JP2016500804A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2016500804A5 JP2016500804A5 JP2015537673A JP2015537673A JP2016500804A5 JP 2016500804 A5 JP2016500804 A5 JP 2016500804A5 JP 2015537673 A JP2015537673 A JP 2015537673A JP 2015537673 A JP2015537673 A JP 2015537673A JP 2016500804 A5 JP2016500804 A5 JP 2016500804A5
- Authority
- JP
- Japan
- Prior art keywords
- type
- particles
- heat transfer
- fluid
- boundary layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US2012/060688 WO2014062179A1 (en) | 2012-10-17 | 2012-10-17 | Enhanced boundary layer heat transfer by particle interaction |
| US13/654,369 US9074828B2 (en) | 2010-06-23 | 2012-10-17 | Enhanced boundary layer heat transfer by particle interaction |
| US13/654,369 | 2012-10-17 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2017226691A Division JP2018084405A (ja) | 2012-10-17 | 2017-11-27 | 粒子相互作用による向上した境界層熱伝達 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2016500804A JP2016500804A (ja) | 2016-01-14 |
| JP2016500804A5 true JP2016500804A5 (enExample) | 2019-06-06 |
| JP6675873B2 JP6675873B2 (ja) | 2020-04-08 |
Family
ID=47628422
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2015537673A Active JP6675873B2 (ja) | 2012-10-17 | 2012-10-17 | 粒子相互作用による向上した境界層熱伝達 |
| JP2017226691A Pending JP2018084405A (ja) | 2012-10-17 | 2017-11-27 | 粒子相互作用による向上した境界層熱伝達 |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2017226691A Pending JP2018084405A (ja) | 2012-10-17 | 2017-11-27 | 粒子相互作用による向上した境界層熱伝達 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US9074828B2 (enExample) |
| EP (1) | EP2912398B1 (enExample) |
| JP (2) | JP6675873B2 (enExample) |
| CN (2) | CN112304149A (enExample) |
| MX (1) | MX380127B (enExample) |
| WO (1) | WO2014062179A1 (enExample) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009019713A1 (en) * | 2007-08-06 | 2009-02-12 | The Secretary Department Of Atomic Energy, Govt, Of India | Stabilizing natural circulation systems with nano particles |
| US20160009360A1 (en) | 2014-07-14 | 2016-01-14 | Raytheon Company | Optical window system with aero-optical conductive blades |
| CN109115020B (zh) * | 2018-07-23 | 2020-01-07 | 山东理工大学 | 一种相界面强化对流传热的方法 |
| US11332229B2 (en) | 2019-03-25 | 2022-05-17 | Goodrich Corporation | Anti-harmonic optical turbulators |
| CN114857985A (zh) * | 2022-04-22 | 2022-08-05 | 太原理工大学 | 一种用于强化湍流局部传热传质的多孔纳米球壳模型 |
| CN117556739B (zh) * | 2024-01-08 | 2024-04-23 | 西安交通大学 | 一种聚变堆超汽化矩形翅片结构临界热流密度的计算方法 |
Family Cites Families (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2356367A (en) | 1940-11-22 | 1944-08-22 | Jasco Inc | High temperature lubricant |
| US2690051A (en) | 1950-03-03 | 1954-09-28 | Thermal Res & Engineering Corp | Heat transfer system utilizing suspended particles in a gas or vapor |
| US2968624A (en) | 1956-07-25 | 1961-01-17 | Standard Oil Co | Fluid power transmission |
| US5232627A (en) | 1985-07-05 | 1993-08-03 | The Dow Chemical Company | Adducts of clay and activated mixed metal oxides |
| US5122292A (en) | 1991-04-15 | 1992-06-16 | General Motors Corporation | Methods of varying the frequency to produce predetermined electrorheological responses |
| US5252239A (en) | 1991-04-15 | 1993-10-12 | General Motors Corporation | ER fluids having chemically defoliated vermiculite treated with an alkyl ammonium halide and methods of making and using the same |
| AU2161492A (en) | 1991-05-24 | 1992-12-30 | Thomas E. Hughes | Heat exchange medium and articles for use thereof |
| US5385688A (en) | 1993-01-08 | 1995-01-31 | American Polywater Corporation | Antifreeze gel composition for use in a cable conduit |
| US5925288A (en) | 1994-01-31 | 1999-07-20 | Tonen Corporation | Electrorheological fluid containing silica particles esterified by an alcohol-modified silicone oil |
| US5948845A (en) * | 1994-04-05 | 1999-09-07 | P.S.A.M.S., Inc. | Solvent-based, thermal paint |
| US6221275B1 (en) * | 1997-11-24 | 2001-04-24 | University Of Chicago | Enhanced heat transfer using nanofluids |
| US20040069454A1 (en) * | 1998-11-02 | 2004-04-15 | Bonsignore Patrick V. | Composition for enhancing thermal conductivity of a heat transfer medium and method of use thereof |
| US6464770B1 (en) * | 2000-08-08 | 2002-10-15 | Advanced Minerals Corporation | Perlite products with controlled particle size distribution |
| WO2003004944A2 (en) | 2001-01-30 | 2003-01-16 | Materials And Electrochemical Research (Mer) Corporation | Nano carbon materials for enhancing thermal transfer in fluids |
| CN1500977A (zh) * | 2002-11-12 | 2004-06-02 | 行 罗 | 内燃机闭式强制循环水冷却系强化冷却方法 |
| US6840990B2 (en) | 2002-12-10 | 2005-01-11 | Prestone Products Corporation | Sealing composition having corrosion inhibitor therein |
| US6858157B2 (en) | 2003-04-17 | 2005-02-22 | Vnaderbilt University | Compositions with nano-particle size diamond powder and methods of using same for transferring heat between a heat source and a heat sink |
| US7820066B2 (en) * | 2004-06-08 | 2010-10-26 | Honeywell International Inc. | Fluid composition having enhanced heat transfer efficiency |
| US7497903B2 (en) * | 2004-09-28 | 2009-03-03 | Advanced Minerals Corporation | Micronized perlite filler product |
| US8011424B2 (en) * | 2005-06-09 | 2011-09-06 | The United States Of America, As Represented By The Secretary Of The Navy | System and method for convective heat transfer utilizing a particulate solution in a time varying field |
| NZ566776A (en) | 2005-08-19 | 2011-12-22 | Ecopuro | Method of producing composite members having increased strength |
| US7871533B1 (en) | 2006-01-12 | 2011-01-18 | South Dakota School Of Mines And Technology | Carbon nanoparticle-containing nanofluid |
| EP2004567B8 (en) * | 2006-03-09 | 2013-10-02 | Advanced Minerals Corporation | Micronized perlite filler product |
| JP2007263521A (ja) * | 2006-03-29 | 2007-10-11 | Aisin Seiki Co Ltd | 熱機関 |
| JP2008063411A (ja) | 2006-09-06 | 2008-03-21 | Denso Corp | 熱輸送流体、熱輸送構造、及び熱輸送方法 |
| EP2025731A1 (en) * | 2007-08-06 | 2009-02-18 | Solvay Solexis S.p.A. | Heat Transfer fluid |
| US20100093922A1 (en) | 2008-03-26 | 2010-04-15 | Johnson Sr William L | Structurally enhanced plastics with filler reinforcements |
| US20110301277A1 (en) | 2008-03-26 | 2011-12-08 | Johnson Sr William L | Boundary breaker paint, coatings and adhesives |
| US9340720B2 (en) | 2009-07-02 | 2016-05-17 | Uchicago Argonne, Llc | Heat transfer fluids containing nanoparticles |
| US20110301247A1 (en) | 2010-06-08 | 2011-12-08 | Hayakawa Chihiro | Cosmetic product containing film-forming polymer |
| CN110219629B (zh) | 2010-06-23 | 2021-12-03 | 伊科普罗有限责任公司 | 水力压裂 |
| US20120029094A1 (en) | 2010-08-24 | 2012-02-02 | Johnson Sr William L | Cellular foam additive |
| CN103154157B (zh) | 2010-07-12 | 2016-08-03 | 伊科普罗有限责任公司 | 漆、涂料和粘合剂 |
| CN102295917A (zh) * | 2011-05-24 | 2011-12-28 | 西安交通大学 | 纳米粒子强化型制冷剂水合物相变蓄冷工质的制备方法 |
| CN102425966B (zh) * | 2011-09-23 | 2013-03-13 | 江苏大学 | 一种纳米乳液脉动热管的制造方法 |
-
2012
- 2012-10-17 CN CN202011017791.0A patent/CN112304149A/zh active Pending
- 2012-10-17 WO PCT/US2012/060688 patent/WO2014062179A1/en not_active Ceased
- 2012-10-17 EP EP12819156.6A patent/EP2912398B1/en active Active
- 2012-10-17 JP JP2015537673A patent/JP6675873B2/ja active Active
- 2012-10-17 MX MX2015004861A patent/MX380127B/es unknown
- 2012-10-17 US US13/654,369 patent/US9074828B2/en active Active
- 2012-10-17 CN CN201280077778.1A patent/CN104969025A/zh active Pending
-
2017
- 2017-11-27 JP JP2017226691A patent/JP2018084405A/ja active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Zhang et al. | Bioinspired surfaces with superwettability for anti‐icing and ice‐phobic application: concept, mechanism, and design | |
| JP2018084405A5 (enExample) | ||
| JP2016500804A5 (enExample) | ||
| He et al. | Superhydrophobic materials used for anti-icing Theory, application, and development | |
| Aboud et al. | Splashing threshold of oblique droplet impacts on surfaces of various wettability | |
| Wang et al. | Dual-energy-barrier stable superhydrophobic structures for long icing delay | |
| Li et al. | Superhydrophobic copper surface textured by laser for delayed icing phenomenon | |
| Zhang et al. | Liquid mobility on superwettable surfaces for applications in energy and the environment | |
| Molana et al. | Investigation of heat transfer processes involved liquid impingement jets: a review | |
| Lee et al. | Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid | |
| Zhang et al. | Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding | |
| Chyu et al. | Heat transfer on the base surface of threedimensional protruding elements | |
| Okulov et al. | Physical de-icing techniques for wind turbine blades | |
| US20180180364A1 (en) | Liquid-impregnated surfaces, methods of making, and devices incorporating the same | |
| Kumar et al. | Viscosity and thermal conductivity comparative study for hybrid nanofluid in binary base fluids | |
| EP2739564A1 (en) | Articles for manipulating impinging liquids and methods of manufacturing same | |
| Zhao et al. | Experimental research on friction-reduction with super-hydrophobic surfaces | |
| Lee et al. | Critical heat flux enhancement in flow boiling of Al 2O 3 and SiC nanofluids under low pressure and low flow conditions | |
| Wang et al. | Preparation of a bionic lotus leaf microstructured surface and its drag reduction performance | |
| JP2018084405A (ja) | 粒子相互作用による向上した境界層熱伝達 | |
| Peng et al. | A facile and cost-effective fabrication of robust carbon black-based superhydrophobic coatings on aluminum alloy | |
| CN109029016A (zh) | 一种具有沙丘形涡发生器的管翅式换热器 | |
| Poongavanam et al. | Exploring the performance of a novel solar water heater by combining three augmentation approaches (nanofluids, absorber roughness, and surface coating) | |
| Rong et al. | Drag reduction of stable biomimetic superhydrophobic steel surface by acid etching under an oxygen-sufficient environment | |
| Thapa et al. | Numerical study of car radiator using dimple roughness and nanofluid |