一切運転せず、微細気泡を含まない原水に対し、同じ IMPaの操作 圧で脱塩処理を行った。原水は逆浸透膜モジュールユニット 4を透過した力 S、このとき の膜面積当たりの処理量は 35L/hr'm2であった。 As Comparative Example 3 with respect to Example 3 above, in the same apparatus configuration as in Example 3 above, the bubble generating device 8 was not operated at all, and the raw water containing no fine bubbles was subjected to desalting treatment at the same operating pressure of IMPa. went. The raw water had a force S that passed through the reverse osmosis membrane module unit 4, and the treatment amount per membrane area at this time was 35 L / hr'm 2 .
上記各実施例及び比較例により、本発明の脱塩処理方法及び脱塩処理装置が、 逆浸透膜処理における処理効率を確実に向上させることが確認された。  From the above examples and comparative examples, it was confirmed that the desalination treatment method and the desalination treatment apparatus of the present invention reliably improve the treatment efficiency in the reverse osmosis membrane treatment.
産業上の利用可能性  Industrial applicability
[0055] 本発明の脱塩処理方法及び脱塩処理装置は、海水の淡水化のほか、湖水、河川 水、雨水などの自然水や、種々無機塩類等の混合溶液から水以外の不純物を除去 して、工業用、農業用、飲用等の真水を得る技術に幅広く利用することができる。  [0055] The desalination treatment method and desalination treatment apparatus of the present invention remove seawater desalination, impurities other than water from natural water such as lake water, river water, rainwater, and mixed solutions of various inorganic salts. Thus, it can be widely used in technologies for obtaining fresh water for industrial use, agricultural use, drinking and the like.
[0056] また、本発明の気泡生成装置は、上記のような脱塩処理方法及び脱塩処理装置の 実施に好適に利用することができるほか、一般的な水質浄化、水棲生物の飼育、健 康飲料の製造や気泡を利用する健康器具等にも幅広く利用することができる。  [0056] Further, the bubble generating apparatus of the present invention can be suitably used for the implementation of the desalinating treatment method and desalinating apparatus as described above, as well as general water purification, breeding of aquatic organisms, health It can also be widely used in the manufacture of health drinks and health appliances that use air bubbles.

Claims

請求の範囲 The scope of the claims
[1] 塩類を含む原水中に微細気泡を生成させ、該微細気泡を含んだ原水を濾過膜分 離して水を得ることを特徴とする脱塩処理方法。  [1] A desalting treatment method characterized in that fine bubbles are generated in raw water containing salts, and the raw water containing fine bubbles is separated by a filtration membrane to obtain water.
[2] 請求項 1に記載の脱塩処理方法において、濾過膜が逆浸透膜であることを特徴と する脱塩処理方法。  [2] The desalting method according to claim 1, wherein the filtration membrane is a reverse osmosis membrane.
[3] 請求項 1又は 2に記載の脱塩処理方法において、原水を加圧した状態で原水中に 微細気泡を生成させ、その加圧条件と同等乃至それ以下の操作圧で原水を濾過膜 分離することを特徴とする脱塩処理方法。  [3] In the desalination treatment method according to claim 1 or 2, fine bubbles are generated in the raw water in a state where the raw water is pressurized, and the raw water is filtered through an operation pressure equal to or lower than the pressure condition. A desalting method characterized by separating.
[4] 塩類等を含む原水の貯留手段、加圧手段、及び供給手段と、 [4] Raw water storage means including salt, pressurization means, and supply means;
上記貯留手段、加圧手段、及び供給手段を通じて供給される原水中に微細気泡を 生成させる気泡生成手段と、  Bubble generating means for generating fine bubbles in the raw water supplied through the storage means, pressurizing means, and supply means;
上記気泡生成手段の下流側に設けられて上記微細気泡を含む原水を濾過膜分離 する分離手段と、を備えることを特徴とする脱塩処理装置。  A demineralization processing apparatus, comprising: a separation unit that is provided downstream of the bubble generation unit and separates the raw water containing the fine bubbles through a filtration membrane.
[5] 請求項 4に記載の脱塩処理装置において、分離手段の濾過膜が逆浸透膜であるこ とを特徴とする脱塩処理装置。 [5] The desalinating apparatus according to claim 4, wherein the filtration membrane of the separating means is a reverse osmosis membrane.
[6] 請求項 4に記載の脱塩処理装置において、気泡生成手段が加圧手段と分離手段 との間に設けられたことを特徴とする脱塩処理装置。 6. The desalinating apparatus according to claim 4, wherein the bubble generating means is provided between the pressurizing means and the separating means.
[7] 請求項 5に記載の脱塩処理装置において、気泡生成手段が加圧手段と分離手段 との間に設けられたことを特徴とする脱塩処理装置。 7. The desalinating apparatus according to claim 5, wherein the bubble generating means is provided between the pressurizing means and the separating means.
[8] 請求項 4〜7のいずれかに記載の脱塩処理装置において、分離手段から排出され る濃縮水の圧力エネルギーが気泡生成手段の駆動に利用されることを特徴とする脱 塩処理装置。 [8] The desalinating apparatus according to any one of claims 4 to 7, wherein the pressure energy of the concentrated water discharged from the separating means is used for driving the bubble generating means. .
[9] 加圧された液体が流れる管路に介装されるァスピレータと、該ァスビレータに接続さ れる均圧容器とを具備し、  [9] An aspirator interposed in a conduit through which pressurized liquid flows, and a pressure equalizing vessel connected to the aspirator,
ァスピレータは略筒状をなし、その軸方向における一端部が管路の上流側に、他 端部が管路の下流側にそれぞれ接続され、筒内の上流側半部と下流側半部との間 に絞り部が形成されてなり、  The aspirator has a substantially cylindrical shape, and one end in the axial direction is connected to the upstream side of the pipe, and the other end is connected to the downstream side of the pipe, and the upstream half and the downstream half of the pipe are connected to each other. A constricted part is formed between them,
均圧容器は、加圧された気体を均圧容器内に供給する給気路と、上記ァスピレー タの上流側半部内に連通する液通路とを有し、上記給気路を通じて圧容器内に供給 される気体と上記液通路を通じて均圧容器内に流入する液体とが均圧容器内でァス ビレータ内と略同圧の気相部及び液相部を形成するように構成され、上記気相部の 気体が、ァスピレータに接続された注気路を通じてァスピレータ内の絞り部下流端部 よりも上流側に注入されることにより、ァスピレータ内の液体中に微細気泡を生成させ ることを特徴とする気泡生成装置。 The pressure equalization container includes an air supply path for supplying pressurized gas into the pressure equalization container, and the above-mentioned aspirator. A gas passage communicating with the upstream half of the gas, and the gas supplied into the pressure vessel through the air supply passage and the liquid flowing into the pressure equalization vessel through the liquid passage are stored in the pressure equalization vessel. The gas phase portion and the liquid phase portion are formed at substantially the same pressure as the inside of the vibrator, and the gas in the gas phase portion is more than the downstream end portion of the throttle portion in the aspirator through the air supply path connected to the aspirator. A bubble generating device characterized by generating fine bubbles in a liquid in an aspirator by being injected upstream.
PCT/JP2007/070126 2006-10-30 2007-10-16 Method of desalting, apparatus for desalting, and bubble generator WO2008053700A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006294310 2006-10-30
JP2006-294310 2006-10-30
JP2007-127772 2007-05-14
JP2007127772 2007-05-14

Publications (1)

Publication Number Publication Date
WO2008053700A1 true WO2008053700A1 (en) 2008-05-08

Family

ID=39344044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070126 WO2008053700A1 (en) 2006-10-30 2007-10-16 Method of desalting, apparatus for desalting, and bubble generator

Country Status (2)

Country Link
JP (1) JP2008307522A (en)
WO (1) WO2008053700A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064039A (en) * 2008-09-12 2010-03-25 Mitsubishi Rayon Eng Co Ltd Apparatus and method for treating wastewater
CN102107961A (en) * 2010-11-22 2011-06-29 甘肃省灌溉试验培训中心 Drinking water quality purifying system
WO2012111731A1 (en) * 2011-02-17 2012-08-23 株式会社日立プラントテクノロジー Compound desalination system
WO2014132069A2 (en) * 2013-02-28 2014-09-04 Genesys International Limited Reverse osmosis and nanofiltration membrane cleaning
JP2020040001A (en) * 2018-09-07 2020-03-19 株式会社東芝 Water treatment system, and water treatment method
JP2020124668A (en) * 2019-02-04 2020-08-20 株式会社東芝 Water treatment system and water treatment method
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134551A1 (en) * 2009-05-19 2010-11-25 パナソニック電工株式会社 Gas-liquid mixture
JP2011062632A (en) * 2009-09-16 2011-03-31 Kobelco Eco-Solutions Co Ltd Method and apparatus for treating water using fine air bubbles
JP5401403B2 (en) * 2010-06-15 2014-01-29 セントラルフィルター工業株式会社 Solid recovery method
CN105688674A (en) * 2016-03-15 2016-06-22 北京水润京华环保科技发展有限公司 Membrane treatment process device and processing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137196U (en) * 1974-04-26 1975-11-12
JPS526045U (en) * 1975-06-30 1977-01-17
JPS5853203U (en) * 1981-10-02 1983-04-11 バブコツク日立株式会社 reverse osmosis equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137196U (en) * 1974-04-26 1975-11-12
JPS526045U (en) * 1975-06-30 1977-01-17
JPS5853203U (en) * 1981-10-02 1983-04-11 バブコツク日立株式会社 reverse osmosis equipment

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064039A (en) * 2008-09-12 2010-03-25 Mitsubishi Rayon Eng Co Ltd Apparatus and method for treating wastewater
CN102107961A (en) * 2010-11-22 2011-06-29 甘肃省灌溉试验培训中心 Drinking water quality purifying system
WO2012111731A1 (en) * 2011-02-17 2012-08-23 株式会社日立プラントテクノロジー Compound desalination system
JP2012170841A (en) * 2011-02-17 2012-09-10 Hitachi Plant Technologies Ltd Compound desalination system
CN103370280A (en) * 2011-02-17 2013-10-23 株式会社日立制作所 Compound desalination system
WO2014132069A2 (en) * 2013-02-28 2014-09-04 Genesys International Limited Reverse osmosis and nanofiltration membrane cleaning
WO2014132069A3 (en) * 2013-02-28 2014-10-23 Genesys International Limited Reverse osmosis and nanofiltration membrane cleaning
JP7118823B2 (en) 2018-09-07 2022-08-16 株式会社東芝 Water treatment system and water treatment method
JP2020040001A (en) * 2018-09-07 2020-03-19 株式会社東芝 Water treatment system, and water treatment method
JP2020124668A (en) * 2019-02-04 2020-08-20 株式会社東芝 Water treatment system and water treatment method
JP7106465B2 (en) 2019-02-04 2022-07-26 株式会社東芝 Water treatment system and water treatment method
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Also Published As

Publication number Publication date
JP2008307522A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
WO2008053700A1 (en) Method of desalting, apparatus for desalting, and bubble generator
JP2009148673A (en) Membrane separation apparatus and desalination method
JP5549589B2 (en) Fresh water system
US20150158744A1 (en) Fresh water producing apparatus and method for operating same
JP2005524520A (en) Two-stage nanofiltration seawater desalination system
Park Effect of ozonation for reducing membrane-fouling in the UF membrane
JP5488466B2 (en) Fresh water generator
US20210001273A1 (en) Methods, systems, and compositions for delivery of nanobubbles in water treatment systems
KR20110067748A (en) Dual osmosis device and desalination method using such device
JP2015077530A (en) Water production method and water production device
JP2011083764A (en) Method for operating water purification system and water purification system
US20160023166A1 (en) System for cleaning a membrane
JP2003200160A (en) Water making method and water making apparatus
US20110263009A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JP5587223B2 (en) Combined desalination system
CN110573460B (en) Process and system for supplying injection water of low salt concentration
JP7044848B1 (en) Liquid treatment equipment, pure water production system and liquid treatment method
Kwon et al. Fouling control of a submerged membrane module (YEF) by filtration modes
JP2003117552A (en) Desalination apparatus
JP5435545B2 (en) Desalting method
US20240051848A1 (en) Method for Purifying Contaminated Water
JP7106465B2 (en) Water treatment system and water treatment method
WO2023144411A1 (en) Water treatment method and system
JP2001252660A (en) Fresh water generating method
JP2014117645A (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829860

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829860

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)