JP2018080371A - Ferritic stainless steel and method for producing the same, and fuel cell member - Google Patents

Ferritic stainless steel and method for producing the same, and fuel cell member Download PDF

Info

Publication number
JP2018080371A
JP2018080371A JP2016224449A JP2016224449A JP2018080371A JP 2018080371 A JP2018080371 A JP 2018080371A JP 2016224449 A JP2016224449 A JP 2016224449A JP 2016224449 A JP2016224449 A JP 2016224449A JP 2018080371 A JP2018080371 A JP 2018080371A
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
steel
creep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016224449A
Other languages
Japanese (ja)
Other versions
JP6765287B2 (en
Inventor
木村 謙
Ken Kimura
謙 木村
松本 和久
Kazuhisa Matsumoto
和久 松本
秦野 正治
Masaharu Hatano
正治 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2016224449A priority Critical patent/JP6765287B2/en
Publication of JP2018080371A publication Critical patent/JP2018080371A/en
Application granted granted Critical
Publication of JP6765287B2 publication Critical patent/JP6765287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ferritic stainless steel for fuel cells that has markedly excellent creep properties to be an index of durability under a high temperature environment including a modified gas.SOLUTION: A ferritic stainless steel contains, in mass%, Cr: 11-25%, C: 0.001% or more and 0.03% or less, Si: 0.01% or more and 2.0% or less, Mn: 0.01% or more and 2.0% or less, Al: 0.5% or more and 4.0% or less, P: 0.05% or less, S: 0.01% or less, N: 0.03% or less; and further contains, optionally, at least one of Ti: 1% or less and Nb: 1% or less; and contains at least one of B: 0.0005% or more and 0.0025% or less and Sn: 0.005% or more and 0.5% or less, with the balance being Fe and inevitable impurities. The aggregate structure of it has a random intensity ratio in {211} <011> orientation of 2.5 or more.SELECTED DRAWING: Figure 1

Description

本発明は、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される改質器、熱交換器などの燃料電池高温部材に好適なフェライト系ステンレス鋼、およびその製造方法に関する。特に、改質ガス環境を含む高温環境下において、材料損傷を抑止した耐クリープ強さ、ならびに耐酸化性が要求される固体酸化物型燃料電池(SOFC)の高温部材に好適である。   The present invention is suitable for high-temperature members of fuel cells such as reformers and heat exchangers used when reforming hydrocarbon fuels such as city gas, methane, natural gas, propane, kerosene, and gasoline into hydrogen. The present invention relates to a ferritic stainless steel and a manufacturing method thereof. In particular, it is suitable for a high-temperature member of a solid oxide fuel cell (SOFC) that requires creep resistance with suppressed material damage and oxidation resistance in a high-temperature environment including a reformed gas environment.

最近、石油を代表とする化石燃料の枯渇化、CO2排出による地球温暖化現象等の問題から、従来の発電システムに替わる新しいシステムの普及が加速している。その1つとして、分散電源,自動車の動力源としても実用的価値が高い「燃料電池」が注目されている。燃料電池にはいくつかの種類があるが、その中でも固体高分子型燃料電池(PEFC)や固体酸化物型燃料電池(SOFC)はエネルギー効率が高く、将来の普及拡大が有望視されている。 Recently, the spread of new systems replacing conventional power generation systems is accelerating due to problems such as depletion of fossil fuels such as petroleum and global warming due to CO 2 emissions. As one of them, “fuel cell”, which has high practical value as a distributed power source and a power source for automobiles, is attracting attention. There are several types of fuel cells. Among them, polymer electrolyte fuel cells (PEFC) and solid oxide fuel cells (SOFC) have high energy efficiency, and are expected to expand in the future.

燃料電池は、水の電気分解と逆の反応過程を経て電力を発生する装置であり、水素を必要とする。水素は、都市ガス(LNG)、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を、触媒の存在下で改質反応させることにより製造される。中でも都市ガスを原燃料とする燃料電池は、都市ガス配管が整備された地区において水素を製造できる利点がある。   A fuel cell is a device that generates electric power through a reaction process opposite to that of water electrolysis, and requires hydrogen. Hydrogen is produced by reforming a hydrocarbon fuel such as city gas (LNG), methane, natural gas, propane, kerosene, and gasoline in the presence of a catalyst. Above all, a fuel cell using city gas as a raw fuel has an advantage that hydrogen can be produced in an area where city gas piping is provided.

燃料改質器は、水素の改質反応に必要な熱量を確保するため、通常、200〜900℃までの高温下で運転される。更に、このような高温運転下において、多量の水蒸気、二酸化炭素、一酸化炭素等を含む酸化性の雰囲気に曝され、水素の需要に応じて起動・停止による加熱・冷却サイクルが繰り返される。これまで、このような過酷な環境下において、十分な耐久性を有する実用材料として、SUS310S(25Cr−20Ni)に代表されるオーステナイト系ステンレス鋼が使用されてきた。将来、燃料電池システムの普及拡大に向けて、コスト低減は必要不可欠であり、使用材料の最適化による合金コストの低減は重要な課題である。   The fuel reformer is usually operated at a high temperature of 200 to 900 ° C. in order to ensure the amount of heat necessary for the hydrogen reforming reaction. Further, under such a high temperature operation, it is exposed to an oxidizing atmosphere containing a large amount of water vapor, carbon dioxide, carbon monoxide and the like, and the heating / cooling cycle by starting and stopping is repeated according to the demand for hydrogen. Until now, austenitic stainless steel represented by SUS310S (25Cr-20Ni) has been used as a practical material having sufficient durability under such a severe environment. In the future, cost reduction is indispensable for the spread of fuel cell systems, and reduction of alloy costs by optimizing the materials used is an important issue.

上述した背景から、アルミナの高い耐酸化性を有するAl含有フェライト系ステンレス鋼の燃料改質器への適用が開示されている。   From the background described above, application of Al-containing ferritic stainless steel having high oxidation resistance to alumina to a fuel reformer is disclosed.

特許文献1には、Cr:8〜35%、C:0.03%以下、N:0.03%以下、Mn:1.5%以下、Si:0.8〜2.5%及び/又はAl:0.6〜6.0%であり、更にNb:0.05〜0.80%、Ti:0.03〜0.50%、Mo:0.1〜4%、Cu:0.1〜4%の1種又は2種以上を含み、Si及びAlの合計量が1.5%以上に調整された組成を有する石油系燃料改質器用フェライト系ステンレス鋼が開示されている。このステンレス鋼は、200〜900℃の温度域で材料を繰り返し加熱・冷却する熱疲労試験において(拘束率50%)、初期の最大引張応力が3/4まで低下する破損繰り返しが500cyc以上であることを特徴としている。また、耐酸化性は石油系燃料改質器が曝される雰囲気を想定し、50体積%H2O+20体積%CO2、及び50体積%H2O+10ppmSO2中で評価されている。 In Patent Document 1, Cr: 8-35%, C: 0.03% or less, N: 0.03% or less, Mn: 1.5% or less, Si: 0.8-2.5% and / or Al: 0.6 to 6.0%, Nb: 0.05 to 0.80%, Ti: 0.03 to 0.50%, Mo: 0.1 to 4%, Cu: 0.1 A ferritic stainless steel for a petroleum fuel reformer is disclosed that contains one or two or more of -4% and has a composition in which the total amount of Si and Al is adjusted to 1.5% or more. In this stainless steel, in a thermal fatigue test in which a material is repeatedly heated and cooled in a temperature range of 200 to 900 ° C. (restraint rate: 50%), the repetition of damage at which the initial maximum tensile stress is reduced to 3/4 is 500 cyc or more. It is characterized by that. Further, the oxidation resistance is evaluated in 50 volume% H 2 O + 20 volume% CO 2 and 50 volume% H 2 O + 10 ppm SO 2 assuming an atmosphere to which the petroleum fuel reformer is exposed.

特許文献2には、Cr:8〜25%、C:0.03%以下、N:0.03%以下、Si:0.1〜2.5%、Mn:1.5%以下、Al:0.1〜4%を含み、更にNb:0.05〜0.80%、Ti:0.03〜0.5%、Mo:0.1〜4%、Cu:0.1〜4%の1種又は2種以上を含むアルコール系燃料改質器用フェライト系ステンレス鋼が開示されている。このステンレス鋼は、200〜900℃の温度域で材料を繰り返し加熱・冷却する熱疲労試験において(拘束率100%)、初期の最大引張応力が3/4まで低下する破損繰り返しが1000cyc以上であることを特徴としている。また、耐酸化性はアルコール系燃料改質器が曝される雰囲気を想定し、50体積%H2O+20体積%CO2中で評価されている。 In Patent Document 2, Cr: 8 to 25%, C: 0.03% or less, N: 0.03% or less, Si: 0.1 to 2.5%, Mn: 1.5% or less, Al: Including 0.1 to 4%, Nb: 0.05 to 0.80%, Ti: 0.03 to 0.5%, Mo: 0.1 to 4%, Cu: 0.1 to 4% Ferritic stainless steel for alcohol-based fuel reformers containing one or more types is disclosed. In this stainless steel, in a thermal fatigue test in which a material is repeatedly heated and cooled in a temperature range of 200 to 900 ° C. (restraint rate: 100%), the repetition of breakage in which the initial maximum tensile stress is reduced to 3/4 is 1000 cyc or more. It is characterized by that. Further, the oxidation resistance is evaluated in 50 volume% H 2 O + 20 volume% CO 2 assuming an atmosphere to which the alcohol fuel reformer is exposed.

特許文献3には、Cr:12〜20%、C:0.03%以下、N:0.03%以下、Si:0.1〜1.5%、Mn:0.95〜1.5%、Al:1.5%以下とし、Nb:0.1〜0.8、Mo:0.1〜4%、Cu:0.1〜4.0の1種又は2種以上を含み、A=Cr+Mn+5(Si+Al)で定義されるA値が15〜25の範囲に調整された炭化水素系燃料改質器用フェライト系ステンレス鋼が開示されている。このステンレス鋼は、200〜900℃の温度域で材料を繰り返し加熱・冷却する熱疲労試験において(拘束率100%)、初期の最大引張応力が3/4まで低下する破損繰り返しが800cyc以上であることを特徴としている。また、耐酸化性は炭化水素系燃料改質器が曝される雰囲気を想定し、50体積%H2O+20体積%CO2中で評価されている。 In Patent Document 3, Cr: 12 to 20%, C: 0.03% or less, N: 0.03% or less, Si: 0.1 to 1.5%, Mn: 0.95 to 1.5% Al: 1.5% or less, including Nb: 0.1 to 0.8, Mo: 0.1 to 4%, Cu: 0.1 to 4.0 or more, A = A ferritic stainless steel for a hydrocarbon fuel reformer in which an A value defined by Cr + Mn + 5 (Si + Al) is adjusted to a range of 15 to 25 is disclosed. In this stainless steel, in a thermal fatigue test in which a material is repeatedly heated and cooled in a temperature range of 200 to 900 ° C. (constraint rate 100%), the repeated repetition of failure in which the initial maximum tensile stress is reduced to 3/4 is 800 cyc or more. It is characterized by that. Further, the oxidation resistance is evaluated in 50 volume% H 2 O + 20 volume% CO 2 assuming an atmosphere to which the hydrocarbon fuel reformer is exposed.

特許文献4には、C:0.02%未満、Si:0.15〜0.7%、Mn:0.3%以下、P:0.035%以下、S:0.003%以下、Cr:13〜20%、Al:1.5〜6%、N:0.02%以下、Ti:0.03〜0.5%、Nb:0.001〜0.1%以下、鋼中の固溶Ti量を[Ti]、鋼中の固溶Nb量を[Nb]とし、13≦Cr≦16の場合は0≦[Ti]≦[Nb]+0.05、0<[Nb]≦0.10を満たし、16<Cr≦20の場合は0≦[Ti]≦1/2×[Nb]+0.15、[Ti]≦0.12、0<[Nb]≦0.1を満足することを特徴とする燃料電池用Al含有フェライト系ステンレス鋼が開示されている。このステンレス鋼は、750℃、初期応力10MPaのクリープ破断時間が4000h以上であることを特徴としている。また、耐酸化性は1050℃、20体積%H2O+20体積%O2中(残部窒素)で評価されている。 In Patent Document 4, C: less than 0.02%, Si: 0.15 to 0.7%, Mn: 0.3% or less, P: 0.035% or less, S: 0.003% or less, Cr : 13-20%, Al: 1.5-6%, N: 0.02% or less, Ti: 0.03-0.5%, Nb: 0.001-0.1% or less, solid in steel When the amount of dissolved Ti is [Ti] and the amount of dissolved Nb in the steel is [Nb], and 13 ≦ Cr ≦ 16, 0 ≦ [Ti] ≦ [Nb] +0.05, 0 <[Nb] ≦ 0. When 10 is satisfied and 16 <Cr ≦ 20, 0 ≦ [Ti] ≦ 1/2 × [Nb] +0.15, [Ti] ≦ 0.12, and 0 <[Nb] ≦ 0.1 are satisfied. An Al-containing ferritic stainless steel for fuel cells is disclosed. This stainless steel is characterized by a creep rupture time of 4000 h or more at 750 ° C. and an initial stress of 10 MPa. The oxidation resistance is evaluated at 1050 ° C. in 20% by volume H 2 O + 20% by volume O 2 (remainder nitrogen).

特許文献5には、C:0.001〜0.03%、Si:0.01〜2%、Mn:0.01〜1.5%、P:0.005〜0.05%、S:0.0001〜0.01%、Cr:16〜30%、N:0.001〜0.03%、Al:0.8〜3%、Sn:0.01〜1%を含み、800℃での0.2%耐力が40MPa以上、引張強さ60MPa以上であることを特徴とする耐酸化性と高温強度に優れた高純度フェライト系ステンレス鋼板が開示されている。このステンレス鋼の耐酸化性は1050℃、大気中で評価されている。   In Patent Document 5, C: 0.001 to 0.03%, Si: 0.01 to 2%, Mn: 0.01 to 1.5%, P: 0.005 to 0.05%, S: 0.0001-0.01%, Cr: 16-30%, N: 0.001-0.03%, Al: 0.8-3%, Sn: 0.01-1% A high-purity ferritic stainless steel sheet excellent in oxidation resistance and high-temperature strength is disclosed, in which the 0.2% proof stress is 40 MPa or more and the tensile strength is 60 MPa or more. The oxidation resistance of this stainless steel is evaluated at 1050 ° C. in the atmosphere.

フェライト系ステンレス鋼を燃料改質器や燃料電池システムの高温部材へ適用するには、高温使用時に変形が少ないことが必要になる。このような視点から、特許文献1〜3は熱疲労試験により材料が破損するサイクル数、特許文献4はクリープ試験で材料が破断する時間、特許文献5は高温引張試験で測定される高温強度を、それぞれ評価対象としている。実際の使用環境では高温で長時間使用されることから、クリープ特性が評価指標として最適であることが予測されるが、そのような観点での検討は特許文献4のみである。   In order to apply ferritic stainless steel to a high temperature member of a fuel reformer or a fuel cell system, it is necessary that deformation is small at the time of high temperature use. From this point of view, Patent Documents 1 to 3 show the number of cycles in which the material is damaged by the thermal fatigue test, Patent Document 4 shows the time for the material to break in the creep test, and Patent Document 5 shows the high temperature strength measured by the high temperature tensile test. , Each of them is subject to evaluation. Since it is used for a long time at a high temperature in an actual use environment, it is predicted that the creep characteristic is optimal as an evaluation index. However, only Patent Document 4 considers from such a viewpoint.

フェライト系耐熱鋼のクリープ特性を向上させる手法としては、これまで多くの技術が開示されているが、添加元素としてBが有効であることが知られている。   Many techniques have been disclosed so far for improving the creep characteristics of ferritic heat resistant steel, but it is known that B is effective as an additive element.

特許文献6には、C:0.01〜0.05%、Si:0.01〜0.8%、Mn:2%以下、P:0.05%以下、S:0.01%以下、Cr:8〜13%、Ni:0.1〜2.0%、W単独またはWとMoを複合添加で0.50〜2.5%、V:0.05〜0.30%、Nb:0.02〜0.20%、B:0.001〜0.01%、Al:0.005〜0.20%、N:0.01〜0.06%を含有することを特徴とする溶接部の靭性に優れたフェライト系耐熱鋼が開示されている。   In Patent Document 6, C: 0.01 to 0.05%, Si: 0.01 to 0.8%, Mn: 2% or less, P: 0.05% or less, S: 0.01% or less, Cr: 8 to 13%, Ni: 0.1 to 2.0%, W alone or a combination of W and Mo is added to 0.50 to 2.5%, V: 0.05 to 0.30%, Nb: Welding characterized by containing 0.02-0.20%, B: 0.001-0.01%, Al: 0.005-0.20%, N: 0.01-0.06%. Ferritic heat-resistant steel having excellent toughness of the part is disclosed.

特許文献7には、C:0.001〜0.03%、Si:0.01〜2%、Mn:0.01〜1.5%、P:0.005〜0.05%、S:0.0001〜0.01%、Cr:16〜30%、N:0.001〜0.03%、Al:0.8%超〜3%、Sn:0.01〜1%、残部がFeおよび不可避的不純物からなり、800℃での0.2%耐力が40MPa以上であって、引張強さが60MPa以上であることを特徴とする耐酸化性と高温強度に優れた高純度フェライト系ステンレス鋼板とその製造方法が開示されている。   In Patent Document 7, C: 0.001 to 0.03%, Si: 0.01 to 2%, Mn: 0.01 to 1.5%, P: 0.005 to 0.05%, S: 0.0001 to 0.01%, Cr: 16 to 30%, N: 0.001 to 0.03%, Al: more than 0.8% to 3%, Sn: 0.01 to 1%, the balance being Fe And high-purity ferritic stainless steel excellent in oxidation resistance and high-temperature strength, characterized by comprising 0.2% proof stress at 800 ° C. of 40 MPa or more and tensile strength of 60 MPa or more. A steel sheet and a manufacturing method thereof are disclosed.

特許文献8には、C:0.01以上0.08%未満、N:0.01〜0.10%、Si:0.50%以下、Mn:0.05〜0.50%、Cr:8.00〜13.00%、W:1.50%超〜3.50%、Mo:0.50%以下、V:0.10〜0.30%、Nb:0.01〜0.15%、さらにNi:0.20%以下、Co:0.20%以下、Cu:0.20%以下、B:0.0010〜0.0100%に制限することを特徴とする高温クリープ強度に優れた高クロムフェライト系耐熱鋼が開示されている。
またAl含有フェライト系ステンレス鋼においてSnがクリープ特性に及ぼす影響についてはこれまで明らかにされていない。
In Patent Document 8, C: 0.01 or more and less than 0.08%, N: 0.01 to 0.10%, Si: 0.50% or less, Mn: 0.05 to 0.50%, Cr: 8.00 to 13.00%, W: more than 1.50% to 3.50%, Mo: 0.50% or less, V: 0.10 to 0.30%, Nb: 0.01 to 0.15 %, Ni: 0.20% or less, Co: 0.20% or less, Cu: 0.20% or less, B: 0.0010 to 0.0100% A high chromium ferritic heat resistant steel is disclosed.
In addition, the influence of Sn on creep properties in Al-containing ferritic stainless steel has not been clarified so far.

特許第3886785号公報Japanese Patent No. 3886785 特許第3910419号公報Japanese Patent No. 3910419 特許第3942876号公報Japanese Patent No. 3942876 特許第5544106号公報Japanese Patent No. 5544106 特許第5709570号公報Japanese Patent No. 5709570 特許第3475621号公報Japanese Patent No. 3475621 特許第5709570号公報Japanese Patent No. 5709570 特許第3869908号公報Japanese Patent No. 3869908

近年、普及拡大が期待されるSOFCシステムの場合、燃料改質器、熱交換器などの部品は500〜800℃の温度域で連続運転される。従って、これら部位に使用されるAl含有フェライト系ステンレス鋼は、高温運転中のクリープ変形、特に構造体としての耐久性向上の視点から、700℃付近の僅かな変形を抑止することが重要な課題と位置付けられている。   In recent years, in the case of an SOFC system that is expected to spread widely, components such as a fuel reformer and a heat exchanger are continuously operated in a temperature range of 500 to 800 ° C. Therefore, it is important for Al-containing ferritic stainless steel used in these parts to suppress creep deformation during high-temperature operation, particularly slight deformation around 700 ° C. from the viewpoint of improving durability as a structure. It is positioned as.

特許文献1〜5に開示された鋼材は、材料の破損・破壊に対する寿命を上昇させたものであり、高温運転中の僅かなクリープ変形に対する有効性については、一切検討されていない。更に、このようなクリープ強さに効果的な微量元素の作用効果についても何ら言及されていない。一方、特許文献6及び特許文献7に開示されている技術の対象は、金属組織が焼戻しマルテンサイト組織であり、そのような金属組織のもとでは、微量元素が炭化物の安定化及び粒界強化に寄与してクリープ特性を向上させると考えられている。   The steel materials disclosed in Patent Documents 1 to 5 have an increased life against damage / destruction of the material, and the effectiveness against slight creep deformation during high temperature operation has not been studied at all. Furthermore, no mention is made of the effect of trace elements effective on such creep strength. On the other hand, the object of the technique disclosed in Patent Document 6 and Patent Document 7 is that the metal structure is a tempered martensite structure, and in such a metal structure, the trace elements are stabilized in carbides and strengthened grain boundaries. It is thought that it contributes to improve creep characteristics.

ところがSOFCに用いられるAl含有フェライト系ステンレス鋼は、マルテンサイト変態を生じないフェライト単相組織であり、且つ、Al含有ステンレス鋼におけるクリープ特性向上を示唆する技術に関する記載は見当たらない。   However, Al-containing ferritic stainless steel used for SOFC has a ferrite single-phase structure that does not cause martensitic transformation, and there is no description regarding a technique that suggests improvement of creep characteristics in Al-containing stainless steel.

一方、クリープ特性は、鋼材の結晶方位(集合組織)の影響を受けることが知られている。この原因として、活動すべり系と引張方向の角度が重要な因子として考えられている(例えばL.A.del Valleら:Acta Materialia, 55(2007), p455-466参照)。
各活動すべり系の変形応力(臨界分解せん断応力)は添加元素によって異なるため、集合組織制御によってクリープ特性の向上を図る場合、鋼成分によってクリープ特性に最適な集合組織が異なることが予測される。
On the other hand, it is known that the creep characteristics are affected by the crystal orientation (texture) of the steel material. The cause of this is considered to be an active sliding system and the angle of the tensile direction as important factors (see, for example, LAdel Valle et al .: Acta Materialia, 55 (2007), p455-466).
Since the deformation stress (critical decomposition shear stress) of each active slip system varies depending on the additive element, when the creep characteristics are improved by texture control, it is predicted that the optimum texture for the creep characteristics varies depending on the steel composition.

以上に述べた通り、改質ガスを含む高温環境下の耐久性として重要なクリープ特性について、集合組織を制御して実現した燃料電池用フェライト系ステンレス鋼は、未だ出現していない。
本発明は、燃料電池用各種部材等の構造材として好適な、クリ−プ特性の良好なAl含有フェライト系ステンレス鋼を提供することを目的としてなされた発明であり、以下に記載するとおりの事項を要旨とする。
As described above, the ferritic stainless steel for fuel cells realized by controlling the texture with respect to creep characteristics that are important as durability in a high temperature environment containing reformed gas has not yet appeared.
The present invention was made for the purpose of providing an Al-containing ferritic stainless steel having good creep characteristics, which is suitable as a structural material for various members for fuel cells. Is the gist.

(1)質量%にて、Cr:11〜25%、C:0.001%以上0.03%以下、Si:0.01%以上2.0%以下、Mn:0.01%以上2.0%以下、Al:0.5%以上4.0%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下を含有し、更に、必要に応じて、Ti:1%以下と、Nb:1%以下の1種または2種以上を含み、かつB:0.0005%以上0.0025%以下と、Sn:0.005%以上0.5%以下の1種または2種以上を含み、残部がFeおよび不可避的不純物からなり、{211}<011>方位のランダム強度比が2.5以上である集合組織を持つことを特徴とするフェライト系ステンレス鋼。
(2)質量%にて、更に、Ni:1%以下、Cu:1%以下、Mo:2%以下、W:1%以下、Co:0.5%以下、V:0.5%以下、Ca:0.005%以下、Mg:0.005%以下、Zr:0.5%以下、Sb:0.5%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種または2種以上を含有していることを特徴とする上記(1)に記載のフェライト系ステンレス鋼。
(3)上記(1)〜(2)のいずれかに記載の組成を有する鋼を製造するに際し、熱間圧延後、700℃超で行われる熱処理を省略し、その後に圧延率25〜70%の冷間圧延と熱処理を組み合わせることを特徴とするフェライト系ステンレス鋼の製造方法。
(4)上記(1)〜(2)のいずれかに記載のフェライト系ステンレス鋼を用いた燃料電池用部材。
(1) In mass%, Cr: 11-25%, C: 0.001% to 0.03%, Si: 0.01% to 2.0%, Mn: 0.01% to 2. 0% or less, Al: 0.5% or more and 4.0% or less, P: 0.05% or less, S: 0.01% or less, N: 0.03% or less, and further if necessary Ti: 1% or less, Nb: 1% or less, including one or more, B: 0.0005% or more and 0.0025% or less, Sn: 0.005% or more and 0.5% or less A ferritic stainless steel characterized in that it has a texture with a random intensity ratio of 2.5 or more in {211} <011> orientation, with the balance consisting of Fe and inevitable impurities. steel.
(2) In mass%, Ni: 1% or less, Cu: 1% or less, Mo: 2% or less, W: 1% or less, Co: 0.5% or less, V: 0.5% or less, Ca: 0.005% or less, Mg: 0.005% or less, Zr: 0.5% or less, Sb: 0.5% or less, La: 0.1% or less, Y: 0.1% or less, Hf: The ferritic stainless steel according to the above (1), which contains one or more of 0.1% or less and REM: 0.1% or less.
(3) When manufacturing the steel having the composition according to any one of the above (1) to (2), after the hot rolling, the heat treatment performed at over 700 ° C. is omitted, and then the rolling rate is 25 to 70%. A method for producing ferritic stainless steel, characterized by combining cold rolling and heat treatment.
(4) A fuel cell member using the ferritic stainless steel according to any one of (1) to (2).

2種の鋼の{211}<011>ランダム強度比と最小クリープ速度ε’(%/h)の関係を示すグラフである。It is a graph which shows the relationship between {211} <011> random strength ratio of two types of steel, and the minimum creep speed | rate (epsilon) '(% / h).

本発明者らは、前記した課題を解決するために、Al含有フェライト系ステンレス鋼の成分組成、集合組織とクリープ特性の関係について鋭意実験と検討を重ね、本発明を完成させた。以下に本発明で得られた知見について説明する。   In order to solve the above-described problems, the present inventors have conducted intensive experiments and studies on the relationship between the composition of the Al-containing ferritic stainless steel, the texture and the creep characteristics, and completed the present invention. The knowledge obtained by the present invention will be described below.

(a)Al含有フェライト系ステンレス鋼冷延焼鈍板のクリープ特性と結晶方位の関係を調査した結果、{211}<011>({ }は板面に垂直な方向(ND)、< >は圧延方向に平行な方向(RD))のランダム強度比と良い相関があることを初めて知見した。図1に18%Cr鋼と18%Cr−2%Alをベースにした鋼の{211}<011>ランダム強度比と最小クリープ速度ε’(%/h)の関係を示す。クリープ試験片は、圧延方向と平行方向に採取し、クリープ試験は板状試験片を用いて、JIS Z 2271に準拠し、温度750℃、応力10MPaで実施した。ランダム強度比は、(200),(110),(111)面の反射X線解析結果より3次元表示図(ODF)を作製し、φ2=45°断面における{211}<011>位置の強度より算出した。図より、18%Cr−2%Al鋼においてのみ{211}<011>強度比が2.5を超えると顕著にクリープ速度が低下する、すなわちクリープ特性が向上する。
(b){211}<011>のランダム強度比は、製造工程(条件)により変化するが、特に、熱延後の熱処理条件及び冷延率によって大きく変化する。
(A) As a result of investigating the relationship between the creep characteristics and crystal orientation of Al-containing ferritic stainless steel cold-rolled annealed plates, {211} <011> ({} is the direction perpendicular to the plate surface (ND), <> is rolled. It has been found for the first time that there is a good correlation with the random intensity ratio in the direction parallel to the direction (RD). FIG. 1 shows the relationship between the {211} <011> random strength ratio and the minimum creep rate ε ′ (% / h) of 18% Cr steel and 18% Cr-2% Al based steel. The creep test piece was collected in a direction parallel to the rolling direction, and the creep test was carried out using a plate-like test piece in accordance with JIS Z 2271 at a temperature of 750 ° C. and a stress of 10 MPa. The random intensity ratio is the intensity at the {211} <011> position in the φ2 = 45 ° section by creating a three-dimensional display diagram (ODF) from the reflection X-ray analysis results of the (200), (110), and (111) planes. Calculated from From the figure, only in 18% Cr-2% Al steel, when the {211} <011> strength ratio exceeds 2.5, the creep rate is remarkably lowered, that is, the creep characteristics are improved.
(B) The random intensity ratio of {211} <011> varies depending on the manufacturing process (conditions), but particularly varies greatly depending on the heat treatment conditions and the cold rolling rate after hot rolling.

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".

(I)成分の限定理由を、以下に説明する。   The reason for limiting the component (I) will be described below.

Crは、耐食性、クリープ特性及び耐酸化性を向上する元素である。本発明においては、11%未満では目標とするクリープ特性、並びに耐酸化性が十分に確保されない。従って、下限は11%とする。しかし、過度なCrの添加は、高温雰囲気に曝された際、脆化相であるσ相の生成を助長することに加え、合金コストの上昇を招くため、上限は25%とする。基本特性及び耐酸化性、製造性の点から、好ましい範囲は13〜22%である。より好ましい範囲は、16〜20%である。   Cr is an element that improves corrosion resistance, creep characteristics, and oxidation resistance. In the present invention, if it is less than 11%, the target creep characteristics and oxidation resistance are not sufficiently ensured. Therefore, the lower limit is 11%. However, excessive addition of Cr not only promotes the formation of the σ phase which is an embrittlement phase when exposed to a high temperature atmosphere, but also increases the alloy cost, so the upper limit is made 25%. From the viewpoint of basic characteristics, oxidation resistance and manufacturability, the preferred range is 13 to 22%. A more preferable range is 16 to 20%.

Cは、耐食性を劣化させるため、少ないほど好ましく、上限を0.03%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.001%とする。クリープ特性、耐酸化性と製造性の点から、好ましい範囲は0.002〜0.02%である。   Since C deteriorates corrosion resistance, it is preferably as small as possible, and the upper limit is made 0.03%. However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.001%. From the viewpoint of creep characteristics, oxidation resistance and manufacturability, the preferred range is 0.002 to 0.02%.

Siは、耐酸化性を向上する元素である。この効果を得るために下限は0.01%とする。一方、過度な添加は、鋼の靭性や加工性の低下、ならびに本発明の目標とするAl系酸化皮膜の形成を阻害する場合もあるため、上限は2%とする。耐酸化性、製造性及び成形性の点から、1%以下が好ましい。Siの効果を積極的に活用する場合は0.3〜1%の範囲とすることが好ましい。   Si is an element that improves oxidation resistance. In order to obtain this effect, the lower limit is made 0.01%. On the other hand, excessive addition may impair the toughness and workability of the steel, and the formation of the Al-based oxide film targeted by the present invention, so the upper limit is made 2%. From the viewpoint of oxidation resistance, manufacturability and moldability, 1% or less is preferable. When actively utilizing the effect of Si, it is preferable to set the content within a range of 0.3 to 1%.

Mnは、改質ガス環境下で、Siと共に酸化皮膜中に固溶して、保護性を高める。この効果を得るために下限は0.01%とする。一方、過度な添加は、鋼の耐食性や本発明の目標とするTiやAl系酸化皮膜の形成を阻害するため、上限は2%以下とする。耐酸化性と基本特性の点から、1%以下が好ましい。Mnの効果を積極的に活用する場合は0.2〜1%の範囲とすることが好ましい。   Mn is dissolved in the oxide film together with Si in a reformed gas environment to enhance the protective property. In order to obtain this effect, the lower limit is made 0.01%. On the other hand, excessive addition inhibits the corrosion resistance of steel and the formation of Ti and Al-based oxide films targeted by the present invention, so the upper limit is made 2% or less. From the viewpoint of oxidation resistance and basic characteristics, 1% or less is preferable. When actively utilizing the effect of Mn, the content is preferably set in the range of 0.2 to 1%.

Alは、脱酸元素に加えて、本発明の目標とするAl系酸化皮膜を形成して、Cr蒸発を抑止するために必須の添加元素である。また本発明においては、集合組織との組み合わせでクリープ特性を確保する重要な元素である。0.5%未満では目標とするCr蒸発の抑止効果が得られない。従って、下限は0.5%とする。しかし、過度なAlの添加は、集合組織との組み合わせによるクリープ特性向上効果が発揮されないばかりか、鋼の靭性や溶接性の低下を招き生産性を阻害するため、上限は4.0%とする。本発明のCr蒸発抑止及びクリープ特性の点から、好適な範囲は1.0〜3.5%である。製造上より好ましい範囲は、1.5〜2.5%である。   In addition to the deoxidizing element, Al is an additive element essential for forming an Al-based oxide film targeted by the present invention and suppressing Cr evaporation. In the present invention, it is an important element that ensures creep characteristics in combination with the texture. If it is less than 0.5%, the target Cr evaporation suppression effect cannot be obtained. Therefore, the lower limit is 0.5%. However, excessive addition of Al not only exhibits the effect of improving the creep characteristics by the combination with the texture, but also reduces the toughness and weldability of the steel and inhibits the productivity, so the upper limit is made 4.0%. . From the viewpoint of inhibiting Cr evaporation and creep characteristics of the present invention, the preferred range is 1.0 to 3.5%. A more preferable range for production is 1.5 to 2.5%.

Pは、製造性や溶接性を阻害する元素であり、その含有量は少ないほど良いため、上限は0.05%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.003%とすることが好ましい。製造性と溶接性の点から、好ましい範囲は0.005〜0.04%、より好ましくは0.01〜0.03%である。   P is an element that inhibits manufacturability and weldability, and the lower the content, the better. Therefore, the upper limit is made 0.05%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.003%. From the viewpoint of manufacturability and weldability, the preferred range is 0.005 to 0.04%, more preferably 0.01 to 0.03%.

Sは、鋼中に含まれる不可避的不純物元素であり、本発明の目標とするAl系皮膜の保護性を低下させる。特に、Mn系介在物や固溶Sの存在は、高温・長時間使用におけるAl系酸化皮膜の破壊起点としても作用する。従って、S量は低いほど良いため、上限は0.01%とする。但し、過度の低減は原料や精錬コストの上昇に繋がるため、下限は0.0001%とする。製造性と耐酸化性の点から、好ましい範囲は0.0001〜0.002%、より好ましくは0.0002〜0.001%である。   S is an unavoidable impurity element contained in the steel, and lowers the protective property of the Al-based film targeted by the present invention. In particular, the presence of Mn-based inclusions and solute S also acts as a fracture starting point for Al-based oxide films when used at high temperatures for long periods of time. Therefore, the lower the amount of S, the better, so the upper limit is made 0.01%. However, excessive reduction leads to an increase in raw materials and refining costs, so the lower limit is made 0.0001%. From the viewpoint of manufacturability and oxidation resistance, the preferred range is 0.0001 to 0.002%, more preferably 0.0002 to 0.001%.

Nは、Cと同様に本発明の目標とする耐酸化性を阻害する。このため、N量は少ないほど好ましく、上限を0.03%とする。但し、過度な低減は精錬時間の長時間化等コストの上昇に繋がるため、下限は0.002%とすることが好ましい。耐酸化性と製造性の点から、好ましい範囲は0.005〜0.02%である。   N, like C, inhibits the target oxidation resistance of the present invention. For this reason, the smaller the amount of N, the better. The upper limit is made 0.03%. However, excessive reduction leads to cost increase such as longer refining time, so the lower limit is preferably made 0.002%. From the viewpoint of oxidation resistance and manufacturability, the preferred range is 0.005 to 0.02%.

Ti、Nbは1種または2種を下記のように添加する。
Tiは、C,Nを固定する安定化元素の作用による鋼の高純度化を通じて、クリープ特性及び耐酸化性を向上させる。これらの効果を得るために下限は0.01%とすることが好ましい。一方、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下や耐酸化性の低下にも繋がるため、上限は1.0%とする。合金コストや製造性ならびに耐酸化性の点から、好ましい範囲は0.05〜0.5%である。更に、Tiの効果を積極的に活用する好適な範囲は0.1〜0.4%である。
Nbは、C,Nを固定する安定化元素の作用による鋼の高純度化を通じてクリープ特性及び耐酸化性を向上させる。これらの効果を得るために下限は0.01%とすることが好ましい。一方、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下や耐酸化性の低下にも繋がるため、上限は1.0%とする。合金コストや製造性ならびに耐酸化性の点から、好ましい範囲は0.05〜0.5%である。更に、Nbの効果を積極的に活用する好適な範囲は0.2〜0.6%である。
One or two of Ti and Nb are added as follows.
Ti improves creep properties and oxidation resistance through high purity of steel by the action of a stabilizing element that fixes C and N. In order to obtain these effects, the lower limit is preferably 0.01%. On the other hand, excessive addition leads to a decrease in manufacturability and a decrease in oxidation resistance accompanying an increase in alloy costs and a recrystallization temperature, so the upper limit is made 1.0%. From the viewpoint of alloy cost, manufacturability and oxidation resistance, the preferred range is 0.05 to 0.5%. Furthermore, the suitable range which utilizes the effect of Ti actively is 0.1 to 0.4%.
Nb improves creep properties and oxidation resistance through high purity of steel by the action of a stabilizing element that fixes C and N. In order to obtain these effects, the lower limit is preferably 0.01%. On the other hand, excessive addition leads to a decrease in manufacturability and a decrease in oxidation resistance accompanying an increase in alloy costs and a recrystallization temperature, so the upper limit is made 1.0%. From the viewpoint of alloy cost, manufacturability and oxidation resistance, the preferred range is 0.05 to 0.5%. Furthermore, the suitable range which utilizes the effect of Nb actively is 0.2 to 0.6%.

B、Snは1種または2種を下記のように添加する。
Bは、クリープ特性に加えて二次加工性を向上させる効果を持つ。それらの向上効果が発揮されるのは0.0005%以上の添加であるため、これを下限とする。一方、過度の添加は製造性、特に連続鋳造時の生産性の劣化を招くことに加えて、クリープ特性向上効果は飽和するため、0.0025%を上限とする。好ましい範囲は0.0005〜0.0012%である。
Snは、クリープ特性を向上させる効果を有し、環境によっては耐食性向上効果を有する元素である。それらの効果は0.005%以上で発揮されるため、これを下限とする。一方、多量の添加は製造性の劣化を招くため、0.5%を上限とする。製造性を考慮して好ましい範囲は0.008〜0.12%である。
One or two of B and Sn are added as follows.
B has an effect of improving secondary workability in addition to creep characteristics. Since the improvement effect is exerted by addition of 0.0005% or more, this is the lower limit. On the other hand, excessive addition causes deterioration of manufacturability, particularly productivity at the time of continuous casting. In addition, the effect of improving creep characteristics is saturated, so 0.0025% is made the upper limit. A preferable range is 0.0005 to 0.0012%.
Sn is an element that has an effect of improving creep characteristics and has an effect of improving corrosion resistance depending on the environment. Since these effects are exhibited at 0.005% or more, this is the lower limit. On the other hand, addition of a large amount causes deterioration of manufacturability, so 0.5% is made the upper limit. In consideration of manufacturability, the preferable range is 0.008 to 0.12%.

Ni、Cu、Mo、W、Co、Vは、当該部材の高温強度と耐食性を高めるのに有効な元素であり、必要に応じて添加する。但し、過度な添加は合金コストの上昇や製造性を阻害することに繋がるため、Ni、Cu、Wの上限は1%とする。Moは、熱膨張係数の低下による高温変形の抑制にも有効な元素であることから、上限は2%とする。Co、Vの上限は0.5%とする。いずれの元素もより好ましい含有量の下限は0.1%とする。   Ni, Cu, Mo, W, Co, and V are effective elements for increasing the high temperature strength and corrosion resistance of the member, and are added as necessary. However, excessive addition leads to an increase in alloy cost and obstructs manufacturability, so the upper limit of Ni, Cu and W is 1%. Since Mo is an element effective for suppressing high-temperature deformation due to a decrease in the thermal expansion coefficient, the upper limit is made 2%. The upper limit of Co and V is 0.5%. The lower limit of the more preferable content of any element is 0.1%.

Ca、Mgは、熱間加工性や2次加工性を向上させる元素であり、必要に応じて添加する。但し、過度な添加は製造性を阻害することに繋がるため、上限は、それぞれ0.005%とする。好ましい下限は、それぞれ0.0001%とする。   Ca and Mg are elements that improve hot workability and secondary workability, and are added as necessary. However, excessive addition leads to a decrease in manufacturability, so the upper limit is 0.005%. Preferable lower limits are each 0.0001%.

Zr、Sb、La、Y、Hf、REMは、熱間加工性や鋼の清浄度を向上ならびに耐酸化性改善に対して有効な元素であり、必要に応じて添加しても良い。但し、本発明の技術思想と合金コストの低減から、これら元素の添加効果に頼るものではい。添加する場合、Zr、Sbの上限は0.5%、La、Y、Hf、REMの上限はそれぞれ0.1%とする。Zrのより好ましい下限は0.01%、La、Y、Hf、REMの好ましい下限は0.001%とする。ここで、REMは原子番号57〜71に帰属する元素であり、例えば、Ce、Pr、Nd等である。   Zr, Sb, La, Y, Hf, and REM are effective elements for improving hot workability and steel cleanliness and improving oxidation resistance, and may be added as necessary. However, from the technical idea of the present invention and the reduction of alloy costs, it does not depend on the effect of addition of these elements. When added, the upper limit of Zr and Sb is 0.5%, and the upper limit of La, Y, Hf, and REM is 0.1%. A more preferable lower limit of Zr is 0.01%, and a preferable lower limit of La, Y, Hf, and REM is 0.001%. Here, REM is an element belonging to atomic numbers 57 to 71, such as Ce, Pr, and Nd.

以上説明した各元素の他にも、本発明の効果を損なわない範囲で含有させることが出来る。Bi、Pb、Se、H、Ta等は可能な限り低減することが好ましい。一方、これらの元素は、本発明の課題を解決する限度において、その含有割合が制御され、必要に応じて、Bi≦100ppm、Pb≦100ppm、Se≦100ppm、H≦100ppm、Ta≦500ppmの1種以上を含有してもよい。   In addition to the elements described above, the elements of the present invention can be contained within a range not impairing the effects of the present invention. Bi, Pb, Se, H, Ta and the like are preferably reduced as much as possible. On the other hand, the content ratio of these elements is controlled within the limits to solve the problems of the present invention, and if necessary, Bi ≦ 100 ppm, Pb ≦ 100 ppm, Se ≦ 100 ppm, H ≦ 100 ppm, Ta ≦ 500 ppm. It may contain seeds or more.

次に、集合組織について説明する。
{211}<011>のランダム強度比を2.5以上とする。ランダム強度比の測定は、板厚(t)の中心(t/2)、3t/8、t/4、t/8において、反射X線を用いてODF(集合組織の3次元表記)を作成し、ODFのφ2=45°断面におけるφ1=0°、Φ=30°におけるランダム強度比を読み取り、平均化して求めれば良い。もしくはEBSDを用いて全板厚を含む断面(L断面(TD方向に垂直な面)もしくはC断面(RD方向に垂直な面))において結晶方位を測定し、解析ソフト上でODFを作製して上記の方法で求めても良い。但し、EBSD法では、X線と異なり、一般的に測定範囲が狭いので、全板厚で、幅もしくは圧延長手方向に3mm以上の広い範囲を測定し、平均的な値を得る必要がある。
{211}<011>方位のランダム強度比は、通常の焼鈍板であると0.5以下である。この値を2.5以上とするためには、後述の製造方法の工夫が必要である。
Next, the texture will be described.
The random intensity ratio of {211} <011> is set to 2.5 or more. Random intensity ratio is measured at the center (t / 2), 3t / 8, t / 4, and t / 8 of the thickness (t) by using reflected X-rays to create ODF (3D representation of texture) Then, the random intensity ratio at φ1 = 0 ° and Φ = 30 ° in the ODF φ2 = 45 ° cross section may be read and averaged. Alternatively, measure the crystal orientation in the cross section (L cross section (plane perpendicular to the TD direction) or C cross section (plane perpendicular to the RD direction)) using EBSD, and make ODF on the analysis software. You may obtain | require by said method. However, in the EBSD method, unlike the X-ray, since the measurement range is generally narrow, it is necessary to measure a wide range of 3 mm or more in the width or the longitudinal direction of the rolling with the total thickness and obtain an average value. .
The {211} <011> orientation random strength ratio is 0.5 or less for a normal annealed plate. In order to set this value to 2.5 or more, it is necessary to devise a manufacturing method described later.

次に、製造方法について以下に説明する。
本発明のフェライト系ステンレス鋼は、熱間圧延後、冷間圧延と熱処理を組み合わせる工程で製造する。
なお、本発明において、「熱処理」とは、対象となる材料を人為的に加熱し、一定時間保持する操作を指す。ただし、材料は、冷間圧延時の加工発熱によって、100℃前後にまで昇温・加熱されるが、この冷間圧延による昇温・加熱は、熱処理には含まれないものとする。
従来、熱間圧延後に700℃超で行われていた熱処理は省略する。熱処理を700℃超の温度で実施すると、本発明において重要な集合組織が得られないばかりか、冷間圧延工程において靭性が劣化し、耳割れや板破断が生じるためである。
Next, the manufacturing method will be described below.
The ferritic stainless steel of the present invention is manufactured by a process of combining cold rolling and heat treatment after hot rolling.
In the present invention, “heat treatment” refers to an operation in which a target material is artificially heated and held for a certain period of time. However, the material is heated and heated to around 100 ° C. by processing heat generated during cold rolling, but this heating and heating by cold rolling is not included in the heat treatment.
Conventionally, the heat treatment performed at over 700 ° C. after hot rolling is omitted. When the heat treatment is performed at a temperature higher than 700 ° C., not only an important texture is not obtained in the present invention, but also the toughness is deteriorated in the cold rolling process, and the ear cracks and the plate breakage occur.

冷間圧延前には酸洗もしくはコイルグラインダにより表面スケールを除去する。冷間圧延率は25〜70%とする。冷間圧延率が25%未満であると、{211}<011>のランダム強度比が2.5未満になるため、これを下限とした。また70%以上の場合も{211}<011>のランダム強度比を満足しない。冷間圧延の生産性及び表面特性を考慮すると、冷間圧延率は33%〜67%の範囲が好ましい。また冷間圧延後の熱処理温度は、特には規定しないが、850℃〜1000℃の範囲が好ましい。また熱処理時の雰囲気は特に規定するものではないが、熱処理後の表面酸洗性を考慮すると、BA(光輝焼鈍)雰囲気であることが好ましい。   Before cold rolling, the surface scale is removed by pickling or coil grinder. The cold rolling rate is 25 to 70%. If the cold rolling rate is less than 25%, the random intensity ratio of {211} <011> is less than 2.5, so this was set as the lower limit. Further, even when it is 70% or more, the random intensity ratio of {211} <011> is not satisfied. Considering cold rolling productivity and surface characteristics, the cold rolling rate is preferably in the range of 33% to 67%. The heat treatment temperature after cold rolling is not particularly specified, but is preferably in the range of 850 ° C to 1000 ° C. The atmosphere during the heat treatment is not particularly specified, but considering the surface pickling property after the heat treatment, a BA (bright annealing) atmosphere is preferable.

本発明により、クリープ特性に優れた鋼が得られる理由については鋭意研究中であるが、現在のところ次のように考えている。
集合組織とクリープ特性の関係については前述したとおりであるが、本願発明のようなAlを比較的多く含有する鋼においては、鋼中の活動すべり系、並びに転位の蓄積形態が、Al無添加鋼と異なると予測している。鋼中にSiを多量に添加した場合は活動すべり系が変化することが公知(例えばBarrett et al : Trans. ASM 25(1937), 702)である。
Alは、周期律表においてSiの隣に位置しており、Siに近い効果を発揮する可能性が高い。したがって、鋼にAlを添加した場合に、活動すべり系が変化したと推察される。すなわち、本発明においてはAlを含有することによって活動すべり系が変化し、特に、{211}<011>方位において良好なクリープ特性が得られたと考えられる。
The reason why a steel excellent in creep characteristics can be obtained by the present invention is under intensive study, but at present, it is considered as follows.
The relationship between the texture and the creep properties is as described above. However, in the steel containing a relatively large amount of Al as in the present invention, the active slip system in the steel and the accumulation form of dislocations are not added to Al. And are expected to be different. It is known that when a large amount of Si is added to steel, the active slip system changes (for example, Barrett et al: Trans. ASM 25 (1937), 702).
Al is located next to Si in the periodic table, and is highly likely to exhibit an effect close to Si. Therefore, it is surmised that the activity slip system changed when Al was added to the steel. That is, in the present invention, the active slip system is changed by containing Al, and it is considered that good creep characteristics are obtained particularly in the {211} <011> orientation.

本発明は、上記のようにAlを含有したフェライト系ステンレス鋼において、特有の結晶方位(集合組織)を制御することにより、クリープ特性を高めた点が重要なポイントである。   In the present invention, in the ferritic stainless steel containing Al as described above, the important point is that the creep characteristics are improved by controlling the specific crystal orientation (texture).

以下に、本発明の実施例について述べる。   Examples of the present invention will be described below.

表1に成分を示す各種フェライト系ステンレス鋼を溶製し、熱間圧延、焼鈍酸洗、冷間圧延を行い、表2に示す条件で、板厚0.8〜2.0mmの冷延鋼板を製造した。得られた鋼板のL断面より、EBSDを用いて全板厚×長さ3mmの範囲において結晶方位を測定し、{211}<011>のランダム強度比を求めた。   Various ferritic stainless steels having the components shown in Table 1 are melted and subjected to hot rolling, annealing pickling, and cold rolling, and cold rolled steel sheets having a thickness of 0.8 to 2.0 mm under the conditions shown in Table 2. Manufactured. From the L cross section of the obtained steel plate, the crystal orientation was measured in the range of total plate thickness × length 3 mm using EBSD, and the random strength ratio of {211} <011> was obtained.

Figure 2018080371
Figure 2018080371

Figure 2018080371
Figure 2018080371

クリープ試験は、JIS Z 2271準拠する定荷重試験とし、平行部10mm、幅で35mm長さの板状試験片を用いた。試験条件は、750℃、初期応力10MPaとし、本発明の課題である僅かな高温変形に関わる耐クリープ強さを評価するために、最小クリープ速度を評価した。最小クリープ速度が5.0×10-3(%/h)より小さくなった場合にクリープ特性が良好であると評価した。 The creep test was a constant load test in accordance with JIS Z 2271, and a plate-shaped test piece having a parallel portion of 10 mm and a width of 35 mm was used. The test conditions were set to 750 ° C. and initial stress of 10 MPa, and the minimum creep rate was evaluated in order to evaluate the creep resistance strength related to slight high temperature deformation, which is the subject of the present invention. When the minimum creep rate was smaller than 5.0 × 10 −3 (% / h), the creep characteristics were evaluated as good.

得られた結果を表2に併記した。本発明で規定する成分、及び金属組織を満たした本発明例は、高いクリープ特性を満足している。表2中のNo.1〜27は、鋼成分が本発明範囲内にあり、製造条件(熱延板焼鈍温度及び冷間圧延率)が本発明を満たすもの(No.2,4,6,8,11,15,17,20,23及び25)が良好なクリープ特性を示している。No.28〜39は、鋼成分が本発明範囲外となっている。すなわち、No.28,29,37,38は、集合組織が本発明範囲にあるが、Al量が本発明範囲外であるため、クリープ特性は不良である。No.31,34,35はB、もしくはSnが本発明外であるため、集合組織は本発明範囲にあるが、クリープ特性は不良である。   The obtained results are also shown in Table 2. The examples of the present invention satisfying the components specified in the present invention and the metal structure satisfy high creep characteristics. No. in Table 2 In Nos. 1 to 27, steel components are within the scope of the present invention, and manufacturing conditions (hot rolled sheet annealing temperature and cold rolling rate) satisfy the present invention (No. 2, 4, 6, 8, 11, 15, 17, 20, 23 and 25) show good creep characteristics. No. In 28 to 39, the steel component is outside the scope of the present invention. That is, no. Nos. 28, 29, 37, and 38 have a texture within the range of the present invention, but the Al content is outside the range of the present invention, so that the creep characteristics are poor. No. Nos. 31, 34, and 35 have B or Sn outside the scope of the present invention, so that the texture is within the scope of the present invention, but the creep characteristics are poor.

本発明によれば、クリ−プ特性の良好なAl含有フェライト系ステンレス鋼を提供することが出来る。本鋼材は燃料電池改質器用に適した材料である。   According to the present invention, an Al-containing ferritic stainless steel having good creep characteristics can be provided. This steel material is a material suitable for a fuel cell reformer.

Claims (4)

質量%にて、Cr:11〜25%、C:0.001%以上0.03%以下、Si:0.01%以上2.0%以下、Mn:0.01%以上2.0%以下、Al:0.5%以上4.0%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下を含有し、更に、必要に応じて、Ti:1%以下と、Nb:1%以下の1種または2種以上を含み、かつB:0.0005%以上0.0025%以下と、Sn:0.005%以上0.5%以下の1種または2種以上を含み、残部がFeおよび不可避的不純物からなり、{211}<011>方位のランダム強度比が2.5以上である集合組織を持つことを特徴とするフェライト系ステンレス鋼。   In mass%, Cr: 11-25%, C: 0.001% to 0.03%, Si: 0.01% to 2.0%, Mn: 0.01% to 2.0% Al: 0.5% or more and 4.0% or less, P: 0.05% or less, S: 0.01% or less, N: 0.03% or less, and if necessary, Ti: 1 type or less, Nb: 1% or less including 1% or less, and B: 0.0005% or more and 0.0025% or less, Sn: 0.005% or more and 0.5% or less Alternatively, a ferritic stainless steel including two or more types, the balance being Fe and inevitable impurities, and having a texture with a random intensity ratio of {211} <011> orientation of 2.5 or more. 質量%にて、更に、Ni:1%以下、Cu:1%以下、Mo:2%以下、W:1%以下、Co:0.5%以下、V:0.5%以下、Ca:0.005%以下、Mg:0.005%以下、Zr:0.5%以下、Sb:0.5%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種または2種以上を含有していることを特徴とする請求項1に記載のフェライト系ステンレス鋼。   Further, by mass%, Ni: 1% or less, Cu: 1% or less, Mo: 2% or less, W: 1% or less, Co: 0.5% or less, V: 0.5% or less, Ca: 0 0.005% or less, Mg: 0.005% or less, Zr: 0.5% or less, Sb: 0.5% or less, La: 0.1% or less, Y: 0.1% or less, Hf: 0.1 % Or less, REM: 0.1% or less of 1 type or 2 types or more are contained, The ferritic stainless steel of Claim 1 characterized by the above-mentioned. 請求項1〜2のいずれか1項に記載の組成を有する鋼を製造するに際し、熱間圧延後、700℃超で行われる熱処理を省略し、その後に圧延率25〜70%の冷間圧延と熱処理を組み合わせることを特徴とするフェライト系ステンレス鋼の製造方法。   In manufacturing the steel having the composition according to any one of claims 1 to 2, after the hot rolling, the heat treatment performed at over 700 ° C is omitted, and then the cold rolling at a rolling rate of 25 to 70%. And ferritic stainless steel production method characterized by combining heat treatment. 請求項1〜2のいずれか1項に記載のフェライト系ステンレス鋼を用いた燃料電池用部材。   The member for fuel cells using the ferritic stainless steel of any one of Claims 1-2.
JP2016224449A 2016-11-17 2016-11-17 Ferritic stainless steel, its manufacturing method, and fuel cell components Active JP6765287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016224449A JP6765287B2 (en) 2016-11-17 2016-11-17 Ferritic stainless steel, its manufacturing method, and fuel cell components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016224449A JP6765287B2 (en) 2016-11-17 2016-11-17 Ferritic stainless steel, its manufacturing method, and fuel cell components

Publications (2)

Publication Number Publication Date
JP2018080371A true JP2018080371A (en) 2018-05-24
JP6765287B2 JP6765287B2 (en) 2020-10-07

Family

ID=62197545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016224449A Active JP6765287B2 (en) 2016-11-17 2016-11-17 Ferritic stainless steel, its manufacturing method, and fuel cell components

Country Status (1)

Country Link
JP (1) JP6765287B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066792A (en) * 2018-10-26 2020-04-30 日鉄ステンレス株式会社 Ferritic stainless steel and method for producing the same, and fuel cell member
JP2020164941A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet
TWI718712B (en) * 2018-10-25 2021-02-11 日商杰富意鋼鐵股份有限公司 Fertilizer iron series stainless steel hot-rolled annealing steel plate and manufacturing method thereof
WO2024047936A1 (en) * 2022-08-31 2024-03-07 Jfe Steel Corporation Component for solid oxide fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235555A (en) * 2008-03-28 2009-10-15 Nippon Steel & Sumikin Stainless Steel Corp Heat resistant ferritic stainless steel sheet having excellent oxidation resistance
JP2010222638A (en) * 2009-03-24 2010-10-07 Nippon Steel & Sumikin Stainless Steel Corp Al-CONTAINING HEAT RESISTANT FERRITIC STAINLESS STEEL FOR FUEL CELL, AND METHOD FOR PRODUCING THE SAME
JP2010248620A (en) * 2009-03-24 2010-11-04 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel plate excellent in heat resistance and workability
JP2014162964A (en) * 2013-02-26 2014-09-08 Nippon Steel & Sumikin Stainless Steel Corp Low alloy type ferritic stainless steel for automotive exhaust system member excellent in oxidation resistance and corrosion resistance
JP2018053290A (en) * 2016-09-27 2018-04-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel excellent in high temperature fatigue property

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235555A (en) * 2008-03-28 2009-10-15 Nippon Steel & Sumikin Stainless Steel Corp Heat resistant ferritic stainless steel sheet having excellent oxidation resistance
JP2010222638A (en) * 2009-03-24 2010-10-07 Nippon Steel & Sumikin Stainless Steel Corp Al-CONTAINING HEAT RESISTANT FERRITIC STAINLESS STEEL FOR FUEL CELL, AND METHOD FOR PRODUCING THE SAME
JP2010248620A (en) * 2009-03-24 2010-11-04 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel plate excellent in heat resistance and workability
JP2014162964A (en) * 2013-02-26 2014-09-08 Nippon Steel & Sumikin Stainless Steel Corp Low alloy type ferritic stainless steel for automotive exhaust system member excellent in oxidation resistance and corrosion resistance
JP2018053290A (en) * 2016-09-27 2018-04-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel excellent in high temperature fatigue property

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718712B (en) * 2018-10-25 2021-02-11 日商杰富意鋼鐵股份有限公司 Fertilizer iron series stainless steel hot-rolled annealing steel plate and manufacturing method thereof
JP2020066792A (en) * 2018-10-26 2020-04-30 日鉄ステンレス株式会社 Ferritic stainless steel and method for producing the same, and fuel cell member
JP7233195B2 (en) 2018-10-26 2023-03-06 日鉄ステンレス株式会社 Ferritic stainless steel, manufacturing method thereof, and fuel cell member
JP2020164941A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet
WO2024047936A1 (en) * 2022-08-31 2024-03-07 Jfe Steel Corporation Component for solid oxide fuel cell

Also Published As

Publication number Publication date
JP6765287B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
JP6113359B1 (en) Al-containing ferritic stainless steel with excellent creep characteristics and fuel cell components
JP6832999B2 (en) Ferritic stainless steel, its steel sheet and their manufacturing method
JP5902253B2 (en) Ferritic stainless steel for fuel cells and method for producing the same
WO2017073093A1 (en) Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
WO2016017692A1 (en) Ferritic stainless steel material for fuel cell, and method for producing same
JP6765287B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6300841B2 (en) Al-containing ferritic stainless steel with excellent high-temperature strength
JP2013199663A (en) Austenitic stainless steel excellent in molten nitrate corrosion resistance, heat collection tube and heat accumulation system using molten nitrate as heat accumulation medium
JP2019002053A (en) Ferritic stainless steel sheet, steel tube, ferritic stainless member for exhaust system component, and manufacturing method of ferritic stainless steel sheet
JP2016211076A (en) Ferritic stainless steel and production method therefor
JP6006759B2 (en) Ferritic stainless steel for fuel reformer of fuel cell or heat exchanger of fuel cell and method for producing the same
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
WO2015064739A1 (en) Ferritic stainless steel for use in fuel reformer and method of manufacturing ferritic stainless steel
JP2015001008A (en) Austenitic stainless steel for fuel reformer excellent in adhesion of oxide film and production method thereof
JP2017125248A (en) Ferritic stainless steel for solid oxide type fuel cell excellent in heat resistance and production method therefor
JP2016084545A (en) Ferritic stainless steel for fuel cell
JP2018066064A (en) Austenitic stainless steel for fuel reformer excellent in adhesion of oxide film
JP6767831B2 (en) Ferritic stainless steel and welded structures for welded structures with excellent high temperature fatigue characteristics
JP7233195B2 (en) Ferritic stainless steel, manufacturing method thereof, and fuel cell member
JP6053994B1 (en) Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same
JP6971184B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6159571B2 (en) Stainless steel material for solar cell substrates with excellent insulation and low thermal expansion coefficient
JP6655962B2 (en) Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance
JP2019031717A (en) Austenitic stainless steel and method for producing the same, and members of fuel reformer and combustor
JP2019173075A (en) Ferritic stainless steel and manufacturing method therefor, and fuel battery member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250