JP2018084405A5 - - Google Patents

Download PDF

Info

Publication number
JP2018084405A5
JP2018084405A5 JP2017226691A JP2017226691A JP2018084405A5 JP 2018084405 A5 JP2018084405 A5 JP 2018084405A5 JP 2017226691 A JP2017226691 A JP 2017226691A JP 2017226691 A JP2017226691 A JP 2017226691A JP 2018084405 A5 JP2018084405 A5 JP 2018084405A5
Authority
JP
Japan
Prior art keywords
type
particles
heat transfer
fluid
boundary layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017226691A
Other languages
English (en)
Japanese (ja)
Other versions
JP2018084405A (ja
Filing date
Publication date
Priority claimed from US13/654,369 external-priority patent/US9074828B2/en
Application filed filed Critical
Publication of JP2018084405A publication Critical patent/JP2018084405A/ja
Publication of JP2018084405A5 publication Critical patent/JP2018084405A5/ja
Pending legal-status Critical Current

Links

JP2017226691A 2012-10-17 2017-11-27 粒子相互作用による向上した境界層熱伝達 Pending JP2018084405A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/654,369 US9074828B2 (en) 2010-06-23 2012-10-17 Enhanced boundary layer heat transfer by particle interaction
US13/654,369 2012-10-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015537673A Division JP6675873B2 (ja) 2012-10-17 2012-10-17 粒子相互作用による向上した境界層熱伝達

Publications (2)

Publication Number Publication Date
JP2018084405A JP2018084405A (ja) 2018-05-31
JP2018084405A5 true JP2018084405A5 (enExample) 2019-06-27

Family

ID=47628422

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015537673A Active JP6675873B2 (ja) 2012-10-17 2012-10-17 粒子相互作用による向上した境界層熱伝達
JP2017226691A Pending JP2018084405A (ja) 2012-10-17 2017-11-27 粒子相互作用による向上した境界層熱伝達

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015537673A Active JP6675873B2 (ja) 2012-10-17 2012-10-17 粒子相互作用による向上した境界層熱伝達

Country Status (6)

Country Link
US (1) US9074828B2 (enExample)
EP (1) EP2912398B1 (enExample)
JP (2) JP6675873B2 (enExample)
CN (2) CN112304149A (enExample)
MX (1) MX380127B (enExample)
WO (1) WO2014062179A1 (enExample)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019713A1 (en) * 2007-08-06 2009-02-12 The Secretary Department Of Atomic Energy, Govt, Of India Stabilizing natural circulation systems with nano particles
US20160009360A1 (en) 2014-07-14 2016-01-14 Raytheon Company Optical window system with aero-optical conductive blades
CN109115020B (zh) * 2018-07-23 2020-01-07 山东理工大学 一种相界面强化对流传热的方法
US11332229B2 (en) 2019-03-25 2022-05-17 Goodrich Corporation Anti-harmonic optical turbulators
CN114857985A (zh) * 2022-04-22 2022-08-05 太原理工大学 一种用于强化湍流局部传热传质的多孔纳米球壳模型
CN117556739B (zh) * 2024-01-08 2024-04-23 西安交通大学 一种聚变堆超汽化矩形翅片结构临界热流密度的计算方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2356367A (en) 1940-11-22 1944-08-22 Jasco Inc High temperature lubricant
US2690051A (en) 1950-03-03 1954-09-28 Thermal Res & Engineering Corp Heat transfer system utilizing suspended particles in a gas or vapor
US2968624A (en) 1956-07-25 1961-01-17 Standard Oil Co Fluid power transmission
US5232627A (en) 1985-07-05 1993-08-03 The Dow Chemical Company Adducts of clay and activated mixed metal oxides
US5122292A (en) 1991-04-15 1992-06-16 General Motors Corporation Methods of varying the frequency to produce predetermined electrorheological responses
US5252239A (en) 1991-04-15 1993-10-12 General Motors Corporation ER fluids having chemically defoliated vermiculite treated with an alkyl ammonium halide and methods of making and using the same
AU2161492A (en) 1991-05-24 1992-12-30 Thomas E. Hughes Heat exchange medium and articles for use thereof
US5385688A (en) 1993-01-08 1995-01-31 American Polywater Corporation Antifreeze gel composition for use in a cable conduit
US5925288A (en) 1994-01-31 1999-07-20 Tonen Corporation Electrorheological fluid containing silica particles esterified by an alcohol-modified silicone oil
US5948845A (en) * 1994-04-05 1999-09-07 P.S.A.M.S., Inc. Solvent-based, thermal paint
US6221275B1 (en) * 1997-11-24 2001-04-24 University Of Chicago Enhanced heat transfer using nanofluids
US20040069454A1 (en) * 1998-11-02 2004-04-15 Bonsignore Patrick V. Composition for enhancing thermal conductivity of a heat transfer medium and method of use thereof
US6464770B1 (en) * 2000-08-08 2002-10-15 Advanced Minerals Corporation Perlite products with controlled particle size distribution
WO2003004944A2 (en) 2001-01-30 2003-01-16 Materials And Electrochemical Research (Mer) Corporation Nano carbon materials for enhancing thermal transfer in fluids
CN1500977A (zh) * 2002-11-12 2004-06-02 行 罗 内燃机闭式强制循环水冷却系强化冷却方法
US6840990B2 (en) 2002-12-10 2005-01-11 Prestone Products Corporation Sealing composition having corrosion inhibitor therein
US6858157B2 (en) 2003-04-17 2005-02-22 Vnaderbilt University Compositions with nano-particle size diamond powder and methods of using same for transferring heat between a heat source and a heat sink
US7820066B2 (en) * 2004-06-08 2010-10-26 Honeywell International Inc. Fluid composition having enhanced heat transfer efficiency
US7497903B2 (en) * 2004-09-28 2009-03-03 Advanced Minerals Corporation Micronized perlite filler product
US8011424B2 (en) * 2005-06-09 2011-09-06 The United States Of America, As Represented By The Secretary Of The Navy System and method for convective heat transfer utilizing a particulate solution in a time varying field
NZ566776A (en) 2005-08-19 2011-12-22 Ecopuro Method of producing composite members having increased strength
US7871533B1 (en) 2006-01-12 2011-01-18 South Dakota School Of Mines And Technology Carbon nanoparticle-containing nanofluid
EP2004567B8 (en) * 2006-03-09 2013-10-02 Advanced Minerals Corporation Micronized perlite filler product
JP2007263521A (ja) * 2006-03-29 2007-10-11 Aisin Seiki Co Ltd 熱機関
JP2008063411A (ja) 2006-09-06 2008-03-21 Denso Corp 熱輸送流体、熱輸送構造、及び熱輸送方法
EP2025731A1 (en) * 2007-08-06 2009-02-18 Solvay Solexis S.p.A. Heat Transfer fluid
US20100093922A1 (en) 2008-03-26 2010-04-15 Johnson Sr William L Structurally enhanced plastics with filler reinforcements
US20110301277A1 (en) 2008-03-26 2011-12-08 Johnson Sr William L Boundary breaker paint, coatings and adhesives
US9340720B2 (en) 2009-07-02 2016-05-17 Uchicago Argonne, Llc Heat transfer fluids containing nanoparticles
US20110301247A1 (en) 2010-06-08 2011-12-08 Hayakawa Chihiro Cosmetic product containing film-forming polymer
CN110219629B (zh) 2010-06-23 2021-12-03 伊科普罗有限责任公司 水力压裂
US20120029094A1 (en) 2010-08-24 2012-02-02 Johnson Sr William L Cellular foam additive
CN103154157B (zh) 2010-07-12 2016-08-03 伊科普罗有限责任公司 漆、涂料和粘合剂
CN102295917A (zh) * 2011-05-24 2011-12-28 西安交通大学 纳米粒子强化型制冷剂水合物相变蓄冷工质的制备方法
CN102425966B (zh) * 2011-09-23 2013-03-13 江苏大学 一种纳米乳液脉动热管的制造方法

Similar Documents

Publication Publication Date Title
JP2018084405A5 (enExample)
Khan et al. Slip velocity and temperature jump effects on molybdenum disulfide MoS2 and silicon oxide SiO2 hybrid nanofluid near irregular 3D surface
Mukherjee et al. Experimental investigation on thermo-physical properties and subcooled flow boiling performance of Al2O3/water nanofluids in a horizontal tube
Sahoo Heat transfer and second law characteristics of radiator with dissimilar shape nanoparticle-based ternary hybrid nanofluid.
Ahmadi et al. A review of thermal conductivity of various nanofluids
Zhang et al. Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding
Lee et al. Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid
Amin et al. Thermal properties of beeswax/graphene phase change material as energy storage for building applications
Yu et al. Review and assessment of nanofluid technology for transportation and other applications.
Molana et al. Investigation of heat transfer processes involved liquid impingement jets: a review
Kumar et al. Viscosity and thermal conductivity comparative study for hybrid nanofluid in binary base fluids
Bhanvase et al. Intensified heat transfer rate with the use of nanofluids
JP2016500804A5 (enExample)
Rekha Sahoo Effect of various shape and nanoparticle concentration based ternary hybrid nanofluid coolant on the thermal performance for automotive radiator
Abhijith et al. Numerical investigation of jet impingement flows with different nanofluids in a mini channel using Eulerian-Eulerian two-phase method
JP2018084405A (ja) 粒子相互作用による向上した境界層熱伝達
Balaji et al. A review of the role of passive techniques on heat transfer enhancement of horizontal tube falling film and flooded evaporators
Hamid Review of improvements on heat transfer using nanofluids via corrugated facing step
Gujar et al. A review on nanofluids: synthesis, stability, and uses in the manufacturing industry
Alhashash et al. Enhancement of conjugate heat transfer in an enclosure by utilizing water and nano encapsulated phase change materials with active cylinder
Balan et al. Investigation on the enhancement of heat transfer in counterflow double-pipe heat exchanger using nanofluids
Amrita et al. Thermal enhancement of graphene dispersed emulsifier cutting fluid with different surfactants
Ramachandran et al. Comprehensive review of principle factors for thermal conductivity and dynamic viscosity enhancement in thermal transport applications: An analytical tool approach
Yumi et al. Recent progress on preparation, properties and applications of nanofluids
Wang et al. Two-phase simulation and environmental consideration of thermo-hydraulic behavior and entropy production of water/TiO2-SWCNT hybrid nanofluid in a U-shaped heat exchanger equipped with needle fins of different sizes