JP4241279B2 - Exhaust gas purification system for internal combustion engine - Google Patents

Exhaust gas purification system for internal combustion engine Download PDF

Info

Publication number
JP4241279B2
JP4241279B2 JP2003321408A JP2003321408A JP4241279B2 JP 4241279 B2 JP4241279 B2 JP 4241279B2 JP 2003321408 A JP2003321408 A JP 2003321408A JP 2003321408 A JP2003321408 A JP 2003321408A JP 4241279 B2 JP4241279 B2 JP 4241279B2
Authority
JP
Japan
Prior art keywords
sox
nox catalyst
fuel
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003321408A
Other languages
Japanese (ja)
Other versions
JP2005090253A (en
Inventor
暢樹 小林
辰優 杉山
淳 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003321408A priority Critical patent/JP4241279B2/en
Priority to DE200460019609 priority patent/DE602004019609D1/en
Priority to ES04021239T priority patent/ES2318225T3/en
Priority to EP20040021239 priority patent/EP1515029B1/en
Publication of JP2005090253A publication Critical patent/JP2005090253A/en
Application granted granted Critical
Publication of JP4241279B2 publication Critical patent/JP4241279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0818SOx storage amount, e.g. for SOx trap or NOx trap

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、内燃機関の排気浄化システムに関する。   The present invention relates to an exhaust gas purification system for an internal combustion engine.

内燃機関、特に希薄燃焼を行う内燃機関から排出される排気中の窒素酸化物(NOx )を浄化すべく吸蔵、還元型NOx 触媒(以下、単にNOx 触媒」という)が開発されている。このNOx 触媒は、触媒周囲の雰囲気が高酸素濃度状態である場合は排気中のNOx を触媒内へと吸蔵し、触媒周囲の雰囲気が低酸素濃度状態で且つ還元成分である燃料の未燃成分(以下、「HC」という。)が存在している場合等は、触媒内に吸蔵されているNOx を還元することで、排気の浄化を行う触媒である。吸蔵、還元型のNOx 触媒においては、NOx と同様に排気中の硫黄酸化物(SOx )も吸蔵されて堆積することとなり、NOx 触媒におけるSOx 堆積量が増加するに従い、NOx 触媒の排気浄化機能が低減するため十分なNOx の浄化が行われない問題や、更に、NOx 触媒による酸化機能が低下する問題が発生する。   Storage and reduction type NOx catalysts (hereinafter simply referred to as NOx catalysts) have been developed to purify nitrogen oxides (NOx) in exhaust gas discharged from internal combustion engines, particularly internal combustion engines that perform lean combustion. When the atmosphere around the catalyst is in a high oxygen concentration state, this NOx catalyst occludes NOx in the exhaust gas into the catalyst, and the atmosphere around the catalyst is in a low oxygen concentration state and is an unburned component of fuel that is a reducing component. (Hereinafter referred to as “HC”) is a catalyst that purifies exhaust gas by reducing NOx stored in the catalyst. In the NOx storage / reduction type catalyst, sulfur oxide (SOx) in the exhaust gas is also stored and deposited in the same way as NOx. As the amount of SOx deposition in the NOx catalyst increases, the exhaust purification function of the NOx catalyst increases. There arises a problem that NOx is not sufficiently purified for reduction, and a problem that the oxidation function by the NOx catalyst is lowered.

そこで、SOx の堆積量が増大したNOx 触媒の温度を上昇させるとともに、NOx 触媒をHCが存在している一定の空燃比の雰囲気に曝すことによって、NOx 触媒に堆積したSOx を該触媒から離脱させ、以てNOx 触媒のNOx 排気浄化機能を回復させる制御(以下、「SOx 被毒回復制御」という)が行われる(例えば、特許文献1を参照。)。なお、SOx 被毒回復制御において、NOx 触媒をHCの存在する一定の空燃比の雰囲気に曝すためには、例えば排気通路への燃料添加を行って排気の空燃比をリッチ側に変化させるという方法が用いられる。   Therefore, by raising the temperature of the NOx catalyst in which the amount of SOx deposited has increased, and exposing the NOx catalyst to a constant air-fuel ratio atmosphere in which HC is present, the SOx deposited on the NOx catalyst is separated from the catalyst. Thus, control for recovering the NOx exhaust purification function of the NOx catalyst (hereinafter referred to as “SOx poisoning recovery control”) is performed (see, for example, Patent Document 1). In SOx poisoning recovery control, in order to expose the NOx catalyst to an atmosphere having a constant air-fuel ratio in which HC exists, for example, a method of changing the air-fuel ratio of the exhaust to the rich side by adding fuel to the exhaust passage. Is used.

また、SOx 被毒回復制御において、NOx 触媒に堆積したSOx を離脱させる際には、その離脱に伴い硫化水素が発生するため、大気中に放出された排気が異臭を放つという問題が発生する。この問題に対処する技術としては、NOx 触媒からのSOx の離脱の過程において、大量のSOx が短時間で発生しないように、NOx 触媒に堆積したたSOx 堆積量に基づいてSOx の放出度合を抑制するように内燃機関の運転を制御するという技術が公開されている(例えば、特許文献2を参照。)。
特開平07−217474号公報 特開2000−161107号公報
Further, in the SOx poisoning recovery control, when SOx deposited on the NOx catalyst is released, hydrogen sulfide is generated along with the release, so that there is a problem that the exhaust discharged into the atmosphere gives off a strange odor. As a technology to deal with this problem, the SOx release degree is suppressed based on the amount of SOx deposited on the NOx catalyst so that a large amount of SOx is not generated in a short time in the process of separation of SOx from the NOx catalyst. Thus, a technique for controlling the operation of the internal combustion engine has been disclosed (see, for example, Patent Document 2).
JP 07-217474 A JP 2000-161107 A

ところで、NOx 触媒においては、その排気浄化機能や酸化機能がSOx の堆積に伴い低下することとなる。このため、SOx 被毒回復制御によって堆積しているSOx をNOx 触媒から離脱させる際、NOx 触媒に流入する排気の空燃比を一定の空燃比とすると、同触媒に堆積しているSOx の量によっては、NOx 触媒の酸化機能を越えたHCが排気とともに同触媒に流入するという状況になる。このような状況下では、排気中のHCをNOx 触媒で酸化しきれず、同HCが大気中に放出され、白煙が発生するおそれがある。   By the way, in the NOx catalyst, its exhaust purification function and oxidation function are reduced as SOx is deposited. For this reason, when the SOx deposited by the SOx poisoning recovery control is separated from the NOx catalyst, if the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is a constant air-fuel ratio, it depends on the amount of SOx deposited on the catalyst. Is a situation in which HC exceeding the oxidation function of the NOx catalyst flows into the catalyst together with the exhaust gas. Under such circumstances, the HC in the exhaust cannot be completely oxidized by the NOx catalyst, and the HC may be released into the atmosphere and white smoke may be generated.

本発明はこのような実情に鑑みてなされたものであって、その目的は、SOx 被毒回復制御によってNOx 触媒に堆積しているSOx を離脱させるとき、多量のHCが大気中に放出されるのを抑制し、白煙の発生を抑制することのできる内燃機関の排気浄化システムを提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to release a large amount of HC into the atmosphere when SOx deposited on the NOx catalyst is released by SOx poisoning recovery control. An object of the present invention is to provide an exhaust gas purification system for an internal combustion engine that can suppress the generation of white smoke.

以下、上記目的を達成するための手段及びその作用効果について記載する。   In the following, means for achieving the above object and its effects are described.

上記目的を達成するため、請求項記載の発明では、排気中のNOx を吸蔵、還元するNOx 触媒を備え、このNOx 触媒に流入する排気の空燃比を所定の空燃比として同触媒に堆積したSOx を離脱させるSOx 被毒回復制御を行う内燃機関の排気浄化システムにおいて、前記NOx 触媒のSOx 堆積量を推定するSOx 堆積量推定手段と、内燃機関で使用される燃料の硫黄分の濃度を検出する検出手段と、前記SOx 被毒回復制御が行われる際の排気の空燃比を、推定される前記SOx 堆積量の減少に従ってよりリッチ側の空燃比とするとともに、同空燃比を前記検出された燃料の硫黄分の濃度に基づき補正する空燃比制御手段とを備えた。 In order to achieve the above object, according to the first aspect of the present invention, a NOx catalyst for storing and reducing NOx in exhaust gas is provided, and the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is deposited on the catalyst as a predetermined air-fuel ratio. In an exhaust gas purification system for an internal combustion engine that performs SOx poisoning recovery control for separating SOx, an SOx accumulation amount estimating means for estimating an SOx accumulation amount of the NOx catalyst, and a sulfur concentration of fuel used in the internal combustion engine are detected. And an air-fuel ratio of exhaust when the SOx poisoning recovery control is performed is set to a richer-side air-fuel ratio according to the estimated decrease in the accumulated amount of SOx, and the air-fuel ratio is detected. Air-fuel ratio control means for correcting based on the concentration of the sulfur content of the fuel.

NOx 触媒は、高酸素濃度の雰囲気中では排気中のNOx を触媒内へと吸蔵し、低酸素濃度で且つ還元成分である燃料の未燃成分が存在している雰囲気中において触媒内に吸蔵されているNOx を還元することで、排気の浄化を行うものである。更に、NOx 触媒には排気中のSOx も吸蔵されて堆積し、そのSOx 堆積量が多くなるに従い、NOx 触媒の排気浄化機能および酸化機能は低下する。このため、SOx 被毒回復制御によるNOx 触媒の排気浄化機能および酸化機能の回復が図られることとなる。   The NOx catalyst stores NOx in the exhaust gas in the atmosphere in a high oxygen concentration atmosphere, and is stored in the catalyst in an atmosphere with a low oxygen concentration and an unburned component of fuel that is a reducing component. The exhaust gas is purified by reducing NOx. Further, SOx in the exhaust gas is also occluded and accumulated in the NOx catalyst, and the exhaust purification function and the oxidation function of the NOx catalyst decrease as the amount of SOx accumulation increases. For this reason, the exhaust purification function and the oxidation function of the NOx catalyst by the SOx poisoning recovery control can be recovered.

こうしたSOx 被毒回復制御が行われる際には、排気中への燃料の添加や燃焼室における燃料の噴射量や噴射時期の調整等によってNOx 触媒に流入する排気の空燃比が所定の空燃比とされ、これによりNOx 触媒に還元剤としてのHCが供給される。その結果、NOx 触媒に堆積しているSOx が離脱させられる。なお、上記所定の空燃比とは、NOx 触媒において堆積しているSOx を離脱させるのに必要なHCがNOx 触媒に供給される排気の空燃比である。   When such SOx poisoning recovery control is performed, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is adjusted to a predetermined air-fuel ratio by adding fuel into the exhaust gas, adjusting the fuel injection amount or injection timing in the combustion chamber, and the like. As a result, HC as a reducing agent is supplied to the NOx catalyst. As a result, SOx deposited on the NOx catalyst is released. Note that the predetermined air-fuel ratio is the air-fuel ratio of the exhaust gas in which HC necessary for releasing SOx accumulated in the NOx catalyst is supplied to the NOx catalyst.

ところで、NOx 触媒の酸化機能はSOx 堆積量に応じて変動することとなる。従って、NOx 触媒に流入する排気の空燃比が仮に一定の空燃比であるとすると、NOx 触媒のSOx 堆積量が多いときはNOx 触媒の酸化機能が低下するため、SOx 被毒回復制御での排気中のHCがNOx 触媒において酸化されずに、大気へ放出される虞がある。   Incidentally, the oxidation function of the NOx catalyst varies depending on the amount of SOx deposited. Therefore, if the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is a constant air-fuel ratio, the NOx catalyst's oxidation function decreases when the amount of SOx accumulation in the NOx catalyst is large. There is a risk that the HC inside is not oxidized in the NOx catalyst and released to the atmosphere.

請求項1に記載の発明によれば、SOx 被毒回復制御時、NOx 触媒から流出する排気中に多量のHCが含まれないよう、NOx 触媒に流入する排気の空燃比がSOx 堆積量推定手段によって推定されるSOx 堆積量の減少に従ってよりリッチ側に制御されることとなる。 According to the first aspect of the present invention, during the SOx poisoning recovery control, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is determined as the SOx accumulation amount estimating means so that the exhaust gas flowing out from the NOx catalyst does not contain a large amount of HC. Thus, the richer side is controlled in accordance with the decrease in the SOx deposition amount estimated by the above.

このため、SOx 被毒回復制御の実行に伴いNOx 触媒のSOx 堆積量は次第に減少し、NOx 触媒の酸化機能も次第に回復していくが、その回復度合いに応じて排気の空燃比がリッチ側に変化するようになる。即ち、SOx 被毒回復制御の開始直後など、SOx 堆積量が多くNOx 触媒の酸化機能がまだ低い場合においては、NOx 触媒に流入する排気の空燃比がリーン側の空燃比とされ、SOx 堆積量の減少によってNOx 触媒の酸化機能が次第に回復するに従い、NOx 触媒に流入する排気の空燃比がよりリッチ側の空燃比とされる。従って、SOx 堆積量によって決まるNOx 触媒の酸化機能に応じたHCをNOx 触媒に供給することが可能になる。その結果、NOx 触媒から流出する排気中のHCの濃度を、許容HC濃度以下に抑制することが可能となり、多量のHCが大気中に放出されるのを抑制し、白煙の発生を抑制することができるようになる。   For this reason, as the SOx poisoning recovery control is executed, the SOx accumulation amount of the NOx catalyst gradually decreases, and the oxidation function of the NOx catalyst gradually recovers, but the exhaust air-fuel ratio becomes richer depending on the degree of recovery. To change. That is, immediately after the start of SOx poisoning recovery control, such as immediately after the start of SOx poisoning recovery control, if the NOx catalyst oxidation function is still low, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is made the lean air-fuel ratio, and the SOx deposition amount As the oxidation function of the NOx catalyst gradually recovers as a result of the decrease, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst becomes the richer air-fuel ratio. Therefore, it becomes possible to supply HC corresponding to the oxidation function of the NOx catalyst determined by the SOx deposition amount to the NOx catalyst. As a result, the concentration of HC in the exhaust gas flowing out from the NOx catalyst can be suppressed below the allowable HC concentration, and a large amount of HC is prevented from being released into the atmosphere, thereby suppressing the generation of white smoke. Will be able to.

また、上記発明では、内燃機関で使用される燃料の硫黄分の濃度に起因して、推定されたSOx 堆積量と実際のSOx 堆積量との間にずれが生じるとき、その対処として、燃料の硫黄分の濃度に応じてSOx 被毒回復制御中の排気の空燃比が補正される。具体的には、検出手段によって内燃機関で使用される燃料の硫黄分の濃度を検出し、その濃度が高いときには同濃度の低いときに比べて排気の空燃比をリーン側に補正する。こうした補正を行うことで、推定されたSOx 堆積量が実際のSOx 堆積量からずれたとしても、SOx 被毒回復制御中の排気の空燃比が適正値からずれるのを抑制し、上述した白煙の発生等を抑制することができる。 In the above invention, when a deviation occurs between the estimated SOx deposition amount and the actual SOx deposition amount due to the concentration of the sulfur content of the fuel used in the internal combustion engine, as a countermeasure, The air-fuel ratio of the exhaust under SOx poisoning recovery control is corrected according to the concentration of sulfur. Specifically, the concentration of the sulfur content of the fuel used in the internal combustion engine is detected by the detecting means, and when the concentration is high, the air-fuel ratio of the exhaust is corrected to the lean side compared to when the concentration is low. By performing such correction, even if the estimated SOx accumulation amount deviates from the actual SOx accumulation amount, the air-fuel ratio of the exhaust during the SOx poisoning recovery control is suppressed from deviating from an appropriate value, and the above-described white smoke Can be suppressed.

ここで、本発明に係る内燃機関の排気浄化システムの実施の形態について図面に基づいて説明する。図1は、本発明が適用される排気浄化システム、該排気浄化システムを含む内燃機関1およびその制御系統の概略構成を表すブロック図である。   Here, an embodiment of an exhaust gas purification system for an internal combustion engine according to the present invention will be described based on the drawings. FIG. 1 is a block diagram showing a schematic configuration of an exhaust purification system to which the present invention is applied, an internal combustion engine 1 including the exhaust purification system, and a control system thereof.

内燃機関1は、4つの気筒2を有する内燃機関である。また、気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。燃料噴射弁3は、燃料を所定圧に蓄圧する蓄圧室4と接続されている。蓄圧室4は、燃料供給管5を介して燃料ポンプ6と連通している。   The internal combustion engine 1 is an internal combustion engine having four cylinders 2. Further, a fuel injection valve 3 for directly injecting fuel into the combustion chamber of the cylinder 2 is provided. The fuel injection valve 3 is connected to a pressure accumulation chamber 4 that accumulates fuel at a predetermined pressure. The pressure accumulating chamber 4 communicates with the fuel pump 6 through the fuel supply pipe 5.

次に、内燃機関1には吸気枝管7が接続されており、吸気枝管7の各枝管は、気筒2の燃焼室と吸気ポートを介して連通している。ここで、気筒2の燃焼室と吸気ポートとの連通は、吸気弁(図示略)の開閉によって行われる。また、吸気枝管7は吸気管8に接続されている。吸気管8には、該吸気管8内を流通する吸気の質量に対応した電気信号を出力するエアフローメータ9が取り付けられている。前記吸気管8における吸気枝管7の直上流に位置する部位には、該吸気管8内を流通する吸気の流量を調節する吸気絞り弁10が設けられている。この吸気絞り弁10には、ステップモータ等で構成されて該吸気絞り弁10を開閉駆動する吸気絞り用アクチュエータ11が取り付けられている。   Next, an intake branch pipe 7 is connected to the internal combustion engine 1, and each branch pipe of the intake branch pipe 7 communicates with a combustion chamber of the cylinder 2 via an intake port. Here, the communication between the combustion chamber of the cylinder 2 and the intake port is performed by opening and closing an intake valve (not shown). The intake branch pipe 7 is connected to the intake pipe 8. An air flow meter 9 that outputs an electrical signal corresponding to the mass of the intake air flowing through the intake pipe 8 is attached to the intake pipe 8. An intake throttle valve 10 for adjusting the flow rate of the intake air flowing through the intake pipe 8 is provided at a portion of the intake pipe 8 located immediately upstream of the intake branch pipe 7. The intake throttle valve 10 is provided with an intake throttle actuator 11 that is configured by a step motor or the like and that opens and closes the intake throttle valve 10.

ここで、吸気管8において、エアフローメータ9と吸気絞り弁10との間に位置する部分には、排気のエネルギーを駆動源として作動する遠心過給機(ターボチャージャ)17のコンプレッサハウジング17aが設けられている。また吸気管8において、コンプレッサハウジング17aより下流の部分には、前記コンプレッサハウジング17a内で圧縮されて高温となった吸気を冷却するためのインタークーラ18が設けられている。   Here, a compressor housing 17a of a centrifugal supercharger (turbocharger) 17 that operates using exhaust energy as a drive source is provided in a portion of the intake pipe 8 that is located between the air flow meter 9 and the intake throttle valve 10. It has been. In the intake pipe 8, an intercooler 18 for cooling the intake air that has been compressed in the compressor housing 17a and has reached a high temperature is provided at a portion downstream of the compressor housing 17a.

一方、内燃機関1には排気枝管12が接続され、排気枝管12の各枝管が排気ポートを介して気筒2の燃焼室と連通している。ここで、気筒2の燃焼室と排気ポートとの連通は、排気弁(図示略)の開閉によって行われる。また、排気枝管12には、排気枝管12を流れる排気に対して燃料を添加する燃料添加弁30が設けられている。   On the other hand, an exhaust branch pipe 12 is connected to the internal combustion engine 1, and each branch pipe of the exhaust branch pipe 12 communicates with the combustion chamber of the cylinder 2 through an exhaust port. Here, the communication between the combustion chamber of the cylinder 2 and the exhaust port is performed by opening and closing an exhaust valve (not shown). The exhaust branch pipe 12 is provided with a fuel addition valve 30 for adding fuel to the exhaust gas flowing through the exhaust branch pipe 12.

また、前記排気枝管12は、前記遠心過給機17のタービンハウジング17bと接続されている。前記タービンハウジング17bは、排気管13と接続され、この排気管13は、下流にてマフラー(図示略)に接続されている。更に、排気管13の途中には、内燃機関から排出される排気中のNOx を吸蔵、還元して排気の浄化を行うNOx 触媒16が設けられている。尚、NOx 触媒16に代えて、NOx 触媒が担持されたフィルタであって排気中の粒子状物質を捕集する機能を有する排気浄化手段を用いてもよい。   The exhaust branch pipe 12 is connected to the turbine housing 17 b of the centrifugal supercharger 17. The turbine housing 17b is connected to an exhaust pipe 13, and the exhaust pipe 13 is connected downstream to a muffler (not shown). Further, in the middle of the exhaust pipe 13, there is provided a NOx catalyst 16 for purifying the exhaust by storing and reducing NOx in the exhaust discharged from the internal combustion engine. In place of the NOx catalyst 16, an exhaust purification means that is a filter carrying the NOx catalyst and has a function of collecting particulate matter in the exhaust gas may be used.

更に、NOx 触媒16の下流の排気管13には、該排気管13内を流通する排気の流量を調節する排気絞り弁14が設けられている。この排気絞り弁14には、ステップモータ等で構成されて該排気絞り弁14を開閉駆動する排気絞り用アクチュエータ15が取り付けられている。   Further, an exhaust throttle valve 14 for adjusting the flow rate of exhaust gas flowing through the exhaust pipe 13 is provided in the exhaust pipe 13 downstream of the NOx catalyst 16. The exhaust throttle valve 14 is provided with an exhaust throttle actuator 15 that is configured by a step motor or the like and that drives the exhaust throttle valve 14 to open and close.

ここで、燃料噴射弁3および燃料添加弁30は、電子制御ユニット(以下、ECU:Electronic Control Unit と称する)20からの制御信号によって開閉動作を行う。即ち、ECU20からの指令によって、燃料噴射弁3および燃料添加弁30における燃料の噴射時期および噴射量が弁毎に制御される。   Here, the fuel injection valve 3 and the fuel addition valve 30 are opened and closed by a control signal from an electronic control unit (hereinafter referred to as ECU: Electronic Control Unit) 20. That is, in accordance with a command from the ECU 20, the fuel injection timing and the fuel injection amount in the fuel injection valve 3 and the fuel addition valve 30 are controlled for each valve.

ECU20には、アクセル開度センサ19、クランクポジションセンサ33、及び高硫黄濃度燃料使用スイッチ34が電気的に接続されている。
アクセル開度センサ19はアクセル開度に応じた信号をECU20に出力し、クランクポジションセンサ33は内燃機関1の出力軸の回転角に応じた信号をECU20に出力する。ECU20は、アクセル開度センサ19からアクセル開度に応じた信号を受け取り、それより内燃機関1に要求される機関出力等を算出するとともに、クランクポジションセンサ33からの内燃機関1の出力軸の回転角に応じた信号を受け取り、内燃機関1の機関回転速度や気筒2におけるサイクルの状態等を算出する。
The ECU 20 is electrically connected to an accelerator opening sensor 19, a crank position sensor 33, and a high sulfur concentration fuel use switch 34.
The accelerator opening sensor 19 outputs a signal corresponding to the accelerator opening to the ECU 20, and the crank position sensor 33 outputs a signal corresponding to the rotation angle of the output shaft of the internal combustion engine 1 to the ECU 20. The ECU 20 receives a signal corresponding to the accelerator opening from the accelerator opening sensor 19, calculates the engine output required for the internal combustion engine 1 based on the signal, and rotates the output shaft of the internal combustion engine 1 from the crank position sensor 33. A signal corresponding to the angle is received, and the engine rotational speed of the internal combustion engine 1 and the cycle state in the cylinder 2 are calculated.

高硫黄濃度燃料使用スイッチ34は、内燃機関1で使用される燃料の種類に応じて給油時に車両の運転者によって操作されるものである。内燃機関1で使用される燃料としては、通常、硫黄濃度が予め定められた規定値未満のものが用いられるが、何らかの理由により上記規定値よりも高い硫黄濃度の燃料が給油される場合、運転者によって高硫黄濃度燃料使用スイッチ34がオン操作される。また硫黄濃度が上記規定値である燃料が吸される場合には、運転者によって高硫黄濃度燃料使用スイッチ34がオフ操作される。ECU20は、高硫黄濃度燃料使用スイッチ34からの信号を受け取り、これにより内燃機関1で使用される燃料の硫黄濃度を検出する。   The high sulfur concentration fuel use switch 34 is operated by the vehicle driver during refueling according to the type of fuel used in the internal combustion engine 1. As the fuel used in the internal combustion engine 1, a fuel whose sulfur concentration is less than a predetermined value is usually used. However, when a fuel having a sulfur concentration higher than the specified value is supplied for some reason, The user turns on the high sulfur concentration fuel use switch 34. Further, when the fuel whose sulfur concentration is the above specified value is sucked, the high sulfur concentration fuel use switch 34 is turned off by the driver. The ECU 20 receives a signal from the high sulfur concentration fuel use switch 34 and thereby detects the sulfur concentration of the fuel used in the internal combustion engine 1.

また、ECU20には、排気管13におけるNOx 触媒16の下流部分に設けられて、同触媒16から流出する排気の空燃比を検出する排気空燃比センサ32が電気的に接続されている。そして、排気空燃比センサ32が排気中の酸素の濃度に応じた電圧をECU20に伝えることで排気の空燃比が検出される。このセンサやNOx 触媒16等で構成される排気浄化システムによって、内燃機関1から排出される排気の浄化が行われる。   Further, the ECU 20 is electrically connected to an exhaust air / fuel ratio sensor 32 that is provided in the exhaust pipe 13 downstream of the NOx catalyst 16 and detects the air / fuel ratio of the exhaust gas flowing out from the catalyst 16. The exhaust air / fuel ratio sensor 32 transmits a voltage corresponding to the concentration of oxygen in the exhaust to the ECU 20 to detect the air / fuel ratio of the exhaust. Exhaust gas discharged from the internal combustion engine 1 is purified by an exhaust gas purification system including the sensor, the NOx catalyst 16 and the like.

ここで、NOx 触媒16にSOx が吸蔵されて堆積することで、NOx 触媒の浄化能力が低下するため、NOx 触媒に堆積したSOx を離脱させるSOx 被毒回復制御が、ECU20によって行われる。該SOx 被毒回復制御においては、NOx 触媒16に流入する排気の空燃比を所定の空燃比とすることで、NOx 触媒16の床温を適切な温度とするとともに、還元剤としてのHCをNOx 触媒16に供給する。   Here, the SOx is stored and accumulated in the NOx catalyst 16 to reduce the purification ability of the NOx catalyst. Therefore, the ECU 20 performs SOx poisoning recovery control for detaching the SOx deposited on the NOx catalyst. In the SOx poisoning recovery control, by setting the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 16 to a predetermined air-fuel ratio, the bed temperature of the NOx catalyst 16 is set to an appropriate temperature, and HC as a reducing agent is converted to NOx. The catalyst 16 is supplied.

このとき、ECU20より燃料添加弁30に対して噴射指令が出されることで、燃料添加弁30によって燃料が排気に添加され、NOx 触媒16に流入する排気の空燃比が調整される。燃料添加弁30より排気中に添加された燃料の一部がNOx 触媒16の酸化機能によって酸化されることでNOx 触媒16の床温が上昇するとともに、残りの燃料がNOx 触媒16に供給されることでSOx 被毒回復制御に必要な還元剤が供給される。   At this time, when an injection command is issued from the ECU 20 to the fuel addition valve 30, the fuel is added to the exhaust by the fuel addition valve 30 and the air-fuel ratio of the exhaust flowing into the NOx catalyst 16 is adjusted. Part of the fuel added to the exhaust gas from the fuel addition valve 30 is oxidized by the oxidation function of the NOx catalyst 16, so that the bed temperature of the NOx catalyst 16 rises and the remaining fuel is supplied to the NOx catalyst 16. As a result, the reducing agent necessary for SOx poisoning recovery control is supplied.

SOx 被毒回復制御における排気の空燃比に関する制御は、排気空燃比センサ32によって検出された空燃比に基づいて、NOx 触媒16に流入する排気の空燃比を推定し、その推定される空燃比が所定の排気の空燃比となるように、燃料添加弁30による燃料の添加量を制御するものである。NOx 触媒16における排気の空燃比と排気空燃比センサ32によって検出される空燃比との関係は、あらかじめ実験等で求めておきマップとしてECU20内のROMに格納しておけばよい。   The control relating to the air-fuel ratio of the exhaust in the SOx poisoning recovery control is performed by estimating the air-fuel ratio of the exhaust flowing into the NOx catalyst 16 based on the air-fuel ratio detected by the exhaust air-fuel ratio sensor 32, and the estimated air-fuel ratio is The amount of fuel added by the fuel addition valve 30 is controlled so that a predetermined exhaust air-fuel ratio is obtained. The relationship between the air-fuel ratio of the exhaust gas in the NOx catalyst 16 and the air-fuel ratio detected by the exhaust air-fuel ratio sensor 32 may be obtained in advance by experiments or the like and stored in the ROM in the ECU 20 as a map.

ここで、SOx 被毒回復制御においてNOx 触媒16に堆積しているSOx を離脱させるためには、NOx 触媒16に流入する空燃比を所定の空燃比とするのは先述の通りであるが、NOx 触媒16に堆積しているSOx 量が多くなるに従い、NOx 触媒16の有する酸化機能が低下する。従って、NOx 触媒16に堆積しているSOx 量が多いとき、例えばSOx 被毒回復制御が開始されて間もないときは、NOx 触媒16に流入する排気の空燃比が過度にリッチ側の空燃比であると、本来はNOx 触媒16において酸化されるべき量のHCが酸化されずにNOx 触媒16を通過し、多量のHCが大気へ放出され白煙が発生する虞が生じる。   Here, in order to release SOx accumulated in the NOx catalyst 16 in the SOx poisoning recovery control, the air-fuel ratio flowing into the NOx catalyst 16 is set to a predetermined air-fuel ratio as described above. As the amount of SOx deposited on the catalyst 16 increases, the oxidation function of the NOx catalyst 16 decreases. Therefore, when the amount of SOx accumulated in the NOx catalyst 16 is large, for example, when SOx poisoning recovery control is just started, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 16 is excessively rich. In this case, the amount of HC that should be oxidized in the NOx catalyst 16 passes through the NOx catalyst 16 without being oxidized, and a large amount of HC may be released to the atmosphere to generate white smoke.

そこで、SOx 被毒回復制御が行われているときに多量のHCが大気へ放出されるのを抑制し、以て白煙の発生を防止する制御について、図2に基づいて説明する。図2はNOx 触媒16でのSOx 被毒回復制御時における白煙の発生を防止する制御のフローチャートである。尚、該制御は、ECU20によって、SOx 被毒回復制御とともに実行される。   A control for suppressing the release of a large amount of HC to the atmosphere when the SOx poisoning recovery control is being performed and thus preventing the generation of white smoke will be described with reference to FIG. FIG. 2 is a flowchart of the control for preventing the generation of white smoke during the SOx poisoning recovery control with the NOx catalyst 16. The control is executed by the ECU 20 together with the SOx poisoning recovery control.

まず、S100では、NOx 触媒16に堆積しているSOx 堆積量を推定する。具体的には、前回のSOx 被毒回復制御が終了した以降において内燃機関1での燃料消費量、もしくは該燃料消費量と関連のある内燃機関1を備える車両の移動距離等や、内燃機関1の燃料の硫黄濃度等から推定する。S100の処理が終了すると、S101へ進む。   First, in S100, the amount of SOx deposited on the NOx catalyst 16 is estimated. Specifically, after the previous SOx poisoning recovery control is completed, the fuel consumption amount in the internal combustion engine 1 or the travel distance of the vehicle including the internal combustion engine 1 related to the fuel consumption amount, etc. Estimated from the sulfur concentration of the fuel. When the process of S100 ends, the process proceeds to S101.

S101では、S100において推定されたNOx 触媒16でのSOx 堆積量が、所定の堆積量より多いか否かが判断される。所定の堆積量とは、NOx 触媒16に堆積したSOx 量が多くNOx 触媒16の排気浄化機能が低下しているために、堆積しているSOx を離脱させる必要があると判断するための閾値である。従って、S101でNOx 触媒16のSOx 堆積量が所定の堆積量より多いと判断されると、堆積しているSOx を離脱させるべくS103以降の処理が行われる。一方で、S101でNOx 触媒16のSOx 堆積量が所定の堆積量以下と判断されると、再びS100の処理が行われる。   In S101, it is determined whether or not the SOx accumulation amount in the NOx catalyst 16 estimated in S100 is larger than a predetermined accumulation amount. The predetermined accumulation amount is a threshold value for determining that the accumulated SOx needs to be released because the amount of SOx accumulated on the NOx catalyst 16 is large and the exhaust purification function of the NOx catalyst 16 is lowered. is there. Therefore, if it is determined in S101 that the SOx accumulation amount of the NOx catalyst 16 is larger than the predetermined accumulation amount, the processing after S103 is performed in order to release the accumulated SOx. On the other hand, when it is determined in S101 that the SOx accumulation amount of the NOx catalyst 16 is equal to or less than the predetermined accumulation amount, the processing of S100 is performed again.

S103では、NOx 触媒16のSOx 堆積量に基づいて、NOx 触媒16に堆積したSOx を離脱させるのに適し、且つNOx 触媒16を通過する排気中のHC濃度が所定のHC濃度を越えない、NOx 触媒16に流入する排気の空燃比を算出する。具体的には、NOx 触媒16のSOx 堆積量が多くなるに従いNOx 触媒16の酸化機能が低下することを考慮し、NOx 触媒16でのSOx 堆積量が多いときはリーン側の空燃比とし、SOx の離脱が促進するに従ってリッチ側の空燃比となるように算出する。SOx 堆積量およびNOx 触媒16に流入する排気の空燃比との関係は予め実験等で求めておき、ECU20のROMに格納する。ここでいう所定のHC濃度は、大気へ排出される排気において白煙が発生すると判断されるHC濃度の閾値である。これにより、NOx 触媒16に堆積しているSOx の離脱に際して、多量のHCが大気へ放出されるのが抑制され、以て白煙が発生するのが防止される。S103の処理が終了すると、S104へ進む。   In S103, based on the amount of SOx deposited on the NOx catalyst 16, it is suitable for releasing SOx deposited on the NOx catalyst 16, and the HC concentration in the exhaust gas passing through the NOx catalyst 16 does not exceed a predetermined HC concentration. The air-fuel ratio of the exhaust gas flowing into the catalyst 16 is calculated. Specifically, considering that the oxidation function of the NOx catalyst 16 decreases as the amount of SOx deposited on the NOx catalyst 16 increases, when the amount of SOx deposited on the NOx catalyst 16 is large, the lean air-fuel ratio is set. It is calculated so that the air-fuel ratio on the rich side becomes the richer as the detachment of is promoted. The relationship between the SOx accumulation amount and the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 16 is obtained in advance by experiments or the like and stored in the ROM of the ECU 20. The predetermined HC concentration here is a threshold value of the HC concentration at which it is determined that white smoke is generated in the exhaust gas discharged to the atmosphere. As a result, when the SOx accumulated on the NOx catalyst 16 is released, a large amount of HC is suppressed from being released to the atmosphere, thereby preventing white smoke from being generated. When the process of S103 ends, the process proceeds to S104.

S104では、燃料添加弁30によって、内燃機関1から排出される排気に燃料の添加が行われることで、NOx 触媒16に流入する排気の空燃比が制御される。具体的には、NOx 触媒16に流入する排気の空燃比を、S103において算出された排気の空燃比とすべく、排気空燃比センサ32による検出値等に基づいて燃料添加弁30による燃料の添加量が制御される。S104の処理が終了すると、S105へ進む。   In S104, the fuel addition valve 30 adds fuel to the exhaust discharged from the internal combustion engine 1, whereby the air-fuel ratio of the exhaust flowing into the NOx catalyst 16 is controlled. Specifically, the addition of fuel by the fuel addition valve 30 based on the detected value by the exhaust air-fuel ratio sensor 32 or the like so that the air-fuel ratio of the exhaust flowing into the NOx catalyst 16 becomes the exhaust air-fuel ratio calculated in S103. The amount is controlled. When the process of S104 ends, the process proceeds to S105.

S105では、NOx 触媒16に堆積しているSOx 量を推定する。これは、S104での燃料添加によってNOx 触媒16から離脱したSOx 量を考慮したSOx 堆積量である。従って、以降の排気の空燃比の制御等のNOx 触媒16のSOx 堆積量に基づく制御においては、本S105において推定されたNOx 触媒16のSOx 堆積量が用いられる。S105の処理が終了すると、S106へ進む。   In S105, the amount of SOx deposited on the NOx catalyst 16 is estimated. This is the amount of SOx deposited considering the amount of SOx released from the NOx catalyst 16 due to the fuel addition in S104. Therefore, in the subsequent control based on the SOx accumulation amount of the NOx catalyst 16 such as control of the air-fuel ratio of the exhaust gas, the SOx accumulation amount of the NOx catalyst 16 estimated in S105 is used. When the process of S105 ends, the process proceeds to S106.

S106では、NOx 触媒16に堆積しているSOx 量が許容堆積量以下であるか否かが判断される。ここで、許容堆積量とは、NOx 触媒16において堆積しているSOx 量が減少することで、NOx 触媒16の排気浄化機能が回復したと判断する閾値である。従って、S106でNOx 触媒16に堆積しているSOx 量が許容堆積量以下であると判断されると、NOx 触媒16の堆積SOxを離脱させたと判断し、本制御を終了する。一方で、S106でNOx 触媒16に堆積しているSOx 量が許容堆積量より多いと判断されると、NOx 触媒16の堆積SOx の離脱はまだ終了していないと判断し、NOx 触媒16のSOx 堆積量が許容堆積量以下となるまでS103以降の処理が行われる。   In S106, it is determined whether or not the SOx amount deposited on the NOx catalyst 16 is less than or equal to the allowable deposition amount. Here, the allowable accumulation amount is a threshold value for determining that the exhaust purification function of the NOx catalyst 16 has been recovered by reducing the amount of SOx accumulated in the NOx catalyst 16. Accordingly, if it is determined in S106 that the amount of SOx deposited on the NOx catalyst 16 is less than or equal to the allowable deposition amount, it is determined that the deposited SOx of the NOx catalyst 16 has been removed, and this control is terminated. On the other hand, if it is determined in S106 that the amount of SOx deposited on the NOx catalyst 16 is larger than the allowable deposition amount, it is determined that the separation of the deposited SOx of the NOx catalyst 16 has not yet ended, and the SOx of the NOx catalyst 16 has not been completed. The processes after S103 are performed until the deposition amount becomes equal to or less than the allowable deposition amount.

以上のように、SOx 被毒回復制御中においては、NOx 触媒16に流入する排気の空燃比が、同触媒16のSOx 堆積量の減少に基づいて、リーン側の空燃比からよりリッチ側の空燃比とされる。このため、NOx 触媒16を通過して大気へ放出される排気中のHC濃度を所定の濃度以下に抑えることが可能となり、以て多量のHCの大気への放出を抑制し、白煙の発生を抑制することが可能となる。   As described above, during the SOx poisoning recovery control, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 16 is changed from the lean-side air-fuel ratio to the rich-side air-fuel ratio based on the decrease in the SOx accumulation amount of the catalyst 16. The fuel ratio is set. For this reason, it becomes possible to suppress the HC concentration in the exhaust gas that passes through the NOx catalyst 16 and is released to the atmosphere below a predetermined concentration, thereby suppressing the release of a large amount of HC to the atmosphere and generating white smoke. Can be suppressed.

ところで、NOx 触媒16の実際のSOx 堆積量は内燃機関1で使用される燃料の硫黄濃度の影響を受け、この硫黄濃度が高いほど上記SOx 堆積量の増加傾向が急なものになる。ただし、内燃機関1で使用される燃料としては、通常、硫黄濃度が予め定められた規定値未満のものが用いられる。このため、図2のSOx 被毒回復制御のフローチャートにおけるS100やS105の処理では、燃料の硫黄濃度が上記規定値未満であると想定してSOx 堆積量の推定を行うことが考えられる。SOx 被毒回復制御では、推定されたSOx 堆積量に対応して排気の空燃比が適正値に制御される。なお、SOx 被毒回復制御中での排気の空燃比の適正値は、図3に示されるようにSOx 堆積量の減少に伴いリッチ側に変化することとなる。   By the way, the actual SOx accumulation amount of the NOx catalyst 16 is affected by the sulfur concentration of the fuel used in the internal combustion engine 1, and the higher the sulfur concentration, the more the increase in the SOx accumulation amount becomes steep. However, as the fuel used in the internal combustion engine 1, one having a sulfur concentration less than a predetermined value is usually used. For this reason, in the processing of S100 and S105 in the flowchart of the SOx poisoning recovery control of FIG. 2, it is conceivable that the SOx deposition amount is estimated on the assumption that the sulfur concentration of the fuel is less than the specified value. In the SOx poisoning recovery control, the air-fuel ratio of the exhaust is controlled to an appropriate value corresponding to the estimated SOx accumulation amount. Note that the appropriate value of the air-fuel ratio of the exhaust during the SOx poisoning recovery control changes to the rich side as the SOx accumulation amount decreases as shown in FIG.

従って、燃料の硫黄濃度を上記規定値未満と想定して推定されるSOx 堆積量が「A1」という値であるとすると、SOx 被毒回復制御ではSOx 堆積量A1に適した排気の空燃比B1が算出され、その空燃比B1が得られるよう燃料添加弁30による燃料の添加量が制御される。しかし、内燃機関の燃料として、何らかの理由により上記規定値よりも高い濃度の燃料が給油された場合、上記のようにSOx 堆積量を推定すると、推定されるSOx 堆積量A1に対し、実際のSOx 堆積量は「A1」よりも多い「A2」という値になる。これは、推定されるSOx 堆積量A1は燃料の硫黄濃度を規定値未満と想定して推定したものであるのに対し、実際のSOx 堆積量は上記規定値よりも高い硫黄濃度の燃料を使用している分だけ増加するためである。   Therefore, assuming that the SOx accumulation amount estimated assuming that the sulfur concentration of the fuel is less than the above specified value is “A1”, the exhaust air-fuel ratio B1 suitable for the SOx accumulation amount A1 in the SOx poisoning recovery control. And the amount of fuel added by the fuel addition valve 30 is controlled so that the air-fuel ratio B1 is obtained. However, when fuel having a concentration higher than the above specified value is supplied as the fuel for the internal combustion engine for some reason, when the SOx accumulation amount is estimated as described above, the actual SOx amount is compared with the estimated SOx accumulation amount A1. The amount of deposition becomes “A2”, which is larger than “A1”. This is because the estimated SOx deposit amount A1 is estimated assuming that the sulfur concentration of the fuel is less than the specified value, whereas the actual SOx deposit amount uses a fuel with a sulfur concentration higher than the specified value. This is because it increases by the amount that is being done.

このような状況下では、SOx 被毒回復制御を行うのに適した排気の空燃比は実際のSOx 堆積量A2に対応した値「B2」となるが、推定されるSOx 堆積量A1が実際のPOx 堆積量A2よりも少ないため、排気の空燃比は推定されるSOx 堆積量A1に対応した値「B1」に制御される。このため、排気の空燃比(ここでは「B1」)が、実際のSOx 堆積量に対応した適正値(「B2」)よりもリッチになって、排気中のHC濃度が高くなり、白煙の発生に繋がれるおそれがある。こうした不具合の解消を目的として、図2のフローチャートにおけるS100及びS105のSOx 堆積量の推定処理として、図4に示されるSOx 堆積量推定ルーチンが実行される。このSOx 堆積量推定ルーチンは、上記S100及びS105に進む毎にECU20を通じて実行される。   Under such circumstances, the air-fuel ratio of the exhaust suitable for performing SOx poisoning recovery control is a value “B2” corresponding to the actual SOx accumulation amount A2, but the estimated SOx accumulation amount A1 is the actual SOx accumulation amount A1. Since it is less than the POx accumulation amount A2, the air-fuel ratio of the exhaust is controlled to a value “B1” corresponding to the estimated SOx accumulation amount A1. For this reason, the air-fuel ratio (“B1” in this case) of the exhaust gas becomes richer than the appropriate value (“B2”) corresponding to the actual SOx accumulation amount, the HC concentration in the exhaust gas increases, and the white smoke There is a risk of occurrence. For the purpose of eliminating such problems, the SOx accumulation amount estimation routine shown in FIG. 4 is executed as the SOx accumulation amount estimation processing of S100 and S105 in the flowchart of FIG. This SOx accumulation amount estimation routine is executed through the ECU 20 every time the process proceeds to S100 and S105.

同ルーチンにおいては、ステップS301の処理として、上記規定値よりも硫黄濃度の高い燃料であるか否かが判断される。こうした判断は、車両の運転者によって操作される高硫黄濃度燃料使用スイッチ34からの信号に基づき行われる。この場合、上記規定値よりも高い濃度の燃料を給油したときに運転者によって高硫黄濃度燃料使用スイッチ34がオン操作され、そのオン操作に対応した同スイッチ34からの信号に基づき燃料の硫黄濃度が高い旨判断される。言い換えれば、上記スイッチ34からの信号に基づき燃料の硫黄濃度が検出されることとなる。なお、燃料の硫黄濃度の検出については、例えば車両の燃料タンクに燃料の硫黄濃度検出用のセンサを設け、そのセンサから出力される信号に基づき行うという方法をとることもできる。   In this routine, as a process of step S301, it is determined whether or not the fuel has a sulfur concentration higher than the specified value. Such a determination is made based on a signal from the high sulfur concentration fuel use switch 34 operated by the vehicle driver. In this case, the high sulfur concentration fuel use switch 34 is turned on by the driver when fuel having a concentration higher than the specified value is supplied, and the sulfur concentration of the fuel is based on a signal from the switch 34 corresponding to the on operation. Is judged to be high. In other words, the sulfur concentration of the fuel is detected based on the signal from the switch 34. The detection of the sulfur concentration of the fuel can be performed, for example, by providing a sensor for detecting the sulfur concentration of the fuel in the fuel tank of the vehicle and performing the detection based on a signal output from the sensor.

ステップS301で否定判定がなされると、通常の硫黄濃度、即ち上記規定値未満の硫黄濃度の燃料が使用されているものとして、同規定値未満の硫黄濃度に基づきSOx 堆積量の推定を行う。また、ステップS301で肯定判定がなされると、上記規定値以上の硫黄濃度の燃料が使用されているものとして、同規定値以上の硫黄濃度に基づきSOx 堆積量の推定を行う。このように推定されるSOx 堆積量は、上記規定値以上の硫黄濃度の燃料が使用されていたとしても、実際のSOx 堆積量に対し過度にリッチ側にずれた値をとることはなくなる。   If a negative determination is made in step S301, it is assumed that fuel having a normal sulfur concentration, that is, a sulfur concentration lower than the specified value is used, and the SOx deposition amount is estimated based on the sulfur concentration lower than the specified value. If an affirmative determination is made in step S301, it is assumed that fuel having a sulfur concentration equal to or higher than the specified value is used, and the SOx deposition amount is estimated based on the sulfur concentration equal to or higher than the specified value. The estimated SOx deposition amount does not take a value that is excessively shifted to the rich side with respect to the actual SOx deposition amount even if a fuel having a sulfur concentration higher than the above specified value is used.

従って、実際のSOx 堆積量が例えば図4に示されるように「A2」であるとき、上記規定値以上の硫黄濃度の燃料が使用されていたとしても、推定されるSOx 堆積量を「A2」と同じか、それに近い値とすることができる。このため、SOx 被毒回復制御中において、推定されるSOx 堆積量A1に応じて制御された排気の空燃比B1が、実際のSOx 堆積量A2に対応した排気の空燃比の適正値「B2」に対しリッチ側に大きくずれることはなく、そのずれに起因して排気中のHC濃度が高くなって、白煙の発生に繋がるのを抑制することができる。   Therefore, when the actual SOx deposition amount is “A2” as shown in FIG. 4, for example, the estimated SOx deposition amount is set to “A2” even if a fuel having a sulfur concentration equal to or higher than the specified value is used. The value can be the same as or close to that. Therefore, during the SOx poisoning recovery control, the exhaust air / fuel ratio B1 controlled according to the estimated SOx accumulation amount A1 is the appropriate value “B2” of the exhaust air / fuel ratio corresponding to the actual SOx accumulation amount A2. On the other hand, there is no significant shift to the rich side, and it is possible to suppress the occurrence of white smoke due to the increase in the HC concentration in the exhaust due to the shift.

なお、上記実施の形態は例えば以下のように変更することもできる。
・検出された燃料の硫黄濃度を加味してSOx 堆積量の推定を行う代わりに、その硫黄濃度に基づきSOx 被毒回復制御中における排気の空燃比の補正を行うようにしてもよい。この場合、SOx 堆積量の推定については燃料の硫黄濃度が上記規定値未満であると想定して行われ、S被毒回復制御中に上記SOx 堆積量に基づき行われる排気の空燃比制御において、同空燃比が燃料の硫黄濃度に応じて補正される。例えば、燃料の硫黄濃度が上記規定値よりも高い場合には、推定されるSOx 堆積量が実際のSOx 堆積量よりも少なくなるものの、S被毒回復制御中に上記推定されるSOx 堆積量に基づき制御される排気の空燃比は燃料の硫黄濃度に応じてリーン側に補正されるため、上記実施の形態と同等の効果が得られるようになる。
In addition, the said embodiment can also be changed as follows, for example.
Instead of estimating the SOx accumulation amount in consideration of the detected sulfur concentration of the fuel, the air-fuel ratio of the exhaust gas during the SOx poisoning recovery control may be corrected based on the sulfur concentration. In this case, the SOx accumulation amount is estimated on the assumption that the sulfur concentration of the fuel is less than the specified value. In the air-fuel ratio control of the exhaust gas performed based on the SOx accumulation amount during the S poison recovery control, The air-fuel ratio is corrected according to the sulfur concentration of the fuel. For example, when the sulfur concentration of the fuel is higher than the specified value, the estimated SOx deposition amount is smaller than the actual SOx deposition amount, but the estimated SOx deposition amount during the S poison recovery control is reduced. Since the air-fuel ratio of the exhaust gas controlled based on the correction is corrected to the lean side according to the sulfur concentration of the fuel, the same effect as in the above embodiment can be obtained.

本発明の実施の形態に係る排気浄化システムおよび該排気浄化システムを含む内燃機関およびその制御系統の概略構成を表すブロック図である。1 is a block diagram showing a schematic configuration of an exhaust purification system according to an embodiment of the present invention, an internal combustion engine including the exhaust purification system, and a control system thereof. 本発明の実施の形態に係る排気浄化システムにおいて、NOx 触媒のSOx 被毒回復制御時におけるNOx 触媒に流入する排気の空燃比の制御を示すフローチャートである。6 is a flowchart showing control of the air-fuel ratio of exhaust gas flowing into the NOx catalyst at the time of SOx poisoning recovery control of the NOx catalyst in the exhaust purification system according to the embodiment of the present invention. SOx 被毒回復制御中におけるSOx 堆積量と排気の空燃比との関係を示すグラフ。The graph which shows the relationship between SOx accumulation amount and the air fuel ratio of exhaust_gas | exhaustion during SOx poisoning recovery | restoration control. SOx 堆積量の具体的な推定手順を示すフローチャートである。It is a flowchart which shows the specific estimation procedure of SOx accumulation amount.

符号の説明Explanation of symbols

1…内燃機関、3…燃料噴射弁、16…NOx 触媒、20…ECU(SOx 堆積量推定手段、空燃比制御手段)、30…燃料添加弁、32…排気空燃比センサ、34…高硫黄濃度燃料使用スイッチ(検出手段)。   DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 3 ... Fuel injection valve, 16 ... NOx catalyst, 20 ... ECU (SOx accumulation amount estimation means, air-fuel ratio control means), 30 ... Fuel addition valve, 32 ... Exhaust air-fuel ratio sensor, 34 ... High sulfur concentration Fuel use switch (detection means).

Claims (1)

排気中のNOx を吸蔵、還元するNOx 触媒を備え、このNOx 触媒に流入する排気の空燃比を所定の空燃比として同触媒に堆積したSOx を離脱させるSOx 被毒回復制御を行う内燃機関の排気浄化システムにおいて、An exhaust of an internal combustion engine having a NOx catalyst for storing and reducing NOx in the exhaust, and performing SOx poisoning recovery control for releasing SOx deposited on the NOx catalyst with the air-fuel ratio of the exhaust flowing into the NOx catalyst as a predetermined air-fuel ratio In the purification system,
前記NOx 触媒のSOx 堆積量を推定するSOx 堆積量推定手段と、  SOx accumulation amount estimating means for estimating the SOx accumulation amount of the NOx catalyst;
内燃機関で使用される燃料の硫黄分の濃度を検出する検出手段と、  Detection means for detecting the concentration of sulfur in the fuel used in the internal combustion engine;
前記SOx 被毒回復制御が行われる際の排気の空燃比を、推定される前記SOx 堆積量の減少に従ってよりリッチ側の空燃比とするとともに、同空燃比を前記検出された燃料の硫黄分の濃度に基づき補正する空燃比制御手段と、  The air-fuel ratio of the exhaust gas when the SOx poisoning recovery control is performed is set to a richer air-fuel ratio according to the estimated decrease in the accumulated amount of SOx, and the air-fuel ratio is set to the detected sulfur content of the fuel. Air-fuel ratio control means for correcting based on the concentration;
を備えることを特徴とする内燃機関の排気浄化システム。  An exhaust gas purification system for an internal combustion engine, comprising:
JP2003321408A 2003-09-12 2003-09-12 Exhaust gas purification system for internal combustion engine Expired - Fee Related JP4241279B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003321408A JP4241279B2 (en) 2003-09-12 2003-09-12 Exhaust gas purification system for internal combustion engine
DE200460019609 DE602004019609D1 (en) 2003-09-12 2004-09-07 Emission control system for an internal combustion engine
ES04021239T ES2318225T3 (en) 2003-09-12 2004-09-07 EXHAUST PURIFICATION SYSTEM OF AN INTERNAL COMBUSTION ENGINE.
EP20040021239 EP1515029B1 (en) 2003-09-12 2004-09-07 Exhaust purification system of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321408A JP4241279B2 (en) 2003-09-12 2003-09-12 Exhaust gas purification system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005090253A JP2005090253A (en) 2005-04-07
JP4241279B2 true JP4241279B2 (en) 2009-03-18

Family

ID=34132053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321408A Expired - Fee Related JP4241279B2 (en) 2003-09-12 2003-09-12 Exhaust gas purification system for internal combustion engine

Country Status (4)

Country Link
EP (1) EP1515029B1 (en)
JP (1) JP4241279B2 (en)
DE (1) DE602004019609D1 (en)
ES (1) ES2318225T3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905144B1 (en) * 2006-08-24 2008-10-31 Renault Sas SYSTEM FOR DESULFURIZING A CATALYTIC TRAPPING DEVICE OF NITROGEN OXIDES IN THE EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE
JP4765992B2 (en) * 2007-04-24 2011-09-07 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4816606B2 (en) 2007-09-18 2011-11-16 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP4396760B2 (en) 2007-11-08 2010-01-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4986915B2 (en) * 2008-04-16 2012-07-25 三菱ふそうトラック・バス株式会社 Exhaust purification device
JP4986973B2 (en) * 2008-10-23 2012-07-25 三菱ふそうトラック・バス株式会社 Exhaust purification device
JP5705676B2 (en) * 2011-07-27 2015-04-22 株式会社日本自動車部品総合研究所 Exhaust gas purification device for internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205773B1 (en) * 1998-07-07 2001-03-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine
DE19910664A1 (en) * 1999-03-11 2000-09-14 Volkswagen Ag Process for the de-sulfation of a NOx storage catalytic converter
JP3427772B2 (en) * 1999-03-23 2003-07-22 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
DE10103557B4 (en) * 2001-01-26 2012-02-23 Volkswagen Ag Method and device for desulfurization of a catalyst device
DE10126455B4 (en) * 2001-05-31 2006-03-23 Daimlerchrysler Ag Process for desulfating a nitrogen oxide storage catalyst
JP4345344B2 (en) * 2003-04-25 2009-10-14 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine

Also Published As

Publication number Publication date
EP1515029A3 (en) 2006-06-07
EP1515029A2 (en) 2005-03-16
DE602004019609D1 (en) 2009-04-09
JP2005090253A (en) 2005-04-07
EP1515029B1 (en) 2009-02-25
ES2318225T3 (en) 2009-05-01

Similar Documents

Publication Publication Date Title
US7464542B2 (en) Exhaust gas purification system for internal combustion engine
US8596062B2 (en) Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
JP4120523B2 (en) Exhaust gas recirculation control device for internal combustion engine
WO2002068807A1 (en) Exhaust gas purifier for internal combustion engines
JP2006233936A (en) Exhaust emission control device for internal combustion engine
JP2005048715A (en) Exhaust emission control device for internal combustion engine
JP4699331B2 (en) Exhaust gas purification device for internal combustion engine
JP4561656B2 (en) Catalyst temperature estimation device for internal combustion engine
JP4345344B2 (en) Exhaust gas purification system for internal combustion engine
JP4241279B2 (en) Exhaust gas purification system for internal combustion engine
JP4311071B2 (en) Defect determination method of exhaust purification system
EP1536120B1 (en) Exhaust gas control apparatus for internal combustion engine and control method thereof
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP4329455B2 (en) Excessive sulfur poisoning recovery control device for exhaust purification catalyst
JP4709733B2 (en) Exhaust gas purification device for internal combustion engine
JP4802904B2 (en) Exhaust gas purification system for internal combustion engine
JP4609299B2 (en) Exhaust gas purification device for internal combustion engine
JP4013774B2 (en) Exhaust gas purification device for internal combustion engine
JP4631680B2 (en) Exhaust gas purification device for internal combustion engine
JP4899955B2 (en) Control device for internal combustion engine
JP4013771B2 (en) Exhaust gas purification device for internal combustion engine
JP2020076378A (en) Internal combustion engine control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees