JP4396760B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4396760B2
JP4396760B2 JP2007290873A JP2007290873A JP4396760B2 JP 4396760 B2 JP4396760 B2 JP 4396760B2 JP 2007290873 A JP2007290873 A JP 2007290873A JP 2007290873 A JP2007290873 A JP 2007290873A JP 4396760 B2 JP4396760 B2 JP 4396760B2
Authority
JP
Japan
Prior art keywords
amount
value
catalyst
nox catalyst
recovery control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007290873A
Other languages
Japanese (ja)
Other versions
JP2009115038A (en
Inventor
英之 半田
晋 星子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007290873A priority Critical patent/JP4396760B2/en
Priority to DE102008055750A priority patent/DE102008055750B4/en
Priority to FR0806244A priority patent/FR2923533B1/en
Publication of JP2009115038A publication Critical patent/JP2009115038A/en
Application granted granted Critical
Publication of JP4396760B2 publication Critical patent/JP4396760B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1612SOx amount trapped in catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

自動車用エンジンなどの内燃機関に適用される排気浄化装置として、同機関の排気系に触媒コンバータを設けるとともに、その触媒コンバータに窒素酸化物(NOx)に関する排気浄化を行う吸蔵還元型のNOx触媒を担持したものが知られている。   As an exhaust purification device applied to an internal combustion engine such as an automobile engine, a catalytic converter is provided in the exhaust system of the engine, and a NOx storage reduction catalyst that performs exhaust purification on nitrogen oxide (NOx) is provided in the catalytic converter. A supported one is known.

こうした排気浄化装置では、NOx触媒への硫黄酸化物等の硫黄成分の吸蔵によって同NOx触媒のNOx吸蔵能力が低下する。従って、この種の排気浄化装置の多くは、例えば特許文献1に示されるように、NOx触媒への硫黄成分の吸蔵量であるS被毒量を求め、S被毒量が許容値以上になったときには、硫黄成分の吸蔵によって低下したNOx触媒のNOx吸蔵能力を回復すべくNOx触媒から硫黄成分を放出させるS被毒回復制御を行うようにしている。このS被毒回復制御では、排気系の触媒への未燃燃料成分の供給を通じて、NOx触媒を例えば600〜700℃程度まで昇温するとともに、その高温下で同触媒周りの雰囲気をリッチ燃焼時の状態(以下、リッチ燃焼雰囲気という)とすることで、NOx触媒からの硫黄成分の放出及びその還元を促進し、上記NOx吸蔵能力の回復を図るようにしている。そして、上記S被毒回復制御の実行により、NOx触媒でのS被毒量が上記許容値よりも小さい所定値(例えば「0」)まで減少すると、S被毒回復制御が終了される。   In such an exhaust purification device, the NOx occlusion capacity of the NOx catalyst is reduced by occlusion of sulfur components such as sulfur oxides in the NOx catalyst. Therefore, many exhaust purification apparatuses of this type obtain an S poison amount that is the amount of sulfur component stored in the NOx catalyst, as shown in Patent Document 1, for example, and the S poison amount exceeds an allowable value. In this case, the S poison recovery control for releasing the sulfur component from the NOx catalyst is performed in order to recover the NOx storage capability of the NOx catalyst that has been reduced by the storage of the sulfur component. In this S poison recovery control, the temperature of the NOx catalyst is raised to, for example, about 600 to 700 ° C. through the supply of unburned fuel components to the exhaust system catalyst, and the atmosphere around the catalyst is richly burned at that high temperature. In this state (hereinafter referred to as a rich combustion atmosphere), the release of the sulfur component from the NOx catalyst and its reduction are promoted to restore the NOx storage capacity. When the sulfur poisoning amount in the NOx catalyst decreases to a predetermined value (for example, “0”) smaller than the allowable value by executing the sulfur poisoning recovery control, the sulfur poisoning recovery control is terminated.

なお、特許文献1での上記S被毒量に関しては、機関運転状態等に基づき推定される推定値が用いられており、S被毒回復制御が実行されていないときには前回のS被毒回復制御の終了からの燃料消費量等に基づき算出され、S被毒回復制御の実行中には同制御によるNOx触媒からの硫黄成分の放出量を考慮して算出されている。
特開2005−90253公報(段落[0003]、[0033]、[0037])
Note that the estimated value estimated based on the engine operation state or the like is used for the S poison amount in Patent Document 1, and when the S poison recovery control is not executed, the previous S poison recovery control is performed. This is calculated based on the amount of fuel consumed since the end of S, and is calculated in consideration of the amount of sulfur component released from the NOx catalyst during the S poison recovery control.
JP-A-2005-90253 (paragraphs [0003], [0033], [0037])

ところで、特許文献1で推定されるNOx触媒のS被毒量に関しては、S被毒回復制御の実行中にNOx触媒からの硫黄成分の放出量を考慮して算出されてはいるものの、このように考慮される硫黄成分の放出量が実際の放出量に対応したものとなっているかどうかは不明である。   Incidentally, the S poisoning amount of the NOx catalyst estimated in Patent Document 1 is calculated in consideration of the release amount of the sulfur component from the NOx catalyst during the execution of the S poisoning recovery control. It is unclear whether the release amount of sulfur component considered in the above corresponds to the actual release amount.

上記硫黄成分の放出量として理論上の値を用いるような場合には、その放出量に含まれる硫黄成分のうち、実際にはS被毒回復制御ではNOx触媒から放出させることができずに同触媒に残留した状態になるものが存在し、その分だけ上記考慮される硫黄成分の放出量が実際の放出量に対しずれた値となる。なお、上述したようなNOx触媒での硫黄成分の残留が存在するのは、触媒コンバータにおいてはその排気上流端など触媒床温の上昇しにくい部分が存在し、その部分のNOx触媒に吸蔵された硫黄成分は、S被毒回復制御により高温下でのNOx触媒周りのリッチ燃焼雰囲気化を図ったときに必ずしも放出されるとは限らないためと推測される。   When a theoretical value is used as the amount of sulfur component released, among the sulfur components contained in the amount released, the sulfur poisoning recovery control cannot actually be released from the NOx catalyst. Some of the catalyst remains in the state, and the amount of released sulfur component considered is deviated from the actual amount of release. Note that the sulfur component remains in the NOx catalyst as described above. In the catalytic converter, there is a portion where the catalyst bed temperature is difficult to rise, such as the upstream end of the exhaust gas, and the NOx catalyst in that portion is occluded. It is presumed that the sulfur component is not necessarily released when the rich combustion atmosphere around the NOx catalyst at high temperature is achieved by the S poison recovery control.

このようにNOx触媒には、S被毒回復制御では放出しきれない硫黄成分が残留し、それに起因して同触媒上に常に残留した状態になる硫黄成分が存在することになる。従って、S被毒量を推定する際に考慮されるS被毒回復制御でのNOx触媒からの硫黄成分の放出量が、同制御によってNOx触媒から放出しきれない分の硫黄成分を加味した値になっていないと、推定されたS被毒量が実際のS被毒量よりも少なくなり、両者の値にずれが生じる。   Thus, in the NOx catalyst, sulfur components that cannot be released by the S poison recovery control remain, and as a result, there exist sulfur components that always remain on the catalyst. Accordingly, the amount of sulfur component released from the NOx catalyst in the S poison recovery control considered when estimating the amount of S poison is a value that takes into account the amount of sulfur components that cannot be released from the NOx catalyst by the control. Otherwise, the estimated amount of S poisoning is smaller than the actual amount of S poisoning, resulting in a deviation between the two values.

その結果、S被毒回復制御の開始後、推定されるS被毒量が「0」まで減少してS被毒回復制御が終了されたとき、実際のS被毒量は「0」まで減少しておらず、NOx触媒に硫黄成分がある程度残ったままになる。そして、NOx触媒の使用期間が長くなって同触媒に常に残留した状態になる硫黄成分が多くなるほど、推定されるS被毒量と実際のS被毒量とのずれが広がってゆき、S被毒回復制御の終了時にNOx触媒に残ったままになる硫黄成分の量が増えてゆく。   As a result, after the start of the S poisoning recovery control, when the estimated S poisoning amount is reduced to “0” and the S poisoning recovery control is terminated, the actual S poisoning amount is reduced to “0”. The sulfur component remains in the NOx catalyst to some extent. Then, as the use period of the NOx catalyst becomes longer and the sulfur component that always remains in the catalyst increases, the difference between the estimated S poisoning amount and the actual S poisoning amount increases, and the S coverage becomes larger. The amount of sulfur component that remains in the NOx catalyst at the end of the poison recovery control increases.

特に、以下の[1]〜[3]に示される状況下では、推定されるS被毒量が実際のS被毒量からずれること、より詳しくは実際のS被毒量が推定されるS被毒量よりも多くなることが顕著になる。   In particular, under the conditions shown in [1] to [3] below, the estimated S poisoning amount deviates from the actual S poisoning amount, and more specifically, the actual S poisoning amount is estimated. It becomes remarkable that it becomes more than poisoning amount.

[1]自動車を短時間しか運転しないような運転者の場合、内燃機関の排気温度があまり上がらないことからNOx触媒の触媒床温も低いままになる可能性が高く、S被毒回復制御の実行機会が少なくなったり、また実行されても制御中の触媒床温の上昇が生じにくくなったりする。その結果、NOx触媒からの硫黄成分の放出率が悪化し、NOx触媒に常に残留する硫黄成分の量が多くなる。   [1] In the case of a driver who drives an automobile only for a short time, the exhaust temperature of the internal combustion engine does not rise so much, so there is a high possibility that the catalyst bed temperature of the NOx catalyst will remain low. Execution opportunities are reduced, and even if executed, the catalyst bed temperature during control is less likely to increase. As a result, the release rate of the sulfur component from the NOx catalyst deteriorates, and the amount of the sulfur component that always remains in the NOx catalyst increases.

[2]自動車の急発進を頻繁に行うなど内燃機関の燃料消費の激しい運転者の場合、その燃料消費に伴ってNOx触媒に流入する硫黄成分の量が多くなることから、同触媒に硫黄成分が吸蔵されやすくなり、同触媒に常に残留する硫黄成分の量も多くなる。   [2] In the case of a driver who consumes a lot of fuel in an internal combustion engine, such as frequently starting a car, the amount of sulfur component flowing into the NOx catalyst increases as the fuel is consumed. Is easily occluded, and the amount of sulfur component always remaining in the catalyst also increases.

[3]硫黄濃度が標準値よりも濃い燃料を使用している場合、硫黄濃度が標準値である燃料を使用している場合に比べて、NOx触媒に流入する硫黄成分の量が多くなることから、同触媒に硫黄成分が吸蔵されやすくなり、同触媒に常に残留する硫黄成分の量も多くなる。   [3] When a fuel having a sulfur concentration higher than the standard value is used, the amount of sulfur components flowing into the NOx catalyst is larger than when using a fuel having a standard sulfur concentration. Therefore, the sulfur component is easily occluded in the catalyst, and the amount of the sulfur component always remaining in the catalyst increases.

以上のように、NOx触媒において常に残留する硫黄成分の量が多くなり、実際のS被毒量が推定されるS被毒量よりも多くなる状況のもとでは、S被毒回復制御を実行して完了したとしても、NOx触媒のNOx吸蔵能力が同触媒に残留する硫黄成分によって低下したままとなるため、内燃機関のNOxエミッションが悪化するおそれがある。なお、こうした不具合は、S被毒回復制御において触媒床温をより高い値としてNOx触媒からの一層効果的な硫黄成分の放出を図り、同触媒に常に残留する硫黄成分の量を少なくして実際のS被毒量を推定されるS被毒量に近づけることにより、抑制することが可能である。ただし、常にS被毒回復制御での触媒床温を高く設定していたのでは、NOx触媒における触媒床温の過上昇がひどくなり、それに伴う熱劣化により内燃機関のNOxエミッションが悪化するおそれがある。   As described above, the sulfur poisoning recovery control is executed under the situation where the amount of the sulfur component always remaining in the NOx catalyst is increased and the actual sulfur poisoning amount is larger than the estimated sulfur poisoning amount. Even if the process is completed, the NOx occlusion ability of the NOx catalyst remains lowered due to the sulfur component remaining in the catalyst, which may deteriorate the NOx emission of the internal combustion engine. Note that such a problem is actually caused by increasing the catalyst bed temperature in the S poison recovery control to more effectively release the sulfur component from the NOx catalyst and reducing the amount of the sulfur component always remaining in the catalyst. It is possible to suppress this by bringing the S poisoning amount close to the estimated S poisoning amount. However, if the catalyst bed temperature is always set high in the S poison recovery control, the catalyst bed temperature excessively increases in the NOx catalyst, and the NOx emissions of the internal combustion engine may be deteriorated due to the accompanying thermal deterioration. is there.

本発明はこのような実情に鑑みてなされたものであって、その目的は、NOx触媒における触媒床温の過上昇を抑制しつつ、同触媒に常に残留する硫黄成分の量を少なくし、その残留する硫黄成分が原因となって内燃機関のNOxエミッションが悪化することを抑制できる内燃機関の排気浄化装置を提供することにある。   The present invention has been made in view of such circumstances, and its object is to suppress the excessive increase in the catalyst bed temperature in the NOx catalyst, while reducing the amount of sulfur component always remaining in the catalyst, An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can suppress deterioration of NOx emission of the internal combustion engine due to the remaining sulfur component.

以下、上記目的を達成するための手段及びその作用効果について記載する。
上記目的を達成するため、請求項1記載の発明では、内燃機関の排気系に設けられた吸蔵還元型のNOx触媒と、そのNOx触媒における硫黄成分の吸蔵量であるS被毒量を推定する推定手段とを備え、前記推定されるS被毒量が許容値以上になったときに前記NOx触媒への未燃燃料成分の供給を通じて触媒床温を目標床温へと上昇させるとともに同NOx触媒周りの雰囲気をリッチ燃焼時の状態とするS被毒回復制御を実行開始して前記NOx触媒からの硫黄成分の放出を図り、前記S被毒回復制御の開始後に前記S被毒量が前記許容値よりも小さい所定値以下になったときに同制御を終了する内燃機関の排気浄化装置において、前記NOx触媒が高温となった時間の累積値である高温時間累積値を前記NOx触媒の熱劣化度合いに相当する値として算出する累積値算出手段と、前記内燃機関の総運転時間相当値に基づき、そのときの同機関の総運転時間での前記高温時間累積値の標準値を算出する標準値算出手段と、前記累積値算出手段によって算出された高温時間累積値が前記標準値算出手段によって算出された標準値以下であるときに限って、前記S被毒回復制御よりも高い触媒床温での同制御である高温S被毒回復制御を実施する制御手段と、を備えた。
In the following, means for achieving the above object and its effects are described.
In order to achieve the above object, according to the first aspect of the present invention, the NOx storage reduction catalyst provided in the exhaust system of the internal combustion engine and the sulfur poisoning amount that is the storage amount of the sulfur component in the NOx catalyst are estimated. And an estimation means for raising the catalyst bed temperature to the target bed temperature through the supply of the unburned fuel component to the NOx catalyst when the estimated S poisoning amount exceeds a permissible value and the NOx catalyst. The execution of the S poison recovery control for setting the surrounding atmosphere to the state at the time of rich combustion is started to release the sulfur component from the NOx catalyst, and the S poison amount after the start of the S poison recovery control is In the exhaust gas purification apparatus for an internal combustion engine that terminates the control when the value becomes equal to or less than a predetermined value smaller than the value, a high temperature time cumulative value that is a cumulative value of the time when the NOx catalyst becomes high temperature is used as the thermal deterioration of the NOx catalyst. Equivalent to degree And a standard value calculating means for calculating a standard value of the cumulative value of the high temperature time in the total operating time of the engine based on a value corresponding to the total operating time of the internal combustion engine. The control at the catalyst bed temperature higher than the S poison recovery control is performed only when the high temperature time cumulative value calculated by the cumulative value calculation means is equal to or less than the standard value calculated by the standard value calculation means. And high temperature S poisoning recovery control.

自動車を短時間しか運転しないような運転者の場合、内燃機関の排気温度が上がりにくいことからNOx触媒の触媒床温も低いままになる可能性が高く、S被毒回復制御の実行機会が少なくなったり、また実行されても制御中の触媒床温の上昇が生じにくくなったりする。その結果、NOx触媒からの硫黄成分の放出率が悪化し、NOx触媒に常に残留する硫黄成分の量が多くなる。特に、硫黄濃度が標準値よりも濃い燃料を使用している場合、硫黄濃度が標準値である燃料を使用している場合に比べて、NOx触媒に流入する硫黄成分の量が多くなることから、同触媒に硫黄成分が吸蔵されやすくなり、同触媒に常に残留する硫黄成分の増加が顕著になる。   In the case of a driver who drives an automobile only for a short time, the exhaust temperature of the internal combustion engine is difficult to rise, so the catalyst bed temperature of the NOx catalyst is likely to remain low, and the chance of executing the S poison recovery control is small. Even if it is executed, the catalyst bed temperature during the control is hardly increased. As a result, the release rate of the sulfur component from the NOx catalyst deteriorates, and the amount of the sulfur component that always remains in the NOx catalyst increases. In particular, when a fuel having a sulfur concentration higher than the standard value is used, the amount of sulfur component flowing into the NOx catalyst is larger than when a fuel having a standard sulfur concentration is used. The sulfur component is easily stored in the catalyst, and the increase in the sulfur component always remaining in the catalyst becomes remarkable.

上記構成によれば、上述したような自動車の運転が行われると、NOx触媒が高温となった時間の累積値である上記高温時間累積値が小さい値のままとなり、同高温時間累積値が上記標準値以下になる可能性が高くなる。そして、高温時間累積値が標準値以下になったときに限り、高温S被毒回復制御が実施されてNOx触媒からの効率的な硫黄成分の放出が図られ、それによってNOx触媒で常に残留する硫黄成分の量が少なくなる。以上により、高温S被毒回復制御の実施によるNOx触媒の触媒床温の過上昇を抑制しつつ、同触媒に常に残留する硫黄成分の量を少なくし、その残留する硫黄成分が原因となる内燃機関のNOxエミッション悪化を抑制することができる。   According to the above configuration, when the automobile is operated as described above, the high temperature time cumulative value, which is a cumulative value of the time when the NOx catalyst has become high temperature, remains small, and the high temperature time cumulative value is There is a high possibility of being below the standard value. Only when the accumulated value of the high temperature time becomes below the standard value, the high temperature S poisoning recovery control is performed to efficiently release the sulfur component from the NOx catalyst, and thereby always remain in the NOx catalyst. The amount of sulfur component is reduced. As described above, while suppressing an excessive increase in the catalyst bed temperature of the NOx catalyst due to the execution of the high temperature S poisoning recovery control, the amount of the sulfur component always remaining in the catalyst is reduced, and the internal combustion caused by the remaining sulfur component It is possible to suppress the deterioration of NOx emission of the engine.

請求項2記載の発明では、 請求項1記載の発明において、前記制御手段は、前記標準値に対する前記高温時間累積値の低下側への乖離量増大に伴い、前記高温S被毒回復制御での触媒床温をより高くしてゆくことを要旨とした。   According to a second aspect of the present invention, in the first aspect of the present invention, the control means performs the high temperature S poisoning recovery control in accordance with an increase in the amount of deviation of the high temperature time cumulative value with respect to the standard value toward the lower side. The gist was to increase the catalyst bed temperature.

高温時間累積値が標準値に対し低下側に大きく乖離するほど、NOx触媒に常に残留する硫黄成分の量が多くなって、S被毒回復制御で触媒床温を高くしようとしても同触媒床温が上昇しにくくなり、NOx触媒に常に残留する硫黄成分の効果的な放出を実現しにくい状態ということになる。この状態は、言い換えれば触媒床温の過上昇が生じにくい状態であるとも言える。上記構成によれば、標準値に対する高温時間累積値の低下側への乖離量増大に伴い、高温S被毒回復制御での触媒床温をより高くしようとすることが行われるため、同制御でのNOx触媒の触媒床温の過上昇抑制と、同制御によるNOx触媒に常に残留する硫黄成分の効果的な放出とを、高い次元で両立させることができる。   As the accumulated value of the high temperature time deviates greatly from the standard value, the amount of sulfur component always remaining in the NOx catalyst increases, and even if an attempt is made to increase the catalyst bed temperature in the S poison recovery control, the catalyst bed temperature is increased. Is difficult to increase, and it is difficult to effectively release the sulfur component always remaining in the NOx catalyst. In other words, this state can be said to be a state in which an excessive increase in the catalyst bed temperature hardly occurs. According to the above configuration, the catalyst bed temperature in the high temperature S poisoning recovery control is increased with an increase in the amount of divergence toward the lower side of the high temperature time cumulative value with respect to the standard value. It is possible to achieve both a high level of suppression of excessive rise in the catalyst bed temperature of the NOx catalyst and effective release of the sulfur component always remaining in the NOx catalyst by the same control.

請求項3記載の発明では、内燃機関の排気系に設けられた吸蔵還元型のNOx触媒と、そのNOx触媒における硫黄成分の吸蔵量であるS被毒量を推定する推定手段とを備え、前記推定されるS被毒量が許容値以上になったときに前記NOx触媒への未燃燃料成分の供給を通じて触媒床温を目標床温へと上昇させるとともに同NOx触媒周りの雰囲気をリッチ燃焼時の状態とするS被毒回復制御を実行開始して前記NOx触媒からの硫黄成分の放出を図り、前記S被毒回復制御の開始後に前記S被毒量が前記許容値よりも小さい所定値以下になったときに同制御を終了する内燃機関の排気浄化装置において、前記NOx触媒に流入する硫黄成分の総量に対応する総S流入量相当値を求める流入量相当値算出手段と、前記内燃機関の総運転時間相当値に基づき、そのときの同機関の総運転時間での前記総S流入量相当値の標準値を算出する標準値算出手段と、前記流入量相当値算出手段によって算出された総S流入量相当値が前記標準値算出手段によって算出された標準値以上であるときに限って、前記S被毒回復制御よりも高い触媒床温での同制御である高温S被毒回復制御を実施する制御手段と、を備えた。   The invention according to claim 3 comprises an NOx storage reduction catalyst provided in an exhaust system of an internal combustion engine, and an estimation means for estimating an S poison amount that is a storage amount of a sulfur component in the NOx catalyst, When the estimated amount of sulfur poisoning exceeds an allowable value, the catalyst bed temperature is raised to the target bed temperature through the supply of unburned fuel components to the NOx catalyst and the atmosphere around the NOx catalyst is richly burned. The S poison recovery control is started to release the sulfur component from the NOx catalyst, and after the S poison recovery control is started, the S poison amount is less than a predetermined value smaller than the allowable value. In the exhaust gas purification apparatus for an internal combustion engine that terminates the control when the engine reaches the inflow amount, an inflow amount equivalent value calculating means for obtaining a total S inflow amount equivalent value corresponding to the total amount of sulfur components flowing into the NOx catalyst, and the internal combustion engine Total operating time Based on this value, a standard value calculating means for calculating a standard value of the total S inflow equivalent value for the total operating time of the engine at that time, and a total S inflow amount calculated by the inflow equivalent value calculating means Only when the equivalent value is equal to or greater than the standard value calculated by the standard value calculating means, the control for performing the high temperature S poisoning recovery control which is the same control at the catalyst bed temperature higher than the S poisoning recovery control. Means.

自動車の急発進を頻繁に行うなど内燃機関の燃料消費の激しい運転者の場合、その燃料消費に伴ってNOx触媒に流入する硫黄成分の量が多くなることから、同触媒に硫黄成分が吸蔵されやすくなり、同触媒に常に残留する硫黄成分の量も多くなる。特に、硫黄濃度が標準値よりも濃い燃料を使用している場合、硫黄濃度が標準値である燃料を使用している場合に比べて、NOx触媒に流入する硫黄成分の量が多くなることから、同触媒に硫黄成分が吸蔵されやすくなり、同触媒に常に残留する硫黄成分の増加が顕著になる。   In the case of a driver with heavy fuel consumption of an internal combustion engine, for example, when the vehicle is suddenly started suddenly, the amount of sulfur component flowing into the NOx catalyst increases as the fuel is consumed, so the sulfur component is occluded in the catalyst. The amount of sulfur component that always remains in the catalyst increases. In particular, when a fuel having a sulfur concentration higher than the standard value is used, the amount of sulfur component flowing into the NOx catalyst is larger than when a fuel having a standard sulfur concentration is used. The sulfur component is easily stored in the catalyst, and the increase in the sulfur component always remaining in the catalyst becomes remarkable.

上記構成によれば、上述したような自動車の運転が行われると、NOx触媒に流入する硫黄成分の総量に対応する値である総S流入量相当値が速やかに大きくなり、同総S流入量相当値が上記標準値以上になる可能性が高くなる。そして、総S流入量相当値が標準値以上になったときに限り、高温S被毒回復制御が実施されてNOx触媒からの効率的な硫黄成分の放出が図られ、それによってNOx触媒で常に残留する硫黄成分の量が少なくなる。以上により、高温S被毒回復制御の実施によるNOx触媒の触媒床温の過上昇を抑制しつつ、同触媒に常に残留する硫黄成分の量を少なくし、その残留する硫黄成分が原因となる内燃機関のNOxエミッション悪化を抑制することができる。   According to the above configuration, when the automobile is operated as described above, the total S inflow equivalent value, which is a value corresponding to the total amount of sulfur components flowing into the NOx catalyst, quickly increases, and the total S inflow amount is the same. The possibility that the equivalent value is equal to or higher than the standard value is increased. Only when the total S inflow equivalent value is equal to or higher than the standard value, the high temperature S poisoning recovery control is performed to efficiently release the sulfur component from the NOx catalyst. The amount of residual sulfur component is reduced. As described above, while suppressing an excessive increase in the catalyst bed temperature of the NOx catalyst due to the execution of the high temperature S poisoning recovery control, the amount of the sulfur component always remaining in the catalyst is reduced, and the internal combustion caused by the remaining sulfur component It is possible to suppress the deterioration of NOx emission of the engine.

請求項4記載の発明では、請求項3記載の発明において、前記制御手段は、前記標準値に対する前記総S流入量相当値の増加側への乖離量増大に伴い、前記高温S被毒回復制御での触媒床温をより高くしてゆくことを要旨とした。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the control means controls the high temperature S poisoning recovery control as the deviation amount increases toward the increase side of the total S inflow equivalent value with respect to the standard value. The main point was to increase the catalyst bed temperature in the reactor.

総S流入量相当値が標準値に対し増加側に大きく乖離するほど、NOx触媒に常に残留する硫黄成分の量が多くなって、S被毒回復制御で触媒床温を高くしようとしても同触媒床温が上昇しにくくなり、NOx触媒に常に残留する硫黄成分を放出することを実現しにくい状態ということになる。この状態は、言い換えれば触媒床温の過上昇が生じにくい状態であるとも言える。上記構成によれば、標準値に対する総S流入量相当値の増加側への乖離量増大に伴い、高温S被毒回復制御での触媒床温をより高くしようとすることが行われるため、同制御でのNOx触媒の触媒床温の過上昇抑制と、同制御によるNOx触媒に常に残留する硫黄成分の効果的な放出とを、高い次元で両立させることができる。   The more the total S inflow equivalent value is greatly deviated from the standard value, the larger the amount of sulfur component that always remains in the NOx catalyst. Even if an attempt is made to increase the catalyst bed temperature in the S poison recovery control, the same catalyst is used. The bed temperature is unlikely to rise, and it is difficult to release the sulfur component that always remains in the NOx catalyst. In other words, this state can be said to be a state in which an excessive increase in the catalyst bed temperature hardly occurs. According to the above configuration, the catalyst bed temperature in the high temperature S poisoning recovery control is increased as the amount of deviation from the standard value to the increase side of the total S inflow equivalent value increases. Suppressing the excessive rise in the catalyst bed temperature of the NOx catalyst in the control and effective release of the sulfur component always remaining in the NOx catalyst by the control can be achieved at a high level.

請求項5記載の発明では、請求項3又は4記載の内燃機関の排気浄化装置において、前記高温S被毒回復制御が実行されたときには、前記総運転時間相当値に対する前記総S流入量相当値の大きさを前記標準値側に補正する補正手段を更に備えた。   According to a fifth aspect of the present invention, in the exhaust gas purification apparatus for an internal combustion engine according to the third or fourth aspect, when the high-temperature S poisoning recovery control is executed, the total S inflow equivalent value relative to the total operation time equivalent value Further, a correction means for correcting the magnitude of is adjusted to the standard value side is further provided.

高温S被毒回復制御が実施されると、NOx触媒に常に残留する硫黄成分の量が少なくなることから、それに合わせて高温S被毒回復制御の実行頻度を小とすることが、NOx触媒における触媒床温の過上昇抑制の観点で好ましい。上記構成によれば、高温S被毒回復制御が実施されると、前記総運転時間相当値に対する前記総S流入量相当値の大きさが前記標準値側に補正される。これにより、総運転時間相当値の変化に対する総S流入量相当値の推移が標準値側に移行するため、以後は総S流入量相当値が標準値以上になりにくくなって高温S被毒回復制御が実施されにくくなり、上述した触媒床温の過上昇抑制を図ることができるようになる。   When the high-temperature S poisoning recovery control is performed, the amount of sulfur component that always remains in the NOx catalyst decreases, and accordingly, the execution frequency of the high-temperature S poisoning recovery control may be reduced accordingly. This is preferable from the viewpoint of suppressing an excessive increase in the catalyst bed temperature. According to the above configuration, when the high-temperature S poisoning recovery control is performed, the magnitude of the total S inflow equivalent value relative to the total operation time equivalent value is corrected to the standard value side. As a result, the transition of the total S inflow equivalent value with respect to the change in the total operation time equivalent value shifts to the standard value side. It becomes difficult to implement the control, and the above-described excessive increase in the catalyst bed temperature can be suppressed.

請求項6記載の発明では、請求項1〜5のいずれか一項に記載の発明において、前記制御手段は、触媒床温を高くしようとしたときの同触媒床温に基づいて前記NOx触媒の熱及び硫黄成分残留による劣化が進んだ状態にあるか否かを判断し、前記NOx触媒が劣化の進んだ状態である旨判断されるときに限って前記高温S被毒回復制御を実施することを要旨とした。   According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the control means controls the NOx catalyst based on the catalyst bed temperature when the catalyst bed temperature is to be increased. It is determined whether or not the deterioration due to heat and sulfur component remains advanced, and the high temperature S poisoning recovery control is performed only when it is determined that the NOx catalyst is in a state of advanced deterioration. The summary.

NOx触媒の熱及び硫黄成分残留による劣化が進んだ状態にあることは、S被毒回復制御の実施等により触媒床温をより高くしようとしても、それに伴うNOx触媒での温度上昇が生じにくい状態であることを意味する。上記構成によれば、このような状態であるときに限って高温S被毒回復制御が実施されるため、同制御の実施に伴いNOx触媒の温度の過上昇が生じることをより的確に抑制することができる。   The deterioration of the NOx catalyst due to heat and sulfur component residue is in a state where it is difficult for the NOx catalyst to increase in temperature even if the catalyst bed temperature is increased by implementing S poison recovery control or the like. It means that. According to the above configuration, since the high temperature S poisoning recovery control is performed only in such a state, it is possible to more appropriately suppress the excessive increase in the temperature of the NOx catalyst accompanying the execution of the control. be able to.

[第1実施形態]
以下、本発明を自動車用の内燃機関に適用した第1実施形態を図1〜図4に従って説明する。
[First Embodiment]
Hereinafter, a first embodiment in which the present invention is applied to an internal combustion engine for an automobile will be described with reference to FIGS.

図1は、本実施形態の排気浄化装置が適用される内燃機関10の構成を示している。この内燃機関10は、コモンレール方式の燃料噴射装置を備えるディーゼル機関となっている。   FIG. 1 shows the configuration of an internal combustion engine 10 to which the exhaust purification system of this embodiment is applied. The internal combustion engine 10 is a diesel engine equipped with a common rail fuel injection device.

内燃機関10の吸気系を構成する吸気通路12、及び同機関10の排気系を構成する排気通路14はそれぞれ、内燃機関10における各気筒の燃焼室13に接続されている。そして、吸気通路12にはエアフローメータ16が設けられ、排気通路14には上流側から順にNOx触媒コンバータ25、PMフィルタ26、及び酸化触媒コンバータ27が設けられている。   An intake passage 12 constituting an intake system of the internal combustion engine 10 and an exhaust passage 14 constituting an exhaust system of the engine 10 are connected to the combustion chambers 13 of the respective cylinders in the internal combustion engine 10. The intake passage 12 is provided with an air flow meter 16, and the exhaust passage 14 is provided with a NOx catalytic converter 25, a PM filter 26, and an oxidation catalytic converter 27 in order from the upstream side.

NOx触媒コンバータ25には、吸蔵還元型のNOx触媒が担持されている。このNOx触媒は、排気の酸素濃度が高いときに排気中のNOxを吸蔵し、排気の酸素濃度が低いときにその吸蔵したNOxを放出する。またNOx触媒は、上記NOx放出時に、還元剤となる未燃燃料成分がその周囲に十分存在していれば、その放出されたNOxを還元して浄化する。   The NOx catalytic converter 25 carries an NOx storage reduction catalyst. The NOx catalyst stores NOx in the exhaust when the oxygen concentration of the exhaust is high, and releases the stored NOx when the oxygen concentration of the exhaust is low. Further, the NOx catalyst reduces and purifies the released NOx if there is sufficient unburned fuel component as a reducing agent at the time of releasing the NOx.

PMフィルタ26は、多孔質材料によって形成されており、排気中の煤を主成分とする微粒子(PM)が捕集されるようになっている。このPMフィルタ26にも、上記NOx触媒コンバータ25と同様に、吸蔵還元型のNOx触媒が担持されており、排気中のNOxの浄化が行われるようになっている。またこのNOx触媒によって触発される反応により、上記捕集されたPMが燃焼(酸化)されて除去されるようにもなっている。   The PM filter 26 is made of a porous material and collects fine particles (PM) mainly composed of soot in the exhaust gas. Similarly to the NOx catalytic converter 25, the PM filter 26 also carries an NOx storage reduction catalyst so that NOx in the exhaust gas can be purified. Further, the collected PM is burned (oxidized) and removed by a reaction triggered by the NOx catalyst.

酸化触媒コンバータ27には、酸化触媒が担持されている。この酸化触媒は、排気中の炭化水素(HC)や一酸化炭素(CO)を酸化して浄化する。
なお排気通路14の上記PMフィルタ26の上流側及び下流側には、PMフィルタ26に流入する排気の温度である入ガス温度を検出する入ガス温度センサ28、及びPMフィルタ26通過後の排気の温度である出ガス温度を検出する出ガス温度センサ29がそれぞれ配設されている。また排気通路14には、上記PMフィルタ26の排気上流側とその排気下流側との差圧を検出する差圧センサ30が配設されている。更に排気通路14の上記NOx触媒コンバータ25の排気上流側、及び上記PMフィルタ26と上記酸化触媒コンバータ27との間には、空燃比を検出する2つの空燃比センサ31、32がそれぞれ配設されている。
The oxidation catalyst converter 27 carries an oxidation catalyst. This oxidation catalyst oxidizes and purifies hydrocarbons (HC) and carbon monoxide (CO) in the exhaust.
In addition, on the upstream side and the downstream side of the PM filter 26 in the exhaust passage 14, an inlet gas temperature sensor 28 that detects the inlet gas temperature that is the temperature of the exhaust gas flowing into the PM filter 26, and the exhaust gas after passing through the PM filter 26. An outgas temperature sensor 29 for detecting an outgas temperature, which is a temperature, is provided. The exhaust passage 14 is provided with a differential pressure sensor 30 for detecting a differential pressure between the exhaust upstream side of the PM filter 26 and the exhaust downstream side thereof. Further, two air-fuel ratio sensors 31 and 32 for detecting the air-fuel ratio are disposed on the exhaust passage 14 upstream of the NOx catalytic converter 25 and between the PM filter 26 and the oxidation catalytic converter 27, respectively. ing.

内燃機関10の各気筒の燃焼室13には、同燃焼室13内での燃焼に供される燃料を噴射するインジェクタ40がそれぞれ配設されている。各気筒のインジェクタ40は、高圧燃料供給管41を介してコモンレール42に接続されている。コモンレール42には、燃料ポンプ43を通じて高圧燃料が供給される。コモンレール42内の高圧燃料の圧力は、同コモンレール42に取り付けられたレール圧センサ44によって検出されるようになっている。更に燃料ポンプ43からは、低圧燃料供給管45を通じて、低圧燃料が添加弁46に供給されるようになっている。   In the combustion chamber 13 of each cylinder of the internal combustion engine 10, an injector 40 for injecting fuel to be used for combustion in the combustion chamber 13 is disposed. The injector 40 of each cylinder is connected to a common rail 42 via a high pressure fuel supply pipe 41. High pressure fuel is supplied to the common rail 42 through a fuel pump 43. The pressure of the high-pressure fuel in the common rail 42 is detected by a rail pressure sensor 44 attached to the common rail 42. Further, low pressure fuel is supplied from the fuel pump 43 to the addition valve 46 through the low pressure fuel supply pipe 45.

こうした内燃機関10の各種制御は、電子制御装置50により実施されている。電子制御装置50は、機関制御に係る各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUの演算結果等が一時記憶されるRAM、外部との間で信号を入・出力するための入・出力ポート等を備えて構成されている。   Various controls of the internal combustion engine 10 are performed by the electronic control unit 50. The electronic control unit 50 includes a CPU that executes various arithmetic processes related to engine control, a ROM that stores programs and data necessary for the control, a RAM that temporarily stores CPU arithmetic results, and signals between the outside The input / output port for inputting / outputting is provided.

電子制御装置50の入力ポートには、上述した各センサに加え、機関回転速度を検出するNEセンサ51、アクセル操作量を検出するアクセルセンサ52、内燃機関10の吸気温度を検出する吸気温センサ54、及び、同機関10の冷却水温を検出する水温センサ55等が接続されている。また電子制御装置50の出力ポートには、インジェクタ40、燃料ポンプ43、及び添加弁46等の駆動回路が接続されている。   In addition to the above-described sensors, the input port of the electronic control unit 50 includes an NE sensor 51 that detects the engine speed, an accelerator sensor 52 that detects the accelerator operation amount, and an intake air temperature sensor 54 that detects the intake air temperature of the internal combustion engine 10. , And a water temperature sensor 55 for detecting the cooling water temperature of the engine 10 is connected. The output port of the electronic control unit 50 is connected to drive circuits such as the injector 40, the fuel pump 43, and the addition valve 46.

電子制御装置50は、上記各センサから入力される検出信号より把握される機関運転状態に応じて、上記出力ポートに接続された各機器類の駆動回路に指令信号を出力する。こうして上記インジェクタ40からの噴射燃料に関する燃料噴射量、燃料噴射時期、及び燃料噴射圧の制御、及び上記添加弁46からの燃料添加の制御等の各種制御が電子制御装置50により実施されている。   The electronic control unit 50 outputs a command signal to the drive circuit of each device connected to the output port according to the engine operating state grasped from the detection signal input from each sensor. In this way, the electronic control unit 50 performs various controls such as control of the fuel injection amount, fuel injection timing, and fuel injection pressure related to the fuel injected from the injector 40, and control of fuel addition from the addition valve 46.

以上の如く構成された本実施形態では、NOx触媒への硫黄酸化物(SOx)など硫黄成分の吸蔵によって低下した当該NOx触媒のNOx吸蔵能力を回復するためのS被毒回復制御が実施される。こうしたS被毒回復制御においては、機関運転状態の履歴に基づき算出(推定)されるNOx触媒における硫黄成分の吸蔵量であるS被毒量Sが許容値以上になることに基づき実行開始される。   In the present embodiment configured as described above, the S poison recovery control for recovering the NOx occlusion ability of the NOx catalyst, which has been reduced by occlusion of sulfur components such as sulfur oxide (SOx) in the NOx catalyst, is performed. . Such S poison recovery control is started when the S poison amount S, which is the stored amount of the sulfur component in the NOx catalyst calculated (estimated) based on the history of the engine operating state, exceeds the allowable value. .

このS被毒回復制御では、NOx触媒への未燃燃料成分の供給を通じて同触媒を例えば600〜700℃程度まで昇温するとともに、その高温下でNOx触媒周りの雰囲気をリッチ燃焼時の状態(以下、リッチ燃焼雰囲気という)とすることでNOx触媒からの硫黄成分の放出及びその還元を促進し、NOx触媒におけるNOx吸蔵能力の回復が図られる。なお、S被毒回復制御でのNOx触媒への未燃燃料成分の供給は、添加弁46からの排気に対する燃料添加等によって行われる。   In this S-poisoning recovery control, the temperature of the catalyst is raised to, for example, about 600 to 700 ° C. through the supply of the unburned fuel component to the NOx catalyst, and the atmosphere around the NOx catalyst at the high temperature is in a state during rich combustion ( Hereinafter, the rich combustion atmosphere) promotes the release and reduction of the sulfur component from the NOx catalyst, and the NOx storage capacity of the NOx catalyst is recovered. Note that the supply of the unburned fuel component to the NOx catalyst in the S poison recovery control is performed by adding fuel to the exhaust from the addition valve 46 or the like.

そして、S被毒回復制御の実行を通じてS被毒量Sが上記許容値よりも小さい所定値(例えば「0」)まで減少すると、そのS被毒回復制御は終了される。
次に、S被毒回復制御の開始・終了に用いられるS被毒量Sの詳細な算出手順について説明する。
When the S poisoning amount S decreases to a predetermined value (for example, “0”) smaller than the allowable value through the execution of the S poisoning recovery control, the S poisoning recovery control is ended.
Next, a detailed calculation procedure of the S poison amount S used for the start / end of the S poison recovery control will be described.

S被毒量Sは、例えばインジェクタ40からの燃料噴射毎に、前回の燃料噴射から今回の燃料噴射までにNOx触媒に吸蔵された硫黄成分の量であるS流入量SU、及び、前回の燃料噴射から今回の燃料噴射までにNOx触媒から放出された硫黄成分の量であるS放出量SDに基づき、以下の式(1)を用いて算出される。   The S poison amount S is, for example, for each fuel injection from the injector 40, the S inflow amount SU, which is the amount of sulfur component stored in the NOx catalyst from the previous fuel injection to the current fuel injection, and the previous fuel injection. Based on the S release amount SD, which is the amount of the sulfur component released from the NOx catalyst from the injection to the current fuel injection, it is calculated using the following equation (1).

Si =Si-1 +SU−SD …(1)
Si :今回のS被毒量
Si-1 :前回のS被毒量
SU :S流入量
SD :S放出量
式(1)のS流入量SUは、インジェクタ40からの燃料噴射前に算出される燃料噴射量の指令値Qfin 、すなわちインジェクタ40からの一回の燃料噴射で噴射される燃料量の指令値を用いて算出される。具体的には、上記指令値Qfin に対し燃料の硫黄濃度の標準値である硫黄濃度Nを「100」で除算した値(N/100)を乗算することにより、インジェクタ40からの一回の燃料噴射で噴射される燃料に含まれる硫黄成分の量が求められる。そして、この硫黄成分に量に対応した値となる上記乗算後の値「Qfin ・(N/100)」に対し、硫黄量というパラメータをS被毒量というパラメータに変換するための係数Kを乗算することで、上記S流入量SUが算出される。なお、上記係数Kは、空燃比センサ31,32によって検出される空燃比と、触媒床温とに基づきマップを参照して求められるものであって、上記空燃比が理論空燃比(ここでは14.5)またはリッチであるときには「0」となり、上記空燃比が理論空燃比よりもリーン側の値であるときにはリーンになるほど且つ触媒床温が高くなるほど大きくなる。
Si = Si-1 + SU-SD (1)
Si: S poison amount this time
Si-1: Previous amount of sulfur poisoning
SU: S inflow
SD: S discharge amount The S inflow amount SU in the equation (1) is a fuel injection amount command value Qfin calculated before fuel injection from the injector 40, that is, fuel injected by one fuel injection from the injector 40. It is calculated using the command value of quantity. Specifically, by multiplying the command value Qfin by a value (N / 100) obtained by dividing the sulfur concentration N, which is a standard value of the sulfur concentration of the fuel, by “100”, a single fuel from the injector 40 is obtained. The amount of sulfur component contained in the fuel injected by injection is determined. Then, the above-mentioned multiplied value “Qfin · (N / 100)” which is a value corresponding to the amount of this sulfur component is multiplied by a coefficient K for converting a parameter of sulfur amount into a parameter of S poisoning amount. Thus, the S inflow amount SU is calculated. The coefficient K is obtained by referring to a map based on the air-fuel ratio detected by the air-fuel ratio sensors 31 and 32 and the catalyst bed temperature, and the air-fuel ratio is the stoichiometric air-fuel ratio (14 in this case). .5) or “0” when the air-fuel ratio is rich, and when the air-fuel ratio is on the lean side of the stoichiometric air-fuel ratio, the air-fuel ratio becomes leaner and becomes larger as the catalyst bed temperature becomes higher.

式(1)のS放出量SDは、上記空燃火及び触媒床温に基づき、そのときの触媒床温でNOx触媒周りの雰囲気を上記空燃比に対応する状態としたときにNOx触媒から放出される理論上の硫黄成分の量として算出される。こうして算出されたS放出量SDに関しては、上記空燃比が理論空燃比(ここでは14.5)よりもリッチ側の値であるときには触媒床温が高く且つリッチになるほど「0」よりも大きい値になり、上記空燃比が理論空燃比よりもリーン側の値であるときには「0」に維持される。   The S emission amount SD of the formula (1) is released from the NOx catalyst when the atmosphere around the NOx catalyst is brought into a state corresponding to the air-fuel ratio at the catalyst bed temperature at that time based on the air fuel fire and the catalyst bed temperature. Calculated as the theoretical amount of sulfur component. Regarding the S release amount SD thus calculated, when the air-fuel ratio is a richer value than the stoichiometric air-fuel ratio (here, 14.5), the catalyst bed temperature is higher and becomes a value larger than “0” as it becomes richer. Thus, when the air-fuel ratio is a value leaner than the stoichiometric air-fuel ratio, it is maintained at “0”.

従って、式(1)を用いて算出されたS被毒量S(今回のS被毒量Si )は、通常の機関運転時には燃料の消費に伴い上記S流入量SUの分だけ徐々に増加してゆき、S被毒回復制御中には上記S放出量SDの分だけ減少してゆく。このことから、S被毒量Sは、通常の機関運転での燃料消費に伴うNOx触媒への硫黄成分の流入、及びS被毒回復制御中でのNOx触媒からの硫黄成分の放出に伴い、増減する値ということになる。   Accordingly, the S poisoning amount S (the current S poisoning amount Si) calculated using the equation (1) gradually increases by the amount of the S inflow amount SU as the fuel is consumed during normal engine operation. Then, during the S poison recovery control, the amount decreases by the amount of S released SD. From this, the sulfur poisoning amount S is accompanied by the inflow of the sulfur component into the NOx catalyst accompanying fuel consumption in normal engine operation and the release of the sulfur component from the NOx catalyst during the S poison recovery control, It will be a value that increases or decreases.

次に、S被毒量Sに基づき開始・終了されるS被毒回復制御について、図2のタイムチャートを参照して詳しく説明する。
S被毒回復制御では、添加弁46からの燃料添加によるNOx触媒への未燃燃料成分の供給を通じて、NOx触媒の触媒床温Tの平均値を例えば700℃まで段階的に高くされる目標床温Ttに向けて昇温するとともに、その高温下でNOx触媒周りをリッチ燃焼雰囲気化することが行われる。
Next, the S poison recovery control that is started and ended based on the S poison amount S will be described in detail with reference to the time chart of FIG.
In the S poison recovery control, the target bed temperature in which the average value of the catalyst bed temperature T of the NOx catalyst is increased stepwise to, for example, 700 ° C. through supply of unburned fuel components to the NOx catalyst by addition of fuel from the addition valve 46. While raising the temperature toward Tt, a rich combustion atmosphere is made around the NOx catalyst at the high temperature.

上記添加弁46からの燃料添加は、図2(e)に示される添加許可フラグFの「1(許可)」への変化(タイミングT1)に基づき開始される。この添加許可フラグFは、「1」になった後、「0」に戻されるようになっている。そして、添加弁46からの燃料添加が開始されると、図2(a)に示される添加パルスに従って添加弁46からの集中的な間欠燃料添加が実施される。   Fuel addition from the addition valve 46 is started based on a change (timing T1) of the addition permission flag F to “1 (permitted)” shown in FIG. The addition permission flag F is set to “0” after being set to “1”. When fuel addition from the addition valve 46 is started, intensive intermittent fuel addition from the addition valve 46 is performed according to the addition pulse shown in FIG.

こうした集中的な間欠燃料添加における燃料の添加態様、例えば燃料の添加時間a、燃料添加の休止時間b、及び、燃料の添加回数は、空燃比センサ31,32によって検出される空燃比が理論空燃比よりもリッチ側に設定された目標空燃比AFtに近づくよう調整される。すなわち、上記休止時間b(燃料の添加間隔)については空燃比センサ31,32によって検出された空燃比が目標空燃比AFtよりもリーンであるほど短くされ、上記添加時間aについては空燃比センサ31,32によって検出された空燃比が目標空燃比AFtよりもリーンであるほど長くされる。また、上記添加回数については、空燃比センサ31,32によって検出された空燃比が目標空燃比AFtよりもリーンであるほど多くされることとなる。   The fuel addition mode in such intensive intermittent fuel addition, for example, the fuel addition time a, the fuel addition stop time b, and the number of fuel additions, is determined based on whether the air-fuel ratio detected by the air-fuel ratio sensors 31 and 32 is the theoretical sky. Adjustment is made so as to approach the target air-fuel ratio AFt set on the richer side than the fuel ratio. That is, the pause time b (fuel addition interval) is made shorter as the air-fuel ratio detected by the air-fuel ratio sensors 31 and 32 becomes leaner than the target air-fuel ratio AFt, and the air-fuel ratio sensor 31 for the addition time a. , 32, the air / fuel ratio is made longer as the air / fuel ratio becomes leaner than the target air / fuel ratio AFt. The number of times of addition is increased as the air-fuel ratio detected by the air-fuel ratio sensors 31 and 32 is leaner than the target air-fuel ratio AFt.

そして、上記のように開始された集中的な間欠燃料添加については、上記目標空燃比AFtに基づき定められた回数の燃料添加が実行されるまで継続され、その回数だけ燃料添加がなされた後に停止される(タイミングT2)。   Then, the intensive intermittent fuel addition started as described above is continued until the fuel addition of the number of times determined based on the target air-fuel ratio AFt is executed, and stopped after the fuel addition is made by that number of times. (Timing T2).

添加弁46からの燃料添加の開始後、添加弁46の駆動状態に基づいて所定時間、例えば16msが経過する毎に、当該16ms中に添加弁46から添加される燃料の量である16ms発熱燃料量Qが算出される。この16ms発熱燃料量Qを算出毎に「ΣQ←前回のΣQ+Q …(2)」という式に基づいて累積することにより、燃料添加開始時点(T1)からの総燃料添加量、言い換えれば酸化反応による発熱に寄与する総燃料量を表す発熱燃料量積算値ΣQが算出される。こうして算出される発熱燃料量積算値ΣQについては、図2(d)に実線で示されるように、燃料添加の開始から終了までの期間(T1〜T2)である添加期間Aにて急速に増加し、それ以後の燃料添加の休止期間Bには増加が抑えられる。   After the start of fuel addition from the addition valve 46, every time a predetermined time, for example, 16 ms elapses based on the drive state of the addition valve 46, 16 ms exothermic fuel that is the amount of fuel added from the addition valve 46 during the 16 ms. A quantity Q is calculated. By accumulating the 16 ms exothermic fuel amount Q based on the formula “ΣQ ← previous ΣQ + Q (2)” for each calculation, the total fuel addition amount from the fuel addition start time (T1), in other words, due to the oxidation reaction A heat generation fuel amount integrated value ΣQ representing the total fuel amount contributing to heat generation is calculated. The exothermic fuel amount integrated value ΣQ calculated in this way rapidly increases in the addition period A, which is the period (T1 to T2) from the start to the end of fuel addition, as shown by the solid line in FIG. However, the increase is suppressed in the rest period B of the fuel addition thereafter.

一方、添加弁46からの燃料添加の開始後、上記所定時間(16ms)毎に、当該16ms中に添加弁46から添加すべき燃料の量、言い換えれば触媒床温Tを目標床温Ttに近づけるために必要な燃料の添加量である16ms要求燃料量Qrが算出される。この16ms要求燃料量Qrの算出は、触媒床温Tと目標床温Ttとの温度差ΔT、及び、内燃機関10のガス流量Gaを用いて行われる。こうして算出される16ms要求燃料量Qrは、触媒床温Tが目標床温Ttに対し低い状態にあるほど大となり、逆に目標床温Ttに対し高い状態にあるほど小となる。そして、上記16ms要求燃料量Qrを算出毎に「ΣQr←前回のΣQr+Qr …(3)」という式に基づき累積することで、触媒床温Tの平均値を目標床温Ttとするために必要な燃料添加開始時点(T1)からの総燃料量を表す要求燃料量積算値ΣQrが算出される。こうして算出される要求燃料量積算値ΣQrについては、図2(d)に破線で示されるように、発熱燃料量積算値ΣQの増加(実線)と比較して緩やかに増加する。   On the other hand, after the start of fuel addition from the addition valve 46, the amount of fuel to be added from the addition valve 46 during the predetermined time (16 ms), in other words, the catalyst bed temperature T is brought closer to the target bed temperature Tt. Therefore, a required fuel amount Qr of 16 ms, which is the amount of fuel added for the purpose, is calculated. The calculation of the 16 ms required fuel amount Qr is performed using the temperature difference ΔT between the catalyst bed temperature T and the target bed temperature Tt and the gas flow rate Ga of the internal combustion engine 10. The 16 ms required fuel amount Qr calculated in this way increases as the catalyst bed temperature T is lower than the target bed temperature Tt, and conversely decreases as it is higher than the target bed temperature Tt. Then, the 16 ms required fuel amount Qr is accumulated every calculation based on the formula “ΣQr ← previous ΣQr + Qr (3)”, so that the average value of the catalyst bed temperature T is necessary to be the target bed temperature Tt. A required fuel amount integrated value ΣQr representing the total fuel amount from the fuel addition start time (T1) is calculated. The required fuel amount integrated value ΣQr calculated in this way gradually increases as compared with the increase (solid line) of the exothermic fuel amount integrated value ΣQ, as shown by the broken line in FIG.

そして、要求燃料量積算値ΣQrが発熱燃料量積算値ΣQ以上になると(タイミングT3)、添加許可フラグFが「1(許可)」へと変化し、添加弁46からの集中的な間欠燃料添加が開始される。このとき、タイミングT1以降の発熱燃料量積算値ΣQ分の燃料については添加弁46から添加完了しているため、要求燃料量積算値ΣQrから上記発熱燃料量積算値ΣQが減算される。更に、発熱燃料量積算値ΣQはクリアされて「0」になる。そして、添加弁46からの集中的な間欠燃料添加の開始に伴い、再び添加期間Aへと移行することになり、同添加期間Aが終了すると休止期間Bへと移行する。従って、S被毒回復制御中には添加期間Aと休止期間Bとが繰り返されるようになる。   When the required fuel amount integrated value ΣQr becomes equal to or greater than the exothermic fuel amount integrated value ΣQ (timing T3), the addition permission flag F changes to “1 (permitted)”, and concentrated intermittent fuel addition from the addition valve 46 is performed. Is started. At this time, since the addition of fuel for the exothermic fuel amount integrated value ΣQ after timing T1 has been completed from the addition valve 46, the exothermic fuel amount integrated value ΣQ is subtracted from the required fuel amount integrated value ΣQr. Furthermore, the exothermic fuel amount integrated value ΣQ is cleared and becomes “0”. Then, along with the start of intensive intermittent fuel addition from the addition valve 46, the process shifts again to the addition period A, and when the addition period A ends, the process shifts to the suspension period B. Therefore, the addition period A and the pause period B are repeated during the S poison recovery control.

なお、S被毒回復制御中においては、触媒床温Tが目標床温Ttに対し低下側に離れた状態にあるほど、16ms要求燃料量Qrが大となるように算出され、要求燃料量積算値ΣQrが速やかに増加する。その結果、要求燃料量積算値ΣQrが発熱燃料量積算値ΣQ以上になるために要する時間が短くなり、休止期間Bが短くなるため、単位時間あたりの添加弁46からの燃料添加量の平均値が大となる。このように燃料添加量の平均値を大とすることで、目標床温Ttから低下側に離れた触媒床温Tの当該目標床温Ttに向けての上昇が図られる。   During the S poison recovery control, the 16 ms required fuel amount Qr is calculated to be larger as the catalyst bed temperature T is further away from the target bed temperature Tt, and the required fuel amount integration is performed. The value ΣQr increases rapidly. As a result, the time required for the required fuel amount integrated value ΣQr to become equal to or greater than the exothermic fuel amount integrated value ΣQ is shortened, and the suspension period B is shortened, so the average value of the fuel addition amount from the addition valve 46 per unit time Becomes big. In this way, by increasing the average value of the fuel addition amount, the catalyst bed temperature T that is separated from the target bed temperature Tt toward the lower side can be increased toward the target bed temperature Tt.

そして、触媒床温Tが目標床温Ttに近づくほど、16ms要求燃料量Qrが小となるように算出され、要求燃料量積算値ΣQrの増加が緩やかにされる。その結果、要求燃料量積算値ΣQrが発熱燃料量積算値ΣQ以上になるために要する時間が長くなり、休止期間Bが長くなるため、単位時間あたりの添加弁46からの燃料添加量の平均値が小となる。このように燃料添加量の平均値を少なくすることで、触媒床温Tが目標床温Ttを越えて過度に高くならないようにされる。   Then, the 16 ms required fuel amount Qr is calculated to be smaller as the catalyst bed temperature T approaches the target bed temperature Tt, and the increase in the required fuel amount integrated value ΣQr is moderated. As a result, the time required for the required fuel amount integrated value ΣQr to become equal to or greater than the exothermic fuel amount integrated value ΣQ becomes longer, and the suspension period B becomes longer. Therefore, the average value of the fuel addition amount from the addition valve 46 per unit time Becomes small. Thus, by reducing the average value of the fuel addition amount, the catalyst bed temperature T is prevented from excessively exceeding the target bed temperature Tt.

以上のように、触媒床温Tの目標床温Ttに対する乖離状態に応じて休止期間Bの長さを変化させることで、触媒床温Tが例えば図2(c)に実線で示されるように推移し、増減する触媒床温Tの変動中心(平均値)が目標床温Ttに制御されるようになる。そして、このように触媒床温Tの平均値が700℃まで段階的に大きく設定される目標床温Ttとなるよう触媒への未燃燃料成分の供給を行うことで、NOx触媒の触媒床温Tを700℃程度まで上昇させることができる。   As described above, by changing the length of the pause period B according to the deviation state of the catalyst bed temperature T from the target bed temperature Tt, the catalyst bed temperature T is, for example, as shown by a solid line in FIG. The fluctuation center (average value) of the catalyst bed temperature T that changes and increases or decreases is controlled to the target bed temperature Tt. Then, the unburnt fuel component is supplied to the catalyst so that the average value of the catalyst bed temperature T becomes the target bed temperature Tt which is set to be gradually increased to 700 ° C. Thus, the catalyst bed temperature of the NOx catalyst. T can be raised to about 700 ° C.

また、触媒床温Tの平均値を上記目標床温Ttまで上昇させたNOx触媒の高温下において、添加期間Aでの添加弁46からの集中的な間欠燃料添加が行われると、NOx触媒周りの雰囲気が図2(b)に示されるように目標空燃比AFt(リッチ)に対応する空燃比での燃焼時(リッチ燃焼時)と同じ状態とされる。このようにNOx触媒周りがリッチ燃焼雰囲気化されると、NOx触媒からの硫黄成分の放出及びその還元が促進される。そして、添加期間Aと休止期間Bとが繰り返される過程で、添加期間A中にNOx触媒からのSOxの放出及びその還元が促進されることにより、NOx触媒における硫黄成分の吸蔵量が低減されて同NOx触媒のNOx吸蔵能力の回復が図られる。そして、NOx触媒における硫黄成分の吸蔵量である上記S被毒量Sが上述した所定値(この例では「0」)まで低下すると、S被毒回復制御が終了される。   Further, when concentrated intermittent fuel addition from the addition valve 46 in the addition period A is performed at a high temperature of the NOx catalyst in which the average value of the catalyst bed temperature T is increased to the target bed temperature Tt, the NOx catalyst around As shown in FIG. 2B, the atmosphere is set to the same state as that at the time of combustion at the air-fuel ratio corresponding to the target air-fuel ratio AFt (rich) (during rich combustion). When the atmosphere around the NOx catalyst is changed to a rich combustion atmosphere in this way, the release of the sulfur component from the NOx catalyst and the reduction thereof are promoted. Then, in the process of repeating the addition period A and the rest period B, the release of SOx from the NOx catalyst and the reduction thereof are promoted during the addition period A, so that the storage amount of the sulfur component in the NOx catalyst is reduced. The NOx storage capacity of the NOx catalyst can be recovered. When the sulfur poisoning amount S, which is the amount of sulfur component stored in the NOx catalyst, decreases to the predetermined value (in this example, “0”), the sulfur poisoning recovery control is terminated.

ところで、式(1)を用いて算出(推定)されるNOx触媒のS被毒量Sに関しては、S被毒回復制御の実行中におけるNOx触媒からの硫黄成分の放出量であるS放出量SDを考慮して算出されてはいる。ただし、そのS放出量SDが必ずしもNOx触媒からの実際の硫黄成分の放出量に対応したものになるとは限らない。これは、上記S放出量SDがS被毒回復制御中にNOx触媒から放出される理論上の硫黄成分の量として算出されるものでしかなく、そのS放出量SDに含まれる硫黄成分のうち実際にはS被毒回復制御ではNOx触媒から放出させることができずに同触媒に残留した状態になるものが存在するためである。なお、上述したようなNOx触媒での硫黄成分の残留が存在するのは、NOx触媒コンバータ25の上流端など触媒床温の上昇しにくい部分のNOx触媒では、S被毒回復制御により高温下でのNOx触媒周りのリッチ燃焼雰囲気化を図ったとしても、必ずしも同触媒に吸蔵された硫黄成分が放出されるとは限らないためと推測される。   By the way, regarding the S poison amount S of the NOx catalyst calculated (estimated) using the equation (1), the S release amount SD which is the amount of sulfur component released from the NOx catalyst during the execution of the S poison recovery control. Is calculated in consideration of However, the S release amount SD does not necessarily correspond to the actual release amount of the sulfur component from the NOx catalyst. This is because the S release amount SD is only calculated as the theoretical amount of sulfur component released from the NOx catalyst during the S poison recovery control, and among the sulfur components contained in the S release amount SD, This is because, in actuality, the S poison recovery control cannot be released from the NOx catalyst and remains in the catalyst. It should be noted that the sulfur component remaining in the NOx catalyst as described above exists in the NOx catalyst where the catalyst bed temperature is difficult to rise, such as the upstream end of the NOx catalytic converter 25, under the high temperature by the S poison recovery control. Even if a rich combustion atmosphere is created around the NOx catalyst, the sulfur component occluded in the catalyst is not necessarily released.

このように、S被毒量Sの算出に用いられるS放出量SDに関しては、NOx触媒に残留した状態になる硫黄成分の分だけ、S被毒回復制御中におけるNOx触媒からの硫黄成分の実際の放出量に対しずれた値となる可能性がある。より詳しくは、上記S放出量SDがS被毒回復制御中におけるNOx触媒からの硫黄成分の実際の放出量に対し低下側にずれた値となる可能性がある。こうしたずれが生じた場合、S放出量SDの上記実際の放出量に対する低下側のずれに起因して、そのS放出量SDを用いて算出されるS被毒量Sも実際のS被毒量よりも少なくなって両者の値にずれが生じることとなる。   Thus, regarding the S release amount SD used for calculating the S poison amount S, the sulfur component from the NOx catalyst during the S poison recovery control is equivalent to the sulfur component remaining in the NOx catalyst. There is a possibility that the value will deviate from the amount of release. More specifically, there is a possibility that the S release amount SD is shifted to a lower side than the actual release amount of the sulfur component from the NOx catalyst during the S poison recovery control. When such a deviation occurs, the S poisoning amount S calculated using the S release amount SD is also the actual S poisoning amount due to a decrease in the S release amount SD with respect to the actual release amount. The difference between the two values will occur.

算出(推定)されたS被毒量Sが実際のS被毒量に対し低下側にずれると、S被毒回復制御の開始後、S被毒量Sが「0」まで減少してS被毒回復制御が終了されたとき、実際のS被毒量は「0」まで減少しておらず、NOx触媒に硫黄成分がある程度残ったままになる。そして、NOx触媒の使用期間が長くなって同触媒に常に残留した状態になる硫黄成分が多くなるほど、算出されるS被毒量Sと実際のS被毒量とのずれが広がってゆき、S被毒回復制御の終了時にNOx触媒に残ったままになる硫黄成分の量が増えてゆく。ちなみに、NOx触媒に残ったままになる硫黄成分の量が多くなる状況としては、[発明が解決しようとする課題]の欄に記載した[1]〜[3]の状況があげられる。このように、NOx触媒において常に残留する硫黄成分の量が多くなる状況のもとでは、S被毒回復制御を実行して完了したとしても、NOx触媒のNOx吸蔵能力が同触媒に残留する硫黄成分によって低下したままとなるため、内燃機関10のNOxエミッションが悪化するおそれがある。   When the calculated (estimated) S poison amount S deviates from the actual S poison amount, the S poison amount S decreases to “0” after the start of the S poison recovery control, and the S poison amount is reduced. When the poison recovery control is terminated, the actual S poison amount is not reduced to “0”, and the sulfur component remains to some extent in the NOx catalyst. The difference between the calculated S poisoning amount S and the actual S poisoning amount increases as the sulfur component that remains in the catalyst always increases as the use period of the NOx catalyst increases. The amount of sulfur component that remains in the NOx catalyst at the end of the poisoning recovery control increases. Incidentally, the situation of [1] to [3] described in the column of [Problems to be solved by the invention] can be given as the situation where the amount of sulfur component remaining in the NOx catalyst increases. Thus, under the situation where the amount of sulfur component that always remains in the NOx catalyst increases, even if the sulfur poisoning recovery control is executed and completed, the NOx storage capacity of the NOx catalyst remains in the catalyst. Since it remains lowered due to the components, the NOx emission of the internal combustion engine 10 may be deteriorated.

なお、こうした不具合は、S被毒回復制御において目標床温Ttを更に高い値、例えば700℃よりも高い値に設定して触媒床温Tの平均値をより高い値とし、それによってNOx触媒からの一層効果的な硫黄成分の放出を図ることにより、抑制することが可能である。これは、上述したように、NOx触媒からの一層効果的な硫黄成分の放出を図ることにより、同触媒に常に残留する硫黄成分の量を少なくすること、言い換えれば実際のS被毒量を算出されるS被毒量Sに近づけることができるためである。しかしながら、S被毒回復制御での目標床温Ttをより高く設定することを常に行っていたのでは、NOx触媒における触媒床温Tの過上昇がひどくなり、それに伴う熱劣化により内燃機関10のNOxエミッションが悪化するおそれがある。   Note that such a problem is caused by setting the target bed temperature Tt to a higher value in the S poison recovery control, for example, a value higher than 700 ° C., and setting the average value of the catalyst bed temperature T to a higher value. It is possible to suppress this by releasing the sulfur component more effectively. As described above, this is to reduce the amount of sulfur component always remaining on the catalyst by more effectively releasing the sulfur component from the NOx catalyst, in other words, to calculate the actual S poisoning amount. This is because the S poisoning amount S can be approached. However, if the target bed temperature Tt in the S poison recovery control is always set higher, the excessive increase in the catalyst bed temperature T in the NOx catalyst becomes severe, and the accompanying heat deterioration causes the internal combustion engine 10 to There is a risk of NOx emissions getting worse.

次に、上述した不具合の発生を抑制するための処理について、S被毒回復制御実行ルーチンを示す図3のフローチャートを参照して詳しく説明する。このS被毒回復制御実行ルーチンは、電子制御装置50を通じて、例えば所定時間毎の時間割り込みにて周期的に実行される。   Next, the process for suppressing the occurrence of the above-described problem will be described in detail with reference to the flowchart of FIG. 3 showing the S poison recovery control execution routine. This S poisoning recovery control execution routine is periodically executed through the electronic control unit 50, for example, with a time interrupt at predetermined intervals.

同ルーチンは、NOx触媒に常に残留する硫黄成分の量が多くなる状況であるか否かを判断し、その状況である旨判断されたときに限って、通常のS被毒回復制御よりも高い触媒床温での同制御である高温S被毒回復制御を行うためのものである。このように高温S被毒回復制御を行うことにより、同制御の実施によるNOx触媒の過上昇を抑制しつつ、NOx触媒に常に残留する硫黄成分の量を少なくし、その残留する硫黄成分が原因となる内燃機関10のNOxエミッション悪化を抑制することができるようになる。   The routine determines whether or not the amount of the sulfur component that always remains in the NOx catalyst increases. Only when it is determined that the situation is higher, the routine is higher than the normal S poison recovery control. This is for performing high temperature S poisoning recovery control, which is the same control at the catalyst bed temperature. By performing the high-temperature S poisoning recovery control in this way, the amount of sulfur component always remaining in the NOx catalyst is reduced while suppressing an excessive increase in the NOx catalyst due to the execution of the control, and the residual sulfur component is the cause. The deterioration of the NOx emission of the internal combustion engine 10 can be suppressed.

同ルーチンにおいては、まずNOx触媒に常に残留する硫黄成分の量が多くなる状況であるか否かを判断するために用いられる高温時間累積値Σt、及び標準値Bhの算出が行われる(S101、S102)。   In this routine, first, a high temperature time cumulative value Σt and a standard value Bh used to determine whether or not the amount of sulfur component always remaining in the NOx catalyst is increased are calculated (S101, S102).

具体的には、ステップS101の処理として、触媒床温Tが例えば600℃以上の高温となった時間を累積することにより、その累積値がNOx触媒の熱劣化度合いに対応する値である高温時間累積値Σtとして算出される(S101)。こうして算出された高温時間累積値Σtに関しては、NOx触媒の熱劣化度合いが小さいうちは小さい値となり、同熱劣化度合いが大きくなるにつれて大きい値となる。   Specifically, as the processing of step S101, by accumulating the time when the catalyst bed temperature T has become a high temperature of, for example, 600 ° C. or higher, the accumulated time is a value corresponding to the degree of thermal deterioration of the NOx catalyst. Calculated as the cumulative value Σt (S101). The high temperature time cumulative value Σt calculated in this way becomes a small value while the degree of thermal deterioration of the NOx catalyst is small, and becomes a large value as the degree of thermal deterioration increases.

また、ステップS102の処理として、そのときの自動車の走行距離に基づき、同走行距離での上記高温時間累積値Σtの標準的な値である標準値Bhが算出される。なお、上記走行距離は、内燃機関10の総運転時間に相当する値(以下、単に総運転時間相当値という)であり、同機関10の総運転時間の増加に対応して多くなる値である。上記標準値Bhの算出に関しては例えばマップを用いることが考えられる。すなわち、予め実験等によって走行距離と標準値Bhとの関係を定め、その関係を規定したマップを電子制御装置50のROMに記憶しておく。そして、走行距離に基づき上記マップを参照して標準値Bhを算出する。こうして算出された標準値Bhは、走行距離の増加に伴い、例えば図4に破線で示されるように大きくされる。   Further, as a process of step S102, based on the travel distance of the vehicle at that time, a standard value Bh that is a standard value of the high temperature time cumulative value Σt at the travel distance is calculated. The travel distance is a value corresponding to the total operation time of the internal combustion engine 10 (hereinafter simply referred to as a total operation time value), and is a value that increases as the total operation time of the engine 10 increases. . For the calculation of the standard value Bh, for example, a map may be used. That is, the relationship between the travel distance and the standard value Bh is determined in advance by experiments or the like, and a map that defines the relationship is stored in the ROM of the electronic control unit 50. Then, the standard value Bh is calculated with reference to the map based on the travel distance. The standard value Bh calculated in this way is increased as shown by a broken line in FIG. 4, for example, as the travel distance increases.

上記高温時間累積値Σt及び標準値Bhの算出後、S被毒回復制御の実行要求があった時点であるか否かが判断される(図3のS103)。こうしたS被毒回復制御の実行要求は、上記式(1)を用いて算出されるS被毒量Sが許容値以上になるとともに、S被毒回復制御の各種実行条件が成立したときに行われる。そして、ステップS103で肯定判定がなされると、NOx触媒に常に残留する硫黄成分の量が多くなる状況であるか否かの判断として、高温時間累積値Σtが標準値Bh以下であるか否かが判断される(S104)。   After the calculation of the high temperature time cumulative value Σt and the standard value Bh, it is determined whether or not it is a time when an execution request for the S poison recovery control is made (S103 in FIG. 3). The execution request for the S poison recovery control is performed when the S poison amount S calculated using the above formula (1) exceeds the allowable value and various execution conditions for the S poison recovery control are satisfied. Is called. If an affirmative determination is made in step S103, whether or not the high-temperature time accumulated value Σt is equal to or less than the standard value Bh is determined as a determination as to whether or not the amount of the sulfur component that always remains in the NOx catalyst increases. Is determined (S104).

ここで、自動車を短時間しか運転しないような運転者の場合、内燃機関10の排気温度が上がりにくいことからNOx触媒の触媒床温Tも低いままになる可能性が高く、S被毒回復制御の実行機会が少なくなったり、また実行されても制御中の触媒床温Tの上昇が生じにくくなったりする。その結果、NOx触媒からの硫黄成分の放出率が悪化し、NOx触媒に常に残留する硫黄成分の量が多くなる。特に、硫黄濃度が標準値(この例では硫黄濃度N)よりも濃い燃料を使用している場合、硫黄濃度が標準値である燃料を使用している場合に比べて、NOx触媒に流入する硫黄成分の量が多くなることから、同触媒に硫黄成分が吸蔵されやすくなり、同触媒に常に残留する硫黄成分の増加が顕著になる。   Here, in the case of a driver who drives the automobile only for a short time, since the exhaust temperature of the internal combustion engine 10 is difficult to rise, the catalyst bed temperature T of the NOx catalyst is likely to remain low. Is less likely to occur, and even if it is executed, the catalyst bed temperature T during control is less likely to increase. As a result, the release rate of the sulfur component from the NOx catalyst deteriorates, and the amount of the sulfur component that always remains in the NOx catalyst increases. In particular, when a fuel having a sulfur concentration higher than a standard value (in this example, a sulfur concentration N) is used, sulfur flowing into the NOx catalyst is compared with a case where a fuel having a standard sulfur concentration is used. Since the amount of the component is increased, the sulfur component is easily stored in the catalyst, and the increase in the sulfur component always remaining in the catalyst becomes remarkable.

上述したような運転が行われている場合、高温時間累積値Σtが増加しにくくなることから、走行距離の増加に対する高温時間累積値Σtの推移が図4に実線で示されるような推移となり、図3のステップS104で高温時間累積値Σtが標準値Bh以下である旨判断される可能性が高くなる。そして、高温時間累積値Σtが標準値Bhよりも大きい旨判断された場合には、NOx触媒に常に残留する硫黄成分の量が多くなる状況ではない旨判断され、通常のS被毒回復制御が開始される(S106)。一方、上記ステップS104で高温時間累積値Σtが標準値Bh以下である旨判断された場合には、NOx触媒に常に残留する硫黄成分の量が多くなる状況である旨判断され、上述した高温S被毒回復制御が開始される(S105)。   When the operation as described above is performed, the high temperature time cumulative value Σt is difficult to increase, so the transition of the high temperature time cumulative value Σt with respect to the increase in travel distance is as shown by the solid line in FIG. There is a high possibility that it is determined in step S104 in FIG. 3 that the high-temperature time cumulative value Σt is equal to or less than the standard value Bh. When it is determined that the high-temperature time cumulative value Σt is larger than the standard value Bh, it is determined that the amount of sulfur component remaining in the NOx catalyst is not always increased, and normal S poison recovery control is performed. The process is started (S106). On the other hand, when it is determined in step S104 that the high temperature time cumulative value Σt is equal to or less than the standard value Bh, it is determined that the amount of sulfur component always remaining in the NOx catalyst is increased, and the above-described high temperature S The poisoning recovery control is started (S105).

この高温S被毒回復制御は、同制御中の目標床温Ttの最大値を通常のS被毒回復制御での目標床温Ttの最大値(この例では700℃)よりも高くすることによって実現される。同高温S被毒回復制御では、まず通常のS被毒回復制御と同様の態様で目標床温Ttの段階的な上昇が行われる。その後、目標床温Ttが通常のS被毒回復制御における最大値(700℃)に達すると、その値以上に触媒床温Tの平均値が上昇していないことを条件に、目標床温Ttを上記最大値(700℃)よりも更に高い値へと上昇させる。こうした目標床温Ttの上昇は、NOx触媒コンバータ25の熱損傷に至る値への上昇幅よりも小さい上昇幅であって、上記高温時間累積値Σtの標準値Bhに対する乖離量KA(図4参照)の増大に伴い大きい値となるよう可変設定される上昇幅をもって行われる。そして、上記目標床温Ttの上昇を通じて触媒床温Tの平均値が高くされることにより、NOx触媒からの効率的な硫黄成分の放出が図られ、それによってNOx触媒で常に残留する硫黄成分の量が少なくなる。   In this high temperature S poison recovery control, the maximum value of the target bed temperature Tt during the control is made higher than the maximum value (700 ° C. in this example) of the target bed temperature Tt in the normal S poison recovery control. Realized. In the high temperature S poisoning recovery control, first, the target bed temperature Tt is increased stepwise in the same manner as in the normal S poisoning recovery control. Thereafter, when the target bed temperature Tt reaches the maximum value (700 ° C.) in the normal S poisoning recovery control, the target bed temperature Tt is set on condition that the average value of the catalyst bed temperature T does not increase beyond that value. Is raised to a value higher than the maximum value (700 ° C.). Such an increase in the target bed temperature Tt is smaller than an increase to a value that leads to thermal damage of the NOx catalytic converter 25, and is a deviation amount KA of the high temperature time cumulative value Σt with respect to the standard value Bh (see FIG. 4). ) With an increasing range that is variably set so as to increase as the value increases. Then, by increasing the average value of the catalyst bed temperature T through the increase of the target bed temperature Tt, the sulfur component is efficiently released from the NOx catalyst, and thereby the amount of sulfur component that always remains in the NOx catalyst. Less.

なお、上記高温S被毒回復制御や通常のS被毒回復制御が実行開始された後には、同制御を通じてS被毒量Sが上述した所定値(この例では「0」)まで低下したとき、同制御が終了されることとなる。上記高温S被毒回復制御が実行されると高温時間累積値Σtの増加が促進されるため、同制御の終了後には走行距離に対する高温時間累積値Σtの大きさが標準値Bh(図4の破線)に近くなる。   After the start of execution of the high-temperature S poisoning recovery control and the normal S poisoning recovery control, the S poisoning amount S decreases to the predetermined value (in this example, “0”) through the same control. Thus, the control is terminated. When the high-temperature S poisoning recovery control is executed, the increase in the high-temperature time cumulative value Σt is promoted. Therefore, after the end of the control, the magnitude of the high-temperature time cumulative value Σt with respect to the travel distance is the standard value Bh (see FIG. 4). (Close to the broken line).

以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
(1)高温時間累積値Σtが標準値Bh以下になったとき、言い換えれば運転者の自動車の運転の仕方によりS被毒回復制御でのNOx触媒からの硫黄成分の放出率が悪化してNOx触媒に常に残留する硫黄成分の量が多くなるときに限り、高温S被毒回復制御が実施されてNOx触媒からの効率的な硫黄成分の放出が図られる。こうした高温S被毒回復制御の実施により、NOx触媒で常に残留する硫黄成分の量が少なくされる。以上により、高温S被毒回復制御の実施によるNOx触媒の触媒床温Tの過上昇を抑制しつつ、同触媒に常に残留する硫黄成分の量を少なくし、その残留する硫黄成分が原因となる内燃機関のNOxエミッション悪化を抑制することができるようになる。
According to the embodiment described in detail above, the following effects can be obtained.
(1) When the high temperature time cumulative value Σt becomes equal to or less than the standard value Bh, in other words, the sulfur component release rate from the NOx catalyst in the S poison recovery control deteriorates depending on how the driver operates the vehicle. Only when the amount of the sulfur component that always remains in the catalyst increases, the high-temperature S poisoning recovery control is performed to efficiently release the sulfur component from the NOx catalyst. By carrying out such high temperature S poisoning recovery control, the amount of sulfur component that always remains in the NOx catalyst is reduced. As described above, while suppressing an excessive increase in the catalyst bed temperature T of the NOx catalyst due to the execution of the high-temperature S poisoning recovery control, the amount of the sulfur component that always remains in the catalyst is reduced, and the sulfur component that remains is the cause. It becomes possible to suppress the deterioration of NOx emission of the internal combustion engine.

(2)高温時間累積値Σtが標準値Bhに対し低下側に大きく乖離して上記乖離量KAが大きくなるほど、NOx触媒に常に残留する硫黄成分の量が多くなって、S被毒回復制御でのNOx触媒への未燃燃料成分の供給を通じて触媒床温Tを高くしようとしても、それを行って同触媒に常に残留する硫黄成分を放出することを実現しにくい状態となる。この状態は、言い換えれば高温S被毒回復制御で触媒床温Tをより高くしようとするとき、それに伴う触媒床温Tの過上昇が生じにくい状態であるとも言える。これらのことを考慮し、高温S被毒回復制御においては、標準値Bhに対する高温時間累積値Σtの低下側への乖離量KAの増大に伴い目標床温Ttの最大値がより高くされ、それに基づき触媒床温Tをより高くしようとすることが行われる。このため、同高温S被毒回復制御でのNOx触媒の触媒床温Tの過上昇抑制と、同制御によるNOx触媒に常に残留する硫黄成分の効果的な放出とを、高い次元で両立させることができる。   (2) As the high temperature time cumulative value Σt greatly deviates from the standard value Bh and decreases, the amount of sulfur component always remaining in the NOx catalyst increases, and the S poison recovery control is performed. Even if an attempt is made to raise the catalyst bed temperature T through the supply of the unburned fuel component to the NOx catalyst, it is difficult to realize that it always releases the sulfur component remaining in the catalyst. In other words, it can be said that when the catalyst bed temperature T is made higher by the high-temperature S poisoning recovery control, an excessive increase in the catalyst bed temperature T is unlikely to occur. In consideration of these points, in the high temperature S poisoning recovery control, the maximum value of the target bed temperature Tt is increased as the deviation amount KA increases toward the decrease side of the high temperature time cumulative value Σt with respect to the standard value Bh. Based on this, an attempt is made to make the catalyst bed temperature T higher. For this reason, it is possible to achieve both high-level suppression of excessive increase in the catalyst bed temperature T of the NOx catalyst in the high-temperature S poisoning recovery control and effective release of the sulfur component always remaining in the NOx catalyst by the control. Can do.

(3)使用される燃料の硫黄濃度が標準的な値(硫黄濃度N)よりも濃い場合、NOx触媒に常に残留する硫黄成分の量が多くなり易くなる。しかし、このような場合でも、上述した高温S被毒回復制御の実施を通じて、NOx触媒に常に残留する上記硫黄成分を触媒床温Tの過上昇を抑制しつつ効果的に取り除くことができる。   (3) When the sulfur concentration of the fuel used is higher than the standard value (sulfur concentration N), the amount of the sulfur component always remaining in the NOx catalyst tends to increase. However, even in such a case, the sulfur component that always remains in the NOx catalyst can be effectively removed while suppressing an excessive increase in the catalyst bed temperature T through the execution of the high-temperature S poisoning recovery control described above.

[第2実施形態]
次に、本発明の第2実施形態を図5〜図7に基づき説明する。
この実施形態では、高温S被毒回復制御を実行するに当たって、NOx触媒に常に残留する硫黄成分の量が多くなる状況であるか否かを判断する仕方が第1実施形態と異なっている。詳しくは、内燃機関10の使用開始時を起点としたNOx触媒に流入する硫黄成分の総量である総S流入量ΣSU、及び、そのときの自動車の走行距離での上記総S流入量ΣSUの標準的な値である標準値Bsuに基づき、NOx触媒に常に残留する硫黄成分の量が多くなる状況であるか否かが判断される。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS.
This embodiment is different from the first embodiment in how to determine whether or not the amount of sulfur component always remaining in the NOx catalyst increases when executing the high temperature S poisoning recovery control. Specifically, the total S inflow amount ΣSU, which is the total amount of sulfur components flowing into the NOx catalyst starting from the start of use of the internal combustion engine 10, and the standard of the total S inflow amount ΣSU at the vehicle travel distance at that time Based on the standard value Bsu, which is a typical value, it is determined whether or not the amount of the sulfur component always remaining in the NOx catalyst is large.

ここで、自動車の走行距離と上記標準値Bsu及び総S流入量ΣSUとの関係を図5に示す。標準値Bsuに関しては、図5に実線で示されるように自動車の走行距離が多くなるほど増加してゆく。また、総S流入量ΣSUも走行距離が多くなるほど増加してゆくが、自動車の急発進を頻繁に行うなど内燃機関10の燃料消費の激しい運転者の場合、その燃料消費に伴ってNOx触媒に流入する硫黄成分の量(S流入量SU)が多くなることから、同触媒に硫黄成分が吸蔵されやすくなり、同触媒に残留する硫黄成分の量も多くなる。特に、硫黄濃度が標準値(この例では硫黄濃度N)よりも濃い燃料を使用している場合、硫黄濃度が標準値である燃料を使用している場合に比べて、NOx触媒に流入する硫黄成分の量が多くなることから、同触媒に硫黄成分が吸蔵されやすくなり、同触媒に常に残留する硫黄成分の増加が顕著になる。上述したような運転が行われている場合、総S流入量ΣSUが増加しやすくなることから、走行距離の増加に対する総S流入量ΣSUの推移が図5に実線で示されるような推移となる。   Here, the relationship between the travel distance of the automobile, the standard value Bsu, and the total S inflow amount ΣSU is shown in FIG. The standard value Bsu increases as the travel distance of the automobile increases as shown by the solid line in FIG. In addition, the total S inflow amount ΣSU increases as the travel distance increases, but in the case of a driver with heavy fuel consumption of the internal combustion engine 10 such as frequent start of an automobile, the NOx catalyst is changed along with the fuel consumption. Since the amount of inflowing sulfur component (S inflow amount SU) increases, the sulfur component is easily stored in the catalyst, and the amount of sulfur component remaining in the catalyst also increases. In particular, when a fuel having a sulfur concentration higher than a standard value (in this example, a sulfur concentration N) is used, sulfur flowing into the NOx catalyst is compared with a case where a fuel having a standard sulfur concentration is used. Since the amount of the component is increased, the sulfur component is easily stored in the catalyst, and the increase in the sulfur component always remaining in the catalyst becomes remarkable. When the operation as described above is performed, the total S inflow amount ΣSU is likely to increase. Therefore, the transition of the total S inflow amount ΣSU with respect to the increase in travel distance is as shown by a solid line in FIG. .

従って、総S流入量ΣSU(実線)がそのときの走行距離での標準値Bsu(破線)以上であるときには、NOx触媒に常に残留する硫黄成分の量が多くなる状況である旨判断され、S被毒回復制御の実行要求がなされることに基づき高温S被毒回復制御が開始されるようになる。   Therefore, when the total S inflow amount ΣSU (solid line) is equal to or larger than the standard value Bsu (broken line) at the travel distance at that time, it is determined that the amount of the sulfur component always remaining in the NOx catalyst is increased. The high temperature S poison recovery control is started based on the request for execution of the poison recovery control.

図6は、この実施形態のS被毒回復制御実行ルーチンを示すフローチャートである。このS被毒回復制御実行ルーチンも、電子制御装置50を通じて、例えば所定クランク角毎の角度割り込みにて周期的に実行される。   FIG. 6 is a flowchart showing the S poison recovery control execution routine of this embodiment. The S poisoning recovery control execution routine is also periodically executed through the electronic control unit 50, for example, at an angle interruption for each predetermined crank angle.

同ルーチンにおいては、まずS流入量SUをその算出タイミング毎(燃料噴射タイミング毎)に累積することにより、同S流入量SUの累積値である総S流入量ΣSUが算出される(S201)。その後、現在の走行距離に基づき、その走行距離での総S流入量ΣSUの標準的な値である標準値Bsuが算出される(S202)。こうして算出された標準値Bsuは、走行距離の変化に対し図5に破線で示されるように推移する。上記総S流入量ΣSU及び標準値Bsuが算出されると、S被毒回復制御の実行要求があった時点であるか否かが判断される(S203)。そして、ステップS203で肯定判定がなされると、NOx触媒に常に残留する硫黄成分の量が多くなる状況であるか否かの判断として、総S流入量ΣSUが標準値Bsu以上であるか否かが判断される(S204)。   In this routine, first, the total S inflow amount ΣSU, which is the accumulated value of the S inflow amount SU, is calculated by accumulating the S inflow amount SU at every calculation timing (each fuel injection timing) (S201). Thereafter, based on the current travel distance, a standard value Bsu which is a standard value of the total S inflow amount ΣSU at the travel distance is calculated (S202). The standard value Bsu calculated in this way changes as shown by a broken line in FIG. When the total S inflow amount ΣSU and the standard value Bsu are calculated, it is determined whether or not it is a time when an execution request for S poison recovery control is made (S203). If an affirmative determination is made in step S203, whether or not the total S inflow amount ΣSU is greater than or equal to the standard value Bsu as a determination as to whether or not the amount of the sulfur component that always remains in the NOx catalyst increases. Is determined (S204).

このステップS204で総S流入量ΣSUが標準値Bsu未満である旨判断された場合には、NOx触媒に常に残留する硫黄成分の量が多くなる状況ではない旨判断され、通常のS被毒回復制御が開始される(S206)。また、上記ステップS204で総S流入量ΣSUが標準値Bsu以上である旨判断された場合には、NOx触媒に常に残留する硫黄成分の量が多くなる状況である旨判断され、高温S被毒回復制御が開始される(S205)。   If it is determined in step S204 that the total S inflow amount ΣSU is less than the standard value Bsu, it is determined that the amount of sulfur component remaining in the NOx catalyst is not always increased, and normal S poisoning recovery is performed. Control is started (S206). Further, when it is determined in step S204 that the total S inflow amount ΣSU is equal to or greater than the standard value Bsu, it is determined that the amount of sulfur component always remaining in the NOx catalyst is increased, and the high temperature S poisoning is determined. Recovery control is started (S205).

この高温S被毒回復制御では、同制御中の目標床温Ttが通常のS被毒回復制御での目標床温Ttの最大値よりも高い値へと上昇される。その際の目標床温Ttの上記最大値に対する上昇は、NOx触媒コンバータ25の熱損傷に至る値への上昇幅よりも小さい上昇幅であって、上記高温時間累積値Σtの標準値Bhに対する乖離量KA(図5参照)の増大に伴い大きい値となるよう可変設定される上昇幅をもって行われる。そして、上記目標床温Ttの上昇を通じて触媒床温Tの平均値が高くされることにより、NOx触媒からの効率的な硫黄成分の放出が図られ、それによってNOx触媒で常に残留する硫黄成分の量が少なくなる。   In the high temperature S poisoning recovery control, the target bed temperature Tt during the control is raised to a value higher than the maximum value of the target bed temperature Tt in the normal S poisoning recovery control. In this case, the increase of the target bed temperature Tt with respect to the maximum value is smaller than the increase to the value that leads to thermal damage of the NOx catalytic converter 25, and is a divergence of the high-temperature time accumulated value Σt from the standard value Bh. This is performed with an increase width that is variably set so as to increase as the amount KA (see FIG. 5) increases. Then, by increasing the average value of the catalyst bed temperature T through the increase of the target bed temperature Tt, the sulfur component is efficiently released from the NOx catalyst, and thereby the amount of sulfur component that always remains in the NOx catalyst. Less.

なお、上記高温S被毒回復制御や通常のS被毒回復制御が実行開始された後には、同制御を通じてS被毒量Sが上述した所定値(この例では「0」)まで低下したとき、同制御が終了されることとなる。上記高温S被毒回復制御が実行されると、NOx触媒に常に残留する硫黄成分の量が少なくなることから、それに合わせて高温S被毒回復制御の実行頻度を小とすることが、NOx触媒における触媒床温Tの過上昇抑制の観点で好ましい。このため、図7に示される総S流入量補正ルーチンに基づき、高温S被毒回復制御が実行完了された時点で(S301:YES)、総S流入量ΣSUを標準値Bsu側に補正することが行われる(S302)。このときの総S流入量ΣSUの補正量としては、予め実験等により定められた最適値が用いられることとなる。こうした補正により、走行距離に対する総S流入量ΣSUの大きさが標準値Bsu側に補正され、走行距離の変化に対する総S流入量ΣSUの推移が標準値Bsu(図5の破線)側に移行する。このため、以後は総S流入量ΣSUが標準値Bsu以上になりにくくなって高温S被毒回復制御が実行されにくくなり、上述した触媒床温Tの過上昇抑制が図られるようになる。   After the start of execution of the high-temperature S poisoning recovery control and the normal S poisoning recovery control, the S poisoning amount S decreases to the predetermined value (in this example, “0”) through the same control. Thus, the control is terminated. When the high-temperature S poisoning recovery control is executed, the amount of sulfur component that always remains in the NOx catalyst decreases, and accordingly, the frequency of executing the high-temperature S poisoning recovery control may be reduced accordingly. Is preferable from the viewpoint of suppressing an excessive increase in the catalyst bed temperature T. For this reason, based on the total S inflow correction routine shown in FIG. 7, when the high temperature S poison recovery control is completed (S301: YES), the total S inflow ΣSU is corrected to the standard value Bsu side. Is performed (S302). As the correction amount of the total S inflow amount ΣSU at this time, an optimum value determined in advance through experiments or the like is used. By such correction, the magnitude of the total S inflow amount ΣSU with respect to the travel distance is corrected to the standard value Bsu side, and the transition of the total S inflow amount ΣSU with respect to the change in travel distance shifts to the standard value Bsu (broken line in FIG. 5) side. . Therefore, thereafter, the total S inflow amount ΣSU is less likely to be equal to or greater than the standard value Bsu, and the high temperature S poisoning recovery control is difficult to be executed, and the above-described excessive increase in the catalyst bed temperature T is suppressed.

以上詳述した本実施形態によれば、第1実施形態の(3)の効果に加え、以下に示す効果が得られるようになる。
(4)総S流入量ΣSUが標準値Bsu以上になったとき、言い換えれば運転者の自動車の運転の仕方により内燃機関10での燃料消費量(S流入量SU)が多くなってNOx触媒に常に残留する硫黄成分の量が多くなるときに限り、高温S被毒回復制御が実施されてNOx触媒からの効率的な硫黄成分の放出が図られる。こうした高温S被毒回復制御の実施により、NOx触媒で常に残留する硫黄成分の量が少なくされる。以上により、高温S被毒回復制御の実施によるNOx触媒の触媒床温Tの過上昇を抑制しつつ、同触媒に常に残留する硫黄成分の量を少なくし、その残留する硫黄成分が原因となる内燃機関のNOxエミッション悪化を抑制することができるようになる。
According to the embodiment described above in detail, the following effects can be obtained in addition to the effect (3) of the first embodiment.
(4) When the total S inflow amount ΣSU becomes equal to or greater than the standard value Bsu, in other words, the amount of fuel consumption (S inflow amount SU) in the internal combustion engine 10 increases due to the manner in which the driver operates the automobile, and becomes a NOx catalyst. Only when the amount of the remaining sulfur component is always increased, the high-temperature S poisoning recovery control is performed to efficiently release the sulfur component from the NOx catalyst. By carrying out such high temperature S poisoning recovery control, the amount of sulfur component that always remains in the NOx catalyst is reduced. As described above, while suppressing an excessive increase in the catalyst bed temperature T of the NOx catalyst due to the execution of the high-temperature S poisoning recovery control, the amount of the sulfur component that always remains in the catalyst is reduced, and the sulfur component that remains is the cause. It becomes possible to suppress the deterioration of NOx emission of the internal combustion engine.

(5)総S流入量ΣSUが標準値Bsuに対し増加側に大きく乖離して上記乖離量KAが大きくなるほど、NOx触媒に常に残留する硫黄成分の量が多くなって、S被毒回復制御でのNOx触媒への未燃燃料成分の供給を通じて触媒床温Tを高くしようとしても、それを行って同触媒に常に残留する硫黄成分を放出することを実現しにくい状態となる。この状態は、言い換えれば高温S被毒回復制御で触媒床温Tをより高くしようするとき、それに伴う触媒床温Tの過上昇が生じにくい状態であるとも言える。こられのことを考慮し、高温S被毒回復制御においては、標準値Bsuに対する総S流入量ΣSUの増加側への乖離量KAの増大に伴い目標床温Ttの最大値がより高くされ、それに基づき触媒床温Tをより高くしようとすることが行われる。このため、同高温S被毒回復制御でのNOx触媒の触媒床温Tの過上昇抑制と、同制御によるNOx触媒に常に残留する硫黄成分の効果的な放出とを、高い次元で両立させることができる。   (5) As the total S inflow amount ΣSU largely deviates from the standard value Bsu and increases, the amount of sulfur component always remaining in the NOx catalyst increases, and the S poison recovery control is performed. Even if an attempt is made to raise the catalyst bed temperature T through the supply of the unburned fuel component to the NOx catalyst, it is difficult to realize that it always releases the sulfur component remaining in the catalyst. In other words, it can be said that when the catalyst bed temperature T is made higher in the high temperature S poisoning recovery control, an excessive increase in the catalyst bed temperature T is unlikely to occur. In consideration of this, in the high temperature S poisoning recovery control, the maximum value of the target bed temperature Tt is further increased with the increase in the deviation amount KA to the increase side of the total S inflow amount ΣSU with respect to the standard value Bsu, Based on this, an attempt is made to make the catalyst bed temperature T higher. For this reason, it is possible to achieve both high-level suppression of excessive increase in the catalyst bed temperature T of the NOx catalyst in the high-temperature S poisoning recovery control and effective release of the sulfur component always remaining in the NOx catalyst by the control. Can do.

(6)高温S被毒回復制御が実行されると、NOx触媒に常に残留する硫黄成分の量が少なくなることから、それに合わせて高温S被毒回復制御の実行頻度が小とすることが、NOx触媒における触媒床温Tの過上昇抑制の観点で好ましい。このことを考慮して、高温S被毒回復制御が実行されたとき、同制御の完了時点で総S流入量ΣSUが標準値Bsu側に補正される。これにより、走行距離の変化に対する総S流入量ΣSUの推移が標準値Bsu側に移行し、総S流入量ΣSUが標準値Bsu以上になりにくくなって高温S被毒回復制御が実行されにくくなり、上述した触媒床温Tの過上昇抑制が図られるようになる。   (6) When the high temperature S poisoning recovery control is executed, the amount of sulfur component always remaining in the NOx catalyst is reduced, and accordingly, the execution frequency of the high temperature S poisoning recovery control is reduced accordingly. This is preferable from the viewpoint of suppressing an excessive increase in the catalyst bed temperature T in the NOx catalyst. Considering this, when the high-temperature S poisoning recovery control is executed, the total S inflow amount ΣSU is corrected to the standard value Bsu side when the control is completed. As a result, the transition of the total S inflow amount ΣSU with respect to the change in the travel distance shifts to the standard value Bsu side, and the total S inflow amount ΣSU is less likely to be greater than the standard value Bsu, making it difficult to execute the high temperature S poison recovery control. The above-described excessive increase in the catalyst bed temperature T can be suppressed.

[その他の実施形態]
なお、上記各実施形態は、例えば以下のように変更することもできる。
・第1及び第2実施形態において、高温S被毒回復制御をNOx触媒の熱及び硫黄成分残留による劣化が進んだ状態にあるときに限って実施するようにしてもよい。なお、NOx触媒の熱及び硫黄成分残留による劣化が進んだ状態にあるか否かに関しては、通常のS被毒回復制御が実施されるときなど、触媒床温Tを高くしようとしたときの同触媒床温Tの平均値に基づいて判断することが可能である。
[Other Embodiments]
In addition, each said embodiment can also be changed as follows, for example.
In the first and second embodiments, the high-temperature S poisoning recovery control may be performed only when the NOx catalyst is in a state where deterioration due to heat and sulfur component remains advanced. It should be noted that whether or not the NOx catalyst has deteriorated due to heat and sulfur component residue is the same as when the catalyst bed temperature T is to be raised, such as when normal S poisoning recovery control is performed. It can be determined based on the average value of the catalyst bed temperature T.

図8は、NOx触媒コンバータ25における排気上流端側から排気下流端側にかけての各部位における触媒床温を、NOx触媒における上記劣化の進んでいない状態(実線)と、同NOx触媒における上記劣化が進んだ状態(破線)とで別々に示したグラフである。同図から分かるように、NOx触媒の上記劣化が進むと、S被毒回復制御の実施等により触媒床温Tをより高くしようとしても、それに伴うNOx触媒での排気上流端側から排気下流端側にかけての各部位での触媒床温度の上昇が生じにくい状態となる。従って、S被毒回復制御の実施等により触媒床温Tの平均値を目標床温Ttに向けて高くしようとしたとき、その触媒床温Tの平均値が目標床温Ttに対し予め定められた判定値よりも低くなるような場合には、NOx触媒の熱及び硫黄成分残留による劣化が進んだ状態にある旨判断することができる。   FIG. 8 shows the catalyst bed temperature in each part from the exhaust upstream end side to the exhaust downstream end side in the NOx catalytic converter 25 in the state where the deterioration of the NOx catalyst has not progressed (solid line) and the deterioration of the NOx catalyst. It is the graph shown separately by the state (dashed line) which advanced. As can be seen from the figure, when the above-described deterioration of the NOx catalyst progresses, even if the catalyst bed temperature T is to be increased by implementing S poison recovery control or the like, the exhaust downstream end from the exhaust upstream end side of the NOx catalyst associated therewith is increased. The catalyst bed temperature is hardly increased at each part toward the side. Therefore, when trying to increase the average value of the catalyst bed temperature T toward the target bed temperature Tt by performing the S poison recovery control or the like, the average value of the catalyst bed temperature T is predetermined with respect to the target bed temperature Tt. If it is lower than the determined value, it can be determined that the NOx catalyst is in a state of advanced deterioration due to heat and sulfur component residue.

このような状態にあるときに限って高温S被毒回復制御を実施することにより、同制御の実施に伴いNOx触媒の温度の過上昇が生じることをより的確に抑制することができるようになる。   By performing the high temperature S poisoning recovery control only in such a state, it is possible to more accurately suppress the excessive increase in the temperature of the NOx catalyst accompanying the execution of the control. .

・第2実施形態において、高温S被毒回復制御の完了時点で走行距離を増加側に補正することで、走行距離に対する総S流入量ΣSUの大きさを標準値Bsu側に補正し、走行距離の変化に対する総S流入量ΣSUの推移を標準値Bsu側に移行させてもよい。この場合も、第2実施形態における上記(6)と同等の効果が得られるようになる。   -In 2nd Embodiment, the magnitude | size of the total S inflow amount (SIGMA) SU with respect to travel distance is correct | amended to the standard value Bsu side by correct | amending a travel distance to the increase side at the time of completion of high temperature S poisoning recovery control, and travel distance The transition of the total S inflow amount ΣSU with respect to the change of may be shifted to the standard value Bsu side. Also in this case, an effect equivalent to the above (6) in the second embodiment can be obtained.

・第2実施形態において、内燃機関10の使用開始時点からの燃料噴射量の指令値Qfin を燃料噴射タイミング毎に累積した値である燃料噴射量累積値を、上記総S流入量ΣSUに相当する値である総S流入量相当値として、同総S流入量ΣSUの代わりに用いてもよい。また、内燃機関10の使用開始時点からのS被毒回復制御の実行回数を、上記総S流入量相当値として総S流入量ΣSUの代わりに用いてもよい。   In the second embodiment, the fuel injection amount cumulative value that is a value obtained by accumulating the fuel injection amount command value Qfin from the start of use of the internal combustion engine 10 at each fuel injection timing corresponds to the total S inflow amount ΣSU. As the value corresponding to the total S inflow amount, it may be used instead of the total S inflow amount ΣSU. Further, the number of executions of the S poison recovery control from the start of use of the internal combustion engine 10 may be used as the total S inflow amount equivalent value instead of the total S inflow amount ΣSU.

・第1及び第2実施形態において、高温S被毒回復制御での目標床温Ttを通常のS被毒回復制御での目標床温Ttの最大値よりも高くする際の上昇幅に関しては、必ずしも乖離量KAの増大に伴って大きくなるものである必要はない。例えば予め実験等によって定められた最適値(固定値)を上記上昇幅として用いてもよい。   In the first and second embodiments, regarding the range of increase when the target bed temperature Tt in the high temperature S poison recovery control is higher than the maximum value of the target bed temperature Tt in the normal S poison recovery control, It does not necessarily have to increase as the deviation amount KA increases. For example, an optimum value (fixed value) determined in advance through experiments or the like may be used as the increase range.

・第1及び第2実施形態において、自動車1の走行距離の代わりに、内燃機関10の使用開始時点からの総運転時間を用いてもよい。また、内燃機関10の使用開始時点からの回転数の累積値を、内燃機関10の使用開始時点からの総運転時間に相当する値である総運転時間相当値として、上記走行距離の代わりに用いてもよい。   In the first and second embodiments, instead of the travel distance of the automobile 1, the total operation time from the start of use of the internal combustion engine 10 may be used. Further, the cumulative value of the rotational speed from the use start point of the internal combustion engine 10 is used as a total operation time equivalent value that is a value corresponding to the total operation time from the use start point of the internal combustion engine 10 instead of the travel distance. May be.

・NOx触媒への未燃燃料成分の供給を排気行程でのインジェクタ40からの燃料噴射等によって行うようにしてもよい。   The unburned fuel component may be supplied to the NOx catalyst by fuel injection from the injector 40 during the exhaust stroke.

第1実施形態の排気浄化装置が適用される内燃機関全体を示す略図。1 is a schematic diagram showing an entire internal combustion engine to which an exhaust emission control device of a first embodiment is applied. (a)〜(e)は、S被毒回復制御中における添加弁を駆動するための添加パルスの変化、NOx触媒周りの雰囲気の変化、触媒床温Tの変化、積算値ΣQr,ΣQの推移、及び、添加許可フラグFの設定態様を示すタイムチャート。(A)-(e) are the change of the addition pulse for driving the addition valve during the S poison recovery control, the change of the atmosphere around the NOx catalyst, the change of the catalyst bed temperature T, the transition of the integrated values ΣQr, ΣQ And a time chart showing how to set the addition permission flag F. S被毒回復制御の実行開始の手順を示すフローチャート。The flowchart which shows the procedure of execution start of S poison recovery control. 走行距離の変化に対する高温時間累積値Σt及び標準値Bhの変化を示すグラフ。The graph which shows the change of high temperature time accumulation value (SIGMA) t and standard value Bh with respect to the change of a travel distance. 走行距離の変化に対する総S流入量ΣSU及び標準値Bsuの変化を示すグラフ。The graph which shows the change of the total S inflow amount (SIGMA) SU and the standard value Bsu with respect to the change of a travel distance. 第2実施形態におけるS被毒回復制御の実行開始の手順を示すフローチャート。The flowchart which shows the procedure of the execution start of S poison recovery control in 2nd Embodiment. 高温S被毒回復制御の終了後における総S流入量ΣSUの補正手順を示すフローチャート。The flowchart which shows the correction | amendment procedure of total S inflow amount (SIGMA) SU after completion | finish of high temperature S poisoning recovery control. NOx触媒コンバータの上流端側から下流端側にかけての各部位の触媒床温を示すグラフ。The graph which shows the catalyst bed temperature of each site | part from the upstream end side of a NOx catalytic converter to the downstream end side.

符号の説明Explanation of symbols

10…内燃機関、12…吸気通路、13…燃焼室、14…排気通路、16…エアフローメータ、25…NOx触媒コンバータ、26…PMフィルタ、27…酸化触媒コンバータ、28…入ガス温度センサ、29…出ガス温度センサ、30…差圧センサ、31…空燃比センサ、32…空燃比センサ、40…インジェクタ、41…高圧燃料供給管、42…コモンレール、43…燃料ポンプ、44…レール圧センサ、45…低圧燃料供給管、46…添加弁、50…電子制御装置(推定手段、累積値算出手段、標準値算出手段、制御手段、流入量相当値算出手段、補正手段)、51…NEセンサ、52…アクセルセンサ、54…吸気温センサ、55…水温センサ。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 12 ... Intake passage, 13 ... Combustion chamber, 14 ... Exhaust passage, 16 ... Air flow meter, 25 ... NOx catalytic converter, 26 ... PM filter, 27 ... Oxidation catalytic converter, 28 ... Incoming gas temperature sensor, 29 DESCRIPTION OF SYMBOLS ... Outgas temperature sensor, 30 ... Differential pressure sensor, 31 ... Air-fuel ratio sensor, 32 ... Air-fuel ratio sensor, 40 ... Injector, 41 ... High pressure fuel supply pipe, 42 ... Common rail, 43 ... Fuel pump, 44 ... Rail pressure sensor, 45 ... Low pressure fuel supply pipe, 46 ... Addition valve, 50 ... Electronic control device (estimating means, cumulative value calculating means, standard value calculating means, control means, inflow equivalent value calculating means, correcting means), 51 ... NE sensor, 52 ... Accelerator sensor, 54 ... Intake air temperature sensor, 55 ... Water temperature sensor.

Claims (6)

内燃機関の排気系に設けられた吸蔵還元型のNOx触媒と、そのNOx触媒における硫黄成分の吸蔵量であるS被毒量を推定する推定手段とを備え、前記推定されるS被毒量が許容値以上になったときに前記NOx触媒への未燃燃料成分の供給を通じて触媒床温を目標床温へと上昇させるとともに同NOx触媒周りの雰囲気をリッチ燃焼時の状態とするS被毒回復制御を実行開始して前記NOx触媒からの硫黄成分の放出を図り、前記S被毒回復制御の開始後に前記S被毒量が前記許容値よりも小さい所定値以下になったときに同制御を終了する内燃機関の排気浄化装置において、
前記NOx触媒が高温となった時間の累積値である高温時間累積値を前記NOx触媒の熱劣化度合いに相当する値として算出する累積値算出手段と、
前記内燃機関の総運転時間相当値に基づき、そのときの同機関の総運転時間での前記高温時間累積値の標準値を算出する標準値算出手段と、
前記累積値算出手段によって算出された高温時間累積値が前記標準値算出手段によって算出された標準値以下であるときに限って、前記S被毒回復制御よりも高い触媒床温での同制御である高温S被毒回復制御を実施する制御手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
An NOx storage reduction catalyst provided in an exhaust system of an internal combustion engine, and an estimation means for estimating an S poisoning amount that is a storage amount of a sulfur component in the NOx catalyst, wherein the estimated S poisoning amount is S poison recovery to raise the catalyst bed temperature to the target bed temperature through the supply of unburned fuel components to the NOx catalyst when the value exceeds the allowable value and to bring the atmosphere around the NOx catalyst into the rich combustion state The control is started to release the sulfur component from the NOx catalyst, and the control is performed when the S poisoning amount becomes equal to or less than the predetermined value after the start of the S poison recovery control. In the exhaust gas purification device of the internal combustion engine to be finished,
A cumulative value calculating means for calculating a high temperature time cumulative value, which is a cumulative value of the time when the NOx catalyst has become high temperature, as a value corresponding to the degree of thermal degradation of the NOx catalyst;
Based on a value corresponding to the total operating time of the internal combustion engine, a standard value calculating means for calculating a standard value of the accumulated high temperature time in the total operating time of the engine at that time;
Only when the high-temperature time cumulative value calculated by the cumulative value calculation means is equal to or less than the standard value calculated by the standard value calculation means, the same control at a catalyst bed temperature higher than the S poison recovery control is performed. Control means for performing certain high temperature S poisoning recovery control;
An exhaust emission control device for an internal combustion engine, comprising:
前記制御手段は、前記標準値に対する前記高温時間累積値の低下側への乖離量増大に伴い、前記高温S被毒回復制御での触媒床温をより高くしてゆく
請求項1記載の内燃機関の排気浄化装置。
2. The internal combustion engine according to claim 1, wherein the control means increases the catalyst bed temperature in the high temperature S poisoning recovery control with an increase in the amount of deviation of the high temperature time cumulative value toward the decrease side with respect to the standard value. Exhaust purification equipment.
内燃機関の排気系に設けられた吸蔵還元型のNOx触媒と、そのNOx触媒における硫黄成分の吸蔵量であるS被毒量を推定する推定手段とを備え、前記推定されるS被毒量が許容値以上になったときに前記NOx触媒への未燃燃料成分の供給を通じて触媒床温を目標床温へと上昇させるとともに同NOx触媒周りの雰囲気をリッチ燃焼時の状態とするS被毒回復制御を実行開始して前記NOx触媒からの硫黄成分の放出を図り、前記S被毒回復制御の開始後に前記S被毒量が前記許容値よりも小さい所定値以下になったときに同制御を終了する内燃機関の排気浄化装置において、
前記NOx触媒に流入する硫黄成分の総量に対応する総S流入量相当値を求める流入量相当値算出手段と、
前記内燃機関の総運転時間相当値に基づき、そのときの同機関の総運転時間での前記総S流入量相当値の標準値を算出する標準値算出手段と、
前記流入量相当値算出手段によって算出された総S流入量相当値が前記標準値算出手段によって算出された標準値以上であるときに限って、前記S被毒回復制御よりも高い触媒床温での同制御である高温S被毒回復制御を実施する制御手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
An NOx storage reduction catalyst provided in an exhaust system of an internal combustion engine, and an estimation means for estimating an S poisoning amount that is a storage amount of a sulfur component in the NOx catalyst, wherein the estimated S poisoning amount is S poison recovery that raises the catalyst bed temperature to the target bed temperature through the supply of unburned fuel components to the NOx catalyst when the value exceeds the allowable value and makes the atmosphere around the NOx catalyst a rich combustion state The control is started to release the sulfur component from the NOx catalyst, and the control is performed when the S poisoning amount falls below a predetermined value smaller than the allowable value after the start of the S poison recovery control. In the exhaust gas purification device of the internal combustion engine to be finished,
An inflow equivalent value calculating means for obtaining a total S inflow equivalent value corresponding to the total amount of sulfur components flowing into the NOx catalyst;
Based on a value corresponding to the total operating time of the internal combustion engine, a standard value calculating means for calculating a standard value of the total S inflow equivalent value in the total operating time of the engine at that time;
Only when the total S inflow equivalent value calculated by the inflow amount equivalent value calculating means is not less than the standard value calculated by the standard value calculating means, the catalyst bed temperature is higher than that in the S poison recovery control. Control means for performing high temperature S poisoning recovery control, which is the same control as
An exhaust emission control device for an internal combustion engine, comprising:
前記制御手段は、前記標準値に対する前記総S流入量相当値の増加側への乖離量増大に伴い、前記高温S被毒回復制御での触媒床温をより高くしてゆく
請求項3記載の内燃機関の排気浄化装置。
The control means increases the catalyst bed temperature in the high temperature S poisoning recovery control as the amount of deviation toward the increase side of the total S inflow equivalent value with respect to the standard value increases. An exhaust purification device for an internal combustion engine.
請求項3又は4記載の内燃機関の排気浄化装置において、
前記高温S被毒回復制御が実行されたときには、前記総運転時間相当値に対する前記総S流入量相当値の大きさを前記標準値側に補正する補正手段を更に備える
ことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 3 or 4,
When the high temperature S poisoning recovery control is executed, the internal combustion engine further comprises correction means for correcting the magnitude of the total S inflow equivalent value with respect to the total operation time equivalent value to the standard value side. Exhaust purification equipment.
前記制御手段は、触媒床温を高くしようとしたときの同触媒床温に基づいて前記NOx触媒の熱及び硫黄成分残留による劣化が進んだ状態にあるか否かを判断し、前記NOx触媒が劣化の進んだ状態である旨判断されるときに限って前記高温S被毒回復制御を実施する
請求項1〜5のいずれか一項に記載の内燃機関の排気浄化装置。
The control means determines whether or not the NOx catalyst has deteriorated due to heat and sulfur component residue based on the catalyst bed temperature when attempting to increase the catalyst bed temperature, and the NOx catalyst The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 5, wherein the high-temperature S poisoning recovery control is performed only when it is determined that the deterioration is advanced.
JP2007290873A 2007-11-08 2007-11-08 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4396760B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007290873A JP4396760B2 (en) 2007-11-08 2007-11-08 Exhaust gas purification device for internal combustion engine
DE102008055750A DE102008055750B4 (en) 2007-11-08 2008-11-04 Exhaust gas purification device for an internal combustion engine
FR0806244A FR2923533B1 (en) 2007-11-08 2008-11-07 EXHAUST GAS PURIFYING APPARATUS FOR INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007290873A JP4396760B2 (en) 2007-11-08 2007-11-08 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009115038A JP2009115038A (en) 2009-05-28
JP4396760B2 true JP4396760B2 (en) 2010-01-13

Family

ID=40569498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007290873A Expired - Fee Related JP4396760B2 (en) 2007-11-08 2007-11-08 Exhaust gas purification device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP4396760B2 (en)
DE (1) DE102008055750B4 (en)
FR (1) FR2923533B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061146A (en) 2014-09-12 2016-04-25 いすゞ自動車株式会社 Exhaust emission control system
JP6183401B2 (en) * 2015-04-02 2017-08-23 トヨタ自動車株式会社 Catalyst regeneration treatment equipment
CN115045741B (en) * 2021-03-09 2023-07-25 北京福田康明斯发动机有限公司 DOC sulfur poisoning diagnosis method, electronic device, vehicle, and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4241279B2 (en) * 2003-09-12 2009-03-18 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
DE102006034805A1 (en) * 2006-07-27 2008-01-31 Robert Bosch Gmbh Diesel particulate filter regenerating and nitrogen oxide storage catalyst desulphurizing method for internal combustion engine, involves triggering combined complete or partial regeneration of filter and desulphurization of catalyst

Also Published As

Publication number Publication date
JP2009115038A (en) 2009-05-28
FR2923533B1 (en) 2012-08-03
DE102008055750B4 (en) 2013-12-19
FR2923533A1 (en) 2009-05-15
DE102008055750A1 (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP4548309B2 (en) Exhaust gas purification device for internal combustion engine
JP4428443B2 (en) Exhaust gas purification device for internal combustion engine
JP2008157136A (en) Exhaust emission control device for internal combustion engine
WO2013190633A1 (en) Exhaust purification device for internal combustion engine
JP2007170218A (en) Exhaust emission control device of internal combustion engine
JP2008002309A (en) Exhaust emission control device of internal combustion engine
JP5786943B2 (en) Exhaust gas purification device for internal combustion engine
JP5194590B2 (en) Engine exhaust purification system
JP5915516B2 (en) Exhaust gas purification device for internal combustion engine
JP4640318B2 (en) Control device for internal combustion engine
JP6973195B2 (en) Exhaust purification device, vehicle and exhaust purification control device
JP4396760B2 (en) Exhaust gas purification device for internal combustion engine
JP5761255B2 (en) Exhaust gas purification device for internal combustion engine
JP2009203898A (en) Exhaust emission control system
JP4453685B2 (en) Exhaust gas purification system for internal combustion engine
JP2007107474A (en) Exhaust emission control device for internal combustion engine
JP4730198B2 (en) Exhaust gas purification device for internal combustion engine
JP2008196443A (en) Exhaust emission control device for internal combustion engine
JP4775282B2 (en) Exhaust control device for internal combustion engine
CN107407175B (en) Exhaust gas purification system and catalyst regeneration method
JP4069043B2 (en) Exhaust gas purification device for internal combustion engine
JP2012002141A (en) Exhaust emission control device of internal combustion engine
JP2020041428A (en) Post-exhaust treatment device
JP2009138524A (en) Exhaust emission control device of internal combustion engine
JP2006291827A (en) Controller of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees