JP2018087542A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2018087542A
JP2018087542A JP2016231808A JP2016231808A JP2018087542A JP 2018087542 A JP2018087542 A JP 2018087542A JP 2016231808 A JP2016231808 A JP 2016231808A JP 2016231808 A JP2016231808 A JP 2016231808A JP 2018087542 A JP2018087542 A JP 2018087542A
Authority
JP
Japan
Prior art keywords
urea water
sulfur poisoning
catalyst
selective reduction
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016231808A
Other languages
Japanese (ja)
Inventor
亮二 加藤
Ryoji Kato
亮二 加藤
晶士 ▲高▼橋
晶士 ▲高▼橋
Masashi Takahashi
佐藤 大祐
Daisuke Sato
大祐 佐藤
川島 一仁
Kazuhito Kawashima
川島  一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2016231808A priority Critical patent/JP2018087542A/en
Publication of JP2018087542A publication Critical patent/JP2018087542A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the discharge of ammonia by restoring sulfur poisoning with the supply of a minimum necessary amount of urea water.SOLUTION: When a temperature of a catalyst (NOx occlusion catalyst 4) is raised for the purpose of regeneration, a supply amount of urea water is limited (reduced or stopped) in a situation that an exhaust temperature becomes sufficiently high, the supply of the urea water at the restoration of the sulfur poisoning of a selective reduction catalyst 11 is suppressed (the lowering of the exhaust temperature caused by latent heat is suppressed), the generation of a sulfur component (ammonium salt of sulfuric acid) which is dissolved at a low temperature is suppressed, and a sulfur component (sulfate of copper) which is dissolved at a high temperature is dissolved, thus restoring sulfur poisoning.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の排気ガスの窒素酸化物(NOx)を低減する排気浄化装置に関する。   The present invention relates to an exhaust purification device that reduces nitrogen oxides (NOx) in exhaust gas of an internal combustion engine.

内燃機関(エンジン)の排気ガスに含まれる窒素酸化物(NOx)を低減する技術として、尿素選択還元(Selective Catalytic Reduction)システムを用いた排気浄化装置が知られている。選択還元システムを用いた排気浄化装置は、選択還元触媒が設けられた排気通路内に尿素水が噴射されることで、尿素水が排気ガスの熱により分解されてアンモニアが生成され、生成されたアンモニアが選択還元触媒上で排気ガス中のNOxと反応し、NOxが窒素と水に還元(浄化)される装置である。   As a technique for reducing nitrogen oxide (NOx) contained in exhaust gas of an internal combustion engine (engine), an exhaust purification device using a selective catalytic reduction system is known. The exhaust gas purification apparatus using the selective reduction system is produced by injecting urea water into the exhaust passage provided with the selective reduction catalyst, whereby the urea water is decomposed by the heat of the exhaust gas to generate ammonia. Ammonia reacts with NOx in the exhaust gas on the selective reduction catalyst, and NOx is reduced (purified) into nitrogen and water.

上述した排気浄化装置では、運転が継続すると、選択還元触媒に燃料中の硫黄分が付着する硫黄被毒が生じる。選択還元触媒に硫黄被毒が生じると、NOxの浄化性能が低下するため、選択還元触媒の硫黄被毒を回復させるための被毒回復運転が実施されている(例えば、特許文献1参照)。特許文献1に記載の技術では、選択還元触媒に硫黄被毒が生じると、選択還元触媒を昇温して硫黄成分を分解している。選択還元触媒の昇温に伴い、尿素水の供給を停止し、尿素水インジェクタのオーバーヒートを防止している。   In the above-described exhaust purification device, if the operation is continued, sulfur poisoning occurs in which the sulfur content in the fuel adheres to the selective reduction catalyst. When sulfur poisoning occurs in the selective reduction catalyst, the NOx purification performance decreases, and therefore, poisoning recovery operation for recovering the sulfur poisoning of the selective reduction catalyst is performed (for example, see Patent Document 1). In the technique described in Patent Document 1, when sulfur poisoning occurs in the selective reduction catalyst, the selective reduction catalyst is heated to decompose the sulfur component. As the temperature of the selective reduction catalyst increases, the urea water supply is stopped to prevent overheating of the urea water injector.

ところで、選択還元触媒に被毒した硫黄の状態で、選択還元触媒に被毒した硫黄の状態は、複数の態様(硫酸のアンモニウム塩、銅の硫化物)が存在し、それらの一部が選択還元触媒の活性点に吸着している。このため、硫黄被毒の量によっては、選択還元触媒に硫黄被毒が生じた際に、尿素水を供給して硫酸のアンモニウム塩を多く生成し、低い温度(例えば、約400℃から500℃)で窒素、二酸化硫黄、水に分解することができる。従って、尿素水を供給することで、硫酸のアンモニウム塩を分解して硫黄被毒を回復させることができる。   By the way, in the state of sulfur poisoned by the selective reduction catalyst, the state of sulfur poisoned by the selective reduction catalyst has multiple modes (sulfuric acid ammonium salt, copper sulfide), some of which are selected. Adsorbed on the active site of the reduction catalyst. For this reason, depending on the amount of sulfur poisoning, when sulfur poisoning occurs in the selective reduction catalyst, urea water is supplied to produce a large amount of ammonium salt of sulfuric acid, and a low temperature (for example, about 400 ° C. to 500 ° C. ) Can be decomposed into nitrogen, sulfur dioxide and water. Therefore, by supplying urea water, the ammonium salt of sulfuric acid can be decomposed and sulfur poisoning can be recovered.

上述したように、選択還元触媒に硫黄被毒が生じた際に、尿素水を供給し、硫酸のアンモニウム塩を多く生成することで、硫黄被毒を早期に回復させることができる。しかし、選択還元触媒の硫黄被毒の回復時に尿素水を供給すると、アンモニアの排出を伴う虞があるため、アンモニアの環境への排出を抑制することが望まれているのが現状である。   As described above, when sulfur poisoning occurs in the selective reduction catalyst, the sulfur poisoning can be recovered at an early stage by supplying urea water and generating a large amount of ammonium salt of sulfuric acid. However, if urea water is supplied at the time of recovery of sulfur poisoning of the selective reduction catalyst, there is a possibility that ammonia may be discharged. Therefore, it is desired to suppress the discharge of ammonia to the environment.

特開2015−63936号公報Japanese Patent Laying-Open No. 2015-63936

本発明は上記状況に鑑みてなされたもので、選択還元触媒に硫黄被毒が生じた際に、尿素水を供給して硫黄被毒の回復を行う排気浄化装置において、必要最小限の尿素水の供給で硫黄被毒を回復することができる内燃機関の排気浄化装置を提供することを目的とする。   The present invention has been made in view of the above situation, and in an exhaust purification device that recovers sulfur poisoning by supplying urea water when sulfur poisoning occurs in the selective reduction catalyst, the minimum necessary amount of urea water It is an object of the present invention to provide an exhaust gas purification apparatus for an internal combustion engine that can recover sulfur poisoning by supplying.

上記目的を達成するための請求項1に係る本発明の内燃機関の排気浄化装置は、内燃機関の排気通路に設けられ、排気に含まれるNOxを還元浄化する選択還元触媒と、前記選択還元触媒の上流側の前記排気通路に尿素水を供給する尿素水供給手段と、前記排気通路に設けられ、排気を浄化する触媒又はフィルターと、前記選択還元触媒の硫黄被毒を判定する硫黄被毒判定手段と、前記選択還元触媒を昇温させることで前記選択還元触媒の硫黄被毒を回復させる被毒回復手段と、前記触媒又は前記フィルターを昇温させて前記触媒又は上流側フィルターの再生を行う再生手段と、前記再生手段で前記触媒又は前記フィルターを再生させている間、又は、前記再生手段で前記触媒又は前記フィルターの再生が終了してから所定時間経過するまでの間に、前記被毒回復手段により前記選択還元触媒の硫黄被毒の回復を実行する場合は、前記尿素水の供給量を制限する尿素水供給制御手段とを備えたことを特徴とする。   In order to achieve the above object, an exhaust emission control device for an internal combustion engine according to claim 1 of the present invention is provided in an exhaust passage of the internal combustion engine and selectively reduces and purifies NOx contained in the exhaust, and the selective reduction catalyst. A urea water supply means for supplying urea water to the exhaust passage on the upstream side, a catalyst or filter provided in the exhaust passage for purifying exhaust, and sulfur poisoning determination for judging sulfur poisoning of the selective reduction catalyst Means, poisoning recovery means for recovering sulfur poisoning of the selective reduction catalyst by raising the temperature of the selective reduction catalyst, and heating the catalyst or the filter to regenerate the catalyst or the upstream filter. During regeneration of the catalyst or the filter by the regeneration means, or until a predetermined time elapses after regeneration of the catalyst or the filter is completed by the regeneration means During the case of executing the recovery of the sulfur poisoning of the selective reduction catalyst by poisoning recovery means it is characterized in that a urea water supply control means for limiting the supply amount of the urea water.

請求項1に係る本発明では、選択還元触媒、触媒(例えば、NOx吸蔵触媒)、フィルター(例えば、ディーゼル微粒子捕集フィルター)、選択還元触媒の被毒回復手段、触媒、フィルターの再生手段、尿素水供給制御手段を備え、尿素水供給制御手段では、触媒又はフィルターを昇温させた際には、被毒回復手段による尿素水の供給を制限し(減らし)、低い温度で分解する硫黄成分(硫酸のアンモニウム塩)の生成を抑制し、排気の温度を高く維持して高い温度で分解する硫黄成分(銅の硫酸塩)の分解を促進する。   In the present invention according to claim 1, a selective reduction catalyst, a catalyst (for example, a NOx storage catalyst), a filter (for example, a diesel particulate filter), a selective reduction catalyst poisoning recovery means, a catalyst, a filter regeneration means, urea When the temperature of the catalyst or the filter is raised, the urea water supply control means restricts (reduces) the supply of urea water by the poisoning recovery means, and sulfur components that decompose at a low temperature ( (Sulfuric acid ammonium salt) is suppressed, and the decomposition of the sulfur component (copper sulfate) that decomposes at a high temperature is maintained by keeping the exhaust temperature high.

これにより、触媒又はフィルターの再生時に触媒又はフィルターを昇温させて排気温度が十分に高くなる状況では、尿素水の供給が抑えられ(排気温度の低下が抑制され)、排気の温度が高く維持されて高温で分解される硫黄成分(銅の硫酸塩)が分解されて硫黄被毒が回復される。この時、尿素水の供給が抑制されるため、アンモニアの排出が抑制される。   As a result, in a situation where the temperature of the exhaust gas is sufficiently high by raising the temperature of the catalyst or filter during regeneration of the catalyst or filter, the supply of urea water is suppressed (a decrease in the exhaust gas temperature is suppressed), and the exhaust gas temperature is kept high. The sulfur component (copper sulfate) decomposed at a high temperature is decomposed to recover sulfur poisoning. At this time, since supply of urea water is suppressed, discharge of ammonia is suppressed.

従って、選択還元触媒に硫黄被毒が生じた際に、尿素水を供給して硫黄被毒の回復を行う排気浄化装置において、必要最小限の尿素水の供給で硫黄被毒を回復することが可能になる。   Therefore, when sulfur poisoning occurs in the selective reduction catalyst, the sulfur poisoning can be recovered by supplying the minimum amount of urea water in the exhaust purification apparatus that recovers sulfur poisoning by supplying urea water. It becomes possible.

そして、請求項2に係る本発明の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記選択還元触媒の硫黄被毒量を推定する硫黄被毒推定手段を備え、前記尿素水供給制御手段は、推定された硫黄被毒量が多いほど尿素水の供給量を制限する制限の度合いを大きくして尿素水の供給量を減少させることを特徴とする。   An exhaust gas purification apparatus for an internal combustion engine according to a second aspect of the present invention is the exhaust gas purification apparatus for an internal combustion engine according to the first aspect, wherein sulfur poisoning estimation means for estimating the sulfur poisoning amount of the selective reduction catalyst is provided. The urea water supply control means is characterized in that the greater the estimated sulfur poisoning amount, the greater the degree of restriction for limiting the supply amount of urea water to reduce the supply amount of urea water.

請求項2に係る本発明では、硫黄被毒量が多いほど尿素水の供給量を制限する制限の度合いを大きくして尿素水の供給量を減少させてアンモニアの排出を抑制することができる。   In the present invention according to claim 2, as the sulfur poisoning amount increases, the degree of restriction for limiting the supply amount of urea water can be increased to decrease the supply amount of urea water, thereby suppressing ammonia discharge.

また、請求項3に係る本発明の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記選択還元触媒の硫黄被毒量を推定する硫黄被毒推定手段を備え、前記尿素水供給制御手段は、推定された硫黄被毒量が多いほど尿素水の供給時間を減少させて尿素水の供給量を減少させることを特徴とする。   According to a third aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine according to the first aspect, wherein the sulfur poisoning estimation means for estimating the sulfur poisoning amount of the selective reduction catalyst is provided. The urea water supply control means is characterized in that the urea water supply time decreases as the estimated sulfur poisoning amount increases, thereby reducing the urea water supply amount.

請求項3に係る本発明では、硫黄被毒量が多いほど尿素水の供給時間を減少させて尿素水の供給量を減少させ、アンモニアの排出を抑制することができる。   In the present invention according to claim 3, as the sulfur poisoning amount increases, the urea water supply time can be reduced to decrease the urea water supply amount, thereby suppressing ammonia discharge.

尚、尿素水の供給量を制限する制限の度合いを大きくすると共に、尿素水の供給時間を減少させて尿素水の供給量を減少させることもできる。   In addition, while increasing the restriction | limiting degree which restrict | limits the supply amount of urea water, the supply time of urea water can also be decreased and the supply amount of urea water can also be reduced.

また、請求項4に係る本発明の内燃機関の排気浄化装置は、請求項1から請求項3のいずれか一項に記載の内燃機関の排気浄化装置において、前記触媒は、排気空燃比がリーン雰囲気の時にNOxを吸蔵し、排気空燃比がストイキもしくはリッチ雰囲気の時に吸蔵したNOxを還元して浄化するNOx吸蔵触媒であり、前記再生手段は、前記NOx吸蔵触媒を昇温させる手段であることを特徴とする。   An exhaust gas purification apparatus for an internal combustion engine according to a fourth aspect of the present invention is the exhaust gas purification apparatus for an internal combustion engine according to any one of the first to third aspects, wherein the catalyst has a lean exhaust air-fuel ratio. A NOx occlusion catalyst that occludes NOx when the atmosphere is exhausted and reduces and purifies NOx occluded when the exhaust air-fuel ratio is stoichiometric or rich; and the regeneration means is means for raising the temperature of the NOx occlusion catalyst It is characterized by.

請求項4に係る本発明では、再生手段によりNOx吸蔵触媒を昇温させる(排気空燃比をストイキもしくはリッチ雰囲気に制御する)ことで、触媒であるNOx吸蔵触媒が再生され、NOx吸蔵触媒の再生に伴って排気温度が高くなる(例えば、700℃)。つまり、触媒であるNOx吸蔵触媒を再生して昇温させた際に、排気温度が高くなるため、被毒回復手段による尿素水の供給量を制限して排気温度の低下を抑える。   In the present invention according to claim 4, the NOx storage catalyst is regenerated by raising the temperature of the NOx storage catalyst by the regeneration means (controlling the exhaust air / fuel ratio to a stoichiometric or rich atmosphere), and regeneration of the NOx storage catalyst. As a result, the exhaust temperature increases (for example, 700 ° C.). That is, when the temperature of the NOx occlusion catalyst, which is a catalyst, is regenerated and raised, the exhaust temperature becomes high. Therefore, the supply amount of urea water by the poisoning recovery means is limited to suppress a decrease in the exhaust temperature.

また、請求項5に係る本発明の内燃機関の排気浄化装置は、請求項1から請求項4のいずれか一項に記載の内燃機関の排気浄化装置において、前記選択還元触媒の温度の状況を検出する触媒温度把握手段を備え、前記被毒回復手段は、前記触媒温度把握手段で把握された前記選択還元触媒の温度の状況を含む情報に基づいて前記硫黄被毒の態様を判定し、前記尿素水供給制御手段は、前記被毒回復手段で判定された前記硫黄被毒の態様に応じて前記尿素水の供給の制限の度合いを制御することを特徴とする。   An internal combustion engine exhaust gas purification apparatus according to a fifth aspect of the present invention is the internal combustion engine exhaust gas purification apparatus according to any one of the first to fourth aspects, wherein the temperature condition of the selective reduction catalyst is determined. A catalyst temperature grasping means for detecting, wherein the poisoning recovery means determines the sulfur poisoning mode based on information including the temperature status of the selective reduction catalyst grasped by the catalyst temperature grasping means, The urea water supply control means controls the degree of restriction of the urea water supply according to the sulfur poisoning mode determined by the poisoning recovery means.

請求項5に係る本発明では、触媒温度把握手段により選択還元触媒の温度、温度の履歴等の状況を少なくとも把握し、選択還元触媒の硫黄被毒の態様を判定する。つまり、選択還元触媒の硫黄被毒について、温度の履歴等により、低温域で分解される硫黄成分(硫酸のアンモニウム塩)、高温域で分解される硫黄成分(銅の硫酸塩)の状況を判定し、低温域で分解された硫黄成分(硫酸のアンモニウム塩)が多い状況であれば、尿素水の供給の制限の度合いを高めて、もしくは、尿素水の供給時間を減らして、尿素水の供給量を減らし(アンモニアの排出を抑制し)、潜熱による排気温度の低下を抑制して排気温度を高く保ち高温域で分解される硫黄成分を分解する。   In the present invention according to claim 5, the catalyst temperature grasping means grasps at least the conditions such as the temperature of the selective reduction catalyst, the temperature history, etc., and determines the sulfur poisoning mode of the selective reduction catalyst. In other words, regarding the sulfur poisoning of the selective reduction catalyst, the status of the sulfur component (sulfuric acid ammonium salt) decomposed in the low temperature range and the sulfur component (copper sulfate salt) decomposed in the high temperature range are determined from the temperature history, etc. However, if there is a large amount of sulfur component (ammonium salt of sulfuric acid) decomposed in the low temperature range, increase the degree of restriction of urea water supply or reduce the supply time of urea water to supply urea water Reduce the amount (suppress ammonia discharge), suppress the exhaust temperature drop due to latent heat, keep the exhaust temperature high, and decompose the sulfur component decomposed in the high temperature range.

また、請求項6に係る本発明の内燃機関の排気浄化装置は、請求項5に記載の内燃機関の排気浄化装置において、前記硫黄被毒の態様は、アンモニウム塩を含み、前記尿素水供給制御手段は、前記硫黄被毒の全体量に対する前記アンモニウム塩の被毒の量が相対的に多くなるほど、前記尿素水の供給の制限の度合いを高くするように前記尿素水の供給量を制限することを特徴とする。   According to a sixth aspect of the present invention, there is provided the exhaust gas purification apparatus for an internal combustion engine according to the fifth aspect, wherein the sulfur poisoning mode includes an ammonium salt, and the urea water supply control is performed. The means limits the supply amount of the urea water so as to increase the degree of restriction of the supply of the urea water as the amount of poisoning of the ammonium salt relative to the total amount of the sulfur poisoning is relatively large. It is characterized by.

請求項6に係る本発明では、硫黄被毒の全体量(触媒硫黄被毒量)に対し、アンモニウム塩が多くなるほど(アンモニウム塩の被毒量/触媒硫黄被毒量=1に近づくほど)尿素水の供給の制限の度合いが高くなるように制限を設定する(尿素水の供給量が0に近づくように制限を設定する)。つまり、低温で分解できるアンモニウム塩が十分に生成された場合、アンモニウム塩を増加させて硫黄を分解させる必要が無くなるので、尿素水の供給を減らしていく(停止する)。尿素水の供給を減らすことで、潜熱による排気温度の低下を抑制し(排気温度を600℃程度に維持し)、銅の硫酸塩を分解できる温度に排気温度が維持される。   In the present invention according to claim 6, the amount of ammonium salt relative to the total amount of sulfur poisoning (catalytic sulfur poisoning amount) increases as the ammonium salt poisoning amount / catalyst sulfur poisoning amount = 1. The restriction is set so that the degree of restriction of water supply is high (the restriction is set so that the supply amount of urea water approaches 0). That is, when an ammonium salt that can be decomposed at a low temperature is sufficiently produced, it is not necessary to increase the ammonium salt to decompose sulfur, so the supply of urea water is reduced (stopped). By reducing the supply of urea water, a decrease in exhaust temperature due to latent heat is suppressed (exhaust temperature is maintained at about 600 ° C.), and the exhaust temperature is maintained at a temperature at which copper sulfate can be decomposed.

また、上記目的を達成するための請求項7に係る本発明の内燃機関の排気浄化装置は、内燃機関の排気通路に設けられ、排気に含まれるNOxを還元浄化する選択還元触媒と、前記選択還元触媒の上流側の前記排気通路に尿素水を供給する尿素水供給手段と、前記選択還元触媒の硫黄被毒を判定する硫黄被毒判定手段とを備え、前記尿素水供給手段は、前記硫黄被毒判定手段で推定された硫黄被毒に応じて、前記尿素水供給手段から供給される前記尿素水の供給量を制限することを特徴とする。   An exhaust gas purification apparatus for an internal combustion engine of the present invention according to claim 7 for achieving the above object is provided in an exhaust passage of the internal combustion engine, the selective reduction catalyst for reducing and purifying NOx contained in the exhaust, and the selection A urea water supply unit that supplies urea water to the exhaust passage upstream of the reduction catalyst; and a sulfur poisoning determination unit that determines sulfur poisoning of the selective reduction catalyst. The urea water supply unit includes the sulfur water The supply amount of the urea water supplied from the urea water supply unit is limited according to the sulfur poisoning estimated by the poisoning determination unit.

請求項7に係る本発明では、硫黄被毒判定手段で選択還元触媒の硫黄被毒が判定されると、尿素水供給手段から尿素水を排気通路に供給する。この場合、硫黄被毒判定手段で判定された硫黄被毒の状況に応じて、尿素水の供給が制御される。   In the present invention according to claim 7, when the sulfur poisoning determination means determines that the selective reduction catalyst is sulfur poisoned, urea water is supplied from the urea water supply means to the exhaust passage. In this case, the supply of urea water is controlled according to the sulfur poisoning status determined by the sulfur poisoning determination means.

これにより、選択還元触媒に硫黄被毒が生じた際に、尿素水を供給して硫黄被毒の回復を行う排気浄化装置において、必要最小限の尿素水の供給で硫黄被毒を回復することが可能になる。   As a result, when sulfur poisoning occurs in the selective reduction catalyst, the sulfur poisoning can be recovered by supplying the minimum amount of urea water in the exhaust gas purification device that recovers sulfur poisoning by supplying urea water. Is possible.

本発明の内燃機関の排気浄化装置は、選択還元触媒に硫黄被毒が生じた際に、尿素水を供給して硫黄被毒の回復を行う排気浄化装置において、必要最小限の尿素水の供給で硫黄被毒を回復することが可能になる。この結果、尿素水の供給が抑制されてアンモニアの排出が抑制される。   The exhaust gas purification apparatus for an internal combustion engine according to the present invention supplies a minimum amount of urea water in an exhaust gas purification apparatus that recovers sulfur poisoning by supplying urea water when sulfur poisoning occurs in the selective reduction catalyst. This makes it possible to recover sulfur poisoning. As a result, the supply of urea water is suppressed and ammonia discharge is suppressed.

本発明の一実施例に係る内燃機関の排気浄化装置の系統を表す概略構成図である。It is a schematic block diagram showing the system | strain of the exhaust gas purification apparatus of the internal combustion engine which concerns on one Example of this invention. 制御手段のブロック構成図である。It is a block block diagram of a control means. 本発明の一実施例に係る内燃機関の排気浄化装置の動作フローチャートである。It is an operation | movement flowchart of the exhaust gas purification apparatus of the internal combustion engine which concerns on one Example of this invention. 尿素水の供給制限を説明するマップである。It is a map explaining the supply restriction | limiting of urea water.

本実施例の内燃機関の排気浄化装置は、尿素選択還元(Selective Catalytic Reduction)システムを用いた排気浄化装置である。即ち、排気ガスに含まれる窒素酸化物(NOx)を低減するため、選択還元触媒が備えられ、排気通路内に尿素水が尿素水噴射弁から噴射されることで、尿素水が排気ガスの熱により分解されてアンモニアが生成され、生成されたアンモニアが選択還元触媒上で排気ガス中のNOxと反応し、NOxが窒素と水に還元(浄化)される装置である。   The exhaust gas purification apparatus for an internal combustion engine according to the present embodiment is an exhaust gas purification apparatus using a selective catalytic reduction system. That is, in order to reduce nitrogen oxide (NOx) contained in the exhaust gas, a selective reduction catalyst is provided, and urea water is injected into the exhaust passage from the urea water injection valve, so that the urea water is heated by the exhaust gas. Is a device that generates ammonia by being decomposed by the above, and the generated ammonia reacts with NOx in the exhaust gas on the selective reduction catalyst, and NOx is reduced (purified) to nitrogen and water.

選択還元触媒に硫黄被毒が生じた際に、尿素水噴射弁から尿素水を供給し、硫酸のアンモニウム塩を多く生成し、低い温度(例えば、約400℃から550℃)で窒素、二酸化硫黄、水に分解して硫酸のアンモニウム塩を分解し、選択還元触媒の硫黄被毒を回復させるようになっている。   When sulfur poisoning occurs in the selective reduction catalyst, urea water is supplied from the urea water injection valve to produce a large amount of ammonium sulfate, and nitrogen and sulfur dioxide at low temperatures (eg, about 400 ° C to 550 ° C) It is decomposed into water to decompose the ammonium salt of sulfuric acid to recover sulfur poisoning of the selective reduction catalyst.

そして、選択還元触媒の上流側触媒を再生して昇温させた場合、尿素水の供給量を制限し(減らし、停止し)、潜熱による排気の温度の低下を抑制して、高い温度(約600℃から650℃)に排気の温度を維持し、高温の雰囲気下で銅の硫酸塩を分解し、選択還元触媒の硫黄被毒を回復させるようになっている。この時、尿素水の供給量が制限されるため、アンモニアの排出を抑えることができる。   When the temperature of the upstream catalyst of the selective catalytic reduction catalyst is regenerated and raised, the supply amount of urea water is limited (reduced and stopped), and the temperature of the exhaust gas due to latent heat is suppressed from decreasing, and a high temperature (about The temperature of the exhaust gas is maintained at 600 ° C. to 650 ° C., and the copper sulfate is decomposed in a high temperature atmosphere to recover the sulfur poisoning of the selective reduction catalyst. At this time, since the supply amount of urea water is limited, the discharge of ammonia can be suppressed.

図1に基づいて本発明の一実施例の構成を説明する。図1には本発明の一実施例に係る内燃機関の排気浄化装置の系統を表す概略構成を示してある。   The configuration of an embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a schematic configuration representing a system of an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention.

図に示すように、車両に搭載される内燃機関としての多気筒ディーゼルエンジン(エンジン)1の排気通路としての排気管2には、排気浄化装置3が備えられている。排気浄化装置3には、NOx吸蔵触媒4、及び、ディーゼル微粒子捕集フィルター5を有する浄化装置6(触媒又はフィルター)が備えられている。   As shown in the figure, an exhaust purification device 3 is provided in an exhaust pipe 2 as an exhaust passage of a multi-cylinder diesel engine (engine) 1 as an internal combustion engine mounted on a vehicle. The exhaust purification device 3 is provided with a purification device 6 (catalyst or filter) having a NOx storage catalyst 4 and a diesel particulate collection filter 5.

NOx吸蔵触媒4は、排気空燃比がリーン雰囲気の時にNOxを吸蔵し、排気空燃比がストイキもしくはリッチ雰囲気の時に吸蔵したNOxを還元して浄化するものである。ディーゼル微粒子捕集フィルター5は微粒子を捕集する装置である。   The NOx storage catalyst 4 stores NOx when the exhaust air-fuel ratio is a lean atmosphere, and reduces and purifies NOx stored when the exhaust air-fuel ratio is a stoichiometric or rich atmosphere. The diesel particulate filter 5 is a device that collects particulates.

NOx吸蔵触媒4、及び、ディーゼル微粒子捕集フィルター5が硫黄により被毒されると、NOx吸蔵触媒4、及び、ディーゼル微粒子捕集フィルター5が昇温され(例えば追加燃料の噴射による)、硫黄が除去されて再生される(再生手段)。   When the NOx storage catalyst 4 and the diesel particulate collection filter 5 are poisoned by sulfur, the NOx storage catalyst 4 and the diesel particulate collection filter 5 are heated (for example, by injection of additional fuel), and sulfur is removed. It is removed and reproduced (reproducing means).

浄化装置6の下流側には、排気浄化装置3として、尿素選択還元触媒(Selective Catalytic Reduction)システムが備えられている。即ち、浄化装置6の下流側の排気管2には選択還元触媒11が設けられ、選択還元触媒11の上流側の排気管2には、尿素水噴射弁12(尿素水供給手段)が設けられている。   A urea selective reduction catalyst (Selective Catalytic Reduction) system is provided on the downstream side of the purification device 6 as the exhaust purification device 3. That is, the selective reduction catalyst 11 is provided in the exhaust pipe 2 on the downstream side of the purification device 6, and the urea water injection valve 12 (urea water supply means) is provided in the exhaust pipe 2 on the upstream side of the selective reduction catalyst 11. ing.

尿素水噴射弁12には図示しない尿素水タンクから尿素水が供給され、尿素水噴射弁12は制御手段10からの指示により排気管2内に尿素水を噴射する(供給する)。即ち、尿素水が供給されることで、排気ガスの熱により尿素水が分解されてアンモニアが生成され、生成されたアンモニアが選択還元触媒11で排気ガス中のNOxと反応し、NOxが窒素と水に還元(浄化)される。   The urea water injection valve 12 is supplied with urea water from a urea water tank (not shown), and the urea water injection valve 12 injects (supply) urea water into the exhaust pipe 2 according to an instruction from the control means 10. That is, by supplying urea water, urea water is decomposed by the heat of the exhaust gas to generate ammonia, and the generated ammonia reacts with NOx in the exhaust gas by the selective reduction catalyst 11, and NOx is converted into nitrogen. Reduced (purified) to water.

選択還元触媒11には触媒の温度を検出する温度センサー13が備えられ、また、選択還元触媒11の下流側の通路には選択還元触媒11を出た排気中のNOxの状態を検出するNOxセンサー14が備えられている。温度センサー13、NOxセンサー14の検出情報は制御手段10に入力される。また、制御手段10にはエンジン1の運転状況が入力される。   The selective reduction catalyst 11 is provided with a temperature sensor 13 that detects the temperature of the catalyst, and a NOx sensor that detects the state of NOx in the exhaust gas that has exited the selective reduction catalyst 11 is disposed in a downstream passage of the selective reduction catalyst 11. 14 is provided. Detection information of the temperature sensor 13 and the NOx sensor 14 is input to the control means 10. Further, the operating state of the engine 1 is input to the control means 10.

詳細は後述するが、制御手段10では、温度センサー13で検出された選択還元触媒11の温度の状況(履歴)、NOxセンサー14で検出されたNOxの浄化状況、尿素水噴射弁12からの尿素水の噴射状況、エンジン1の運転状況等により、選択還元触媒11の硫黄被毒が判定される。硫黄被毒が判定されると、尿素水が供給されて硫黄被毒が回復される。   Although details will be described later, in the control means 10, the temperature state (history) of the selective reduction catalyst 11 detected by the temperature sensor 13, the purification state of NOx detected by the NOx sensor 14, and the urea from the urea water injection valve 12. The sulfur poisoning of the selective reduction catalyst 11 is determined based on the water injection status, the operating status of the engine 1, and the like. When sulfur poisoning is determined, urea water is supplied to recover sulfur poisoning.

図2に基づいて制御手段10を具体的に説明する。図2には制御手段10のブロック構成を示してある。   The control means 10 will be specifically described based on FIG. FIG. 2 shows a block configuration of the control means 10.

図に示すように、制御手段10には硫黄被毒推定手段21が備えられている。硫黄被毒推定手段21では、エンジン1を運転するための燃料の消費速度、推定される硫黄の濃度、選択還元触媒11の温度別の硫黄(硫酸のアンモニウム塩、銅の硫酸塩)の蓄積割合に基づいて、選択還元触媒11の硫黄被毒量が推定される。また、選択還元触媒11の特定の温度における尿素水噴射量とNOxの浄化率との関係から、選択還元触媒11の硫黄被毒量が推定される。   As shown in the figure, the control means 10 is provided with sulfur poisoning estimation means 21. In the sulfur poisoning estimation means 21, the fuel consumption rate for operating the engine 1, the estimated sulfur concentration, and the accumulation ratio of sulfur (sulfuric acid ammonium salt, copper sulfate) according to the temperature of the selective reduction catalyst 11. Based on this, the sulfur poisoning amount of the selective reduction catalyst 11 is estimated. Further, the sulfur poisoning amount of the selective reduction catalyst 11 is estimated from the relationship between the urea water injection amount at a specific temperature of the selective reduction catalyst 11 and the NOx purification rate.

制御手段10には、硫黄被毒推定手段21で推定された硫黄被毒量が判定値を超えているか否かを判断する硫黄被毒判定手段22が備えられている。また、硫黄被毒判定手段22で選択還元触媒11の硫黄被毒が判定された際に(硫黄被毒量が判定値を超えたと判定された際に)、選択還元触媒11の硫黄被毒を回復させるために尿素水噴射弁12から尿素水を噴射させる被毒回復手段23が備えられている。被毒回復手段23は、尿素水供給制御手段24を介して尿素水噴射弁12から尿素水を噴射する指令を送るようになっている。   The control means 10 is provided with sulfur poisoning determination means 22 for determining whether or not the sulfur poisoning amount estimated by the sulfur poisoning estimation means 21 exceeds a determination value. Further, when the sulfur poisoning determination means 22 determines that the selective reduction catalyst 11 is sulfur poisoned (when it is determined that the sulfur poisoning amount exceeds the determination value), the sulfur poisoning of the selective reduction catalyst 11 is reduced. In order to recover, poisoning recovery means 23 for injecting urea water from the urea water injection valve 12 is provided. The poisoning recovery means 23 sends a command for injecting urea water from the urea water injection valve 12 via the urea water supply control means 24.

一方、制御手段10には、NOx吸蔵触媒4、及び、ディーゼル微粒子捕集フィルター5が硫黄により被毒された際に、NOx吸蔵触媒4、及び、ディーゼル微粒子捕集フィルター5を昇温させる再生手段25が備えられ、再生手段25によりNOx吸蔵触媒4、及び、ディーゼル微粒子捕集フィルター5を昇温させた情報は、尿素水供給制御手段24に送られる。尿素水供給制御手段24を介して尿素水噴射弁12から尿素水が噴射されることで、選択還元触媒11の硫黄被毒が回復される。   On the other hand, the control means 10 includes a regeneration means for raising the temperature of the NOx storage catalyst 4 and the diesel particulate collection filter 5 when the NOx storage catalyst 4 and the diesel particulate collection filter 5 are poisoned by sulfur. 25, and information on the temperature rise of the NOx storage catalyst 4 and the diesel particulate filter 5 by the regeneration means 25 is sent to the urea water supply control means 24. Sulfur poisoning of the selective reduction catalyst 11 is recovered by injecting urea water from the urea water injection valve 12 via the urea water supply control means 24.

尿素水供給制御手段24は、再生手段25が動作されてNOx吸蔵触媒4(ディーゼル微粒子捕集フィルター5)が昇温されている場合(再生手段25で触媒又はフィルターが昇温された場合)、又は、再生が終了してから所定時間の間のNOx吸蔵触媒4(ディーゼル微粒子捕集フィルター5)が高い状態に保たれている場合は、被毒回復手段23からの指令により供給されている(被毒回復のために供給されている)尿素水の供給量が制限される。   The urea water supply control unit 24 operates when the regeneration unit 25 is operated and the NOx storage catalyst 4 (diesel particulate collection filter 5) is heated (when the catalyst or filter is heated by the regeneration unit 25), Alternatively, when the NOx storage catalyst 4 (diesel particulate collection filter 5) is kept in a high state for a predetermined time after the regeneration is completed, it is supplied according to a command from the poisoning recovery means 23 ( The supply amount of urea water (supplied for poisoning recovery) is limited.

例えば、NOx吸蔵触媒4が昇温されている場合、排気温度が高められているので、尿素水の供給を制限して供給量を減らし(停止し)、潜熱による排気温度の低下を抑制する。排気温度を高く維持することで、例えば、銅の硫酸塩の分解が促進される。尿素水の供給量の制限の状況は、硫黄被毒の態様に応じて設定される(具体的には後述する)。   For example, when the temperature of the NOx occlusion catalyst 4 is raised, the exhaust gas temperature is increased. Therefore, the supply amount of urea water is limited to reduce (stop) the supply amount, thereby suppressing a decrease in exhaust gas temperature due to latent heat. By maintaining the exhaust temperature high, for example, decomposition of copper sulfate is promoted. The situation of restriction of the supply amount of urea water is set according to the mode of sulfur poisoning (specifically, described later).

前述したように、制御手段10に備えられている硫黄被毒推定手段21で硫黄被毒状態が推定される。そして、硫黄被毒推定手段21で推定された硫黄被毒状態に応じて、尿素水供給制御手段24から供給される尿素水の供給量を設定する。具体的には、被毒が進んでいる、即ち、硫黄被毒量が多いほど尿素水供給制御手段24から供給される尿素水の供給量を制限する度合いを強めて、供給する尿素水の量を減少させる。また、被毒が進んでいる、即ち、硫黄被毒量が多いほど尿素水を供給する時間を短くして供給する尿素水の量を減少させる。ここで、尿素水の供給量を制限するとの表現は、尿素水の供給量を0にするという意味も含んでいる。   As described above, the sulfur poisoning state is estimated by the sulfur poisoning estimation means 21 provided in the control means 10. Then, the supply amount of urea water supplied from the urea water supply control means 24 is set according to the sulfur poisoning state estimated by the sulfur poisoning estimation means 21. Specifically, the amount of urea water to be supplied is increased by increasing the degree of limiting the amount of urea water supplied from the urea water supply control means 24 as the sulfur poisoning amount increases. Decrease. Further, poisoning is progressing, that is, the amount of urea water to be supplied is reduced by shortening the time for supplying urea water as the amount of sulfur poisoning increases. Here, the expression “restricting the supply amount of urea water” includes the meaning of reducing the supply amount of urea water to zero.

制御手段10には触媒温度把握手段26が備えられ、触媒温度把握手段26で把握された選択還元触媒11の温度の状況の情報は被毒回復手段23に送られる。被毒回復手段23は、触媒温度把握手段26で把握された選択還元触媒11の温度の状況を含む情報に基づいて硫黄被毒の態様の状況(硫酸のアンモニウム塩、銅の硫酸塩の状況)を判定する。   The control means 10 is provided with a catalyst temperature grasping means 26, and information on the temperature state of the selective reduction catalyst 11 grasped by the catalyst temperature grasping means 26 is sent to the poisoning recovery means 23. The poisoning recovery means 23 determines the state of sulfur poisoning based on the information including the temperature state of the selective reduction catalyst 11 grasped by the catalyst temperature grasping means 26 (state of ammonium sulfate and copper sulfate). Determine.

即ち、被毒回復手段23では、選択還元触媒11の硫黄被毒として、低温域で分解される硫黄成分(硫酸のアンモニウム塩)の量、高温域で分解される硫黄成分(銅の硫酸塩)の量の状況を判定する。被毒回復手段23で判定された情報は、尿素水供給制御手段24に送られる。   That is, in the poisoning recovery means 23, as the sulfur poisoning of the selective reduction catalyst 11, the amount of sulfur component (sulfuric acid ammonium salt) decomposed in the low temperature range, the sulfur component decomposed in high temperature range (copper sulfate) Determine the amount of situation. Information determined by the poisoning recovery means 23 is sent to the urea water supply control means 24.

尿素水供給制御手段24は、再生手段25が動作されてNOx吸蔵触媒4(ディーゼル微粒子捕集フィルター5)が昇温されている場合(再生手段25で上流側触媒が昇温された場合)、即ち、排気温度が高められている場合、被毒回復手段23で判定された硫黄被毒の態様の情報に基づいて、尿素水の供給の制限の度合いを制御する。   The urea water supply control means 24 is operated when the regeneration means 25 is operated and the NOx storage catalyst 4 (diesel particulate collection filter 5) is heated (when the upstream catalyst is heated by the regeneration means 25), That is, when the exhaust gas temperature is raised, the degree of restriction of urea water supply is controlled based on the information of the sulfur poisoning mode determined by the poisoning recovery means 23.

例えば、選択還元触媒11の硫黄被毒量が、硫酸のアンモニウム塩の割合が多い場合、尿素水の供給を制限して供給量を減らし(停止し)、潜熱による排気温度の低下を抑制して銅の硫酸塩の分解を促進する。尿素水の供給を減らすことで(停止することで)、アンモニアの排出が抑制される。   For example, when the sulfur poisoning amount of the selective reduction catalyst 11 is high in the proportion of ammonium salt of sulfuric acid, the supply amount is reduced (stopped) by restricting the supply of urea water, and the decrease in the exhaust temperature due to latent heat is suppressed. Promotes the decomposition of copper sulfate. By reducing the supply of urea water (by stopping), the discharge of ammonia is suppressed.

従って、選択還元触媒11に硫黄被毒が生じた際に、尿素水を供給して硫黄被毒の回復を行う排気浄化装置において、必要最小限の尿素水の供給で硫黄被毒を回復することが可能になる。   Therefore, when sulfur poisoning occurs in the selective reduction catalyst 11, the sulfur poisoning is recovered by supplying the minimum amount of urea water in the exhaust purification device that supplies urea water to recover the sulfur poisoning. Is possible.

図3、図4に基づいて上述した排気浄化装置の動作を具体的に説明する。図3には本発明の一実施例に係る内燃機関の排気浄化装置における選択還元触媒11の硫黄被毒の回復処理の流れを説明するフローチャート、図4には尿素水の供給制限を説明するマップを示してある。   The operation of the exhaust emission control device described above will be specifically described with reference to FIGS. FIG. 3 is a flowchart for explaining the flow of recovery processing for sulfur poisoning of the selective reduction catalyst 11 in the exhaust gas purification apparatus for an internal combustion engine according to one embodiment of the present invention, and FIG. 4 is a map for explaining the supply restriction of urea water. Is shown.

図3に示すように、ステップS1で選択還元触媒11の硫黄被毒量が推定される。即ち、エンジン1を運転するための燃料の消費速度、推定される硫黄の濃度、選択還元触媒11の温度別の硫黄(硫酸のアンモニウム塩、銅の硫酸塩)の蓄積割合に基づいて、選択還元触媒11の硫黄被毒量が推定される。また、選択還元触媒11の特定の温度における尿素水噴射量とNOxの浄化率との関係から、選択還元触媒11の硫黄被毒量が推定される。   As shown in FIG. 3, the sulfur poisoning amount of the selective reduction catalyst 11 is estimated in step S1. That is, selective reduction based on the fuel consumption rate for operating the engine 1, the estimated sulfur concentration, and the accumulation ratio of sulfur (ammonium salt of sulfuric acid, copper sulfate) by temperature of the selective reduction catalyst 11. The sulfur poisoning amount of the catalyst 11 is estimated. Further, the sulfur poisoning amount of the selective reduction catalyst 11 is estimated from the relationship between the urea water injection amount at a specific temperature of the selective reduction catalyst 11 and the NOx purification rate.

ステップS2では、推定された硫黄被毒量が回復処理を行う必要がある量以上か(判定値以上か)否かが判断され、硫黄被毒量が判定値以上であると判断された場合、ステップS3で回復処理(尿素水の供給の処理)が開始される。ステップS2で硫黄被毒量が判定値に満たないと判断された場合、ステップS1の硫黄被毒量の推定処理に移行する。   In step S2, it is determined whether or not the estimated sulfur poisoning amount is greater than or equal to the amount that needs to be recovered (determination value or more), and if it is determined that the sulfur poisoning amount is greater than or equal to the determination value, In step S3, a recovery process (a process for supplying urea water) is started. If it is determined in step S2 that the sulfur poisoning amount is less than the determination value, the process proceeds to the sulfur poisoning amount estimation process in step S1.

ステップS3で回復処理が開始されると、ステップS4で上流側触媒(例えば、NOx吸蔵触媒4及びディーゼル微粒子捕集フィルター5、もしくは、再生温度がディーゼル微粒子捕集フィルター5よりも高いNOx吸蔵触媒4)の再生運転が実施されているか否かが判断される。ステップS4で上流側触媒が再生運転中であると判断された場合、尿素水の供給量を制限する処理に移行する。   When the recovery process is started in step S3, in step S4, the upstream catalyst (for example, the NOx storage catalyst 4 and the diesel particulate collection filter 5 or the NOx storage catalyst 4 whose regeneration temperature is higher than that of the diesel particulate collection filter 5). It is determined whether or not the regeneration operation is being performed. When it is determined in step S4 that the upstream catalyst is in the regeneration operation, the process proceeds to a process of limiting the supply amount of urea water.

ステップS4で上流側触媒が再生運転中であると判断された場合、ステップS5でアンモニウム塩を推定する。即ち、選択還元触媒11が運転された温度の履歴等の状況を把握し、選択還元触媒11の硫黄被毒のうち、アンモニウム塩の量を推定する。アンモニウム塩は、燃料消費速度、推定された硫黄被毒の濃度、硫黄成分の蓄積割合(温度別:マイナスの場合あり)、選択還元触媒11のアンモニアの被覆率の積算値により推定することができる。   If it is determined in step S4 that the upstream catalyst is in the regeneration operation, an ammonium salt is estimated in step S5. That is, the status of the temperature at which the selective reduction catalyst 11 is operated is grasped, and the amount of ammonium salt in the sulfur poisoning of the selective reduction catalyst 11 is estimated. The ammonium salt can be estimated from the integrated value of the fuel consumption rate, the estimated sulfur poisoning concentration, the sulfur component accumulation rate (by temperature: may be negative), and the ammonia coverage of the selective reduction catalyst 11. .

ステップS5でアンモニウム塩を推定した後、ステップS6で尿素水の供給量を制限する。尿素水の供給量の制限の割合は、図4に示したマップに基づいて実施される。   After estimating the ammonium salt in step S5, the supply amount of urea water is limited in step S6. The rate of restriction of the urea water supply amount is implemented based on the map shown in FIG.

即ち、図4に示すように、硫黄被毒の全体量(推定された硫黄被毒量)に対し、アンモニウム塩が多くなるほど(アンモニウム塩の被毒量/硫黄被毒量=1に近づくほど)尿素水の供給の制限の度合いが高くなるように通常の供給量に対して制限を設定する(尿素水の供給量が0に近づくように制限を設定する)。つまり、低温で分解できるアンモニウム塩を十分に生成して分解した場合、これ以上尿素水を供給してアンモニウム塩を増加させる必要が無いので、必要の無い尿素水の供給を減らしていく(停止する)。   That is, as shown in FIG. 4, as the ammonium salt increases with respect to the total amount of sulfur poisoning (estimated sulfur poisoning amount) (the closer to the poisoning amount of ammonium salt / the sulfur poisoning amount = 1). A restriction is set for the normal supply amount so that the degree of restriction of the urea water supply becomes high (a restriction is set so that the supply amount of urea water approaches 0). In other words, if enough ammonium salt that can be decomposed at low temperature is generated and decomposed, it is not necessary to increase the ammonium salt by supplying urea water any more, so reduce the supply of unnecessary urea water (stop) ).

尿素水の通常の供給量は、NOxセンサー14(図1参照)で検出されたNOxの通過量、選択還元触媒11のアンモニアの吸着量により、回復時の尿素水の供給量が設定され、尿素水の目標となる供給量が通常の供給量とされる。   The normal supply amount of urea water is set as the supply amount of urea water at the time of recovery based on the NOx passage amount detected by the NOx sensor 14 (see FIG. 1) and the ammonia adsorption amount of the selective reduction catalyst 11. The target supply amount of water is the normal supply amount.

尿素水の供給を減らす(停止する)ことで、潜熱による排気温度の低下が抑制され、排気温度が、例えば、600℃程度の高温に維持される。これにより、銅の硫酸塩が分解できる温度に排気温度が維持され、銅の硫酸塩が分解されて硫黄被毒が回復される。そして、尿素水の供給が制限(停止)されるため、アンモニアの排出を抑えることができる。   By reducing (stopping) the supply of urea water, a decrease in the exhaust temperature due to latent heat is suppressed, and the exhaust temperature is maintained at a high temperature of about 600 ° C., for example. Thus, the exhaust temperature is maintained at a temperature at which the copper sulfate can be decomposed, and the copper sulfate is decomposed to recover the sulfur poisoning. And since supply of urea water is restrict | limited (stop), discharge | emission of ammonia can be suppressed.

尚、上述した実施例では、アンモニウム塩の量を推定して尿素水の供給の制限の度合いを変更しているが、上流側触媒が再生運転中であると判断された場合に、尿素水を一定時間の間一定割合減らし(停止し)、排気温度の低下を抑制する制御を実施する等、尿素水の供給の制限の制御は種々の制御を適用することが可能である。   In the above-described embodiment, the amount of ammonium salt is estimated to change the degree of restriction of urea water supply. However, when it is determined that the upstream catalyst is in the regeneration operation, urea water is reduced. Various controls can be applied to control the restriction of the supply of urea water, such as performing a control that reduces (stops) a certain rate for a certain time and suppresses a decrease in exhaust gas temperature.

図3のフローチャートに戻り、ステップS4で上流側触媒が再生運転中ではないと判断されて通常の供給量で尿素水が供給されて硫黄被毒の回復処理が実行された場合、もしくは、ステップS6で尿素水の供給が制限(停止)されて排気温度の低下が抑制された状態で硫黄被毒の回復処理が実行された場合、ステップS7で選択還元触媒11の硫黄被毒が回復したか否かが判断される。つまり、硫黄被毒量が回復処理を終了する量以下か(終了判定値以下か)否かが判断される。   Returning to the flowchart of FIG. 3, if it is determined in step S4 that the upstream catalyst is not in the regeneration operation and urea water is supplied at a normal supply amount and the sulfur poisoning recovery process is executed, or step S6. When the sulfur poisoning recovery process is executed in a state where the supply of urea water is limited (stopped) and the decrease in the exhaust temperature is suppressed, whether or not the sulfur poisoning of the selective reduction catalyst 11 has been recovered in step S7. Is judged. That is, it is determined whether or not the sulfur poisoning amount is less than or equal to the amount at which the recovery process is completed (below the end determination value).

ステップS7で選択還元触媒11の硫黄被毒が回復していないと判断された場合、ステップS3に移行して硫黄被毒の回復処理が継続される。ステップS7で選択還元触媒11の硫黄被毒が回復したと判断された場合、ステップS8で回復終了処理が実行されてエンドとなる。即ち、推定された硫黄被毒量の情報、推定されたアンモニウム塩の情報がリセットされ、硫黄被毒の回復処理がエンドとなる。   If it is determined in step S7 that the sulfur poisoning of the selective reduction catalyst 11 has not been recovered, the process proceeds to step S3 and the sulfur poisoning recovery process is continued. If it is determined in step S7 that the sulfur poisoning of the selective reduction catalyst 11 has been recovered, the recovery end process is executed in step S8, and the process ends. That is, the information on the estimated sulfur poisoning amount and the information on the estimated ammonium salt are reset, and the sulfur poisoning recovery process ends.

尚、ステップS7の判断に代えて、硫黄被毒の回復処理時間を閾値として、硫黄被毒の回復終了処理(ステップS8)に移行させることも可能である。また、上流側触媒の再生運転が終了した時に硫黄被毒の回復終了処理(ステップS8)に移行させることも可能である。   Instead of the determination in step S7, it is also possible to shift to the sulfur poisoning recovery end process (step S8) using the sulfur poisoning recovery processing time as a threshold value. It is also possible to shift to the sulfur poisoning recovery end process (step S8) when the upstream catalyst regeneration operation ends.

上述した排気浄化装置は、再生のために上流側触媒(例えば、NOx吸蔵触媒4)を昇温させた際には、尿素水の供給量を制限(減少、停止)しているので、低い温度で分解される硫黄成分(硫酸のアンモニウム塩)の生成が抑制され、排気の温度が高く維持される。   Since the exhaust purification device described above limits (decreases, stops) the supply amount of urea water when the temperature of the upstream catalyst (for example, the NOx storage catalyst 4) is increased for regeneration, the exhaust purification device has a low temperature. The generation of sulfur components (ammonium salt of sulfuric acid) decomposed in is suppressed, and the exhaust temperature is kept high.

これにより、上流側触媒(例えば、NOx吸蔵触媒4)の再生時に排気温度が十分に高くなる状況で、尿素水の供給が抑えられ(潜熱による排気温度の低下が抑制され)、高温で分解される硫黄成分(銅の硫酸塩)が分解されて硫黄被毒が回復される。この時、尿素水の供給が抑制されるため、アンモニアの排出が抑制される。   As a result, in a situation where the exhaust temperature becomes sufficiently high when the upstream catalyst (for example, the NOx storage catalyst 4) is regenerated, the supply of urea water is suppressed (a decrease in the exhaust temperature due to latent heat is suppressed) and the decomposition is performed at a high temperature. The sulfur component (copper sulfate) is decomposed and sulfur poisoning is recovered. At this time, since supply of urea water is suppressed, discharge of ammonia is suppressed.

従って、選択還元触媒11に硫黄被毒が生じた際に、尿素水を供給して硫黄被毒の回復を行う排気浄化装置において、必要最小限の尿素水の供給で硫黄被毒を回復することが可能になり、アンモニアの排出を抑制することができる。   Therefore, when sulfur poisoning occurs in the selective reduction catalyst 11, the sulfur poisoning is recovered by supplying the minimum amount of urea water in the exhaust purification device that supplies urea water to recover the sulfur poisoning. And ammonia emission can be suppressed.

本発明は、内燃機関の排気ガスの窒素酸化物(NOx)を低減する排気浄化装置の産業分野で利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field of exhaust purification devices that reduce nitrogen oxides (NOx) in exhaust gases of internal combustion engines.

1 多気筒ディーゼルエンジン(エンジン)
2 排気管
3 排気浄化装置
4 NOx吸蔵触媒
5 ディーゼル微粒子捕集フィルター
6 浄化装置
10 制御手段
11 選択還元触媒
12 尿素水噴射弁
13 温度センサー
14 NOxセンサー
21 硫黄被毒推定手段
22 硫黄被毒判定手段
23 被毒回復手段
24 尿素水供給制御手段
25 再生手段
26 触媒温度把握手段
1 Multi-cylinder diesel engine (engine)
DESCRIPTION OF SYMBOLS 2 Exhaust pipe 3 Exhaust gas purification device 4 NOx occlusion catalyst 5 Diesel particulate collection filter 6 Purification device 10 Control means 11 Selective reduction catalyst 12 Urea water injection valve 13 Temperature sensor 14 NOx sensor 21 Sulfur poisoning estimation means 22 Sulfur poisoning judgment means 22 23 poisoning recovery means 24 urea water supply control means 25 regeneration means 26 catalyst temperature grasping means

Claims (7)

内燃機関の排気通路に設けられ、排気に含まれるNOxを還元浄化する選択還元触媒と、
前記選択還元触媒の上流側の前記排気通路に尿素水を供給する尿素水供給手段と、
前記排気通路に設けられ、排気を浄化する触媒又はフィルターと、
前記選択還元触媒の硫黄被毒を判定する硫黄被毒判定手段と、
前記選択還元触媒を昇温させることで前記選択還元触媒の硫黄被毒を回復させる被毒回復手段と、
前記触媒又は前記フィルターを昇温させて前記触媒又は上流側フィルターの再生を行う再生手段と、
前記再生手段で前記触媒又は前記フィルターを再生させている間、又は、前記再生手段で前記触媒又は前記フィルターの再生が終了してから所定時間経過するまでの間に、前記被毒回復手段により前記選択還元触媒の硫黄被毒の回復を実行する場合は、前記尿素水の供給量を制限する尿素水供給制御手段とを備えた
ことを特徴とする内燃機関の排気浄化装置。
A selective reduction catalyst provided in an exhaust passage of the internal combustion engine for reducing and purifying NOx contained in the exhaust;
Urea water supply means for supplying urea water to the exhaust passage on the upstream side of the selective reduction catalyst;
A catalyst or filter provided in the exhaust passage for purifying exhaust;
Sulfur poisoning determination means for determining sulfur poisoning of the selective reduction catalyst;
Poisoning recovery means for recovering sulfur poisoning of the selective reduction catalyst by raising the temperature of the selective reduction catalyst;
Regenerating means for regenerating the catalyst or the upstream filter by raising the temperature of the catalyst or the filter;
While the catalyst or the filter is regenerated by the regeneration means, or until a predetermined time elapses after the regeneration of the catalyst or the filter is completed by the regeneration means, the poisoning recovery means An exhaust gas purification apparatus for an internal combustion engine, comprising: urea water supply control means for restricting the supply amount of the urea water when performing recovery of sulfur poisoning of the selective reduction catalyst.
請求項1に記載の内燃機関の排気浄化装置において、
前記選択還元触媒の硫黄被毒量を推定する硫黄被毒推定手段を備え、
前記尿素水供給制御手段は、
推定された硫黄被毒量が多いほど尿素水の供給量を制限する制限の度合いを大きくして尿素水の供給量を減少させる
ことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 1,
Comprising sulfur poisoning estimation means for estimating the sulfur poisoning amount of the selective reduction catalyst,
The urea water supply control means includes
An exhaust emission control device for an internal combustion engine, wherein the amount of urea water supplied is reduced by increasing the degree of restriction for limiting the amount of urea water supplied as the estimated sulfur poisoning amount increases.
請求項1に記載の内燃機関の排気浄化装置において、
前記選択還元触媒の硫黄被毒量を推定する硫黄被毒推定手段を備え、
前記尿素水供給制御手段は、
推定された硫黄被毒量が多いほど尿素水の供給時間を減少させて尿素水の供給量を減少させる
ことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 1,
Comprising sulfur poisoning estimation means for estimating the sulfur poisoning amount of the selective reduction catalyst,
The urea water supply control means includes
An exhaust gas purification apparatus for an internal combustion engine, characterized in that as the estimated amount of sulfur poisoning increases, the supply time of urea water is reduced to reduce the supply amount of urea water.
請求項1から請求項3のいずれか一項に記載の内燃機関の排気浄化装置において、
前記触媒は、
排気空燃比がリーン雰囲気の時にNOxを吸蔵し、排気空燃比がストイキもしくはリッチ雰囲気の時に吸蔵したNOxを還元して浄化するNOx吸蔵触媒であり、
前記再生手段は、
前記NOx吸蔵触媒を昇温させる手段である
ことを特徴とする内燃機関の排気浄化装置。
The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 3,
The catalyst is
A NOx storage catalyst that stores NOx when the exhaust air-fuel ratio is a lean atmosphere and reduces and purifies NOx stored when the exhaust air-fuel ratio is a stoichiometric or rich atmosphere;
The reproducing means includes
An exhaust gas purifying apparatus for an internal combustion engine, characterized in that it is means for raising the temperature of the NOx storage catalyst.
請求項1から請求項4のいずれか一項に記載の内燃機関の排気浄化装置において、
前記選択還元触媒の温度の状況を検出する触媒温度把握手段を備え、
前記被毒回復手段は、
前記触媒温度把握手段で把握された前記選択還元触媒の温度の状況を含む情報に基づいて前記硫黄被毒の態様を判定し、
前記尿素水供給制御手段は、
前記被毒回復手段で判定された前記硫黄被毒の態様に応じて前記尿素水の供給の制限の度合いを制御する
ことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4,
A catalyst temperature grasping means for detecting a temperature state of the selective reduction catalyst;
The poisoning recovery means includes
Determining the mode of sulfur poisoning based on information including the temperature status of the selective reduction catalyst grasped by the catalyst temperature grasping means;
The urea water supply control means includes
An exhaust emission control device for an internal combustion engine, wherein the degree of restriction of the supply of urea water is controlled in accordance with the aspect of sulfur poisoning determined by the poisoning recovery means.
請求項5に記載の内燃機関の排気浄化装置において、
前記硫黄被毒の態様は、アンモニウム塩を含み、
前記尿素水供給制御手段は、
前記硫黄被毒の全体量に対する前記アンモニウム塩の被毒の量が相対的に多くなるほど、前記尿素水の供給の制限の度合いを高くするように前記尿素水の供給量を制限する
ことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 5,
Said sulfur poisoning embodiment comprises an ammonium salt,
The urea water supply control means includes
The urea water supply amount is limited so as to increase the degree of restriction of the urea water supply as the amount of poisoning of the ammonium salt relative to the total amount of the sulfur poisoning increases. An exhaust purification device for an internal combustion engine.
内燃機関の排気通路に設けられ、排気に含まれるNOxを還元浄化する選択還元触媒と、
前記選択還元触媒の上流側の前記排気通路に尿素水を供給する尿素水供給手段と、
前記選択還元触媒の硫黄被毒を判定する硫黄被毒判定手段とを備え、
前記尿素水供給手段は、
前記硫黄被毒判定手段で推定された硫黄被毒に応じて、前記尿素水供給手段から供給される前記尿素水の供給量を制限する
ことを特徴とする内燃機関の排気浄化装置。
A selective reduction catalyst provided in an exhaust passage of the internal combustion engine for reducing and purifying NOx contained in the exhaust;
Urea water supply means for supplying urea water to the exhaust passage on the upstream side of the selective reduction catalyst;
Comprising sulfur poisoning determination means for determining sulfur poisoning of the selective reduction catalyst,
The urea water supply means includes
An exhaust gas purification apparatus for an internal combustion engine, wherein the supply amount of the urea water supplied from the urea water supply means is limited according to the sulfur poisoning estimated by the sulfur poisoning determination means.
JP2016231808A 2016-11-29 2016-11-29 Exhaust emission control device of internal combustion engine Pending JP2018087542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016231808A JP2018087542A (en) 2016-11-29 2016-11-29 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231808A JP2018087542A (en) 2016-11-29 2016-11-29 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2018087542A true JP2018087542A (en) 2018-06-07

Family

ID=62493786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231808A Pending JP2018087542A (en) 2016-11-29 2016-11-29 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2018087542A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110276167A (en) * 2019-07-15 2019-09-24 吉林师范大学 A kind of ammonia coverage rate reference target dynamic generator design method
GB2609765A (en) * 2019-01-18 2023-02-15 Cummins Emission Solutions Inc Treated SCR catalysts with enhanced sulfur resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2609765A (en) * 2019-01-18 2023-02-15 Cummins Emission Solutions Inc Treated SCR catalysts with enhanced sulfur resistance
GB2609765B (en) * 2019-01-18 2023-08-23 Cummins Emission Solutions Inc Treated SCR catalysts with enhanced sulfur resistance
CN110276167A (en) * 2019-07-15 2019-09-24 吉林师范大学 A kind of ammonia coverage rate reference target dynamic generator design method

Similar Documents

Publication Publication Date Title
US8365516B2 (en) Exhaust gas purification apparatus for internal combustion engine
USRE48658E1 (en) Exhaust gas purification apparatus for an internal combustion engine
JP5163754B2 (en) Exhaust gas purification device for internal combustion engine
JP4635860B2 (en) Exhaust gas purification device for internal combustion engine
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
JP5915623B2 (en) Exhaust gas purification system for internal combustion engine
JP2012127295A (en) Exhaust emission control device for internal combustion engine
JP2007100578A (en) Exhaust emission control device of internal combustion engine
JP5194590B2 (en) Engine exhaust purification system
JP6501065B2 (en) Engine exhaust purification system
JP6973195B2 (en) Exhaust purification device, vehicle and exhaust purification control device
JP2018087542A (en) Exhaust emission control device of internal combustion engine
JP5761255B2 (en) Exhaust gas purification device for internal combustion engine
JP6663126B2 (en) Engine exhaust purification device
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP2009174445A (en) Exhaust emission control device for internal combustion engine
KR102072193B1 (en) Exhaust gas treatment system comprising a catalytic particulate filter, and corresponding method
JP2018087544A (en) Exhaust emission control device of internal combustion engine
JP4069043B2 (en) Exhaust gas purification device for internal combustion engine
JP5668737B2 (en) Exhaust gas purification device for internal combustion engine
JP2020041428A (en) Post-exhaust treatment device
KR101619411B1 (en) Method for controlling exhaust gas purification apparatus
JP2008063968A (en) Exhaust emission control device for internal combustion engine
JP2018087543A (en) Exhaust emission control device of internal combustion engine
JP2007255209A (en) Exhaust emission control device of internal combustion engine