MX380127B - Transferencia de calor de capa limite aumentada mediante interaccion de particula. - Google Patents

Transferencia de calor de capa limite aumentada mediante interaccion de particula.

Info

Publication number
MX380127B
MX380127B MX2015004861A MX2015004861A MX380127B MX 380127 B MX380127 B MX 380127B MX 2015004861 A MX2015004861 A MX 2015004861A MX 2015004861 A MX2015004861 A MX 2015004861A MX 380127 B MX380127 B MX 380127B
Authority
MX
Mexico
Prior art keywords
boundary layer
heat transfer
particles
mixing
fluid
Prior art date
Application number
MX2015004861A
Other languages
English (en)
Other versions
MX2015004861A (es
Inventor
Sr William L Johnson
Original Assignee
Ecopuro Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecopuro Llc filed Critical Ecopuro Llc
Publication of MX2015004861A publication Critical patent/MX2015004861A/es
Publication of MX380127B publication Critical patent/MX380127B/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Paints Or Removers (AREA)
  • Chemically Coating (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Lubricants (AREA)

Abstract

Se describe la transferencia de calor aumentada mediante el movimiento cinético de la película de capa límite al introducir partículas con superficies especializadas. Una capa límite se estanca, reduciendo la transferencia de calor en un fluido que fluye. La transferencia de calor de capa límite es principalmente la conducción. La introducción de partículas especializadas en el fluido promueve el mezclado de capa limite, para de esta manera convertir la conducción a convección a través de la película. Las partículas de la invención se agitan mientras que se mezcla la capa límite, lo cual proporciona sitios de energía de baja área de superficie alrededor de las partículas. El movimiento cinético incrementa la formación de nucleación de la transferencia de fase de gas durante la ebullición. Las nanopartículas de metal y cerámica en fluidos incrementan la conductividad térmica del fluido. Al modificar las características de superficie de tales nanopartículas para promover el mezclado de capa límite, se incrementarán la transferencia de calor del fluido y la conductividad térmica. Las características de superficie especializadas de los materiales aseguran que las partículas se interconecten con la capa límite para producir mezclado cinético y sitios de energía de baja área de superficie para la nucleación acelerada, dando por resultado la transferencia de calor aumentada del gas o líquido.
MX2015004861A 2012-10-17 2012-10-17 Transferencia de calor de capa limite aumentada mediante interaccion de particula. MX380127B (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/654,369 US9074828B2 (en) 2010-06-23 2012-10-17 Enhanced boundary layer heat transfer by particle interaction
PCT/US2012/060688 WO2014062179A1 (en) 2012-10-17 2012-10-17 Enhanced boundary layer heat transfer by particle interaction

Publications (2)

Publication Number Publication Date
MX2015004861A MX2015004861A (es) 2016-03-21
MX380127B true MX380127B (es) 2025-03-11

Family

ID=47628422

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2015004861A MX380127B (es) 2012-10-17 2012-10-17 Transferencia de calor de capa limite aumentada mediante interaccion de particula.

Country Status (6)

Country Link
US (1) US9074828B2 (es)
EP (1) EP2912398B1 (es)
JP (2) JP6675873B2 (es)
CN (2) CN104969025A (es)
MX (1) MX380127B (es)
WO (1) WO2014062179A1 (es)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2181170A1 (en) * 2007-08-06 2010-05-05 The Secretary, Department Of Atomic Energy, Govt. of India Stabilizing natural circulation systems with nano particles
US20160009360A1 (en) 2014-07-14 2016-01-14 Raytheon Company Optical window system with aero-optical conductive blades
CN109115020B (zh) * 2018-07-23 2020-01-07 山东理工大学 一种相界面强化对流传热的方法
US11332229B2 (en) * 2019-03-25 2022-05-17 Goodrich Corporation Anti-harmonic optical turbulators
CN114857985A (zh) * 2022-04-22 2022-08-05 太原理工大学 一种用于强化湍流局部传热传质的多孔纳米球壳模型
CN117556739B (zh) * 2024-01-08 2024-04-23 西安交通大学 一种聚变堆超汽化矩形翅片结构临界热流密度的计算方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2356367A (en) 1940-11-22 1944-08-22 Jasco Inc High temperature lubricant
US2690051A (en) 1950-03-03 1954-09-28 Thermal Res & Engineering Corp Heat transfer system utilizing suspended particles in a gas or vapor
US2968624A (en) 1956-07-25 1961-01-17 Standard Oil Co Fluid power transmission
US5232627A (en) 1985-07-05 1993-08-03 The Dow Chemical Company Adducts of clay and activated mixed metal oxides
US5122292A (en) 1991-04-15 1992-06-16 General Motors Corporation Methods of varying the frequency to produce predetermined electrorheological responses
US5252239A (en) 1991-04-15 1993-10-12 General Motors Corporation ER fluids having chemically defoliated vermiculite treated with an alkyl ammonium halide and methods of making and using the same
AU2161492A (en) 1991-05-24 1992-12-30 Thomas E. Hughes Heat exchange medium and articles for use thereof
US5385688A (en) 1993-01-08 1995-01-31 American Polywater Corporation Antifreeze gel composition for use in a cable conduit
US5925288A (en) 1994-01-31 1999-07-20 Tonen Corporation Electrorheological fluid containing silica particles esterified by an alcohol-modified silicone oil
US5948845A (en) * 1994-04-05 1999-09-07 P.S.A.M.S., Inc. Solvent-based, thermal paint
US6221275B1 (en) 1997-11-24 2001-04-24 University Of Chicago Enhanced heat transfer using nanofluids
US20040069454A1 (en) * 1998-11-02 2004-04-15 Bonsignore Patrick V. Composition for enhancing thermal conductivity of a heat transfer medium and method of use thereof
US6464770B1 (en) * 2000-08-08 2002-10-15 Advanced Minerals Corporation Perlite products with controlled particle size distribution
WO2003004944A2 (en) 2001-01-30 2003-01-16 Materials And Electrochemical Research (Mer) Corporation Nano carbon materials for enhancing thermal transfer in fluids
CN1500977A (zh) * 2002-11-12 2004-06-02 行 罗 内燃机闭式强制循环水冷却系强化冷却方法
US6840990B2 (en) 2002-12-10 2005-01-11 Prestone Products Corporation Sealing composition having corrosion inhibitor therein
US6858157B2 (en) 2003-04-17 2005-02-22 Vnaderbilt University Compositions with nano-particle size diamond powder and methods of using same for transferring heat between a heat source and a heat sink
US7820066B2 (en) * 2004-06-08 2010-10-26 Honeywell International Inc. Fluid composition having enhanced heat transfer efficiency
US7497903B2 (en) * 2004-09-28 2009-03-03 Advanced Minerals Corporation Micronized perlite filler product
US8011424B2 (en) * 2005-06-09 2011-09-06 The United States Of America, As Represented By The Secretary Of The Navy System and method for convective heat transfer utilizing a particulate solution in a time varying field
DK1928643T3 (da) 2005-08-19 2022-01-10 William Lee Johnson Sr Fremgangsmåde til fremstilling af kompositelementer med forøget styrke
US7871533B1 (en) 2006-01-12 2011-01-18 South Dakota School Of Mines And Technology Carbon nanoparticle-containing nanofluid
CN101400620B (zh) * 2006-03-09 2013-02-06 高级矿物公司 微粉化珍珠岩填料产品
JP2007263521A (ja) * 2006-03-29 2007-10-11 Aisin Seiki Co Ltd 熱機関
JP2008063411A (ja) 2006-09-06 2008-03-21 Denso Corp 熱輸送流体、熱輸送構造、及び熱輸送方法
EP2025731A1 (en) * 2007-08-06 2009-02-18 Solvay Solexis S.p.A. Heat Transfer fluid
US20100093922A1 (en) 2008-03-26 2010-04-15 Johnson Sr William L Structurally enhanced plastics with filler reinforcements
US20110301277A1 (en) 2008-03-26 2011-12-08 Johnson Sr William L Boundary breaker paint, coatings and adhesives
US9340720B2 (en) 2009-07-02 2016-05-17 Uchicago Argonne, Llc Heat transfer fluids containing nanoparticles
US20110301247A1 (en) 2010-06-08 2011-12-08 Hayakawa Chihiro Cosmetic product containing film-forming polymer
WO2011163529A1 (en) * 2010-06-23 2011-12-29 Ecopuro, Llc Hydraulic fracturing
US20120029094A1 (en) * 2010-08-24 2012-02-02 Johnson Sr William L Cellular foam additive
WO2012009384A1 (en) * 2010-07-12 2012-01-19 Ecopuro, Llc Boundary breaker paint, coatings and adhesives
CN102295917A (zh) * 2011-05-24 2011-12-28 西安交通大学 纳米粒子强化型制冷剂水合物相变蓄冷工质的制备方法
CN102425966B (zh) * 2011-09-23 2013-03-13 江苏大学 一种纳米乳液脉动热管的制造方法

Also Published As

Publication number Publication date
MX2015004861A (es) 2016-03-21
US20130140006A1 (en) 2013-06-06
US9074828B2 (en) 2015-07-07
CN112304149A (zh) 2021-02-02
EP2912398B1 (en) 2021-01-20
JP2018084405A (ja) 2018-05-31
JP6675873B2 (ja) 2020-04-08
EP2912398A1 (en) 2015-09-02
CN104969025A (zh) 2015-10-07
JP2016500804A (ja) 2016-01-14
WO2014062179A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
MX380127B (es) Transferencia de calor de capa limite aumentada mediante interaccion de particula.
Kumar et al. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids
Song et al. CHF enhancement of SiC nanofluid in pool boiling experiment
Kibria et al. A review on thermophysical properties of nanoparticle dispersed phase change materials
Hatami et al. Enhanced efficiency in Concentrated Parabolic Solar Collector (CPSC) with a porous absorber tube filled with metal nanoparticle suspension
Sharma et al. Preparation and evaluation of stable nanofluids for heat transfer application: a review
Shojaeian et al. Pool boiling and flow boiling on micro-and nanostructured surfaces
Léal et al. An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials
Al-Zamily Effect of magnetic field on natural convection in a nanofluid-filled semi-circular enclosure with heat flux source
JO3186B1 (ar) نظام لتوفير تسخين منتظم للتشكيلات الجوفية لاسترداد الرواسب المعدنية
MX341762B (es) Proceso para la preparacion de un pigmento de efecto.
Abu-Nada et al. Buoyancy induced flow in a nanofluid filled enclosure partially exposed to forced convection
CA2914777C (en) Device for signature adaptation and object provided with device for signature adaptation
TWM489232U (en) Pipe member equipped with heat insulation core pipeline, auxiliary heat conduction structure and U-shaped annularly-distributed pipeline
Zhang et al. Comparative study of a novel liquid–vapour separator incorporated gravitational loop heat pipe against the conventional gravitational straight and loop heat pipes–Part I: Conceptual development and theoretical analyses
CN203703401U (zh) 陶瓷保温无缝钢管
EP2876375A3 (en) In-floor heating apparatuses
Messlinger et al. Transient diffusive boundary layers at high Rayleigh numbers in simple and double diffusive fluids: Latency time scaling for the convection onset
Dehghani et al. Mixed-convection nanofluid flow through a grooved channel with internal heat generating solid cylinders in the presence of an applied magnetic field
CN204232852U (zh) 一种高能效陶瓷锅
CN204836619U (zh) 一种带有复合绝缘层的金属加热元件
Chen et al. Heat transfer enhancement in dense suspensions of agitated solids. Part I: Theory
CN204238904U (zh) 一种油田管路加热装置
CN202820964U (zh) 一种压铸铝咖啡壶发热体
Meng et al. Natural Convection Heat Transfer of Copper-Water Nanofluid in an Inclined Square Cavity with Time-Periodic Boundary Conditions