JP2018087544A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2018087544A
JP2018087544A JP2016231810A JP2016231810A JP2018087544A JP 2018087544 A JP2018087544 A JP 2018087544A JP 2016231810 A JP2016231810 A JP 2016231810A JP 2016231810 A JP2016231810 A JP 2016231810A JP 2018087544 A JP2018087544 A JP 2018087544A
Authority
JP
Japan
Prior art keywords
urea water
temperature
exhaust
fuel ratio
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016231810A
Other languages
Japanese (ja)
Inventor
亮二 加藤
Ryoji Kato
亮二 加藤
晶士 ▲高▼橋
晶士 ▲高▼橋
Masashi Takahashi
佐藤 大祐
Daisuke Sato
大祐 佐藤
川島 一仁
Kazuhito Kawashima
川島  一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2016231810A priority Critical patent/JP2018087544A/en
Publication of JP2018087544A publication Critical patent/JP2018087544A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the discharge of ammonia by restoring sulfur poisoning with the supply of a minimum necessary amount of urea water.SOLUTION: A supply amount of urea water is limited (reduced or stopped) in a situation that an exhaust temperature becomes sufficiently high due to the reduction of NOx when an air-fuel ratio is brought into a rich side, the supply of the urea water at the restoration of the sulfur poisoning of a selective reduction catalyst 11 is suppressed (the lowering of the exhaust temperature caused by latent heat is suppressed), and a sulfur component which is dissolved at a high temperature is dissolved, thus restoring the sulfur poisoning.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の排気ガスの窒素酸化物(NOx)を低減する排気浄化装置に関する。   The present invention relates to an exhaust purification device that reduces nitrogen oxides (NOx) in exhaust gas of an internal combustion engine.

内燃機関(エンジン)の排気ガスに含まれる窒素酸化物(NOx)を低減する技術として、尿素選択還元(Selective Catalytic Reduction)システムを用いた排気浄化装置が知られている。尿素選択還元システムを用いた排気浄化装置は、選択還元触媒が設けられた排気通路内に尿素水が噴射されることで、尿素水が排気ガスの熱により分解されてアンモニアが生成され、生成されたアンモニアが選択還元触媒上で排気ガス中のNOxと反応し、NOxが窒素と水に還元(浄化)される装置である。   As a technique for reducing nitrogen oxide (NOx) contained in exhaust gas of an internal combustion engine (engine), an exhaust purification device using a selective catalytic reduction system is known. An exhaust gas purification apparatus using a urea selective reduction system injects urea water into an exhaust passage provided with a selective reduction catalyst, so that urea water is decomposed by the heat of exhaust gas and ammonia is generated and generated. The ammonia reacts with NOx in the exhaust gas on the selective reduction catalyst, and NOx is reduced (purified) to nitrogen and water.

上述した排気浄化装置では、運転が継続すると、選択還元触媒に燃料中の硫黄分が付着する硫黄被毒が生じる。選択還元触媒に硫黄被毒が生じると、NOxの浄化性能が低下するため、選択還元触媒の硫黄被毒を回復させるための被毒回復運転が実施されている(例えば、特許文献1参照)。特許文献1に記載の技術では、選択還元触媒に硫黄被毒が生じると、選択還元触媒を昇温して硫黄成分を分解している。選択還元触媒の昇温に伴い、尿素水の供給を停止し、尿素水インジェクタのオーバーヒートを防止している。   In the above-described exhaust purification device, if the operation is continued, sulfur poisoning occurs in which the sulfur content in the fuel adheres to the selective reduction catalyst. When sulfur poisoning occurs in the selective reduction catalyst, the NOx purification performance decreases, and therefore, poisoning recovery operation for recovering the sulfur poisoning of the selective reduction catalyst is performed (for example, see Patent Document 1). In the technique described in Patent Document 1, when sulfur poisoning occurs in the selective reduction catalyst, the selective reduction catalyst is heated to decompose the sulfur component. As the temperature of the selective reduction catalyst increases, the urea water supply is stopped to prevent overheating of the urea water injector.

ところで、選択還元触媒に被毒した硫黄の状態は、複数の態様(硫酸のアンモニウム塩、銅の硫化物)が存在し、それらの一部が選択還元触媒の活性点に吸着している。このため、硫黄被毒の量によっては、選択還元触媒に硫黄被毒が生じた際に、尿素水を供給して硫酸のアンモニウム塩を多く生成し、低い温度(例えば、約400℃から500℃)で窒素、二酸化硫黄、水に分解することができる。従って、尿素水を供給することで、硫酸のアンモニウム塩を分解して硫黄被毒を回復させることができる。   By the way, the state of sulfur poisoned by the selective reduction catalyst has a plurality of modes (sulfuric acid ammonium salt, copper sulfide), and some of them are adsorbed on the active site of the selective reduction catalyst. For this reason, depending on the amount of sulfur poisoning, when sulfur poisoning occurs in the selective reduction catalyst, urea water is supplied to produce a large amount of ammonium salt of sulfuric acid, and a low temperature (for example, about 400 ° C. to 500 ° C. ) Can be decomposed into nitrogen, sulfur dioxide and water. Therefore, by supplying urea water, the ammonium salt of sulfuric acid can be decomposed and sulfur poisoning can be recovered.

上述したように、選択還元触媒に硫黄被毒が生じた際に、尿素水を供給し、硫酸のアンモニウム塩を多く生成することで、硫黄被毒を早期に回復させることができる。しかし、選択還元触媒の硫黄被毒の回復時に尿素水を供給すると、アンモニアの排出を伴う虞があるため、アンモニアの環境への排出を抑制することが望まれているのが現状である。   As described above, when sulfur poisoning occurs in the selective reduction catalyst, the sulfur poisoning can be recovered at an early stage by supplying urea water and generating a large amount of ammonium salt of sulfuric acid. However, if urea water is supplied at the time of recovery of sulfur poisoning of the selective reduction catalyst, there is a possibility that ammonia may be discharged. Therefore, it is desired to suppress the discharge of ammonia to the environment.

特開2015−63936号公報Japanese Patent Laying-Open No. 2015-63936

本発明は上記状況に鑑みてなされたもので、選択還元触媒に硫黄被毒が生じた際に、尿素水を供給して硫黄被毒の回復を行う排気浄化装置において、必要最小限の尿素水の供給で硫黄被毒を回復することができる内燃機関の排気浄化装置を提供することを目的とする。   The present invention has been made in view of the above situation, and in an exhaust purification device that recovers sulfur poisoning by supplying urea water when sulfur poisoning occurs in the selective reduction catalyst, the minimum necessary amount of urea water It is an object of the present invention to provide an exhaust gas purification apparatus for an internal combustion engine that can recover sulfur poisoning by supplying.

上記目的を達成するための請求項1に係る本発明の内燃機関の排気浄化装置は、内燃機関の排気通路に設けられ、排気に含まれるNOxを還元浄化する選択還元触媒と、前記選択還元触媒の上流側の前記排気通路に尿素水を供給する尿素水供給手段と、前記選択還元触媒の硫黄被毒を判定する硫黄被毒判定手段と、前記硫黄被毒判定手段で前記選択還元触媒の硫黄被毒が判定された際に、前記選択還元触媒の硫黄被毒を回復させるために前記尿素水供給手段から前記尿素水を前記排気通路に供給する被毒回復手段と、排気の空燃比を検出する空燃比検出手段と、前記空燃比検出手段で排気の空燃比が相対的にリッチ側になったことが検出された際に、前記被毒回復手段による前記尿素水の供給量を制限する尿素水供給制御手段とを備えたことを特徴とする。   In order to achieve the above object, an exhaust emission control device for an internal combustion engine according to claim 1 of the present invention is provided in an exhaust passage of the internal combustion engine and selectively reduces and purifies NOx contained in the exhaust, and the selective reduction catalyst. Urea water supply means for supplying urea water to the exhaust passage on the upstream side, sulfur poisoning judgment means for judging sulfur poisoning of the selective reduction catalyst, and sulfur of the selective reduction catalyst by the sulfur poisoning judgment means When the poisoning is determined, a poisoning recovery means for supplying the urea water from the urea water supply means to the exhaust passage in order to recover sulfur poisoning of the selective reduction catalyst, and detecting an air-fuel ratio of the exhaust And a urea that limits the amount of urea water supplied by the poisoning recovery means when the air-fuel ratio of the exhaust gas is detected to be relatively rich by the air-fuel ratio detection means. With water supply control means And features.

請求項1に係る本発明では、選択還元触媒、選択還元触媒の被毒回復手段、尿素水供給制御手段、空燃比検出手段を備え、尿素水供給制御手段では、空燃比検出手段で排気の空燃比が相対的にリッチ側になったことが検出された際には、NOxが減少している状況になるため、選択還元触媒では尿素水の供給による硫黄被毒の回復(NOx浄化を含む)を制限し(行わず)、被毒回復手段による尿素水の供給を制限し(減らし)、低い温度で分解する硫黄成分(硫酸のアンモニウム塩)の生成を抑制し、排気の温度を高く維持して高い温度で分解する硫黄成分(銅の硫酸塩)の分解を促進する。   The present invention according to claim 1 comprises a selective reduction catalyst, poisoning recovery means for the selective reduction catalyst, urea water supply control means, and air / fuel ratio detection means. When it is detected that the fuel ratio has become relatively rich, NOx is reduced. Therefore, the selective reduction catalyst recovers sulfur poisoning by supplying urea water (including NOx purification). (Not done), restrict (reduce) the supply of urea water by poison recovery means, suppress the formation of sulfur components (ammonium salt of sulfuric acid) that decompose at low temperatures, and keep the exhaust temperature high It promotes the decomposition of sulfur components (copper sulfate) that decompose at high temperatures.

これにより、空燃比が相対的にリッチ側になってNOxが減少する状況下では、尿素水の供給が抑えられ(排気温度の低下が抑制され)、排気の温度が高く維持されて高温で分解される硫黄成分(銅の硫酸塩)が分解されて硫黄被毒が回復される。この時、尿素水の供給が抑制されるため、アンモニアの排出が抑制される。   As a result, in a situation where the air-fuel ratio becomes relatively rich and NOx decreases, the supply of urea water is suppressed (decrease in exhaust gas temperature is suppressed), the exhaust gas temperature is maintained high, and decomposition occurs at a high temperature. Sulfur poisoning (copper sulfate) is decomposed and sulfur poisoning is recovered. At this time, since supply of urea water is suppressed, discharge of ammonia is suppressed.

従って、選択還元触媒に硫黄被毒が生じた際に、尿素水を供給して硫黄被毒の回復を行う排気浄化装置において、必要最小限の尿素水の供給で硫黄被毒を回復することが可能になる。   Therefore, when sulfur poisoning occurs in the selective reduction catalyst, the sulfur poisoning can be recovered by supplying the minimum amount of urea water in the exhaust purification apparatus that recovers sulfur poisoning by supplying urea water. It becomes possible.

そして、請求項2にかかる本発明の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記尿素水供給制御手段は、前記空燃比検出手段で排気の空燃比が通常運転時の空燃比に対してリッチ側になったことが検出された際に、検出された前記空燃比の値に応じて、前記被毒回復手段による前記尿素水の供給量を制限することを特徴とする。   An internal combustion engine exhaust gas purification apparatus according to a second aspect of the present invention is the internal combustion engine exhaust gas purification apparatus according to the first aspect, wherein the urea water supply control means is the air-fuel ratio detection means and the air-fuel ratio of the exhaust gas. Is detected to be rich with respect to the air-fuel ratio during normal operation, the amount of urea water supplied by the poisoning recovery means is limited according to the detected value of the air-fuel ratio. It is characterized by that.

請求項2に係る本発明では、空燃比検出手段で排気の空燃比が通常運転時の空燃比に対してリッチ側になったことが検出された際には、NOxが減少している状況になるため、選択還元触媒では尿素水の供給による硫黄被毒の回復(NOx浄化を含む)を制限し(行わず)、被毒回復手段による尿素水の供給を空燃比の値に応じて制限し(調整し)、低い温度で分解する硫黄成分(硫酸のアンモニウム塩)の生成を抑制し、排気の温度を高く維持して高い温度で分解する硫黄成分(銅の硫酸塩)の分解を促進する。   In the present invention according to claim 2, when it is detected by the air-fuel ratio detection means that the air-fuel ratio of the exhaust gas has become richer than the air-fuel ratio during normal operation, NOx decreases. Therefore, the selective reduction catalyst limits (does not perform) the recovery of sulfur poisoning (including NOx purification) by supplying urea water, and limits the urea water supply by the poisoning recovery means according to the value of the air-fuel ratio. (Adjust), suppress the generation of sulfur component (sulfuric acid ammonium salt) that decomposes at low temperature, promote the decomposition of sulfur component (copper sulfate) that decomposes at high temperature, keeping the exhaust temperature high .

これにより、通常運転時の空燃比に対して空燃比が相対的にリッチ側になってNOxが減少する状況下では、尿素水の供給が抑えられ(排気温度の低下が抑制され)、排気の温度が高く維持されて高温で分解される硫黄成分(銅の硫酸塩)が分解されて硫黄被毒が回復される。この時、尿素水の供給が抑制されるため、アンモニアの排出が抑制される。   As a result, in a situation where the air-fuel ratio becomes relatively rich with respect to the air-fuel ratio during normal operation and NOx decreases, the supply of urea water is suppressed (a decrease in exhaust temperature is suppressed), and the exhaust gas is reduced. The sulfur component (copper sulfate) which is maintained at a high temperature and decomposes at a high temperature is decomposed to recover sulfur poisoning. At this time, since supply of urea water is suppressed, discharge of ammonia is suppressed.

そして、請求項3に係る本発明の内燃機関の排気浄化装置は、請求項2に記載の内燃機関の排気浄化装置において、前記尿素水が供給される部位の上流側の前記排気通路に設けられ、排気空燃比がリーン雰囲気の時にNOxを吸蔵し、排気空燃比がストイキもしくはリッチ雰囲気の時に吸蔵したNOxを還元して浄化するNOx吸蔵触媒と、排気に燃料成分を追加して前記NOx吸蔵触媒を昇温させるリッチ化手段とを備え、前記空燃比検出手段は、前記リッチ化手段により前記燃料成分が追加され、前記NOx吸蔵触媒が昇温された際の排気の空燃比を検出することを特徴とする。   An exhaust gas purification apparatus for an internal combustion engine according to a third aspect of the present invention is the exhaust gas purification apparatus for an internal combustion engine according to the second aspect, wherein the exhaust gas purification apparatus is provided in the exhaust passage upstream of a portion to which the urea water is supplied. NOx occlusion catalyst that stores NOx when exhaust air-fuel ratio is lean, and reduces and purifies NOx occluded when exhaust air-fuel ratio is stoichiometric or rich atmosphere, and NOx occlusion catalyst by adding fuel component to exhaust Enrichment means for raising the temperature of the fuel, and the air-fuel ratio detection means detects the air-fuel ratio of the exhaust when the fuel component is added by the enrichment means and the NOx storage catalyst is heated. Features.

請求項3に係る本発明では、NOx吸蔵触媒を昇温させるためにリッチ化手段から燃料成分を追加して通常運転時の空燃比に対して空燃比がリッチ側になった際に、尿素水の供給が抑えられて排気の温度が高く維持される。リッチ化手段から燃料成分が追加される状況は、NOx吸蔵触媒が再生される時、もしくは、間欠的に燃料成分を供給するリッチパージの時が含まれる。   In the present invention according to claim 3, when the fuel component is added from the enrichment means to raise the temperature of the NOx storage catalyst and the air-fuel ratio becomes richer than the air-fuel ratio during normal operation, the urea water Is suppressed and the exhaust temperature is kept high. The situation in which the fuel component is added from the enrichment means includes a time when the NOx storage catalyst is regenerated or a rich purge in which the fuel component is intermittently supplied.

また、請求項4に係る本発明の内燃機関の排気浄化装置は、請求項3に記載の内燃機関の排気浄化装置において、前記選択還元触媒の温度の状況を検出する触媒温度把握手段を備え、前記被毒回復手段は、前記触媒温度把握手段で把握された前記選択還元触媒の温度の状況を含む情報に基づいて前記硫黄被毒の態様を判定し、前記尿素水供給制御手段は、前記被毒回復手段で判定された前記硫黄被毒の態様に応じて前記尿素水の供給の制限の度合いを制御することを特徴とする。   According to a fourth aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine according to the third aspect of the present invention, wherein the internal combustion engine exhaust gas purification apparatus comprises a catalyst temperature grasping means for detecting a temperature state of the selective reduction catalyst, The poisoning recovery means determines the sulfur poisoning mode based on information including the temperature state of the selective reduction catalyst grasped by the catalyst temperature grasping means, and the urea water supply control means The degree of restriction of the supply of the urea water is controlled according to the aspect of sulfur poisoning determined by the poison recovery means.

請求項4に係る本発明では、触媒温度把握手段により選択還元触媒の温度、温度の履歴等の状況を少なくとも把握し、選択還元触媒の硫黄被毒の態様を判定する。つまり、選択還元触媒の硫黄被毒について、温度の履歴等により、低温域で分解される硫黄成分(硫酸のアンモニウム塩)、高温域で分解される硫黄成分(銅の硫酸塩)の状況を判定し、低温域で分解された硫黄成分(硫酸のアンモニウム塩)が多い状況であれば、尿素水の供給の制限の度合いを高めて尿素水の供給量を減らし(アンモニアの排出を抑制し)、潜熱による排気温度の低下を抑制して排気温度を高く保ち高温域で分解される硫黄成分を分解する。   In the present invention according to claim 4, the catalyst temperature grasping means grasps at least the conditions such as the temperature of the selective reduction catalyst, the temperature history, etc., and determines the sulfur poisoning mode of the selective reduction catalyst. In other words, regarding the sulfur poisoning of the selective reduction catalyst, the status of the sulfur component (sulfuric acid ammonium salt) decomposed in the low temperature range and the sulfur component (copper sulfate salt) decomposed in the high temperature range are determined from the temperature history, etc. However, if there are many sulfur components decomposed in the low temperature range (ammonium salt of sulfuric acid), increase the restriction of urea water supply to reduce the supply amount of urea water (suppress the discharge of ammonia), Suppresses the exhaust temperature drop due to latent heat, keeps the exhaust temperature high, and decomposes sulfur components that are decomposed at high temperatures.

また、請求項5に係る本発明の内燃機関の排気浄化装置は、請求項4に記載の内燃機関の排気浄化装置において、前記被毒回復手段は、前記選択還元触媒で硫酸のアンモニウム塩を分解する第1の温度、及び、前記第1の温度よりも高く、銅の硫酸塩を分解する第2の温度の状況を判断することで前記硫黄被毒の態様を判定し、前記尿素水供給制御手段は、前記選択還元触媒の温度が、前記第1の温度以上で前記第2の温度未満にあった状態の履歴に基づいて、前記尿素水の供給の制限の度合いを制御することを特徴とする。   The exhaust gas purification apparatus for an internal combustion engine of the present invention according to claim 5 is the exhaust gas purification apparatus for an internal combustion engine according to claim 4, wherein the poisoning recovery means decomposes the ammonium salt of sulfuric acid with the selective reduction catalyst. Determining the state of sulfur poisoning by determining a first temperature that is higher than the first temperature and a second temperature that is higher than the first temperature and decomposing copper sulfate, and controlling the urea water supply The means controls the degree of restriction of the supply of the urea water based on a history of a state where the temperature of the selective reduction catalyst is equal to or higher than the first temperature and lower than the second temperature. To do.

請求項5に係る本発明では、選択還元触媒の温度の履歴を把握し、第1の温度以上で第2の温度未満にあった状態(硫酸のアンモニウム塩が分解される状態)の履歴により、尿素水の供給の制限の度合いを制御する。つまり、選択還元触媒の温度の状況を把握して、硫酸のアンモニウム塩、銅の硫酸塩を区分けして尿素水の供給の制限の度合いを変更する。   In the present invention according to claim 5, the history of the temperature of the selective reduction catalyst is grasped, and the history of the state (state in which the ammonium salt of sulfuric acid is decomposed) that is higher than the first temperature and lower than the second temperature is Control the degree of restriction of urea water supply. That is, by grasping the temperature state of the selective reduction catalyst, the ammonium salt of sulfuric acid and the copper sulfate are classified, and the degree of restriction of the supply of urea water is changed.

また、請求項6に記載の内燃機関の排気浄化装置は、請求項5に記載の内燃機関の排気浄化装置において、前記尿素水供給制御手段は、前記選択還元触媒の温度が、前記第1の温度以上で前記第2の温度未満にあった時間が長くなるにしたがって、前記尿素水の供給の制限の度合いを高めることを特徴とする。   The internal combustion engine exhaust gas purification apparatus according to claim 6 is the internal combustion engine exhaust gas purification apparatus according to claim 5, wherein the urea water supply control means is configured such that the temperature of the selective reduction catalyst is the first The degree of restriction of the supply of the urea water is increased as the time that is higher than the temperature and lower than the second temperature becomes longer.

請求項6に係る本発明では、硫酸のアンモニウム塩が分解される状態の温度が長い場合、硫酸のアンモニウム分解されている状態として、尿素水の供給の制限の度合いを高め(尿素水の供給を大きく減らし)、排気温度の低下を抑制して排気温度を高温に維持し、高温域で分解される銅の硫酸塩を分解して硫黄被毒を回復させる。   In the present invention according to claim 6, when the temperature of the state in which the ammonium salt of sulfuric acid is decomposed is long, the degree of restriction of the supply of urea water is increased as the state in which ammonium sulfate is decomposed (the supply of urea water is reduced). Greatly reduced), the exhaust temperature is kept low and the exhaust temperature is kept high, and the copper sulfate decomposed in the high temperature region is decomposed to recover sulfur poisoning.

また、請求項7に係る本発明の内燃機関の排気浄化装置は、請求項3から請求項6のいずれか一項に記載の内燃機関の排気浄化装置において、前記リッチ化手段は、排気に燃料成分を追加して前記NOx吸蔵触媒を昇温させることで、前記NOx吸蔵触媒の再生を行う手段であることを特徴とする。   An exhaust gas purification apparatus for an internal combustion engine according to a seventh aspect of the present invention is the exhaust gas purification apparatus for an internal combustion engine according to any one of the third to sixth aspects, wherein the enrichment means is fuel for exhaust gas. It is a means for regenerating the NOx storage catalyst by adding a component to raise the temperature of the NOx storage catalyst.

請求項7に係る本発明では、NOx吸蔵触媒の再生を行う場合に、燃料成分が追加されて空燃比がリッチ側になった時に、尿素水の供給の制限の度合いを高めて尿素水の供給量を減らす。   In the present invention according to claim 7, when the regeneration of the NOx storage catalyst is performed, when the fuel component is added and the air-fuel ratio becomes rich, the supply degree of urea water is increased by increasing the degree of restriction of urea water supply. Reduce the amount.

また、請求項8に係る本発明の内燃機関の排気浄化装置は、請求項3から請求項7のいずれか一項に記載の内燃機関の排気浄化装置において、前記リッチ化手段は、排気に燃料成分を間欠的に追加して前記NOx吸蔵触媒を昇温させることで、前記NOx吸蔵触媒から間欠的にNOxを放出させる手段であることを特徴とする。   An exhaust gas purification apparatus for an internal combustion engine according to an eighth aspect of the present invention is the exhaust gas purification apparatus for an internal combustion engine according to any one of the third to seventh aspects, wherein the enrichment means is a fuel for exhaust gas. It is means for intermittently releasing NOx from the NOx storage catalyst by adding components intermittently to raise the temperature of the NOx storage catalyst.

請求項8に係る本発明では、NOx吸蔵触媒のパージを行う場合に、燃料成分が間欠的に追加されて空燃比がリッチ側になった時に、尿素水の供給の制限の度合いを高めて尿素水の供給量を減らす。   In the present invention according to claim 8, when purging the NOx storage catalyst, when the fuel component is intermittently added and the air-fuel ratio becomes rich, the degree of restriction of urea water supply is increased to increase the urea concentration. Reduce water supply.

本発明の内燃機関の排気浄化装置は、選択還元触媒に硫黄被毒が生じた際に、尿素水を供給して硫黄被毒の回復を行う排気浄化装置において、必要最小限の尿素水の供給で硫黄被毒を回復することが可能になる。この結果、尿素水の供給が抑制されてアンモニアの排出が抑制される。   The exhaust gas purification apparatus for an internal combustion engine according to the present invention supplies a minimum amount of urea water in an exhaust gas purification apparatus that recovers sulfur poisoning by supplying urea water when sulfur poisoning occurs in the selective reduction catalyst. This makes it possible to recover sulfur poisoning. As a result, the supply of urea water is suppressed and ammonia discharge is suppressed.

本発明の一実施例に係る内燃機関の排気浄化装置の系統を表す概略構成図である。It is a schematic block diagram showing the system | strain of the exhaust gas purification apparatus of the internal combustion engine which concerns on one Example of this invention. 制御手段のブロック構成図である。It is a block block diagram of a control means. 本発明の一実施例に係る内燃機関の排気浄化装置の基本の動作を説明するフローチャートである。It is a flowchart explaining basic operation | movement of the exhaust gas purification apparatus of the internal combustion engine which concerns on one Example of this invention. 尿素水の供給制限を説明するマップである。It is a map explaining the supply restriction | limiting of urea water. 空燃比と尿素水の供給量の経時変化を説明するグラフである。It is a graph explaining the time-dependent change of the air fuel ratio and the supply amount of urea water. 空燃比と尿素水の供給量の経時変化を説明するグラフである。It is a graph explaining the time-dependent change of the air fuel ratio and the supply amount of urea water.

本実施例の内燃機関の排気浄化装置は、尿素選択還元(Selective Catalytic Reduction)システムを用いた排気浄化装置である。即ち、排気ガスに含まれる窒素酸化物(NOx)を低減するため、選択還元触媒が備えられ、排気通路内に尿素水が尿素水噴射弁から噴射されることで、尿素水が排気ガスの熱により分解されてアンモニアが生成され、生成されたアンモニアが選択還元触媒上で排気ガス中のNOxと反応し、NOxが窒素と水に還元(浄化)される装置である。   The exhaust gas purification apparatus for an internal combustion engine according to the present embodiment is an exhaust gas purification apparatus using a selective catalytic reduction system. That is, in order to reduce nitrogen oxide (NOx) contained in the exhaust gas, a selective reduction catalyst is provided, and urea water is injected into the exhaust passage from the urea water injection valve, so that the urea water is heated by the exhaust gas. Is a device that generates ammonia by being decomposed by the above, and the generated ammonia reacts with NOx in the exhaust gas on the selective reduction catalyst, and NOx is reduced (purified) to nitrogen and water.

選択還元触媒に硫黄被毒が生じた際に、尿素水噴射弁から尿素水を供給し、硫酸のアンモニウム塩を多く生成し、低い温度(例えば、約400℃から550℃:第1の温度)で窒素、二酸化硫黄、水に分解して硫酸のアンモニウム塩を分解し、選択還元触媒の硫黄被毒を回復させるようになっている。   When sulfur poisoning occurs in the selective reduction catalyst, urea water is supplied from the urea water injection valve, and a large amount of ammonium salt of sulfuric acid is produced, and the temperature is low (for example, about 400 ° C. to 550 ° C .: first temperature). It decomposes into nitrogen, sulfur dioxide, and water to decompose the ammonium salt of sulfuric acid to recover sulfur poisoning of the selective reduction catalyst.

そして、空燃比が相対的にリッチ側になったことが検出された際に(通常運転時の空燃比に対して空燃比がリッチ側になった際に)、尿素水の供給量を制限し(減らし、停止し)、潜熱による排気の温度の低下を抑制して、高い温度(例えば、約600℃から650℃:第2の温度)に排気の温度を維持し、高温の雰囲気下で銅の硫酸塩を分解し、選択還元触媒の硫黄被毒を回復させるようになっている。この時、尿素水の供給量が制限されるため、アンモニアの排出を抑えることができる。   When it is detected that the air-fuel ratio has become relatively rich (when the air-fuel ratio has become rich with respect to the air-fuel ratio during normal operation), the supply amount of urea water is limited. (Decrease and stop), suppress the exhaust temperature drop due to latent heat, maintain the exhaust temperature at a high temperature (for example, about 600 ° C. to 650 ° C .: the second temperature), copper in a high temperature atmosphere It decomposes the sulfate of the catalyst to recover the sulfur poisoning of the selective reduction catalyst. At this time, since the supply amount of urea water is limited, the discharge of ammonia can be suppressed.

尚、通常運転時の空燃比は、走行のために燃料を供給している状態の空燃比のことであり、運転状況により空燃比の値は変化する。通常運転時以外は、走行とは別に燃料が供給される状態のことであり、例えば、触媒の活性化のために燃料を追加供給する場合が該当する。   Note that the air-fuel ratio at the time of normal operation is an air-fuel ratio in a state where fuel is supplied for traveling, and the value of the air-fuel ratio varies depending on the operation state. Except during normal operation, this is a state in which fuel is supplied separately from running, for example, a case where additional fuel is supplied to activate the catalyst.

図1に基づいて本発明の一実施例の構成を説明する。図1には本発明の一実施例に係る内燃機関の排気浄化装置の系統を表す概略構成を示してある。   The configuration of an embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a schematic configuration representing a system of an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention.

図に示すように、車両に搭載される内燃機関としての多気筒ディーゼルエンジン(エンジン)1の排気通路としての排気管2には、排気浄化装置3が備えられている。排気浄化装置3には、NOx吸蔵触媒4、及び、ディーゼル微粒子捕集フィルター5を有する浄化装置6が備えられている。   As shown in the figure, an exhaust purification device 3 is provided in an exhaust pipe 2 as an exhaust passage of a multi-cylinder diesel engine (engine) 1 as an internal combustion engine mounted on a vehicle. The exhaust purification device 3 includes a purification device 6 having a NOx storage catalyst 4 and a diesel particulate filter 5.

NOx吸蔵触媒4は、排気空燃比がリーン雰囲気の時にNOxを吸蔵し、排気空燃比がストイキもしくはリッチ雰囲気の時に吸蔵したNOxを還元して浄化するものである。ディーゼル微粒子捕集フィルター5は微粒子を捕集する装置である。   The NOx storage catalyst 4 stores NOx when the exhaust air-fuel ratio is a lean atmosphere, and reduces and purifies NOx stored when the exhaust air-fuel ratio is a stoichiometric or rich atmosphere. The diesel particulate filter 5 is a device that collects particulates.

NOx吸蔵触媒4、及び、ディーゼル微粒子捕集フィルター5が硫黄により被毒されると、排気管2に追加の燃料が噴射されて(リッチ化手段)、NOx吸蔵触媒4、及び、ディーゼル微粒子捕集フィルター5が昇温され、硫黄が除去されて再生される(再生運転)。また、排気管2に間欠的に追加燃料が噴射され(リッチ化手段)、NOx吸蔵触媒4のNOxがパージされると共に、ディーゼル微粒子捕集フィルター5の微粒子がパージされる(パージ運転)。   When the NOx storage catalyst 4 and the diesel particulate filter 5 are poisoned by sulfur, additional fuel is injected into the exhaust pipe 2 (riching means), and the NOx storage catalyst 4 and the diesel particulate collection. The filter 5 is heated to remove sulfur and regenerate (regeneration operation). Further, additional fuel is intermittently injected into the exhaust pipe 2 (riching means), the NOx of the NOx storage catalyst 4 is purged, and the particulates of the diesel particulate collection filter 5 are purged (purge operation).

浄化装置6の下流側には、排気浄化装置3として、尿素選択還元(Selective Catalytic Reduction)システムが備えられている。即ち、浄化装置6の下流側の排気管2には選択還元触媒11が設けられ、選択還元触媒11の上流側の排気管2には、尿素水噴射弁12(尿素水供給手段)が設けられている。   A urea selective reduction (Selective Catalytic Reduction) system is provided on the downstream side of the purification device 6 as the exhaust purification device 3. That is, the selective reduction catalyst 11 is provided in the exhaust pipe 2 on the downstream side of the purification device 6, and the urea water injection valve 12 (urea water supply means) is provided in the exhaust pipe 2 on the upstream side of the selective reduction catalyst 11. ing.

尿素水噴射弁12には図示しない尿素水タンクから尿素水が供給され、尿素水噴射弁12は制御手段10からの指示により排気管2内に尿素水を噴射する(供給する)。即ち、尿素水が供給されることで、排気ガスの熱により尿素水が分解されてアンモニアが生成され、生成されたアンモニアが選択還元触媒11で排気ガス中のNOxと反応し、NOxが窒素と水に還元(浄化)される。   The urea water injection valve 12 is supplied with urea water from a urea water tank (not shown), and the urea water injection valve 12 injects (supply) urea water into the exhaust pipe 2 according to an instruction from the control means 10. That is, by supplying urea water, urea water is decomposed by the heat of the exhaust gas to generate ammonia, and the generated ammonia reacts with NOx in the exhaust gas by the selective reduction catalyst 11, and NOx is converted into nitrogen. Reduced (purified) to water.

選択還元触媒11には触媒の温度を検出する温度センサー13が備えられ、また、選択還元触媒11の下流側の通路には選択還元触媒11を出た排気中のNOxの状態を検出するNOxセンサー14が備えられている。温度センサー13、NOxセンサー14の検出情報は制御手段10に入力される。また、制御手段10にはエンジン1の運転状況が入力される。   The selective reduction catalyst 11 is provided with a temperature sensor 13 that detects the temperature of the catalyst, and a NOx sensor that detects the state of NOx in the exhaust gas that has exited the selective reduction catalyst 11 is disposed in a downstream passage of the selective reduction catalyst 11. 14 is provided. Detection information of the temperature sensor 13 and the NOx sensor 14 is input to the control means 10. Further, the operating state of the engine 1 is input to the control means 10.

そして、尿素水噴射弁12の上流側における浄化装置6の下流側の通路には、排気の空燃比を検出する空燃比検出手段としての空燃比検出センサー15が備えられている。空燃比検出センサー15は、例えば、酸素を検出することで理論空燃比を判定する酸素センサーや、空燃比を連続的に検出するリニア空燃比センサーを適用することができる。   An air-fuel ratio detection sensor 15 as an air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas is provided in the passage on the downstream side of the purification device 6 on the upstream side of the urea water injection valve 12. As the air-fuel ratio detection sensor 15, for example, an oxygen sensor that determines the theoretical air-fuel ratio by detecting oxygen or a linear air-fuel ratio sensor that continuously detects the air-fuel ratio can be applied.

詳細は後述するが、制御手段10では、温度センサー13で検出された選択還元触媒11の温度の状況(履歴)、NOxセンサー14で検出されたNOxの浄化状況、尿素水噴射弁12からの尿素水の噴射状況、エンジン1の運転状況等により、選択還元触媒11の硫黄被毒が判定される。硫黄被毒が判定されると、尿素水が供給されて硫黄被毒が回復される。   Although details will be described later, in the control means 10, the temperature state (history) of the selective reduction catalyst 11 detected by the temperature sensor 13, the purification state of NOx detected by the NOx sensor 14, and the urea from the urea water injection valve 12. The sulfur poisoning of the selective reduction catalyst 11 is determined based on the water injection status, the operating status of the engine 1, and the like. When sulfur poisoning is determined, urea water is supplied to recover sulfur poisoning.

そして、空燃比検出センサー15により排気の空燃比が相対的にリッチ側になったことが検出された際に、尿素水の供給量が制限される。具体的には後述するが、排気の空燃比が相対的にリッチ側になった場合、NOxが減少している状況になるため、尿素水の供給を制限し、尿素水の供給による硫黄被毒の回復(NOx浄化を含む)を制限し(行わず)、潜熱による排気温度の低下を抑制し、排気の温度を高く維持して高い温度で分解する硫黄成分(銅の硫酸塩)の分解を促進する。この時、選択還元触媒11の温度の状況(履歴)により、尿素水の供給の制限の度合いが調整される。   When the air-fuel ratio detection sensor 15 detects that the air-fuel ratio of the exhaust gas is relatively rich, the supply amount of urea water is limited. Specifically, as will be described later, when the air-fuel ratio of the exhaust gas becomes relatively rich, NOx decreases, so the supply of urea water is limited and sulfur poisoning due to the supply of urea water Recovery (including NOx purification) is restricted (not performed), the exhaust temperature is prevented from lowering due to latent heat, and the sulfur component (copper sulfate) that decomposes at a high temperature is maintained while maintaining the exhaust temperature high. Facilitate. At this time, the degree of restriction of the supply of urea water is adjusted according to the temperature state (history) of the selective reduction catalyst 11.

図2に基づいて制御手段10を具体的に説明する。図2には制御手段10のブロック構成を示してある。   The control means 10 will be specifically described based on FIG. FIG. 2 shows a block configuration of the control means 10.

図に示すように、制御手段10には硫黄被毒推定手段21が備えられている。硫黄被毒推定手段21では、エンジン1を運転するための燃料の消費速度、推定される硫黄の濃度、選択還元触媒11の温度別の硫黄(硫酸のアンモニウム塩、銅の硫酸塩)の蓄積割合に基づいて、選択還元触媒11の硫黄被毒量が推定される。また、選択還元触媒11の特定の温度における尿素水噴射量とNOxの浄化率との関係から、選択還元触媒11の硫黄被毒量が推定される。   As shown in the figure, the control means 10 is provided with sulfur poisoning estimation means 21. In the sulfur poisoning estimation means 21, the fuel consumption rate for operating the engine 1, the estimated sulfur concentration, and the accumulation ratio of sulfur (sulfuric acid ammonium salt, copper sulfate) according to the temperature of the selective reduction catalyst 11. Based on this, the sulfur poisoning amount of the selective reduction catalyst 11 is estimated. Further, the sulfur poisoning amount of the selective reduction catalyst 11 is estimated from the relationship between the urea water injection amount at a specific temperature of the selective reduction catalyst 11 and the NOx purification rate.

制御手段10には、硫黄被毒推定手段21で推定された硫黄被毒量が判定値を超えているか否かを判断する硫黄被毒判定手段22が備えられている。また、硫黄被毒判定手段22で選択還元触媒11の硫黄被毒が判定された際に(硫黄被毒量が判定値を超えたと判定された際に)、選択還元触媒11の硫黄被毒を回復させるために尿素水噴射弁12から尿素水を噴射させる被毒回復手段23が備えられている。被毒回復手段23は、尿素水供給制御手段24を介して尿素水噴射弁12から尿素水を噴射する指令を送るようになっている。   The control means 10 is provided with sulfur poisoning determination means 22 for determining whether or not the sulfur poisoning amount estimated by the sulfur poisoning estimation means 21 exceeds a determination value. Further, when the sulfur poisoning determination means 22 determines that the selective reduction catalyst 11 is sulfur poisoned (when it is determined that the sulfur poisoning amount exceeds the determination value), the sulfur poisoning of the selective reduction catalyst 11 is reduced. In order to recover, poisoning recovery means 23 for injecting urea water from the urea water injection valve 12 is provided. The poisoning recovery means 23 sends a command for injecting urea water from the urea water injection valve 12 via the urea water supply control means 24.

一方、制御手段10には、NOx吸蔵触媒4、及び、ディーゼル微粒子捕集フィルター5が硫黄により被毒された際に、追加の燃料を供給してNOx吸蔵触媒4、及び、ディーゼル微粒子捕集フィルター5を昇温させて再生運転を行う再生手段25が備えられている。また、再生手段25は、間欠的に追加の燃料を供給してNOx吸蔵触媒4を昇温させてNOx吸蔵触媒4のNOxパージ運転を行う。   On the other hand, when the NOx storage catalyst 4 and the diesel particulate filter 5 are poisoned by sulfur, the control means 10 is supplied with additional fuel to supply the NOx storage catalyst 4 and the diesel particulate collection filter. Regeneration means 25 for performing a regeneration operation by raising the temperature of 5 is provided. Further, the regeneration unit 25 intermittently supplies additional fuel to raise the temperature of the NOx storage catalyst 4 and perform the NOx purge operation of the NOx storage catalyst 4.

再生手段25によりNOx吸蔵触媒4、及び、ディーゼル微粒子捕集フィルター5を昇温させた情報は、尿素水供給制御手段24に送られる。尿素水供給制御手段24を介して尿素水噴射弁12から尿素水が噴射されることで、選択還元触媒11の硫黄被毒が回復される。   Information about the temperature rise of the NOx storage catalyst 4 and the diesel particulate filter 5 by the regeneration means 25 is sent to the urea water supply control means 24. Sulfur poisoning of the selective reduction catalyst 11 is recovered by injecting urea water from the urea water injection valve 12 via the urea water supply control means 24.

再生手段25により追加の燃料を供給した場合、空燃比がリッチ側になったことが空燃比検出センサー15により検出される。空燃比がリッチ側になったことが検出されると、被毒回復手段23からの指令により供給されている(被毒回復のために供給されている)尿素水の供給量が制限される。   When additional fuel is supplied by the regeneration means 25, the air-fuel ratio detection sensor 15 detects that the air-fuel ratio has become rich. When it is detected that the air-fuel ratio has become rich, the amount of urea water supplied (supplied for poisoning recovery) in accordance with a command from the poisoning recovery means 23 is limited.

例えば、NOx吸蔵触媒4が再生運転されている場合、排気の空燃比がリッチになって排気温度が高められるので、尿素水の供給を制限して供給量を減らし(停止し)、潜熱による排気温度の低下を抑制する。排気温度を高く維持することで、例えば、銅の硫酸塩の分解が促進される。尿素水の供給量の制限の状況は、選択還元触媒11の温度の履歴(硫黄被毒の態様)応じて設定される(具体的には後述する)。   For example, when the NOx storage catalyst 4 is being regenerated, the air-fuel ratio of the exhaust gas becomes rich and the exhaust gas temperature is raised. Therefore, the supply amount of urea water is limited to reduce (stop) the exhaust gas due to latent heat. Reduces temperature drop. By maintaining the exhaust temperature high, for example, decomposition of copper sulfate is promoted. The state of restriction of the supply amount of urea water is set according to the temperature history (sulfur poisoning mode) of the selective reduction catalyst 11 (specifically described later).

前述したように、制御手段10に備えられている硫黄被毒推定手段21で硫黄被毒状態が推定される。そして、硫黄被毒推定手段21で推定された硫黄被毒状態に応じて、尿素水供給制御手段24から供給される尿素水の供給量を設定する。具体的には、被毒が進んでいる、即ち、硫黄被毒量が多いほど尿素水供給制御手段24から供給される尿素水の供給量を制限する度合いを強めて、供給する尿素水の量を減少させる。また、被毒が進んでいる、即ち、硫黄被毒量が多いほど尿素水を供給する時間を短くして供給する尿素水の量を減少させる。ここで、尿素水の供給量を制限するとの表現は、尿素水の供給量を0にするという意味も含んでいる。   As described above, the sulfur poisoning state is estimated by the sulfur poisoning estimation means 21 provided in the control means 10. Then, the supply amount of urea water supplied from the urea water supply control means 24 is set according to the sulfur poisoning state estimated by the sulfur poisoning estimation means 21. Specifically, the amount of urea water to be supplied is increased by increasing the degree of limiting the amount of urea water supplied from the urea water supply control means 24 as the sulfur poisoning amount increases. Decrease. Further, poisoning is progressing, that is, the amount of urea water to be supplied is reduced by shortening the time for supplying urea water as the amount of sulfur poisoning increases. Here, the expression “restricting the supply amount of urea water” includes the meaning of reducing the supply amount of urea water to zero.

制御手段10には触媒温度把握手段26が備えられ、触媒温度把握手段26で把握された選択還元触媒11の温度の状況の情報は被毒回復手段23に送られる。被毒回復手段23は、触媒温度把握手段26で把握された選択還元触媒11の温度の状況を含む情報に基づいて硫黄被毒の態様の状況(硫酸のアンモニウム塩、銅の硫酸塩の状況)を把握する。   The control means 10 is provided with a catalyst temperature grasping means 26, and information on the temperature state of the selective reduction catalyst 11 grasped by the catalyst temperature grasping means 26 is sent to the poisoning recovery means 23. The poisoning recovery means 23 determines the state of sulfur poisoning based on the information including the temperature state of the selective reduction catalyst 11 grasped by the catalyst temperature grasping means 26 (state of ammonium sulfate and copper sulfate). To figure out.

つまり、選択還元触媒11の硫黄被毒について、温度の履歴により、低温域で分解される硫黄成分(硫酸のアンモニウム塩)、高温域で分解される硫黄成分(銅の硫酸塩)の状況を判定し、低温域で分解された硫黄成分(硫酸のアンモニウム塩)が多い状況であれば、尿素水の供給の制限の度合いを高めて尿素水の供給量を減らす。   In other words, regarding the sulfur poisoning of the selective reduction catalyst 11, the situation of the sulfur component (sulfuric acid ammonium salt) decomposed in the low temperature region and the sulfur component (copper sulfate salt) decomposed in the high temperature region is determined from the temperature history. However, if there are many sulfur components (ammonium salt of sulfuric acid) decomposed in a low temperature region, the supply amount of urea water is reduced by increasing the degree of restriction of supply of urea water.

具体的には、選択還元触媒11が、第1の温度(例えば、約400℃から550℃)以上で第2の温度(例えば、約600℃から650℃)未満にあった状態の履歴により、尿素水の供給の制限の度合いを変更する。例えば、第1の温度以上で第2の温度未満にあった状態の時間が長くなるにしたがって、硫酸のアンモニウム塩が多く分解されている状態であるとして、尿素水の供給の制限の度合いを高くして尿素水の供給を大きく減らす。   Specifically, according to the history of the state in which the selective reduction catalyst 11 was at or above the first temperature (for example, about 400 ° C. to 550 ° C.) and less than the second temperature (for example, about 600 ° C. to 650 ° C.), Change the degree of restriction of urea water supply. For example, the degree of restriction on the supply of urea water is increased as the ammonium salt of sulfuric acid is in a state where a large amount of ammonium salt is decomposed as the time of the state that is higher than the first temperature and lower than the second temperature becomes longer. And greatly reduce the urea water supply.

尿素水の供給を減らすことで(停止することで)、潜熱による排気温度の低下を抑制して排気温度を高く保ち、高温域で分解される銅の硫酸塩を分解する。尿素水の供給を減らすことで(停止することで)、アンモニアの排出が抑制される。   By reducing the supply of urea water (by stopping), the exhaust temperature is kept low by suppressing the exhaust temperature drop due to latent heat, and the copper sulfate decomposed in the high temperature range is decomposed. By reducing the supply of urea water (by stopping), the discharge of ammonia is suppressed.

つまり、選択還元触媒11の温度の状況を把握して、硫酸のアンモニウム塩、銅の硫酸塩を区分けして尿素水の供給の制限の度合いを変更し、排気温度の低下を抑制して排気温度を高温に維持し、高温域で分解される銅の硫酸塩を分解して硫黄被毒を回復させる。   That is, the temperature of the selective reduction catalyst 11 is grasped, the ammonium salt of sulfuric acid and the copper sulfate are classified, the degree of restriction of the supply of urea water is changed, and the exhaust temperature is suppressed by suppressing the decrease in the exhaust temperature. Is maintained at a high temperature, and the sulfur sulfate is recovered by decomposing copper sulfate, which is decomposed at high temperatures.

上述したように、尿素水供給制御手段24は、再生手段25が動作されて排気の空燃比がリッチになって排気温度が高められている場合、尿素水の供給を制限する。そして、選択還元触媒11の温度の履歴の情報に基づいて、尿素水の供給の制限の度合いを制御する。例えば、硫酸のアンモニウム塩の分解が多くされた場合、尿素水の供給を制限して供給量を減らし(停止し)、潜熱による排気温度の低下を抑制して銅の硫酸塩の分解を促進する。尿素水の供給を減らすことで(停止することで)、アンモニアの排出が抑制される。   As described above, the urea water supply control means 24 restricts the supply of urea water when the regeneration means 25 is operated and the exhaust air temperature is rich and the exhaust gas temperature is raised. Then, the degree of restriction of the supply of urea water is controlled based on the temperature history information of the selective reduction catalyst 11. For example, when the decomposition of ammonium sulfate is increased, the supply of urea water is limited to reduce (stop) the supply, and the decrease in exhaust temperature due to latent heat is suppressed to promote the decomposition of copper sulfate. . By reducing the supply of urea water (by stopping), the discharge of ammonia is suppressed.

従って、選択還元触媒11に硫黄被毒が生じた際に、尿素水を供給して硫黄被毒の回復を行う排気浄化装置において、必要最小限の尿素水の供給で硫黄被毒を回復することが可能になる。   Therefore, when sulfur poisoning occurs in the selective reduction catalyst 11, the sulfur poisoning is recovered by supplying the minimum amount of urea water in the exhaust purification device that supplies urea water to recover the sulfur poisoning. Is possible.

図3、図4に基づいて上述した排気浄化装置の動作を具体的に説明する。図3には本発明の一実施例に係る内燃機関の排気浄化装置における選択還元触媒11の硫黄被毒の回復処理の流れを説明するフローチャート、図4には尿素水の供給制限を説明するマップを示してある。   The operation of the exhaust emission control device described above will be specifically described with reference to FIGS. FIG. 3 is a flowchart for explaining the flow of recovery processing for sulfur poisoning of the selective reduction catalyst 11 in the exhaust gas purification apparatus for an internal combustion engine according to one embodiment of the present invention, and FIG. 4 is a map for explaining the supply restriction of urea water. Is shown.

図3に示すように、ステップS1で選択還元触媒11の硫黄被毒量が推定される。即ち、エンジン1を運転するための燃料の消費速度、推定される硫黄の濃度、選択還元触媒11の温度別の硫黄(硫酸のアンモニウム塩、銅の硫酸塩)の蓄積割合に基づいて、選択還元触媒11の硫黄被毒量が推定される。また、選択還元触媒11の特定の温度における尿素水噴射量とNOxの浄化率との関係から、選択還元触媒11の硫黄被毒量が推定される。   As shown in FIG. 3, the sulfur poisoning amount of the selective reduction catalyst 11 is estimated in step S1. That is, selective reduction based on the fuel consumption rate for operating the engine 1, the estimated sulfur concentration, and the accumulation ratio of sulfur (ammonium salt of sulfuric acid, copper sulfate) by temperature of the selective reduction catalyst 11. The sulfur poisoning amount of the catalyst 11 is estimated. Further, the sulfur poisoning amount of the selective reduction catalyst 11 is estimated from the relationship between the urea water injection amount at a specific temperature of the selective reduction catalyst 11 and the NOx purification rate.

ステップS2では、推定された硫黄被毒量が回復処理を行う必要がある量以上か(判定値以上か)否かが判断され、硫黄被毒量が判定値以上であると判断された場合、ステップS3で回復処理(尿素水の供給の処理)が開始される。ステップS2で硫黄被毒量が判定値に満たないと判断された場合、ステップS1の硫黄被毒量の推定処理に移行する。   In step S2, it is determined whether or not the estimated sulfur poisoning amount is greater than or equal to the amount that needs to be recovered (determination value or more), and if it is determined that the sulfur poisoning amount is greater than or equal to the determination value, In step S3, a recovery process (a process for supplying urea water) is started. If it is determined in step S2 that the sulfur poisoning amount is less than the determination value, the process proceeds to the sulfur poisoning amount estimation process in step S1.

ステップS3で回復処理が開始されると、ステップS4で排気の空燃比が相対的にリッチ側になったか否かが判断される。例えば、NOx吸蔵触媒4(図1参照)の再生運転時に、再生手段25(図2参照)により追加の燃料が供給された際、空燃比検出センサー15(図1参照)により、空燃比がリッチ側になったことが検出されたか否かが判断される。または、NOx吸蔵触媒4(図1参照)のNOxパージ運転を行った時に、再生手段25(図2参照)により追加の燃料が供給された際、空燃比検出センサー15(図1参照)により、空燃比がリッチ側になったことが検出されたか否かが判断される。   When the recovery process is started in step S3, it is determined in step S4 whether or not the air-fuel ratio of the exhaust has become relatively rich. For example, during the regeneration operation of the NOx storage catalyst 4 (see FIG. 1), when additional fuel is supplied by the regeneration means 25 (see FIG. 2), the air-fuel ratio is rich by the air-fuel ratio detection sensor 15 (see FIG. 1). It is determined whether or not it has been detected that the vehicle has become the side. Alternatively, when the NOx purge operation of the NOx storage catalyst 4 (see FIG. 1) is performed, when additional fuel is supplied by the regeneration means 25 (see FIG. 2), the air-fuel ratio detection sensor 15 (see FIG. 1) It is determined whether or not it has been detected that the air-fuel ratio has become rich.

ステップS4で排気の空燃比が相対的にリッチ側になったと判断された場合、NOxが減少している状況になるため、ステップS5で尿素水の供給を制限する。   If it is determined in step S4 that the air-fuel ratio of the exhaust gas has become relatively rich, NOx decreases, so the supply of urea water is limited in step S5.

ステップS5で尿素水の供給を制限し、尿素水の供給による硫黄被毒の回復(NOx浄化を含む)を行わずに、潜熱による排気温度の低下を抑制し、排気の温度を高く維持して高い温度で分解する硫黄成分(銅の硫酸塩)の分解を促進する。この時、選択還元触媒11の温度の状況(履歴)により、尿素水の供給の制限の度合いが調整される。   In step S5, the supply of urea water is restricted, and recovery from sulfur poisoning (including NOx purification) due to the supply of urea water is not performed, so that a decrease in exhaust temperature due to latent heat is suppressed, and the exhaust temperature is maintained high. It promotes the decomposition of sulfur components (copper sulfate) that decompose at high temperatures. At this time, the degree of restriction of the supply of urea water is adjusted according to the temperature state (history) of the selective reduction catalyst 11.

例えば、選択還元触媒11(図1参照)が、第1の温度(例えば、約400℃から550℃)以上で第2の温度(例えば、約600℃から650℃)未満にあった状態の時間が長くなるにしたがって、硫酸のアンモニウム塩が多く分解されている状態であるとして、尿素水の供給の制限の度合いを高くして尿素水の供給が大きく減らされる。   For example, the time during which the selective reduction catalyst 11 (see FIG. 1) is at or above a first temperature (eg, about 400 ° C. to 550 ° C.) and below a second temperature (eg, about 600 ° C. to 650 ° C.). As the length of the water becomes longer, the supply of urea water is greatly reduced by increasing the degree of restriction of the supply of urea water, assuming that a large amount of the ammonium salt of sulfuric acid is decomposed.

ステップS5で尿素水の供給量を制限する場合、図4に示したマップに基づいて実施される。   When limiting the supply amount of urea water in step S5, it is implemented based on the map shown in FIG.

図4に示すように、検出された空燃比が理論空燃比に対してリッチ側になった場合、通常の供給量に対して尿素水の供給量を減少させる(停止させる)。つまり、排気の空燃比がリッチ側になると、NOxが減少している状況になるため、尿素水の供給を制限し、尿素水の供給による硫黄被毒の回復(NOx浄化を含む)を制限し(行わず)、潜熱による排気温度の低下を抑制し、排気の温度を高く維持して高い温度で分解する硫黄成分(銅の硫酸塩)の分解を促進する。   As shown in FIG. 4, when the detected air-fuel ratio becomes richer than the stoichiometric air-fuel ratio, the urea water supply amount is reduced (stopped) with respect to the normal supply amount. In other words, when the air-fuel ratio of the exhaust gas becomes richer, the state of NOx decreases, so the supply of urea water is restricted and the recovery of sulfur poisoning (including NOx purification) by the supply of urea water is restricted. (Not done) Suppresses the decrease in exhaust temperature due to latent heat, promotes the decomposition of sulfur components (copper sulfate) that decompose at a high temperature while maintaining the exhaust temperature high.

尿素水の通常の供給量は、NOxセンサー14(図1参照)で検出されたNOxの通過量、選択還元触媒11のアンモニアの吸着量により、回復時の尿素水の供給量が設定され、設定された供給量が通常の供給量とされる。   The normal supply amount of urea water is set by setting the supply amount of urea water at the time of recovery based on the NOx passage amount detected by the NOx sensor 14 (see FIG. 1) and the ammonia adsorption amount of the selective reduction catalyst 11. The supplied amount is set as a normal supply amount.

尿素水の供給を減らす(停止する)ことで、潜熱による排気温度の低下が抑制され、排気温度が、例えば、600℃程度の高温に維持される。これにより、銅の硫酸塩が分解できる温度に排気温度が維持され、銅の硫酸塩が分解されて硫黄被毒が回復される。そして、尿素水の供給が制限(停止)されるため、アンモニアの排出を抑えることができる。   By reducing (stopping) the supply of urea water, a decrease in the exhaust temperature due to latent heat is suppressed, and the exhaust temperature is maintained at a high temperature of about 600 ° C., for example. Thus, the exhaust temperature is maintained at a temperature at which the copper sulfate can be decomposed, and the copper sulfate is decomposed to recover the sulfur poisoning. And since supply of urea water is restrict | limited (stop), discharge | emission of ammonia can be suppressed.

図3のフローチャートに戻り、ステップS4で排気の空燃比が相対的にリッチ側になっていないと判断された場合、もしくは、ステップS5で尿素水の供給が制限(停止)されて排気温度の低下が抑制された状態で硫黄被毒の回復処理が実行された場合、ステップS6で選択還元触媒11の硫黄被毒が回復したか否かが判断される。つまり、硫黄被毒量が回復処理を終了する量以下か(終了判定値以下か)否かが判断される。   Returning to the flowchart of FIG. 3, when it is determined in step S4 that the air-fuel ratio of the exhaust gas is not relatively rich, or in step S5, the supply of urea water is limited (stopped) and the exhaust temperature decreases. When the sulfur poisoning recovery process is executed in a state where the S is suppressed, it is determined in step S6 whether or not the sulfur poisoning of the selective reduction catalyst 11 has been recovered. That is, it is determined whether or not the sulfur poisoning amount is less than or equal to the amount at which the recovery process is completed (below the end determination value).

ステップS6で選択還元触媒11の硫黄被毒が回復していないと判断された場合、ステップS3に移行して硫黄被毒の回復処理が継続される。ステップS6で選択還元触媒11の硫黄被毒が回復したと判断された場合、ステップS7で回復終了処理が実行されてエンドとなる。即ち、推定された硫黄被毒量の情報がリセットされ、硫黄被毒の回復処理がエンドとなる。   If it is determined in step S6 that the sulfur poisoning of the selective reduction catalyst 11 has not been recovered, the process proceeds to step S3 and the sulfur poisoning recovery process is continued. If it is determined in step S6 that the sulfur poisoning of the selective reduction catalyst 11 has been recovered, the recovery end process is executed in step S7, and the process ends. That is, the information on the estimated sulfur poisoning amount is reset, and the sulfur poisoning recovery process is ended.

尚、ステップS6の判断に代えて、硫黄被毒の回復処理時間を閾値として、硫黄被毒の回復終了処理(ステップS7)に移行させることも可能である。   Instead of the determination in step S6, it is also possible to shift to the sulfur poisoning recovery end process (step S7) using the sulfur poisoning recovery processing time as a threshold value.

NOx吸蔵触媒4(図1参照)の再生運転時、NOxパージ運転時に、空燃比検出センサー15で検出された空燃比の値に応じて(空燃比の変化に追従させて)尿素水の供給量を制限することができる。   The supply amount of urea water according to the value of the air-fuel ratio detected by the air-fuel ratio detection sensor 15 (following the change in the air-fuel ratio) during the regeneration operation of the NOx storage catalyst 4 (see FIG. 1) and the NOx purge operation Can be limited.

図5、図6に基づいて、NOx吸蔵触媒4(図1参照)の再生運転、NOxパージ運転における空燃比と尿素水の供給量との関係を説明する。図5には再生運転時における空燃比と尿素水の供給量の経時変化を説明するグラフ、図6にはNOxパージ運転時における空燃比と尿素水の供給量の経時変化を説明するグラフを示してある。   Based on FIGS. 5 and 6, the relationship between the air-fuel ratio and the urea water supply amount in the regeneration operation and NOx purge operation of the NOx storage catalyst 4 (see FIG. 1) will be described. FIG. 5 is a graph for explaining temporal changes in the air-fuel ratio and urea water supply amount during the regeneration operation, and FIG. 6 is a graph for explaining temporal changes in the air-fuel ratio and urea water supply amount during the NOx purge operation. It is.

図5(a)に示すように、時刻tsでNOx吸蔵触媒4(図1参照)の再生運転が開始され、追加の燃料が供給されることで、再生運転が終了する時刻teまで、理論空燃比よりもリッチ側、及び、若干リーン側との間の範囲に空燃比が維持される。これにより、NOx吸蔵触媒4(図1参照)が昇温されて再生される。   As shown in FIG. 5 (a), the regeneration operation of the NOx storage catalyst 4 (see FIG. 1) is started at time ts and additional fuel is supplied until the regeneration operation ends at time te. The air-fuel ratio is maintained in a range between the richer side and the slightly leaner side than the fuel ratio. As a result, the NOx storage catalyst 4 (see FIG. 1) is heated and regenerated.

図5(b)に示すように、時刻tsで尿素水の供給が制限されて減らされ、再生運転が終了する時刻teまで、空燃比の値に応じて(空燃比の変化に追従して)尿素水の供給量が調整される。即ち、空燃比がリッチ側になれば変化の度合いに応じて尿素水の供給量が減らされ、リーン側に変化すれば変化の度合いに応じて供給量が増やされる。   As shown in FIG. 5 (b), the supply of urea water is limited and reduced at time ts, and until the time te when the regeneration operation ends, according to the value of the air-fuel ratio (following the change of the air-fuel ratio). The supply amount of urea water is adjusted. That is, if the air-fuel ratio becomes rich, the supply amount of urea water is reduced according to the degree of change, and if it changes to the lean side, the supply amount is increased according to the degree of change.

空燃比の値に応じて尿素水の供給量が調整されるので、NOx吸蔵触媒4(図1参照)の再生運転時には、最適な制限量で尿素水の供給を制限することができ、必要最小限で尿素水を供給することができる。   Since the supply amount of urea water is adjusted according to the value of the air-fuel ratio, during the regeneration operation of the NOx storage catalyst 4 (see FIG. 1), the supply of urea water can be limited by an optimal limit amount, and the minimum necessary amount The urea water can be supplied as long as possible.

図6(a)に示すように、時刻t1から時刻t2までの間で追加の燃料が供給され、NOx吸蔵触媒4(図1参照)のNOxパージ運転が実行される。また、時刻t3から時刻t4までの間で追加の燃料が供給され、NOx吸蔵触媒4(図1参照)のNOxパージ運転が実行される。例えば、時刻t1から時刻t2でのNOxパージ運転に対し、時刻t3から時刻t4でのNOxパージ運転は、空燃比がリッチ側になるように追加の燃料が供給される。そして、NOxパージ運転は、再生運転に比べて空燃比がリッチ側になるように(リッチが深くなるように)追加の燃料が供給される。   As shown in FIG. 6A, additional fuel is supplied from time t1 to time t2, and the NOx purge operation of the NOx storage catalyst 4 (see FIG. 1) is executed. Further, additional fuel is supplied from time t3 to time t4, and the NOx purge operation of the NOx storage catalyst 4 (see FIG. 1) is executed. For example, in contrast to the NOx purge operation from time t1 to time t2, in the NOx purge operation from time t3 to time t4, additional fuel is supplied so that the air-fuel ratio becomes rich. Then, in the NOx purge operation, additional fuel is supplied so that the air-fuel ratio becomes richer than the regeneration operation (so that the rich becomes deeper).

図6(b)に示すように、時刻t1から時刻t2までの間、時刻t3から時刻t4までの間で、尿素水の供給が制限されて減らされ、空燃比の値に応じて(空燃比の変化に追従して)尿素水の供給量が調整される。つまり、時刻t1から時刻t2までの間の制限に対して、時刻t3から時刻t4までの間で大きく制限される。   As shown in FIG. 6 (b), the supply of urea water is limited and reduced between time t1 and time t2 and between time t3 and time t4, depending on the value of the air / fuel ratio (air / fuel ratio). The supply amount of urea water is adjusted following the change in That is, the restriction between time t1 and time t2 is greatly restricted between time t3 and time t4.

空燃比の値に応じて尿素水の供給量が調整されるので、NOx吸蔵触媒4(図1参照)のNOxパージ運転時には、最適な制限量で尿素水の供給を制限することができ、必要最小限で尿素水を供給することができる。   Since the supply amount of urea water is adjusted according to the value of the air-fuel ratio, it is possible to limit the supply of urea water with an optimal limit amount during the NOx purge operation of the NOx storage catalyst 4 (see FIG. 1). Urea water can be supplied at a minimum.

上述した排気浄化装置は、NOx吸蔵触媒4(図1参照)の再生運転時、NOxパージ運転時に空燃比がリッチ側になった際には、NOxが減少している状況になるため、選択還元触媒では尿素水の供給による硫黄被毒の回復(NOx浄化を含む)を制限し(行わず)、尿素水の供給量を制限(減少、停止)しているので、低い温度で分解される硫黄成分(硫酸のアンモニウム塩)の生成が抑制され、排気の温度が高く維持される。   The exhaust purification device described above is in a state where NOx is reduced when the air-fuel ratio becomes rich during the regeneration operation of the NOx storage catalyst 4 (see FIG. 1) or during the NOx purge operation. The catalyst limits (does not perform) recovery of sulfur poisoning due to the supply of urea water (including NOx purification) and limits (decreases, stops) the supply amount of urea water, so sulfur that is decomposed at low temperatures Generation of the component (ammonium salt of sulfuric acid) is suppressed, and the exhaust temperature is kept high.

これにより、空燃比がリッチ側になった際に、NOxが減少して排気温度が十分に高くなる状況で、尿素水の供給が抑えられ(潜熱による排気温度の低下が抑制され)、高温で分解される硫黄成分(銅の硫酸塩)が分解されて硫黄被毒が回復される。この時、尿素水の供給が抑制されるため、アンモニアの排出が抑制される。   As a result, when the air-fuel ratio becomes rich, the NOx decreases and the exhaust temperature becomes sufficiently high, so that the supply of urea water is suppressed (a decrease in the exhaust temperature due to latent heat is suppressed) and the temperature is high. The sulfur component to be decomposed (copper sulfate) is decomposed to restore sulfur poisoning. At this time, since supply of urea water is suppressed, discharge of ammonia is suppressed.

従って、選択還元触媒11に硫黄被毒が生じた際に、尿素水を供給して硫黄被毒の回復を行う排気浄化装置において、必要最小限の尿素水の供給で硫黄被毒を回復することが可能になり、アンモニアの排出を抑制することができる。   Therefore, when sulfur poisoning occurs in the selective reduction catalyst 11, the sulfur poisoning is recovered by supplying the minimum amount of urea water in the exhaust purification device that supplies urea water to recover the sulfur poisoning. And ammonia emission can be suppressed.

本発明は、内燃機関の排気ガスの窒素酸化物(NOx)を低減する排気浄化装置の産業分野で利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field of exhaust purification devices that reduce nitrogen oxides (NOx) in exhaust gases of internal combustion engines.

1 多気筒ディーゼルエンジン(エンジン)
2 排気管
3 排気浄化装置
4 NOx吸蔵触媒
5 ディーゼル微粒子捕集フィルター
6 浄化装置
10 制御手段
11 選択還元触媒
12 尿素水噴射弁
13 温度センサー
14 NOxセンサー
15 空燃比検出センサー
21 硫黄被毒推定手段
22 硫黄被毒判定手段
23 被毒回復手段
24 尿素水供給制御手段
25 再生手段
26 触媒温度把握手段
1 Multi-cylinder diesel engine (engine)
2 exhaust pipe 3 exhaust purification device 4 NOx storage catalyst 5 diesel particulate filter 6 purification device 10 control means 11 selective reduction catalyst 12 urea water injection valve 13 temperature sensor 14 NOx sensor 15 air-fuel ratio detection sensor 21 sulfur poisoning estimation means 22 Sulfur poisoning determination means 23 poisoning recovery means 24 urea water supply control means 25 regeneration means 26 catalyst temperature grasping means

Claims (8)

内燃機関の排気通路に設けられ、排気に含まれるNOxを還元浄化する選択還元触媒と、
前記選択還元触媒の上流側の前記排気通路に尿素水を供給する尿素水供給手段と、
前記選択還元触媒の硫黄被毒を判定する硫黄被毒判定手段と、
前記硫黄被毒判定手段で前記選択還元触媒の硫黄被毒が判定された際に、前記選択還元触媒の硫黄被毒を回復させるために前記尿素水供給手段から前記尿素水を前記排気通路に供給する被毒回復手段と、
排気の空燃比を検出する空燃比検出手段と、
前記空燃比検出手段で排気の空燃比が相対的にリッチ側になったことが検出された際に、前記被毒回復手段による前記尿素水の供給量を制限する尿素水供給制御手段とを備えた
ことを特徴とする内燃機関の排気浄化装置。
A selective reduction catalyst provided in an exhaust passage of the internal combustion engine for reducing and purifying NOx contained in the exhaust;
Urea water supply means for supplying urea water to the exhaust passage on the upstream side of the selective reduction catalyst;
Sulfur poisoning determination means for determining sulfur poisoning of the selective reduction catalyst;
When the sulfur poisoning determination unit determines that the selective reduction catalyst is sulfur poisoned, the urea water supply unit supplies the urea water to the exhaust passage in order to recover the sulfur poisoning of the selective reduction catalyst. Poisoning recovery means,
Air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust;
Urea water supply control means for limiting the supply amount of the urea water by the poisoning recovery means when the air-fuel ratio detection means detects that the air-fuel ratio of the exhaust gas has become relatively rich. An exhaust emission control device for an internal combustion engine.
請求項1に記載の内燃機関の排気浄化装置において、
前記尿素水供給制御手段は、
前記空燃比検出手段で排気の空燃比が通常運転時の空燃比に対してリッチ側になったことが検出された際に、検出された前記空燃比の値に応じて、前記被毒回復手段による前記尿素水の供給量を制限する
ことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 1,
The urea water supply control means includes
When it is detected by the air-fuel ratio detection means that the air-fuel ratio of the exhaust gas is richer than the air-fuel ratio during normal operation, the poisoning recovery means is determined according to the detected value of the air-fuel ratio. An exhaust purification device for an internal combustion engine, characterized in that the supply amount of the urea water is limited.
請求項2に記載の内燃機関の排気浄化装置において、
前記尿素水が供給される部位の上流側の前記排気通路に設けられ、排気空燃比がリーン雰囲気の時にNOxを吸蔵し、排気空燃比がストイキもしくはリッチ雰囲気の時に吸蔵したNOxを還元して浄化するNOx吸蔵触媒と、
排気に燃料成分を追加して前記NOx吸蔵触媒を昇温させるリッチ化手段とを備え、
前記空燃比検出手段は、
前記リッチ化手段により前記燃料成分が追加され、前記NOx吸蔵触媒が昇温された際の排気の空燃比を検出する
ことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 2,
Provided in the exhaust passage upstream of the portion to which the urea water is supplied, stores NOx when the exhaust air-fuel ratio is lean, and reduces and purifies NOx stored when the exhaust air-fuel ratio is stoichiometric or rich. NOx storage catalyst to
Enriching means for adding a fuel component to the exhaust to raise the temperature of the NOx storage catalyst;
The air-fuel ratio detection means includes
An exhaust gas purification apparatus for an internal combustion engine, wherein an air-fuel ratio of exhaust gas when the fuel component is added by the enrichment means and the NOx storage catalyst is heated is detected.
請求項3に記載の内燃機関の排気浄化装置において、
前記選択還元触媒の温度の状況を検出する触媒温度把握手段を備え、
前記被毒回復手段は、
前記触媒温度把握手段で把握された前記選択還元触媒の温度の状況を含む情報に基づいて前記硫黄被毒の態様を判定し、
前記尿素水供給制御手段は、
前記被毒回復手段で判定された前記硫黄被毒の態様に応じて前記尿素水の供給の制限の度合いを制御する
ことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 3,
A catalyst temperature grasping means for detecting a temperature state of the selective reduction catalyst;
The poisoning recovery means includes
Determining the mode of sulfur poisoning based on information including the temperature status of the selective reduction catalyst grasped by the catalyst temperature grasping means;
The urea water supply control means includes
An exhaust emission control device for an internal combustion engine, wherein the degree of restriction of the supply of urea water is controlled in accordance with the aspect of sulfur poisoning determined by the poisoning recovery means.
請求項4に記載の内燃機関の排気浄化装置において、
前記被毒回復手段は、
前記選択還元触媒で硫酸のアンモニウム塩を分解する第1の温度、及び、前記第1の温度よりも高く、銅の硫酸塩を分解する第2の温度の状況を判断することで前記硫黄被毒の態様を判定し、
前記尿素水供給制御手段は、
前記選択還元触媒の温度が、前記第1の温度以上で前記第2の温度未満にあった状態の履歴に基づいて、前記尿素水の供給の制限の度合いを制御する
ことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 4,
The poisoning recovery means includes
The sulfur poisoning is determined by determining a first temperature for decomposing the ammonium salt of sulfuric acid with the selective reduction catalyst and a second temperature higher than the first temperature for decomposing the copper sulfate. Determine the mode of
The urea water supply control means includes
The degree of restriction of the supply of the urea water is controlled based on a history of a state in which the temperature of the selective reduction catalyst is equal to or higher than the first temperature and lower than the second temperature. Exhaust purification equipment.
請求項5に記載の内燃機関の排気浄化装置において、
前記尿素水供給制御手段は、
前記選択還元触媒の温度が、前記第1の温度以上で前記第2の温度未満にあった時間が長くなるにしたがって、前記尿素水の供給の制限の度合いを高める
ことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 5,
The urea water supply control means includes
The degree of restriction of the supply of urea water is increased as the time during which the temperature of the selective reduction catalyst is equal to or higher than the first temperature and lower than the second temperature is increased. Exhaust purification device.
請求項3から請求項6のいずれか一項に記載の内燃機関の排気浄化装置において、
前記リッチ化手段は、
排気に燃料成分を追加して前記NOx吸蔵触媒を昇温させることで、前記NOx吸蔵触媒の再生を行う手段である
ことを特徴とする内燃機関の排気浄化装置。
The exhaust emission control device for an internal combustion engine according to any one of claims 3 to 6,
The enrichment means includes
An exhaust gas purification apparatus for an internal combustion engine, characterized in that the NOx storage catalyst is regenerated by adding a fuel component to exhaust gas to raise the temperature of the NOx storage catalyst.
請求項3から請求項7のいずれか一項に記載の内燃機関の排気浄化装置において、
前記リッチ化手段は、
排気に燃料成分を間欠的に追加して前記NOx吸蔵触媒を昇温させることで、前記NOx吸蔵触媒から間欠的にNOxを放出させる手段である
ことを特徴とする内燃機関の排気浄化装置。
The exhaust emission control device for an internal combustion engine according to any one of claims 3 to 7,
The enrichment means includes
An exhaust gas purification apparatus for an internal combustion engine, characterized by intermittently releasing NOx from the NOx storage catalyst by intermittently adding a fuel component to exhaust gas to raise the temperature of the NOx storage catalyst.
JP2016231810A 2016-11-29 2016-11-29 Exhaust emission control device of internal combustion engine Pending JP2018087544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016231810A JP2018087544A (en) 2016-11-29 2016-11-29 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231810A JP2018087544A (en) 2016-11-29 2016-11-29 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2018087544A true JP2018087544A (en) 2018-06-07

Family

ID=62492958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231810A Pending JP2018087544A (en) 2016-11-29 2016-11-29 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2018087544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051399A (en) * 2018-09-28 2020-04-02 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051399A (en) * 2018-09-28 2020-04-02 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
JP7206756B2 (en) 2018-09-28 2023-01-18 いすゞ自動車株式会社 Exhaust gas purification system for internal combustion engine

Similar Documents

Publication Publication Date Title
US8365516B2 (en) Exhaust gas purification apparatus for internal combustion engine
US8769934B2 (en) Exhaust purifying system for internal combustion engine
USRE48658E1 (en) Exhaust gas purification apparatus for an internal combustion engine
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
JP2008202425A (en) Exhaust emission control device
JP5625872B2 (en) Exhaust gas purification device for internal combustion engine
JP2007170218A (en) Exhaust emission control device of internal combustion engine
JPWO2013035155A1 (en) Exhaust gas purification device for internal combustion engine
JP2012057571A (en) Exhaust emission control apparatus of internal combustion engine
JP2015094337A (en) Exhaust emission control system for internal combustion engine
JP2019152137A (en) Exhaust emission control device for internal combustion engine
JP6501065B2 (en) Engine exhaust purification system
JP2018087542A (en) Exhaust emission control device of internal combustion engine
JP2009085178A (en) Exhaust emission control device for internal combustion engine
KR101724453B1 (en) System for purifying exhaust gas and method for controlling the same
JP6663126B2 (en) Engine exhaust purification device
JP2018087544A (en) Exhaust emission control device of internal combustion engine
JP2009174445A (en) Exhaust emission control device for internal combustion engine
JP2014231761A (en) Exhaust purification device of internal combustion engine
JP2014148908A (en) Exhaust emission control device for internal combustion engine
JP2016151183A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method
JP3876903B2 (en) Desulfurization control method for exhaust gas purification system and exhaust gas purification system
JP6915424B2 (en) Exhaust gas purification system and regeneration control method
JP4069043B2 (en) Exhaust gas purification device for internal combustion engine
JP7003503B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine