JP2016500804A5 - - Google Patents

Download PDF

Info

Publication number
JP2016500804A5
JP2016500804A5 JP2015537673A JP2015537673A JP2016500804A5 JP 2016500804 A5 JP2016500804 A5 JP 2016500804A5 JP 2015537673 A JP2015537673 A JP 2015537673A JP 2015537673 A JP2015537673 A JP 2015537673A JP 2016500804 A5 JP2016500804 A5 JP 2016500804A5
Authority
JP
Japan
Prior art keywords
type
particles
heat transfer
fluid
boundary layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015537673A
Other languages
English (en)
Japanese (ja)
Other versions
JP6675873B2 (ja
JP2016500804A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2012/060688 external-priority patent/WO2014062179A1/en
Publication of JP2016500804A publication Critical patent/JP2016500804A/ja
Publication of JP2016500804A5 publication Critical patent/JP2016500804A5/ja
Application granted granted Critical
Publication of JP6675873B2 publication Critical patent/JP6675873B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

JP2015537673A 2012-10-17 2012-10-17 粒子相互作用による向上した境界層熱伝達 Active JP6675873B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/US2012/060688 WO2014062179A1 (en) 2012-10-17 2012-10-17 Enhanced boundary layer heat transfer by particle interaction
US13/654,369 US9074828B2 (en) 2010-06-23 2012-10-17 Enhanced boundary layer heat transfer by particle interaction
US13/654,369 2012-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017226691A Division JP2018084405A (ja) 2012-10-17 2017-11-27 粒子相互作用による向上した境界層熱伝達

Publications (3)

Publication Number Publication Date
JP2016500804A JP2016500804A (ja) 2016-01-14
JP2016500804A5 true JP2016500804A5 (enExample) 2019-06-06
JP6675873B2 JP6675873B2 (ja) 2020-04-08

Family

ID=47628422

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015537673A Active JP6675873B2 (ja) 2012-10-17 2012-10-17 粒子相互作用による向上した境界層熱伝達
JP2017226691A Pending JP2018084405A (ja) 2012-10-17 2017-11-27 粒子相互作用による向上した境界層熱伝達

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017226691A Pending JP2018084405A (ja) 2012-10-17 2017-11-27 粒子相互作用による向上した境界層熱伝達

Country Status (6)

Country Link
US (1) US9074828B2 (enExample)
EP (1) EP2912398B1 (enExample)
JP (2) JP6675873B2 (enExample)
CN (2) CN112304149A (enExample)
MX (1) MX380127B (enExample)
WO (1) WO2014062179A1 (enExample)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019713A1 (en) * 2007-08-06 2009-02-12 The Secretary Department Of Atomic Energy, Govt, Of India Stabilizing natural circulation systems with nano particles
US20160009360A1 (en) 2014-07-14 2016-01-14 Raytheon Company Optical window system with aero-optical conductive blades
CN109115020B (zh) * 2018-07-23 2020-01-07 山东理工大学 一种相界面强化对流传热的方法
US11332229B2 (en) 2019-03-25 2022-05-17 Goodrich Corporation Anti-harmonic optical turbulators
CN114857985A (zh) * 2022-04-22 2022-08-05 太原理工大学 一种用于强化湍流局部传热传质的多孔纳米球壳模型
CN117556739B (zh) * 2024-01-08 2024-04-23 西安交通大学 一种聚变堆超汽化矩形翅片结构临界热流密度的计算方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2356367A (en) 1940-11-22 1944-08-22 Jasco Inc High temperature lubricant
US2690051A (en) 1950-03-03 1954-09-28 Thermal Res & Engineering Corp Heat transfer system utilizing suspended particles in a gas or vapor
US2968624A (en) 1956-07-25 1961-01-17 Standard Oil Co Fluid power transmission
US5232627A (en) 1985-07-05 1993-08-03 The Dow Chemical Company Adducts of clay and activated mixed metal oxides
US5122292A (en) 1991-04-15 1992-06-16 General Motors Corporation Methods of varying the frequency to produce predetermined electrorheological responses
US5252239A (en) 1991-04-15 1993-10-12 General Motors Corporation ER fluids having chemically defoliated vermiculite treated with an alkyl ammonium halide and methods of making and using the same
AU2161492A (en) 1991-05-24 1992-12-30 Thomas E. Hughes Heat exchange medium and articles for use thereof
US5385688A (en) 1993-01-08 1995-01-31 American Polywater Corporation Antifreeze gel composition for use in a cable conduit
US5925288A (en) 1994-01-31 1999-07-20 Tonen Corporation Electrorheological fluid containing silica particles esterified by an alcohol-modified silicone oil
US5948845A (en) * 1994-04-05 1999-09-07 P.S.A.M.S., Inc. Solvent-based, thermal paint
US6221275B1 (en) * 1997-11-24 2001-04-24 University Of Chicago Enhanced heat transfer using nanofluids
US20040069454A1 (en) * 1998-11-02 2004-04-15 Bonsignore Patrick V. Composition for enhancing thermal conductivity of a heat transfer medium and method of use thereof
US6464770B1 (en) * 2000-08-08 2002-10-15 Advanced Minerals Corporation Perlite products with controlled particle size distribution
WO2003004944A2 (en) 2001-01-30 2003-01-16 Materials And Electrochemical Research (Mer) Corporation Nano carbon materials for enhancing thermal transfer in fluids
CN1500977A (zh) * 2002-11-12 2004-06-02 行 罗 内燃机闭式强制循环水冷却系强化冷却方法
US6840990B2 (en) 2002-12-10 2005-01-11 Prestone Products Corporation Sealing composition having corrosion inhibitor therein
US6858157B2 (en) 2003-04-17 2005-02-22 Vnaderbilt University Compositions with nano-particle size diamond powder and methods of using same for transferring heat between a heat source and a heat sink
US7820066B2 (en) * 2004-06-08 2010-10-26 Honeywell International Inc. Fluid composition having enhanced heat transfer efficiency
US7497903B2 (en) * 2004-09-28 2009-03-03 Advanced Minerals Corporation Micronized perlite filler product
US8011424B2 (en) * 2005-06-09 2011-09-06 The United States Of America, As Represented By The Secretary Of The Navy System and method for convective heat transfer utilizing a particulate solution in a time varying field
NZ566776A (en) 2005-08-19 2011-12-22 Ecopuro Method of producing composite members having increased strength
US7871533B1 (en) 2006-01-12 2011-01-18 South Dakota School Of Mines And Technology Carbon nanoparticle-containing nanofluid
EP2004567B8 (en) * 2006-03-09 2013-10-02 Advanced Minerals Corporation Micronized perlite filler product
JP2007263521A (ja) * 2006-03-29 2007-10-11 Aisin Seiki Co Ltd 熱機関
JP2008063411A (ja) 2006-09-06 2008-03-21 Denso Corp 熱輸送流体、熱輸送構造、及び熱輸送方法
EP2025731A1 (en) * 2007-08-06 2009-02-18 Solvay Solexis S.p.A. Heat Transfer fluid
US20100093922A1 (en) 2008-03-26 2010-04-15 Johnson Sr William L Structurally enhanced plastics with filler reinforcements
US20110301277A1 (en) 2008-03-26 2011-12-08 Johnson Sr William L Boundary breaker paint, coatings and adhesives
US9340720B2 (en) 2009-07-02 2016-05-17 Uchicago Argonne, Llc Heat transfer fluids containing nanoparticles
US20110301247A1 (en) 2010-06-08 2011-12-08 Hayakawa Chihiro Cosmetic product containing film-forming polymer
CN110219629B (zh) 2010-06-23 2021-12-03 伊科普罗有限责任公司 水力压裂
US20120029094A1 (en) 2010-08-24 2012-02-02 Johnson Sr William L Cellular foam additive
CN103154157B (zh) 2010-07-12 2016-08-03 伊科普罗有限责任公司 漆、涂料和粘合剂
CN102295917A (zh) * 2011-05-24 2011-12-28 西安交通大学 纳米粒子强化型制冷剂水合物相变蓄冷工质的制备方法
CN102425966B (zh) * 2011-09-23 2013-03-13 江苏大学 一种纳米乳液脉动热管的制造方法

Similar Documents

Publication Publication Date Title
Zhang et al. Bioinspired surfaces with superwettability for anti‐icing and ice‐phobic application: concept, mechanism, and design
JP2018084405A5 (enExample)
JP2016500804A5 (enExample)
He et al. Superhydrophobic materials used for anti-icing Theory, application, and development
Aboud et al. Splashing threshold of oblique droplet impacts on surfaces of various wettability
Wang et al. Dual-energy-barrier stable superhydrophobic structures for long icing delay
Li et al. Superhydrophobic copper surface textured by laser for delayed icing phenomenon
Zhang et al. Liquid mobility on superwettable surfaces for applications in energy and the environment
Molana et al. Investigation of heat transfer processes involved liquid impingement jets: a review
Lee et al. Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid
Zhang et al. Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding
Chyu et al. Heat transfer on the base surface of threedimensional protruding elements
Okulov et al. Physical de-icing techniques for wind turbine blades
US20180180364A1 (en) Liquid-impregnated surfaces, methods of making, and devices incorporating the same
Kumar et al. Viscosity and thermal conductivity comparative study for hybrid nanofluid in binary base fluids
EP2739564A1 (en) Articles for manipulating impinging liquids and methods of manufacturing same
Zhao et al. Experimental research on friction-reduction with super-hydrophobic surfaces
Lee et al. Critical heat flux enhancement in flow boiling of Al 2O 3 and SiC nanofluids under low pressure and low flow conditions
Wang et al. Preparation of a bionic lotus leaf microstructured surface and its drag reduction performance
JP2018084405A (ja) 粒子相互作用による向上した境界層熱伝達
Peng et al. A facile and cost-effective fabrication of robust carbon black-based superhydrophobic coatings on aluminum alloy
CN109029016A (zh) 一种具有沙丘形涡发生器的管翅式换热器
Poongavanam et al. Exploring the performance of a novel solar water heater by combining three augmentation approaches (nanofluids, absorber roughness, and surface coating)
Rong et al. Drag reduction of stable biomimetic superhydrophobic steel surface by acid etching under an oxygen-sufficient environment
Thapa et al. Numerical study of car radiator using dimple roughness and nanofluid