JP2018085873A - ゼロボルトスイッチング方式のスイッチング電源装置 - Google Patents

ゼロボルトスイッチング方式のスイッチング電源装置 Download PDF

Info

Publication number
JP2018085873A
JP2018085873A JP2016228572A JP2016228572A JP2018085873A JP 2018085873 A JP2018085873 A JP 2018085873A JP 2016228572 A JP2016228572 A JP 2016228572A JP 2016228572 A JP2016228572 A JP 2016228572A JP 2018085873 A JP2018085873 A JP 2018085873A
Authority
JP
Japan
Prior art keywords
power supply
switch
potential
drive control
connection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016228572A
Other languages
English (en)
Inventor
伊藤 仁
Hitoshi Ito
仁 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2016228572A priority Critical patent/JP2018085873A/ja
Publication of JP2018085873A publication Critical patent/JP2018085873A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】
比較的低コストで電力損失を改善することができるZVS方式のスイッチング電源装置を提供する。
【解決手段】
電源線と接地線との間において互いに接続点を介して直列接続された第1スイッチ素子及び第2スイッチ素子と、接続点に一方の端子が接続されたインダクタと、インダクタの他方の端子と接地線との間に接続されたキャパシタと、第1スイッチ素子及び第2スイッチ素子が同時にオフとなるデッドタイムを存在させつつ接続点の電位に応じて第1スイッチ素子及び第2スイッチ素子を交互にオンオフ駆動する駆動制御手段と、を備え、駆動制御手段は、第2スイッチ素子をオフせしめた後のデッドタイム期間中に、接続点の電位が電源線の電位に達したとき第1スイッチ素子をオンせしめる。
【選択図】 図3

Description

本発明はスイッチング電源装置に関し、特に、ゼロボルトスイッチング(ZVS)方式のスイッチング電源装置に関する。
スイッチング電源装置の高効率化に寄与する技術として、スイッチング損失を低減するソフトスイッチング技術がある。その中でスイッチ素子の端子間電圧がほぼゼロのときにスイッチングするZVS方式がある。ZVSを実現する手段としては臨界モード制御によるものがある。
図1は従来の典型的なZVS方式のスイッチング電源装置の内部回路を示している。このような構成の従来の電源装置は、例えば、特許文献1にも開示されている。かかる従来のスイッチング電源装置には、直流電源1、ハイサイドスイッチQ1、ローサイドスイッチQ2、インダクタL、キャパシタC1,C2、及び駆動制御回路2が備えられている。直流電源1の正出力端子B+は電源線Vinに接続され、負出力端子B−は接地線GNDに接続されている。ハイサイドスイッチQ1とローサイドスイッチQ2とは入力電源線Vinと接地線GNDとの間に直列に接続されている。スイッチQ1、Q2のスイッチ接続点SNと負荷接続線OUTとの間にインダクタLが接続されている。
図1に示した構成のZVS方式のスイッチング電源装置においては、ローサイドスイッチQ2がオフすると、インダクタLに蓄積されたエネルギーの放出によりローサイドスイッチQ2の寄生容量が充電されると共にハイサイドスイッチQ1の寄生容量の電荷が放電される。この結果、スイッチ接続点SNの電位は急速に上昇し、直流電源の正出力端子B+の入力電源線Vinの電位と等しい電位に到達した時にハイサイドスイッチQ1をオンさせることによりZVSが実現されている。
特開2007−68269号公報 特開2011−244662号公報
しかしながら、従来のZVS方式のスイッチング電源装置では、実際には、インダクタLや各スイッチQ1、Q2の寄生容量のばらつきを考慮して、図2に示すようにスイッチ接続点SNの電位が電源線Vinの電位に到達した後に、インダクタLに蓄積されたエネルギーをハイサイドスイッチQ1の寄生ダイオード(静電破壊防止用の内蔵ダイオード)を介して入力側へ回生するように設計されている。
上述の従来技術のように、エネルギーの回生時、ハイサイドスイッチQ1の寄生ダイオードを導通させるため順方向電圧降下VFによる損失が発生する(図2の電源線Vinの電位を越えた電位部分)。
これを改善するために、例えば、非特許文献1に開示されたように、インダクタLに並列に接続した補助スイッチを高精度に制御する電源装置がある。しかしながら、非特許文献1の電源装置では、補助スイッチを高精度に制御するためのタイミング制御回路が複雑になるので、汎用性がなく高価になるという欠点があった。
また、特許文献2に開示されたように、上記したインダクタLとスイッチ接続点SNとの間にインダクタンス値の小なるインダクタL0を設け、インダクタLとインダクタL0との接続点にダイオードとコンデンサとを接続し、ハイサイドスイッチのオンの直前にローサイドスイッチを所定時間だけオン制御して確実なゼロボルトスイッチング動作とした電源装置もある。しかしながら、特許文献2の電源装置では、インダクタ電流が寄生ダイオードを流れることには変わりはなく、電力損失が改善されないという欠点があった。
そこで、本発明の目的は、比較的低コストで電力損失を改善することができるZVS方式のスイッチング電源装置を提供することである。
本発明のZVS方式のスイッチング電源装置は、電源線と接地線との間において互いに接続点を介して直列接続された第1スイッチ素子及び第2スイッチ素子と、前記接続点に一方の端子が接続されたインダクタと、前記インダクタの他方の端子と前記接地線との間に接続されたキャパシタと、前記第1スイッチ素子及び前記第2スイッチ素子が同時にオフとなるデッドタイムを存在させつつ前記接続点の電位に応じて前記第1スイッチ素子及び前記第2スイッチ素子を交互にオンオフ駆動する駆動制御手段と、を備えたゼロボルトスイッチング方式のスイッチング電源装置であって、前記駆動制御手段は、前記第2スイッチ素子をオフせしめた後の前記デッドタイム期間中に、前記接続点の電位が前記電源線の電位に達したとき前記第1スイッチ素子をオンせしめることを特徴としている。
本発明のZVS方式のスイッチング電源装置によれば、第2スイッチ素子をオフせしめた後のデッドタイム期間中に、第1スイッチ素子と第2スイッチ素子との接続点の電位が電源線の電位に達したとき第1スイッチ素子をオンせしめるので、第1スイッチ素子のオンによりインダクタに蓄積されたエネルギーの放出電流が第1スイッチ素子を介して電源線へ回生される。よって、接続点の電位が電源線の電位を越えて上昇することが防止されるので、回生電流による電力損失を従来装置に比べて減少させることができる。また、簡単な構成で済むので、低コストであるという利点もある。
従来の典型的なZVS方式のスイッチング電源装置を示す回路図である。 図1の電源装置のハイサイドスイッチとローサイドスイッチのスイッチ接続点の電圧変化を示す波形図である。 本発明の一実施例としてのZVS方式のスイッチング電源装置を示す回路図である。 図3の電源装置中の駆動制御回路3の内部構成を示す回路図である。 図3の電源装置の各スイッチのオンオフ動作に対するスイッチ接続点SNの電位及び電流ILの変化を示す波形図である。 図3の電源装置の動作状態1における各スイッチのオンオフ及び電流ILの経路を示す図である。 図3の電源装置の動作状態2における各スイッチのオンオフ及び電流ILの経路を示す図である。 図3の電源装置の動作状態3における各スイッチのオンオフ及び電流ILの経路を示す図である。 図3の電源装置の動作状態4における各スイッチのオンオフ及び電流ILの経路を示す図である。 図3の電源装置の動作状態5における各スイッチのオンオフ及び電流ILの経路を示す図である。 本発明の他の実施例としてのZVS方式のスイッチング電源装置を示す回路図である。 本発明の他の実施例としてのZVS方式のスイッチング電源装置を示す回路図である。 本発明の他の実施例としてのZVS方式のスイッチング電源装置を示す回路図である。 本発明の他の実施例としてのZVS方式のスイッチング電源装置を示す回路図である。 本発明の他の実施例としてのZVS方式のスイッチング電源装置を示す回路図である。 図14の電源装置中の駆動制御回路7の内部構成を示す回路図である。
以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図3は本発明の一実施例としてのZVS方式の降圧型スイッチング電源装置を示している。このスイッチング電源装置においては、直流電源1の正出力端子B+は電源線Vinに接続され、負出力端子B−は接地線GNDに接続されている。接地線GNDの電位は接地電位にあるとする。電源線Vinと接地線GNDとの間には、キャパシタC1が接続されると共に、ハイサイドスイッチQ1とローサイドスイッチQ2とが直列に接続されている。また、電源線Vinと接地線GNDとの間には、駆動制御回路2(第1駆動制御回路)が接続されている。駆動制御回路2は例えば、特許文献2に開示されたように制御回路、駆動回路、増幅/比較回路を有する。
スイッチQ1、Q2のスイッチ接続点SNと負荷接続線OUTとの間にインダクタLが接続されている。負荷接続線OUTと接地線GNDとの間にはキャパシタC2及び負荷回路LDが接続されている。キャパシタC2は平滑用である。
スイッチQ1、Q2の各々はNチャネルのMOSFETからなる。ハイサイドスイッチQ1のドレインは電源線Vinに接続され、ハイサイドスイッチQ1のソースとローサイドスイッチQ2のドレインとはスイッチ接続点SNで互いに接続されている。ローサイドスイッチQ2のソースは接地線GNDに接続されている。スイッチQ1、Q2の各ゲートは駆動制御回路2に接続されている。駆動制御回路2はスイッチ接続点SN及び負荷接続線OUTの各々に接続されている。
本発明による降圧型スイッチング電源装置においては、更に、補助スイッチQ3とそれを駆動制御する駆動制御回路3(第2駆動制御回路)とが備えられている。補助スイッチQ3はNチャネルのMOSFETからなる。補助スイッチQ3のドレインは電源線Vinに接続され、ソースはスイッチ接続点SNに接続されている。すなわち、補助スイッチQ3はハイサイドスイッチQ1と並列に接続されている。補助スイッチQ3のゲートは駆動制御回路3に接続されている。駆動制御回路3には電源線Vinとスイッチ接続点SNとが接続されている。
ハイサイドスイッチQ1及び補助スイッチQ3が第1スイッチ素子を構成し、ローサイドスイッチQ2が第2スイッチ素子を構成する。
駆動制御回路3は具体的には、図4に示すように比較回路4、制御回路5、及び駆動回路6からなる。比較回路4は電源線Vinの電位とスイッチ接続点SNの電位を比較する。制御回路5は比較回路4の比較結果に応じて駆動回路6に対してオン指令又はオフ指令を生成する。駆動回路6はオン指令に応じて補助スイッチQ3をオン駆動し、オフ指令に応じて補助スイッチQ3のオン駆動を停止する。
次に、かかる構成を有する本発明による降圧型スイッチング電源装置の動作を説明する。
駆動制御回路2はスイッチ接続点SNの電位に応じてハイサイドスイッチQ1及びローサイドスイッチQ2のオンオフをPWM(パルス幅変調)制御することによって負荷接続線OUTと接地線GNDとの間の電圧である出力電圧Voutが所望の電圧になるようにする。出力電圧Voutは駆動制御回路2にフィードバックされ、その出力電圧Voutに応じて駆動制御回路2はハイサイドスイッチQ1の1サイクル期間中のオン期間とローサイドスイッチQ2の1サイクル期間中のオン期間とを調整する。ハイサイドスイッチQ1はスイッチ接続点SNの電位が電源線Vinの電位に等しいときにオンされる。ローサイドスイッチQ2はスイッチ接続点SNの電位が接地線GNDの電位に等しいときにオンされる。
ハイサイドスイッチQ1のオン期間には、ローサイドスイッチQ2はオフとされ、電源線Vinからの電流がハイサイドスイッチQ1のドレイン・ソース間、そしてインダクタLを介して負荷回路LD及びキャパシタC2に流れ込み、時間経過と共にインダクタLを流れる電流ILは増加する。インダクタLにはエネルギーが蓄積され、キャパシタC2には電荷が蓄積される。一方、ローサイドスイッチQ2のオン期間にはハイサイドスイッチQ1はオフとされ、インダクタLに蓄積されたエネルギー、すなわち自己誘電起電力によって電流ILが流れる。電流ILは徐々に減少し、やがてキャパシタC2の蓄積電荷による電流が電流ILに流れて電流の方向が反転する。
また、ハイサイドスイッチQ1及びローサイドスイッチQ2の双方がオフとなるデッドタイムが存在する。ローサイドスイッチQ2がオンからオフになったときのデッドタイム期間は数十nsecである。そのデッドタイム期間中にはキャパシタC2に蓄積された電荷が放出されてローサイドスイッチQ2の浮遊容量(寄生容量)が充電されると共にハイサイドスイッチQ1の浮遊容量の電荷が放電されてスイッチ接続点SNの電位が上昇する。駆動制御回路3はスイッチ接続点SNの電位が電源線Vinの電位に等しくなると補助スイッチQ3をオンさせる。補助スイッチQ3のオン状態はハイサイドスイッチQ1がオンに反転した直後まで継続する。すなわち、スイッチQ1,Q3の両方がオンとなる状態が存在する。補助スイッチQ3のオン期間は、駆動制御回路3内の上記した制御回路5の内部タイマ(図示せず)によって時間計測される。
図5は本発明による降圧型スイッチング電源装置の動作状態1〜5各々におけるスイッチQ1〜Q3のオンオフと、スイッチ接続点SNの電位及びインダクタLを流れる電流IL各々の変化とを示している。
動作状態1では、ローサイドスイッチQ2がオン状態にあり、スイッチQ1、Q3がオフ状態にある。ローサイドスイッチQ2のオン期間には先ず、インダクタLに蓄積されたエネルギーによって負荷接続線OUT方向の電流が流れ、そのエネルギーが無くなると、図6に示すように、キャパシタC2に蓄積された電荷が電流となってインダクタL、スイッチ接続点SN、そしてローサイドスイッチQ2を流れるのでインダクタLにエネルギーが蓄積される。スイッチ接続点SNの電位は接地電位に等しい。
動作状態2では、ローサイドスイッチQ2がオフとなり、全てのスイッチQ1〜Q3がオフ状態にある。ローサイドスイッチQ2がオフになることにより、インダクタLに蓄積されたエネルギーが放出され、その電流が図7に示すように、ローサイドスイッチQ2の浮遊容量に流れてその浮遊容量が充電される。一方、ハイサイドスイッチQ1ではインダクタLからのエネルギーの放出により浮遊容量の蓄電電荷が放電される。それによりスイッチ接続点SNの電位が上昇する。
動作状態3では、スイッチ接続点SNの電位が電源線Vinの電位に等しくなったときに駆動制御回路3は補助スイッチQ3をオンさせる。補助スイッチQ3のオンによりインダクタLに蓄積されたエネルギーの放出は図8に示すように、補助スイッチQ3を介した電源線Vinへの回生電流ILとなる。よって、スイッチ接続点SNの電位は電源線Vinの電位に等しい状態を継続する。
動作状態4では、ハイサイドスイッチQ1がオンとなり、ローサイドスイッチQ2はオフ状態を継続する。補助スイッチQ3はオン状態を継続する。インダクタLに蓄積されたエネルギーの放出が終了し、逆に、図9に示すように、電源線Vinからの電流がスイッチQ1,Q3各々のドレイン・ソース間、インダクタL、そして、キャパシタC2及び負荷回路LDを介して接地線GNDに流れ込む。スイッチ接続点SNの電位は電源線Vinの電位に等しい状態を継続する。
動作状態5では、補助スイッチQ3がオフとなり、ハイサイドスイッチQ1はオン状態を継続し、ローサイドスイッチQ2がオフ状態を継続する。図10に示すように、電源線Vinからの電流がスイッチQ1のドレイン・ソース間、インダクタL、そして、キャパシタC2及び負荷回路LDを介して接地線GNDに流れ込む。スイッチ接続点SNの電位は電源線Vinの電位に等しい状態を継続する。
動作状態5から次の動作状態1になるまでの動作は従来の降圧型スイッチング電源装置の動作と同一である。動作状態5の後に、ハイサイドスイッチQ1がオフとなり、スイッチQ2,Q3がオフ状態を継続した状態では、インダクタLに蓄積されたエネルギー、すなわち自己誘電起電力によって電流ILが流れる。電流ILは徐々に減少する。スイッチ接続点SNの電位はハイサイドスイッチQ1がオフとなった時点で接地電位より低下して負電位となる。
以上のように、図3に示した本発明による降圧型スイッチング電源装置においては、上記した動作状態3で補助スイッチQ3をオンさせてインダクタLに蓄積されたエネルギーの放出電流が補助スイッチQ3を介して電源線Vinへ回生されるので、回生電流による電力損失を従来装置に比べて減少させることができる。すなわち、従来装置におけるハイサイドスイッチQ1の寄生ダイオードを導通させたことによる順方向電圧降下VF分(図2)の電力損失を回避させることができる。また、従来装置に補助スイッチQ3及び駆動制御回路3を追加するだけで良く、従来装置の回路構成を変更しないで済むので低コストであるという利点もある。
図11〜図15は本発明の他の実施例としてのZVS方式の降圧型スイッチング電源装置を各々示している。
図11に示したスイッチング電源装置においては、駆動制御回路3には駆動制御回路2からハイサイドスイッチQ1をオンさせるタイミング信号が供給される。駆動制御回路3は補助スイッチQ3をオンさせた後、駆動制御回路2からこのタイミング信号を受けると、補助スイッチQ3をオフせしめる。駆動制御回路3は上記した内部タイマを用いないで補助スイッチQ3をオフさせる構成である。
図12に示したスイッチング電源装置においては、駆動制御回路3にはスイッチ接続点SNと接地線GNDとが接続されている。駆動制御回路3は、スイッチ接続点SNと接地線GNDとの電位差が予め定められた電位差に達したときに補助スイッチQ3をオンさせ、上記した内部タイマを用いて補助スイッチQ3をオフさせる。予め定められた電位差は電源線Vinと接地線GNDとの電位差である。
図13に示したスイッチング電源装置においては、駆動制御回路3にはスイッチ接続点SNと接地線GNDとが接続されている。また、駆動制御回路3には駆動制御回路2からハイサイドスイッチQ1をオンさせるタイミング信号が供給される。駆動制御回路3はスイッチ接続点SNと接地線GNDとの電位差が予め定められた電位差に達したときに補助スイッチQ3をオンさせる。駆動制御回路3は補助スイッチQ3をオンさせた後、駆動制御回路2からのタイミング信号を受けると、補助スイッチQ3をオフせしめる。駆動制御回路3は、スイッチ接続点SNと接地線GNDとの電位差に応じてオンする時点を設定し、上記した内部タイマを用いないで補助スイッチQ3をオフさせる構成である。
図11〜図13の各降圧型スイッチング電源装置においても、上記した動作状態3で補助スイッチQ3をオンさせてインダクタLに蓄積されたエネルギーの放出電流が補助スイッチQ3を介して電源線Vinへ回生されるので、回生電流による電力損失を従来装置に比べて減少させることができる。また、図11及び図13の各スイッチング電源装置では、スイッチQ1,Q2のデッドタイムを考慮することなく設計することができるという効果がある。
図14に示したスイッチング電源装置においては、駆動制御回路3に代えて駆動制御回路7が設けられている。また、上記した補助スイッチQ3が設けられていない。従って、第1スイッチ素子はハイサイドスイッチQ1だけで構成されている。駆動制御回路7は図5に示した補助スイッチQ3をオンさせるタイミングでハイサイドスイッチQ1をオンさせる。駆動制御回路7は例えば、図16に示すように比較回路14、制御回路15、及び駆動回路16からなる。比較回路14は電源線Vinの電位とスイッチ接続点SNの電位を比較する。制御回路15には駆動制御回路2からハイサイドスイッチQ1をオフさせるタイミング信号が供給される。制御回路15は比較回路14の比較結果から電源線Vinの電位がスイッチ接続点SNの電位に達したことを受けると駆動回路16にオン指令を供給し、駆動制御回路2から上記したオフのタイミング信号が供給されると、それをオフ指令として駆動回路16に供給する。駆動回路16はオン指令に応じてハイサイドスイッチQ1をオン駆動し、オフ指令に応じてハイサイドスイッチQ1のオン駆動を停止する。
図15に示したスイッチング電源装置においては、駆動制御回路7がスイッチ接続点SNと接地線GNDとの電位差が予め定められた電位(電源線Vinと接地線GNDとの電位差)に達したときにハイサイドスイッチQ1をオンさせる。それ以外は図14のスイッチング電源装置と同一である。
図14及び図15の各降圧型スイッチング電源装置においては、電源線Vinの電位がスイッチ接続点SNの電位に達したタイミングでハイサイドスイッチQ1をオンさせてインダクタLに蓄積されたエネルギーの放出電流がハイサイドスイッチQ1を介して電源線Vinへ回生されるので、回生電流による電力損失を従来装置に比べて減少させることができる。
なお、上記した各実施例においては、装置内に2つの駆動制御回路2、3(2、7)が設けられているが、単一の駆動制御回路として構成しても良い。
また、上記した各実施例においては、スイッチQ1、Q2、Q3がNチャネルのMOSFETで構成されているが、PチャネルのMOSFET、あるいはスイッチオン時に双方向に導通するスイッチ素子で構成しても良い。
1 直流電源
2,3,7 駆動制御回路
C1,C2 キャパシタ
L インダクタ
LD 負荷回路
OUT 負荷接続線
Q1 ハイサイドスイッチ
Q2 ローサイドスイッチ
Q3 補助スイッチ
SN 直列接続線
Vin 電源線

Claims (6)

  1. 電源線と接地線との間において互いに接続点を介して直列接続された第1スイッチ素子及び第2スイッチ素子と、
    前記接続点に一方の端子が接続されたインダクタと、
    前記インダクタの他方の端子と前記接地線との間に接続されたキャパシタと、
    前記第1スイッチ素子及び前記第2スイッチ素子が同時にオフとなるデッドタイムを存在させつつ前記接続点の電位に応じて前記第1スイッチ素子及び前記第2スイッチ素子を交互にオンオフ駆動する駆動制御手段と、を備えたゼロボルトスイッチング方式のスイッチング電源装置であって、
    前記駆動制御手段は、前記第2スイッチ素子をオフせしめた後の前記デッドタイム期間中に、前記接続点の電位が前記電源線の電位に達したとき前記第1スイッチ素子をオンせしめることを特徴とするスイッチング電源装置。
  2. 前記第1スイッチ素子は前記電源線と前記接続点との間に互いに並列に接続されたハイサイドスイッチ及び補助スイッチとからなり、
    前記第2スイッチ素子はローサイドスイッチからなり、
    前記駆動制御手段は、前記ローサイドスイッチをオフせしめた後の前記デッドタイム期間中に、前記接続点の電位が前記電源線の電位に達したとき前記補助スイッチをオンせしめることを特徴とする請求項1記載のスイッチング電源装置。
  3. 前記駆動制御手段は、前記補助スイッチをオンせしめてから所定の時間が経過したとき前記補助スイッチをオフせしめることを特徴とする請求項2記載のスイッチング電源装置。
  4. 前記駆動制御手段は、前記補助スイッチがオン状態であるときに前記ハイサイドスイッチをオンせしめた後に前記補助スイッチをオフせしめることを特徴とする請求項3記載のスイッチング電源装置。
  5. 前記駆動制御手段は、
    前記ハイサイドスイッチと前記ローサイドスイッチとを個別にオンオフ駆動する第1駆動制御回路と、
    前記補助スイッチをオンオフ駆動する第2駆動制御回路と、を含むことを特徴とする請求項2乃至4のいずれか1記載のスイッチング電源装置。
  6. 前記駆動制御手段は、前記接続点の電位が前記電源線の電位に達したことを、前記接続点の電位と前記接地線の電位との電位差が前記電源線の電位と前記接地線の電位との電位差に達したことから判定することを特徴とする請求項1乃至5記載のいずれか1記載のスイッチング電源装置。
JP2016228572A 2016-11-25 2016-11-25 ゼロボルトスイッチング方式のスイッチング電源装置 Pending JP2018085873A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016228572A JP2018085873A (ja) 2016-11-25 2016-11-25 ゼロボルトスイッチング方式のスイッチング電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016228572A JP2018085873A (ja) 2016-11-25 2016-11-25 ゼロボルトスイッチング方式のスイッチング電源装置

Publications (1)

Publication Number Publication Date
JP2018085873A true JP2018085873A (ja) 2018-05-31

Family

ID=62238626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016228572A Pending JP2018085873A (ja) 2016-11-25 2016-11-25 ゼロボルトスイッチング方式のスイッチング電源装置

Country Status (1)

Country Link
JP (1) JP2018085873A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490663A (zh) * 2019-01-25 2020-08-04 苏州捷芯威半导体有限公司 智能集成式开关管及谐振型软开关电路
WO2024004469A1 (ja) * 2022-06-30 2024-01-04 パナソニックIpマネジメント株式会社 コンバータ回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490663A (zh) * 2019-01-25 2020-08-04 苏州捷芯威半导体有限公司 智能集成式开关管及谐振型软开关电路
WO2024004469A1 (ja) * 2022-06-30 2024-01-04 パナソニックIpマネジメント株式会社 コンバータ回路

Similar Documents

Publication Publication Date Title
US9537400B2 (en) Switching converter with dead time between switching of switches
JP5494154B2 (ja) 絶縁型スイッチング電源装置
US9793810B2 (en) Control method for zero voltage switching buck-boost power converters
US10020731B2 (en) Power switch circuit
US20070115697A1 (en) Method of controlling DC-to-DC converter whereby switching control sequence applied to switching elements suppresses voltage surges at timings of switch-off of switching elements
US11323031B2 (en) Half-bridge driver circuit with a switched capacitor supply voltage for high side drive signal generation
US20200052594A1 (en) Converter output stage with mosfets having different characteristics
US20150097507A1 (en) Motor driving apparatus
JP2010200554A (ja) Dc−dcコンバータ
JP2018085873A (ja) ゼロボルトスイッチング方式のスイッチング電源装置
JP2009219250A (ja) Dc/dc電力変換装置
JP2018082506A (ja) Dcdcコンバータ
EP2980993B1 (en) Operating device for a light source and method of controlling an operating device
JP2013135570A (ja) Dc−dcコンバータ
WO2021070506A1 (ja) Dcdcコンバータ
JP5145142B2 (ja) ハーフブリッジ回路
JP5306730B2 (ja) ハーフブリッジ回路
JP5472433B1 (ja) スイッチ素子駆動回路
JP2001037214A (ja) 電源回路
CN102223069A (zh) 一种自驱动同步降压转换器电路
JP2018121475A (ja) 電力変換装置
JP5841098B2 (ja) ゼロカレントスイッチング回路及びフルブリッジ回路
JP2010259198A (ja) Dc−dc変換装置
JP4591392B2 (ja) スイッチング電源装置
JP2006149125A (ja) Dc−dcコンバータ