JP5668737B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5668737B2
JP5668737B2 JP2012212436A JP2012212436A JP5668737B2 JP 5668737 B2 JP5668737 B2 JP 5668737B2 JP 2012212436 A JP2012212436 A JP 2012212436A JP 2012212436 A JP2012212436 A JP 2012212436A JP 5668737 B2 JP5668737 B2 JP 5668737B2
Authority
JP
Japan
Prior art keywords
catalyst
temperature
activation temperature
amount
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012212436A
Other languages
Japanese (ja)
Other versions
JP2014066200A (en
Inventor
中 市川
中 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012212436A priority Critical patent/JP5668737B2/en
Priority to DE102013110318.9A priority patent/DE102013110318B4/en
Publication of JP2014066200A publication Critical patent/JP2014066200A/en
Application granted granted Critical
Publication of JP5668737B2 publication Critical patent/JP5668737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1616NH3-slip from catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

周知のとおり、内燃機関(例えばディーゼルエンジン)から排出されるNOx(窒素酸化物)の浄化のための技術として、いわゆる尿素SCR(Selective Catalytic Reduction)がある。尿素SCRシステムでは、排気ガス中に尿素水溶液(尿素水)を添加することで触媒(SCR触媒)に還元剤(NH3(アンモニア))を供給して、触媒により還元反応を起こしてNOxを窒素と水に分解して浄化する。   As is well known, there is a so-called urea SCR (Selective Catalytic Reduction) as a technique for purifying NOx (nitrogen oxide) discharged from an internal combustion engine (for example, a diesel engine). In the urea SCR system, a reducing agent (NH3 (ammonia)) is supplied to the catalyst (SCR catalyst) by adding an aqueous urea solution (urea water) to the exhaust gas, and the catalyst causes a reduction reaction to convert NOx into nitrogen. Decompose and purify into water.

こうした技術に関して各種提案がなされてきている。下記特許文献1には、尿素またはNH3を還元剤として添加するNOx触媒を備える構成において、NOx触媒への尿素またはNH3の添加量を過不足なく適切に制御可能な技術が開示されている。   Various proposals have been made regarding these technologies. Japanese Patent Application Laid-Open No. 2004-228561 discloses a technology that can appropriately control the amount of urea or NH3 added to the NOx catalyst in a configuration including a NOx catalyst that adds urea or NH3 as a reducing agent.

特許第4305643号公報Japanese Patent No. 4305543

SCR触媒はNH3を貯蔵し、貯蔵したNH3によってNOxを浄化することが知られている。SCR触媒におけるNH3の可能な最大貯蔵量(貯蔵可能量)は、図6に例示するとおり、SCR触媒の温度が高いほど通常小さくなる性質がある。尿素水の添加量を決定する際に考慮するSCR触媒におけるNH3の目標貯蔵量は、この貯蔵可能量を超えない範囲で設定することとなる。したがって従来技術においては、例えば図7のように、SCR触媒におけるNH3の目標貯蔵量を、一定の余裕分(余裕度)だけ貯蔵可能量から減算した数値として設定していた。ここで余裕分は、温度変化に対応できるために設定される。   SCR catalysts are known to store NH3 and to purify NOx with the stored NH3. As illustrated in FIG. 6, the maximum possible storage amount (storable amount) of NH 3 in the SCR catalyst has a property that it usually decreases as the temperature of the SCR catalyst increases. The target storage amount of NH3 in the SCR catalyst to be considered when determining the addition amount of urea water is set within a range not exceeding this storable amount. Therefore, in the prior art, for example, as shown in FIG. 7, the target storage amount of NH 3 in the SCR catalyst is set as a numerical value obtained by subtracting the storable amount by a certain margin (margin). Here, the margin is set in order to cope with the temperature change.

このように目標貯蔵量が設定された状態で、例えば車両が急加速すると、排気温度が急上昇し、その影響でSCR触媒温度も上昇する。よって図8に示すように、例えある程度の余裕分を設定しておいても、急上昇した触媒温度では現在の貯蔵量が貯蔵可能量を超える場合がある。その場合、SCR触媒で貯蔵できなくなったNH3(アンモニア)が下流へと流れ、いわゆるNH3スリップが発生してしまう。   When the target storage amount is set as described above, for example, when the vehicle suddenly accelerates, the exhaust temperature rapidly rises, and the SCR catalyst temperature also rises due to the sudden rise. Therefore, as shown in FIG. 8, even if a certain amount of margin is set, the current storage amount may exceed the storable amount at the rapidly rising catalyst temperature. In this case, NH3 (ammonia) that cannot be stored by the SCR catalyst flows downstream, and so-called NH3 slip occurs.

NH3スリップにより放出されたNH3が車外に排出されることは排気浄化の観点から望ましくない。従来技術においては、SCR触媒の下流に配置した酸化触媒にNH3を浄化する役割を担わせていた。しかし、一般に触媒は、その触媒固有の活性化温度より高い温度ならば適切に機能するが、活性化温度より低い温度では適切に機能しない(あるいは機能が大きく低下する)。   It is not desirable from the viewpoint of exhaust purification that NH3 released by NH3 slip is discharged outside the vehicle. In the prior art, the oxidation catalyst disposed downstream of the SCR catalyst plays a role in purifying NH3. However, in general, a catalyst functions properly at a temperature higher than the activation temperature inherent to the catalyst, but does not function properly at a temperature lower than the activation temperature (or the function is greatly reduced).

したがって、たとえSCR触媒の下流に酸化触媒を装備したとしても、酸化触媒の活性化温度より低い温度でNH3スリップが発生した場合には、酸化触媒がNH3を浄化できないので、NH3がエミッションを悪化させる。よって酸化触媒の活性化温度より低い温度ではNH3スリップが起きにくい排気浄化方法が望まれる。しかし上記特許文献1を含め従来技術では、NH3スリップへの対策が考慮されていても、酸化触媒の活性化温度に関係する上記課題は認識されていない。   Therefore, even if an oxidation catalyst is installed downstream of the SCR catalyst, if NH3 slip occurs at a temperature lower than the activation temperature of the oxidation catalyst, the oxidation catalyst cannot purify NH3, so NH3 deteriorates emissions. . Therefore, an exhaust purification method in which NH 3 slip hardly occurs at a temperature lower than the activation temperature of the oxidation catalyst is desired. However, in the related art including the above-mentioned Patent Document 1, the above-mentioned problem relating to the activation temperature of the oxidation catalyst is not recognized even when measures against NH3 slip are taken into consideration.

そこで本発明が解決しようとする課題は、上記に鑑み、還元剤を貯蔵してNOxを浄化する触媒の下流に還元剤を浄化する酸化触媒を配置した構成において、酸化触媒が活性化温度より低い温度では有効に機能しないことに適切に対処する内燃機関の排気浄化装置を提供することにある。   Therefore, in view of the above, the problem to be solved by the present invention is that the oxidation catalyst is lower than the activation temperature in the configuration in which the oxidation catalyst for purifying the reducing agent is disposed downstream of the catalyst for storing the reducing agent and purifying NOx. An object of the present invention is to provide an exhaust purification device for an internal combustion engine that appropriately copes with the fact that it does not function effectively at temperature.

上記課題を達成するために、本発明に係る内燃機関の排気浄化装置は、内燃機関の排気通路に備えられて、NOxを浄化する機能を有する第1触媒(4)と、その第1触媒よりも排気通路の上流に備えられて、NOx浄化のための還元剤を前記第1触媒に供給する供給手段(6)と、前記第1触媒よりも排気通路の下流に配置されて、前記還元剤を浄化する機能を有する第2触媒(5)と、前記供給手段によって供給される還元剤の前記第1触媒における貯蔵量の目標値を、その目標値と前記第1触媒における最大貯蔵可能量との差である余裕分が、前記第1触媒の温度が前記第2触媒の活性化温度より低い領域では相対的に大きく、前記活性化温度より高い領域では相対的に小さくなるように設定する設定手段(7、S50、S60)と、を備えたことを前提とする。これにより、第2触媒が活性化温度よりも低い場合には、急な温度上昇などが起きても第1触媒から下流に還元剤が放出されることが抑制される。したがって、還元剤の放出によるエミッションの悪化が適切に抑制される。 To achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention includes a first catalyst (4) provided in an exhaust passage of the internal combustion engine and having a function of purifying NOx, and the first catalyst. And a supply means (6) provided upstream of the exhaust passage for supplying a reducing agent for NOx purification to the first catalyst, and disposed downstream of the first catalyst from the exhaust passage. A target value of the storage amount of the first catalyst in the first catalyst of the reducing agent supplied by the supply means, the target value and the maximum storable amount in the first catalyst Is set so that the margin, which is the difference between the two, is relatively large in a region where the temperature of the first catalyst is lower than the activation temperature of the second catalyst and relatively small in a region where the temperature is higher than the activation temperature. Means (7, S50, S60); Based on the premise that with. Thereby, when the second catalyst is lower than the activation temperature, it is possible to prevent the reducing agent from being released downstream from the first catalyst even if a sudden temperature rise or the like occurs. Therefore, the deterioration of the emission due to the release of the reducing agent is appropriately suppressed.

本発明における排気浄化システムの一実施形態におけるシステム構成の概要図。1 is a schematic diagram of a system configuration in an embodiment of an exhaust purification system according to the present invention. 排気浄化システムの処理手順の例を示すフローチャート。The flowchart which shows the example of the process sequence of an exhaust gas purification system. 還元剤の目標貯蔵量の設定の第1の例を示す図。The figure which shows the 1st example of the setting of the target storage amount of a reducing agent. 還元剤の目標貯蔵量の設定の第2の例を示す図。The figure which shows the 2nd example of the setting of the target storage amount of a reducing agent. 還元剤の目標貯蔵量の設定の第3の例を示す図。The figure which shows the 3rd example of the setting of the target storage amount of a reducing agent. SCR触媒温度とNH3貯蔵可能量との関係の例を示す図。The figure which shows the example of the relationship between SCR catalyst temperature and NH3 storable amount. 従来技術における目標貯蔵量の設定の例を示す図。The figure which shows the example of the setting of the target storage amount in a prior art. NH3スリップの発生原因を示す図。The figure which shows the generation | occurrence | production cause of NH3 slip.

以下、本発明の実施形態を図面を参照しつつ説明する。まず図1は、本発明に係る排気浄化システム1(以下、システム)の一実施例における装置構成の概要図である。   Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 is a schematic diagram of an apparatus configuration in an embodiment of an exhaust purification system 1 (hereinafter, system) according to the present invention.

システム1は、例えば自動車に搭載されたエンジン2(例えばディーゼルエンジン)の排気管3中に、上流側から順に尿素SCR触媒4(SCR触媒)、酸化触媒5を備える。SCR触媒4の上流には添加弁6が備えられている。添加弁6は、尿素水が貯留された尿素タンク60を備え、尿素タンク60から供給された尿素水が添加弁6により排気管3中に添加(噴射)される。   The system 1 includes, for example, a urea SCR catalyst 4 (SCR catalyst) and an oxidation catalyst 5 in order from the upstream side in an exhaust pipe 3 of an engine 2 (for example, a diesel engine) mounted on an automobile. An addition valve 6 is provided upstream of the SCR catalyst 4. The addition valve 6 includes a urea tank 60 in which urea water is stored, and urea water supplied from the urea tank 60 is added (injected) into the exhaust pipe 3 by the addition valve 6.

SCR触媒4は、尿素SCRのための触媒としての周知の構造、すなわち例えば、ゼオライト等からなる適当な基材の表面に金属触媒が担持された構造を有する。添加弁6により添加された尿素水から、例えば排気ガスの熱により加水分解してNH3が生成され、そのNH3がSCR触媒4に吸着する(貯蔵される)。SCR触媒4に貯蔵されたNH3が排気中のNOxを窒素と水に還元して浄化する。   The SCR catalyst 4 has a well-known structure as a catalyst for urea SCR, that is, a structure in which a metal catalyst is supported on the surface of a suitable base material made of, for example, zeolite. The urea water added by the addition valve 6 is hydrolyzed by, for example, the heat of the exhaust gas to generate NH3, which is adsorbed (stored) on the SCR catalyst 4. NH3 stored in the SCR catalyst 4 reduces and purifies NOx in the exhaust gas to nitrogen and water.

酸化触媒4は酸化機能を有する触媒であり、排気中の例えばCO(一酸化炭素)、HCなどの成分を燃焼して浄化する機能を有するが、本発明に関しては、SCR触媒4から流れてきた還元剤を浄化する機能を有する。また、排気管3におけるSCR触媒4の上流、下流には排気温度センサ30、NOxセンサ31が配置されている。排気温度センサ30、NOxセンサ31はそれぞれの配置位置で、排気温度、排気中のNOxを検出する。   The oxidation catalyst 4 is a catalyst having an oxidation function, and has a function of burning and purifying components such as CO (carbon monoxide) and HC in the exhaust gas, but has flowed from the SCR catalyst 4 in the present invention. Has the function of purifying the reducing agent. Further, an exhaust temperature sensor 30 and a NOx sensor 31 are disposed upstream and downstream of the SCR catalyst 4 in the exhaust pipe 3. The exhaust temperature sensor 30 and the NOx sensor 31 detect the exhaust temperature and NOx in the exhaust at the respective arrangement positions.

またシステム1は本発明に係るECU7(Electronic Control Unit)を備える。ECU7は、通常のコンピュータと同様の構造、すなわち各種演算などの情報処理を行うCPUや、そのCPUの作業領域としてのRAM、必要な各種プログラムやデータを記憶する不揮発性のメモリ70などを備える。ECU7は、排気温度センサ30、NOxセンサ31の検出値を取得し、エンジン2における燃料噴射量、添加弁6からの尿素水添加量などを制御する。   The system 1 includes an ECU 7 (Electronic Control Unit) according to the present invention. The ECU 7 has a structure similar to that of a normal computer, that is, a CPU that performs information processing such as various operations, a RAM as a work area of the CPU, a non-volatile memory 70 that stores various necessary programs and data, and the like. The ECU 7 acquires detection values of the exhaust temperature sensor 30 and the NOx sensor 31, and controls the fuel injection amount in the engine 2, the urea water addition amount from the addition valve 6, and the like.

以上の構成のもとで、システム1はNOx浄化に関する処理を実行する。その処理手順が図2に示されている。図2の処理手順は、予めプログラム化されてメモリ70内に記憶しておき、ECU7が自動的に呼び出して実行すればよい。   Under the above configuration, the system 1 executes processing related to NOx purification. The processing procedure is shown in FIG. The processing procedure of FIG. 2 may be programmed in advance and stored in the memory 70, and the ECU 7 may be automatically called and executed.

図2の手順では、まずS10でECU7が排気温度を取り込む。具体的には排気温度センサ30の計測値を取得する。次にS20でECU7は、SCR触媒4の(内部)温度Tscrを算出する。具体的には、SCR触媒の(内部)温度を排気温度から算出する数学的モデルをメモリ70に記憶しておき、そのモデルとS10で取得した排気温度の実際値とから算出すればよい。   In the procedure of FIG. 2, first, the ECU 7 takes in the exhaust gas temperature in S10. Specifically, the measured value of the exhaust temperature sensor 30 is acquired. Next, in S20, the ECU 7 calculates the (internal) temperature Tscr of the SCR catalyst 4. Specifically, a mathematical model for calculating the (internal) temperature of the SCR catalyst from the exhaust temperature may be stored in the memory 70 and calculated from the model and the actual value of the exhaust temperature acquired in S10.

次にS30でECU7は、酸化触媒5の活性化温度Tdocを算出する。ここで算出する数値は酸化触媒5の活性化温度そのものとしてもよいが、より好適には、酸化触媒5の内部温度が活性化温度であるときのSCR触媒4の内部温度の算出とすればよい。後者の場合、具体的には、SCR触媒4の内部温度と酸化触媒5の内部温度との間の温度差の通常の値(あるいは平均的な値)を求めておき、その温度差の数値を酸化触媒5の活性化温度に加算すればよい。こうしたTdocや酸化触媒5の活性化温度は予めメモリ70内に記憶しておき、S30でRAMに呼び出せばよい。   Next, in S30, the ECU 7 calculates the activation temperature Tdoc of the oxidation catalyst 5. The numerical value calculated here may be the activation temperature of the oxidation catalyst 5 itself, but more preferably, the internal temperature of the SCR catalyst 4 when the internal temperature of the oxidation catalyst 5 is the activation temperature may be calculated. . In the latter case, specifically, a normal value (or an average value) of the temperature difference between the internal temperature of the SCR catalyst 4 and the internal temperature of the oxidation catalyst 5 is obtained, and the numerical value of the temperature difference is calculated. What is necessary is just to add to the activation temperature of the oxidation catalyst 5. Such Tdoc and the activation temperature of the oxidation catalyst 5 may be stored in advance in the memory 70 and recalled to the RAM in S30.

なお周知のとおり、触媒はある温度より高いか低いかで触媒機能が発揮されるか否かがほぼ不連続的に変わる性質を有するので、その境界の温度を活性化温度(あるいは活性温度)とすればよい。あるいは本実施例においては、酸化触媒5の活性化温度(活性温度)を、より厳密に、NH3の浄化率が所定%(例えば50%、80%、90%など)となる触媒温度と定義してもよい。通常、酸化触媒5の活性化温度は摂氏200度から250度の範囲内にある。   As is well known, since the catalyst has a property that changes whether or not the catalyst function is exerted almost continuously depending on whether the temperature is higher or lower than a certain temperature, the boundary temperature is defined as the activation temperature (or activation temperature). do it. Alternatively, in this embodiment, the activation temperature (activation temperature) of the oxidation catalyst 5 is more strictly defined as the catalyst temperature at which the NH3 purification rate becomes a predetermined percentage (for example, 50%, 80%, 90%, etc.). May be. Usually, the activation temperature of the oxidation catalyst 5 is in the range of 200 to 250 degrees Celsius.

次にS40でECU7は、S20で算出したTscrとS30で算出した(呼び出した)Tdocとの大小を比較する。TscrがTdocより大きい場合(S40:Yes)はS60に進み、TscrがTdoc以下の場合(S40:No)はS50に進む。   Next, in S40, the ECU 7 compares the Tscr calculated in S20 with the Tdoc calculated (called) in S30. When Tscr is greater than Tdoc (S40: Yes), the process proceeds to S60, and when Tscr is equal to or less than Tdoc (S40: No), the process proceeds to S50.

S50およびS60でECU7はSCR触媒4におけるNH3の目標貯蔵量を設定する。S50に進んだ場合は、酸化触媒5が活性化していない温度におけるNH3の目標貯蔵量を設定する。酸化触媒5が活性化していないので、上述のとおり、例えば急加速など何らかの理由で急激な温度上昇があってSCR触媒4でNH3スリップが発生したら、酸化触媒5でのNH3の浄化が行われるとはみなされない場合である。よってS50では、SCR触媒4におけるNH3の目標貯蔵量の貯蔵可能量からの余裕分を大きくとる。   In S50 and S60, the ECU 7 sets a target storage amount of NH3 in the SCR catalyst 4. When the process proceeds to S50, a target storage amount of NH3 at a temperature at which the oxidation catalyst 5 is not activated is set. Since the oxidation catalyst 5 is not activated, as described above, when NH3 slip occurs in the SCR catalyst 4 due to a rapid temperature increase for some reason, for example, sudden acceleration, the NH3 purification in the oxidation catalyst 5 is performed. Is not considered. Therefore, in S50, the margin from the storable amount of the target storage amount of NH3 in the SCR catalyst 4 is increased.

一方、S60に進んだ場合は、酸化触媒5が活性化している温度におけるNH3の目標貯蔵量を設定する。この場合は酸化触媒5が活性化しているので、上述のとおり、SCR触媒4でNH3スリップが発生しても、酸化触媒5でのNH3の浄化が行われるとみなせる場合である。よってS60では、SCR触媒4におけるNH3の目標貯蔵量の貯蔵可能量からの余裕分を小さくして、NOx浄化率を高めるためにできるだけ多くのNH3を貯蔵することを目指す。S50とS60での目標貯蔵量設定の具体例に関しては後述する。   On the other hand, when it progresses to S60, the target storage amount of NH3 in the temperature which the oxidation catalyst 5 has activated is set. In this case, since the oxidation catalyst 5 is activated, as described above, even if NH3 slip occurs in the SCR catalyst 4, it can be regarded that the purification of NH3 in the oxidation catalyst 5 is performed. Accordingly, in S60, the aim is to store as much NH3 as possible in order to reduce the margin from the storable amount of the target storage amount of NH3 in the SCR catalyst 4 and increase the NOx purification rate. A specific example of the target storage amount setting in S50 and S60 will be described later.

続いてS70からS90でECU7は、添加弁6からの尿素水添加量を算出する一連の処理を行う。まずS70でECU7は、SCR触媒4におけるNH3貯蔵量の現在値を推定する。具体的には、貯蔵量がゼロであるとみなされる時点を開始時点として、(a)エンジン2からのNOx排出量、(b)SCR触媒4下流へのNOx流出量、(c)SCR触媒4でのNOx浄化量、(d)SCR触媒4でのNH3消費量、(e)SCR触媒4へのNH3供給量、の各量を例えば所定周期で繰り返し算出して積算していく。   Subsequently, in S70 to S90, the ECU 7 performs a series of processes for calculating the urea water addition amount from the addition valve 6. First, in S70, the ECU 7 estimates the current value of the NH3 storage amount in the SCR catalyst 4. Specifically, starting from a time point when the stored amount is regarded as zero, (a) NOx emission amount from the engine 2, (b) NOx outflow amount downstream of the SCR catalyst 4, (c) SCR catalyst 4 Each amount of NOx purification amount at (d), (d) NH3 consumption amount at the SCR catalyst 4 and (e) NH3 supply amount to the SCR catalyst 4 is repeatedly calculated and integrated, for example, at a predetermined period.

各量の算出を具体的に説明すると、(a)エンジン2からのNOx排出量は、エンジン2の運転状態(負荷、回転数)から例えばマップにより算出する。エンジン2の運転状態(負荷、回転数)とNOx排出量との関係を示すマップは予め求めておいてメモリ70に記憶しておけばよい。(b)SCR触媒4下流へのNOx流出量は、NOxセンサ31の計測値を取得すればよい。   The calculation of each amount will be specifically described. (A) The NOx emission amount from the engine 2 is calculated from the operating state (load, rotation speed) of the engine 2 by, for example, a map. A map showing the relationship between the operating state (load, rotation speed) of the engine 2 and the NOx emission amount may be obtained in advance and stored in the memory 70. (B) The NOx outflow amount to the downstream of the SCR catalyst 4 may be obtained by measuring the NOx sensor 31.

(c)SCR触媒4でのNOx浄化量は、上記で求められた、(a)エンジン2からのNOx排出量から(b)SCR触媒4下流へのNOx流出量を減算することにより算出できる。(d)SCR触媒4でのNH3消費量は、上記で求められた(c)SCR触媒4でのNOx浄化量から算出する。SCR触媒4でのNOx浄化量とNH3消費量との関係を示す数式やマップなどを予めメモリ70に記憶しておけばよい。   (C) The NOx purification amount in the SCR catalyst 4 can be calculated by subtracting the (b) NOx outflow amount downstream of the SCR catalyst 4 from the (a) NOx emission amount from the engine 2 obtained above. (D) The NH3 consumption amount in the SCR catalyst 4 is calculated from the (c) NOx purification amount in the SCR catalyst 4 obtained above. What is necessary is just to memorize | store in the memory 70 beforehand the numerical formula, map, etc. which show the relationship between the NOx purification amount in the SCR catalyst 4, and NH3 consumption.

(e)SCR触媒4へのNH3供給量の算出では、添加弁6からの尿素水の添加量から、その結果生成されてSCR触媒4へ供給されるNH3量を算出する。尿素水添加量から生成されるNH3量を算出する数式は、予めメモリ70に記憶しておけばよい。最終的に、以上により求められた(e)SCR触媒4へのNH3供給量から(d)SCR触媒4でのNH3消費量を減算することにより、SCR触媒4でのNH3貯蔵量(の推定値)が算出される。   (E) In the calculation of the NH 3 supply amount to the SCR catalyst 4, the NH 3 amount generated and supplied to the SCR catalyst 4 is calculated from the urea water addition amount from the addition valve 6. The mathematical formula for calculating the amount of NH 3 generated from the urea water addition amount may be stored in the memory 70 in advance. Finally, (d) NH3 storage amount in the SCR catalyst 4 (estimated value) is obtained by subtracting the NH3 consumption amount in the SCR catalyst 4 from the (e) NH3 supply amount to the SCR catalyst 4 obtained as described above. ) Is calculated.

次にS80でECU7は、SCR触媒4における目標貯蔵量と現在のNH3貯蔵量(の推定値)との偏差を求める。すなわち、S50またはS60で設定した目標貯蔵量から、S70で算出した現在貯蔵量(の推定値)を減算する。   Next, in S80, the ECU 7 calculates a deviation between the target storage amount in the SCR catalyst 4 and the current NH3 storage amount (estimated value thereof). That is, the current storage amount (estimated value) calculated in S70 is subtracted from the target storage amount set in S50 or S60.

続いてS90でECU7は、S80で算出した偏差分をSCR触媒4に(現在時点での貯蔵量に加えてさらに)貯蔵させるための尿素水添加量を算出する。具体的には、上記S70における(e)と同様に、尿素水添加量と、それから生成されるNH3量との関係を示す数式などを予めメモリ70に記憶しておき、その関係を用いて算出すればよい。   Subsequently, in S90, the ECU 7 calculates the urea water addition amount for storing the deviation calculated in S80 in the SCR catalyst 4 (in addition to the storage amount at the current time point). Specifically, similarly to (e) in S70 above, a mathematical expression indicating the relationship between the urea water addition amount and the NH3 amount generated therefrom is stored in the memory 70 in advance, and calculation is performed using the relationship. do it.

最後にS100でECU7は、添加弁6に対し、S90で算出された尿素水添加量を実際に添加することを指令する。以上が図2の処理手順である。   Finally, in S100, the ECU 7 instructs the addition valve 6 to actually add the urea water addition amount calculated in S90. The above is the processing procedure of FIG.

図3から図5には、図2のS50とS60におけるSCR触媒4でのNH3目標貯蔵量の設定の具体的な例が示されている。いずれも横軸をSCR触媒温度Tscr、縦軸をNH3貯蔵量(目標貯蔵量、あるいは貯蔵可能量)としている。横軸中に示された酸化触媒活性化温度が上述のTdocである。したがって、図3から図5では、酸化触媒活性化温度よりも温度が低い部分(図示左側の部分)がS50で設定される領域であり、酸化触媒活性化温度よりも温度が高い部分(図示右側の部分)がS60で設定される領域である。   3 to 5 show specific examples of setting the NH3 target storage amount in the SCR catalyst 4 in S50 and S60 of FIG. In either case, the horizontal axis represents the SCR catalyst temperature Tscr, and the vertical axis represents the NH3 storage amount (target storage amount or storable amount). The oxidation catalyst activation temperature shown in the horizontal axis is the above-mentioned Tdoc. Therefore, in FIG. 3 to FIG. 5, the portion where the temperature is lower than the oxidation catalyst activation temperature (the left portion in the drawing) is the region set in S50, and the portion where the temperature is higher than the oxidation catalyst activation temperature (the right side in the drawing). Is a region set in S60.

図3から図5のいずれにおいても、S50、S60で述べたように、酸化触媒活性化温度を境にして、それより温度が低い領域では、NH3目標貯蔵量の貯蔵可能量からの余裕分を、NH3スリップしたら酸化触媒5で浄化されないことを考慮して相対的に大きくし、酸化触媒活性化温度より温度が高い領域では、NH3スリップしたら酸化触媒5で浄化されるとみなせるので、より多くのNH3貯蔵量によってより高いNOx浄化を目指して、余裕分を相対的に小さくしている。   In any of FIGS. 3 to 5, as described in S50 and S60, in the region where the temperature is lower than the oxidation catalyst activation temperature, there is a margin from the storable amount of the NH3 target storage amount. In the region where the temperature is higher than the oxidation catalyst activation temperature, the NH3 slip can be considered to be purified by the oxidation catalyst 5 in the region where the temperature is higher than the oxidation catalyst activation temperature. Aiming at higher NOx purification by the amount of stored NH3, the margin is made relatively small.

そのような基本的な考え方に基き、図3の設定例では、酸化触媒活性化温度よりSCR触媒温度が低い領域で温度が低くなるほど、余裕分が大きくなるように設定している。(なお余裕(分)は、貯蔵可能量から目標貯蔵量を減算した数値そのものでも、それを百分率(%)で表した数値としてもよい。)図3のように設定することにより、酸化触媒活性化温度より低温領域での大きな余裕分によって(余裕分が温度に関わらず一定の場合と比較して)低温領域でNH3スリップが起きる可能性を低減できる。   Based on such a basic concept, in the setting example of FIG. 3, the margin is set to be larger as the temperature is lower in the region where the SCR catalyst temperature is lower than the oxidation catalyst activation temperature. (The margin (minute) may be a numerical value obtained by subtracting the target storage amount from the storable amount, or a numerical value expressed as a percentage (%).) By setting as shown in FIG. The possibility of NH3 slip occurring in the low-temperature region can be reduced by a large margin in the low-temperature region below the activation temperature (compared to the case where the margin is constant regardless of the temperature).

図3では余裕分を連続的に増加させているのに対し、図4の設定例では、酸化触媒活性化温度を境に、それよりSCR触媒温度が高い領域から低い領域へ余裕分を不連続に増加させている。これにより、酸化触媒活性化温度より低温領域で余裕分をさらに大きくして、低温領域でNH3スリップが起きる可能性をさらに低減できる。   In FIG. 3, the margin is continuously increased, whereas in the setting example of FIG. 4, the margin is discontinuous from the region where the SCR catalyst temperature is higher to the region where the SCR catalyst temperature is lower than the oxidation catalyst activation temperature. Has increased. As a result, the margin can be further increased in the low temperature region below the oxidation catalyst activation temperature, and the possibility of NH3 slip occurring in the low temperature region can be further reduced.

図5の設定例では、低温領域で目標貯蔵量を一定値としている。図5の例で本質的な点は、酸化触媒活性化温度よりもSCR触媒温度が低い領域では、一点鎖線で図示された直線Lよりも下になるように目標貯蔵量を設定することである。直線Lは、SCR触媒温度が酸化触媒活性化温度である点での貯蔵可能量を図示左側に延長した線である。   In the setting example of FIG. 5, the target storage amount is set to a constant value in the low temperature region. The essential point in the example of FIG. 5 is that the target storage amount is set to be lower than the straight line L illustrated by the one-dot chain line in the region where the SCR catalyst temperature is lower than the oxidation catalyst activation temperature. . The straight line L is a line obtained by extending the storable amount at the point where the SCR catalyst temperature is the oxidation catalyst activation temperature to the left side in the figure.

あきらかに、直線Lよりも下になるように目標貯蔵量を設定すれば、酸化触媒活性化温度よりも低温度の領域ではNH3スリップが起きない。よってNH3スリップが起きる場合は酸化触媒活性化温度よりも高温度領域に限られるので、その場合は酸化触媒5が活性化されており、NH3スリップが起きてもNH3は酸化触媒5で浄化されるとみなされる。したがって図5の例は、NH3スリップが起きてもエミッションの悪化が発生しないと考えられる例である。(ただし図5の場合、低温度領域ではNH3貯蔵量が少なく、その結果NOx浄化性能も低くなる。低温度でのNOx浄化に関しては図3、図4の方が優れている。)   Obviously, if the target storage amount is set so as to be below the straight line L, NH3 slip does not occur in a region lower than the oxidation catalyst activation temperature. Therefore, when NH3 slip occurs, it is limited to a temperature range higher than the oxidation catalyst activation temperature. In that case, the oxidation catalyst 5 is activated, and even if NH3 slip occurs, NH3 is purified by the oxidation catalyst 5. Is considered. Therefore, the example of FIG. 5 is an example in which it is considered that the emission does not deteriorate even if NH3 slip occurs. (However, in the case of FIG. 5, the amount of NH 3 stored is low in the low temperature region, and as a result, the NOx purification performance is also low. FIGS. 3 and 4 are superior for NOx purification at low temperatures.)

なお図3、図4、図5の考え方を任意に組み合わせてもよい。すなわち、酸化触媒活性化温度よりSCR触媒温度が低い領域で温度が低くなるほど余裕分が大きくなるように設定すること、酸化触媒活性化温度を境に、それよりSCR触媒温度が高い領域から低い領域へ余裕分を不連続に増加させること、酸化触媒活性化温度よりもSCR触媒温度が低い領域では、SCR触媒温度が酸化触媒活性化温度である点での貯蔵可能量以下に目標貯蔵量を設定すること、のうちのいずれか又は全てを組み合わせてもよい。   In addition, you may combine the idea of FIG.3, FIG.4, FIG.5 arbitrarily. That is, the margin is set to be larger as the temperature is lower in the region where the SCR catalyst temperature is lower than the oxidation catalyst activation temperature, and the region where the SCR catalyst temperature is higher from the region lower than the oxidation catalyst activation temperature. When the SCR catalyst temperature is lower than the oxidation catalyst activation temperature, the target storage amount is set below the storable amount at the point where the SCR catalyst temperature is the oxidation catalyst activation temperature. Any or all of these may be combined.

なお上記実施例は特許請求の範囲に記載された趣旨を逸脱しない範囲で適宜変更できる。例えばエンジン2はディーゼルエンジンのみでなく、リーンバーンガソリンエンジンとしてもよい。また図3から図5は目標貯蔵量の設定例に過ぎず、SCR触媒4におけるNH3の目標貯蔵量を、その目標貯蔵量とSCR触媒4における最大貯蔵可能量との差である余裕分が、SCR触媒4の温度が酸化触媒5の活性化温度より低い領域では相対的に大きく、活性化温度より高い領域では相対的に小さくなるように設定すればよい。   In addition, the said Example can be suitably changed in the range which does not deviate from the meaning described in the claim. For example, the engine 2 may be a lean burn gasoline engine as well as a diesel engine. FIGS. 3 to 5 are merely examples of setting the target storage amount. The target storage amount of NH3 in the SCR catalyst 4 is a margin that is the difference between the target storage amount and the maximum storable amount in the SCR catalyst 4. What is necessary is just to set so that the temperature of the SCR catalyst 4 may be relatively high in a region lower than the activation temperature of the oxidation catalyst 5 and relatively low in a region higher than the activation temperature.

3 排気管(排気通路)
4 SCR触媒(NOx触媒、第1触媒)
5 酸化触媒(第2触媒)
6 添加弁(供給手段)
3 Exhaust pipe (exhaust passage)
4 SCR catalyst (NOx catalyst, first catalyst)
5 Oxidation catalyst (second catalyst)
6 Addition valve (supply means)

Claims (4)

内燃機関の排気通路に備えられて、NOxを浄化する機能を有する第1触媒(4)と、
その第1触媒よりも排気通路の上流に備えられて、NOx浄化のための還元剤を前記第1触媒に供給する供給手段(6)と、
前記第1触媒よりも排気通路の下流に配置されて、前記還元剤を浄化する機能を有する第2触媒(5)と、
前記供給手段によって供給される還元剤の前記第1触媒における貯蔵量の目標値を、その目標値と前記第1触媒における最大貯蔵可能量との差である余裕分が、前記第1触媒の温度が前記第2触媒の活性化温度より低い領域では相対的に大きく、前記活性化温度より高い領域では相対的に小さくなるように設定する設定手段(7、S50、S60)と、
を備え
前記設定手段(7、S50、S60)は、前記第2触媒の活性化温度より高い温度領域から前記活性化温度より低い温度領域にかけて、不連続に前記余裕分を大きく設定することを特徴とする内燃機関の排気浄化装置。
A first catalyst (4) provided in an exhaust passage of the internal combustion engine and having a function of purifying NOx;
A supply means (6) provided upstream of the first catalyst in the exhaust passage for supplying a reducing agent for NOx purification to the first catalyst;
A second catalyst (5) disposed downstream of the first catalyst than the first catalyst and having a function of purifying the reducing agent;
The target value of the storage amount of the reducing agent supplied by the supply means in the first catalyst is a margin that is the difference between the target value and the maximum storable amount in the first catalyst. Setting means (7, S50, S60) that is set to be relatively large in a region lower than the activation temperature of the second catalyst and relatively small in a region higher than the activation temperature;
Equipped with a,
The setting means (7, S50, S60) sets the margin discontinuously large from a temperature range higher than the activation temperature of the second catalyst to a temperature range lower than the activation temperature. An exhaust purification device for an internal combustion engine.
前記設定手段(7、S50、S60)は、前記第2触媒の活性化温度より低い温度領域において、触媒温度が低いほど前記余裕分を大きく設定する請求項1に記載の内燃機関の排気浄化装置。   The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the setting means (7, S50, S60) sets the margin larger as the catalyst temperature is lower in a temperature region lower than the activation temperature of the second catalyst. . 前記設定手段(7、S50、S60)は、前記第2触媒の活性化温度より低い温度領域において、前記目標値を、前記活性化温度における最大貯蔵可能量よりも低く設定する請求項1又は2に記載の内燃機関の排気浄化装置。 It said setting means (7, S50, S60), in a temperature region lower than the activation temperature of the second catalyst, the target value, according to claim 1 is set lower than the maximum storable amount in the activation temperature or 2 2. An exhaust gas purification apparatus for an internal combustion engine according to 1. 前記設定手段(7、S50、S60)において用いられる前記第2触媒の活性化温度の情報は、前記第1触媒と第2触媒との温度差を前記第2触媒の活性化温度に加算した数値である請求項1ないし3のいずれか1項に記載の内燃機関の排気浄化装置。 The information on the activation temperature of the second catalyst used in the setting means (7, S50, S60) is a numerical value obtained by adding the temperature difference between the first catalyst and the second catalyst to the activation temperature of the second catalyst. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 3 .
JP2012212436A 2012-09-26 2012-09-26 Exhaust gas purification device for internal combustion engine Active JP5668737B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012212436A JP5668737B2 (en) 2012-09-26 2012-09-26 Exhaust gas purification device for internal combustion engine
DE102013110318.9A DE102013110318B4 (en) 2012-09-26 2013-09-19 Exhaust gas purification device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012212436A JP5668737B2 (en) 2012-09-26 2012-09-26 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2014066200A JP2014066200A (en) 2014-04-17
JP5668737B2 true JP5668737B2 (en) 2015-02-12

Family

ID=50235491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012212436A Active JP5668737B2 (en) 2012-09-26 2012-09-26 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP5668737B2 (en)
DE (1) DE102013110318B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105604653B (en) * 2016-03-18 2018-08-21 安徽华菱汽车有限公司 A kind of method for urea injection control, device and SCR system
CN112362194B (en) * 2020-11-02 2022-10-25 潍柴动力股份有限公司 Sensor detection method and device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305643A (en) 1991-04-03 1992-10-28 Toshiba Corp X-ray diagnostic device
JP4305643B2 (en) 2003-10-24 2009-07-29 三菱ふそうトラック・バス株式会社 Exhaust gas purification device for internal combustion engine
JP4215808B2 (en) * 2007-05-11 2009-01-28 ボッシュ株式会社 Control device and control method for exhaust gas purification device, and exhaust gas purification device for internal combustion engine
JP2009264181A (en) * 2008-04-23 2009-11-12 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP5127052B2 (en) * 2008-06-09 2013-01-23 日野自動車株式会社 Exhaust treatment device control device
US8096110B2 (en) * 2008-11-19 2012-01-17 GM Global Technology Operations LLC Ammonia (NH3) storage control system and method at low nitrogen oxide (NOx) mass flow rates
JP2010249076A (en) * 2009-04-17 2010-11-04 Toyota Motor Corp Exhaust emission control device of internal combustion engine
US8240194B2 (en) 2009-07-30 2012-08-14 Ford Global Technologies, Llc Methods and systems for diagnostics of an emission system with more than one SCR region
JP5553631B2 (en) * 2010-02-09 2014-07-16 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP5627367B2 (en) * 2010-09-22 2014-11-19 トヨタ自動車株式会社 Exhaust purification device and control method of exhaust purification device
JP2013151861A (en) * 2011-12-27 2013-08-08 Honda Motor Co Ltd Exhaust emission control system of internal combustion engine

Also Published As

Publication number Publication date
DE102013110318B4 (en) 2022-05-12
DE102013110318A1 (en) 2014-03-27
JP2014066200A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP6508229B2 (en) Abnormality diagnosis device for exhaust gas purification device for internal combustion engine
JP4438828B2 (en) Exhaust gas purification device for internal combustion engine
EP2918805B1 (en) Exhaust gas purification device for internal-combustion engine
JP5163754B2 (en) Exhaust gas purification device for internal combustion engine
JP5348539B2 (en) Exhaust gas purification device for internal combustion engine
JP4305643B2 (en) Exhaust gas purification device for internal combustion engine
US20130312392A1 (en) Systems and methods to mitigate nox and hc emissions at low exhaust temperatures
JP2008157136A (en) Exhaust emission control device for internal combustion engine
JP2019035370A (en) Exhaust emission control device and vehicle comprising the same
JP2017194022A (en) Control device for exhaust emission control device
JP2010031731A (en) Exhaust emission control system of internal-combustion engine
JP2012031826A (en) Failure detection system for exhaust emission control device
JP5915516B2 (en) Exhaust gas purification device for internal combustion engine
JP5560089B2 (en) Exhaust gas purification device for internal combustion engine
JP2009156159A (en) Device for determining abnormal section of exhaust emission control system
JP5668737B2 (en) Exhaust gas purification device for internal combustion engine
JP5672328B2 (en) Exhaust gas purification device for internal combustion engine
JP5761255B2 (en) Exhaust gas purification device for internal combustion engine
JP6512535B2 (en) Exhaust purification system for internal combustion engine
JP2015086848A (en) Exhaust emission control system of internal combustion engine
JP6202600B2 (en) Control device, exhaust purification device for internal combustion engine, and control method for exhaust purification device
JP4396760B2 (en) Exhaust gas purification device for internal combustion engine
JP2018087542A (en) Exhaust emission control device of internal combustion engine
JP2014137044A (en) Exhaust emission control device for internal combustion engine
JP2019190425A (en) Exhaust emission control device and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R151 Written notification of patent or utility model registration

Ref document number: 5668737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250