MX2015004861A - Transferencia de calor de capa limite aumentada mediante interaccion de particula. - Google Patents

Transferencia de calor de capa limite aumentada mediante interaccion de particula.

Info

Publication number
MX2015004861A
MX2015004861A MX2015004861A MX2015004861A MX2015004861A MX 2015004861 A MX2015004861 A MX 2015004861A MX 2015004861 A MX2015004861 A MX 2015004861A MX 2015004861 A MX2015004861 A MX 2015004861A MX 2015004861 A MX2015004861 A MX 2015004861A
Authority
MX
Mexico
Prior art keywords
boundary layer
heat transfer
particles
mixing
fluid
Prior art date
Application number
MX2015004861A
Other languages
English (en)
Inventor
William L Johnson
Original Assignee
Ecopuro Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecopuro Llc filed Critical Ecopuro Llc
Publication of MX2015004861A publication Critical patent/MX2015004861A/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Lubricants (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)

Abstract

Se describe la transferencia de calor aumentada mediante el movimiento cinético de la película de capa límite al introducir partículas con superficies especializadas. Una capa límite se estanca, reduciendo la transferencia de calor en un fluido que fluye. La transferencia de calor de capa límite es principalmente la conducción. La introducción de partículas especializadas en el fluido promueve el mezclado de capa limite, para de esta manera convertir la conducción a convección a través de la película. Las partículas de la invención se agitan mientras que se mezcla la capa límite, lo cual proporciona sitios de energía de baja área de superficie alrededor de las partículas. El movimiento cinético incrementa la formación de nucleación de la transferencia de fase de gas durante la ebullición. Las nanopartículas de metal y cerámica en fluidos incrementan la conductividad térmica del fluido. Al modificar las características de superficie de tales nanopartículas para promover el mezclado de capa límite, se incrementarán la transferencia de calor del fluido y la conductividad térmica. Las características de superficie especializadas de los materiales aseguran que las partículas se interconecten con la capa límite para producir mezclado cinético y sitios de energía de baja área de superficie para la nucleación acelerada, dando por resultado la transferencia de calor aumentada del gas o líquido.
MX2015004861A 2012-10-17 2012-10-17 Transferencia de calor de capa limite aumentada mediante interaccion de particula. MX2015004861A (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/654,369 US9074828B2 (en) 2010-06-23 2012-10-17 Enhanced boundary layer heat transfer by particle interaction
PCT/US2012/060688 WO2014062179A1 (en) 2012-10-17 2012-10-17 Enhanced boundary layer heat transfer by particle interaction

Publications (1)

Publication Number Publication Date
MX2015004861A true MX2015004861A (es) 2016-03-21

Family

ID=47628422

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2015004861A MX2015004861A (es) 2012-10-17 2012-10-17 Transferencia de calor de capa limite aumentada mediante interaccion de particula.

Country Status (6)

Country Link
US (1) US9074828B2 (es)
EP (1) EP2912398B1 (es)
JP (2) JP6675873B2 (es)
CN (2) CN112304149A (es)
MX (1) MX2015004861A (es)
WO (1) WO2014062179A1 (es)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5555625B2 (ja) * 2007-08-06 2014-07-23 ザ セクレタリー,デパートメント オブ アトミック エナジー,ガヴァメント,オブ インディア 自然循環システムの安定化方法、熱回収システムおよび除熱媒体
US20160009360A1 (en) 2014-07-14 2016-01-14 Raytheon Company Optical window system with aero-optical conductive blades
CN109115020B (zh) * 2018-07-23 2020-01-07 山东理工大学 一种相界面强化对流传热的方法
US11332229B2 (en) 2019-03-25 2022-05-17 Goodrich Corporation Anti-harmonic optical turbulators
CN117556739B (zh) * 2024-01-08 2024-04-23 西安交通大学 一种聚变堆超汽化矩形翅片结构临界热流密度的计算方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2356367A (en) 1940-11-22 1944-08-22 Jasco Inc High temperature lubricant
US2690051A (en) 1950-03-03 1954-09-28 Thermal Res & Engineering Corp Heat transfer system utilizing suspended particles in a gas or vapor
US2968624A (en) 1956-07-25 1961-01-17 Standard Oil Co Fluid power transmission
US5232627A (en) 1985-07-05 1993-08-03 The Dow Chemical Company Adducts of clay and activated mixed metal oxides
US5252239A (en) 1991-04-15 1993-10-12 General Motors Corporation ER fluids having chemically defoliated vermiculite treated with an alkyl ammonium halide and methods of making and using the same
US5122292A (en) 1991-04-15 1992-06-16 General Motors Corporation Methods of varying the frequency to produce predetermined electrorheological responses
AU2161492A (en) 1991-05-24 1992-12-30 Thomas E. Hughes Heat exchange medium and articles for use thereof
US5385688A (en) 1993-01-08 1995-01-31 American Polywater Corporation Antifreeze gel composition for use in a cable conduit
WO1995020638A1 (fr) 1994-01-31 1995-08-03 Tonen Corporation Fluide electrovisqueux
US5948845A (en) * 1994-04-05 1999-09-07 P.S.A.M.S., Inc. Solvent-based, thermal paint
US6221275B1 (en) * 1997-11-24 2001-04-24 University Of Chicago Enhanced heat transfer using nanofluids
US20040069454A1 (en) * 1998-11-02 2004-04-15 Bonsignore Patrick V. Composition for enhancing thermal conductivity of a heat transfer medium and method of use thereof
US6464770B1 (en) * 2000-08-08 2002-10-15 Advanced Minerals Corporation Perlite products with controlled particle size distribution
CA2436218A1 (en) 2001-01-30 2003-01-16 Materials And Electrochemical Research (Mer) Corporation Nano carbon materials for enhancing thermal transfer in fluids
CN1500977A (zh) * 2002-11-12 2004-06-02 行 罗 内燃机闭式强制循环水冷却系强化冷却方法
US6840990B2 (en) 2002-12-10 2005-01-11 Prestone Products Corporation Sealing composition having corrosion inhibitor therein
US6858157B2 (en) * 2003-04-17 2005-02-22 Vnaderbilt University Compositions with nano-particle size diamond powder and methods of using same for transferring heat between a heat source and a heat sink
US7820066B2 (en) * 2004-06-08 2010-10-26 Honeywell International Inc. Fluid composition having enhanced heat transfer efficiency
US7497903B2 (en) * 2004-09-28 2009-03-03 Advanced Minerals Corporation Micronized perlite filler product
US8011424B2 (en) * 2005-06-09 2011-09-06 The United States Of America, As Represented By The Secretary Of The Navy System and method for convective heat transfer utilizing a particulate solution in a time varying field
EP1928643B1 (en) 2005-08-19 2021-12-15 William Lee Johnson, Sr. Method of producing composite members having increased strength
US7871533B1 (en) 2006-01-12 2011-01-18 South Dakota School Of Mines And Technology Carbon nanoparticle-containing nanofluid
WO2007102825A1 (en) * 2006-03-09 2007-09-13 Advanced Minerals Corporation Micronized perlite filler product
JP2007263521A (ja) * 2006-03-29 2007-10-11 Aisin Seiki Co Ltd 熱機関
JP2008063411A (ja) * 2006-09-06 2008-03-21 Denso Corp 熱輸送流体、熱輸送構造、及び熱輸送方法
EP2025731A1 (en) * 2007-08-06 2009-02-18 Solvay Solexis S.p.A. Heat Transfer fluid
US20100093922A1 (en) 2008-03-26 2010-04-15 Johnson Sr William L Structurally enhanced plastics with filler reinforcements
US20110301277A1 (en) 2008-03-26 2011-12-08 Johnson Sr William L Boundary breaker paint, coatings and adhesives
US9340720B2 (en) 2009-07-02 2016-05-17 Uchicago Argonne, Llc Heat transfer fluids containing nanoparticles
US20110301247A1 (en) 2010-06-08 2011-12-08 Hayakawa Chihiro Cosmetic product containing film-forming polymer
US20120029094A1 (en) * 2010-08-24 2012-02-02 Johnson Sr William L Cellular foam additive
CN110219629B (zh) * 2010-06-23 2021-12-03 伊科普罗有限责任公司 水力压裂
BR112013000958A2 (pt) * 2010-07-12 2016-05-17 Ecopuro Llc limite de ruptura de pintura, revestimentos e adesivos
CN102295917A (zh) * 2011-05-24 2011-12-28 西安交通大学 纳米粒子强化型制冷剂水合物相变蓄冷工质的制备方法
CN102425966B (zh) * 2011-09-23 2013-03-13 江苏大学 一种纳米乳液脉动热管的制造方法

Also Published As

Publication number Publication date
JP6675873B2 (ja) 2020-04-08
JP2018084405A (ja) 2018-05-31
EP2912398B1 (en) 2021-01-20
EP2912398A1 (en) 2015-09-02
US9074828B2 (en) 2015-07-07
JP2016500804A (ja) 2016-01-14
US20130140006A1 (en) 2013-06-06
CN112304149A (zh) 2021-02-02
WO2014062179A1 (en) 2014-04-24
CN104969025A (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
Nikkhah et al. Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition
Karimipour et al. Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux
Sheikholeslami et al. Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM
MX2015004861A (es) Transferencia de calor de capa limite aumentada mediante interaccion de particula.
MX2014011621A (es) Proceso para la preparacion de un pigmento de efecto.
CN202581249U (zh) 蒸汽发生器、蒸汽挂烫机、蒸汽清洁机、蒸汽地拖和加湿器
Kuzma-Kichta et al. Investigation of heat transfer in a heat pipe with nanoparticles coating
Kim et al. Study on heat transfer and fouling of flow boiling systems using oxidized graphene nanofluid
Alben Optimal 2D convection cooling flows
MX2013009590A (es) Sistema para el mezclado de productos químicos mejoradores de flujo en sistemas de transporte por ducto de petróleo pesado y/o extra pesado.
阳倦成 et al. Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Burin et al. On Zonal Flow Formation in Plasmas and Fluids: Probing the Drift-Rossby Analogy
Joshi et al. Effects of mean and fluctuating pressure gradients on turbulence in boundary layers
Volk et al. Melting dynamics of large ice balls in a turbulent flow
Meng et al. Natural Convection Heat Transfer of Copper-Water Nanofluid in an Inclined Square Cavity with Time-Periodic Boundary Conditions
Pears et al. Can plumes collapse?: Experimental results and applications to Iceland.
Vreugdenhil et al. Mixing efficiency of buoyancy forced circulation in a rotating basin
Dubois et al. A cryostat device for liquid nitrogen convection experiments
Murray Flow Modification and Heat Transfer Enhancement Using Ferromagnetic Particle Laden Fluid with Switched Magnetic Fields
Brito Gadeschi et al. A hierarchical Cartesian method for particle-laden flows with conjugate heat transfer
Zenit et al. The dynamics of a vortex ring crossing at density interface
Park et al. Experimental study of the Marangoni flow in evaporating water droplet placed on vertical vibration and heated hydrophobic surface
Liu et al. Erratum to: influence of heat treatment on microstructure and sliding wear of thermally sprayed Fe-based metallic glass coatings
Hufstedler et al. Characterization of vortical gusts produced by a heaving plate
Kawaguchi et al. Properties of diapycnal mixing and determination of vertical diffusivity in the seasonally ice-free Arctic Ocean: effects of double diffusive interleaving layers