JP2018066064A - Austenitic stainless steel for fuel reformer excellent in adhesion of oxide film - Google Patents

Austenitic stainless steel for fuel reformer excellent in adhesion of oxide film Download PDF

Info

Publication number
JP2018066064A
JP2018066064A JP2017235369A JP2017235369A JP2018066064A JP 2018066064 A JP2018066064 A JP 2018066064A JP 2017235369 A JP2017235369 A JP 2017235369A JP 2017235369 A JP2017235369 A JP 2017235369A JP 2018066064 A JP2018066064 A JP 2018066064A
Authority
JP
Japan
Prior art keywords
less
oxide film
oxide
stainless steel
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017235369A
Other languages
Japanese (ja)
Other versions
JP6498263B2 (en
Inventor
秦野 正治
Masaharu Hatano
正治 秦野
篤剛 林
Atsutaka HAYASHI
篤剛 林
石丸 詠一朗
Eiichiro Ishimaru
詠一朗 石丸
高橋 明彦
Akihiko Takahashi
明彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2017235369A priority Critical patent/JP6498263B2/en
Publication of JP2018066064A publication Critical patent/JP2018066064A/en
Application granted granted Critical
Publication of JP6498263B2 publication Critical patent/JP6498263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an austenitic stainless steel sheet for a fuel reformer combining economical efficiency with such a durability that adhesion of an oxide film is not impaired even when a heating and cooling cycle of activation and stop is repeated under a modified gas environment without depending on addition of rare earth elements or Ni.SOLUTION: The austenitic stainless steel sheet for a fuel reformer excellent in adhesion of an oxide film is provided that includes, by mass%, Cr:15 to 25%, C:0.1% or less, Si:5% or less, Mn:3% or less, P:0.05% or less, S:0.01% or less, Ni:8 to 18%, Cu:3% or less, Mo;3% or less, N:0.3% and further one or two or more kind of Nb:0.01 to 0.5%, Ti:0.01 to 0.5%, V:0.01 to 0.5%, Al:0.01 to 0.5%, B:0.005% or less and Mg:0.005% or less. It is preferred that a Cr-based oxide layer including Si and/or Mn is formed on the surface of the austenitic stainless steel sheet and that two or more kinds of Si oxide, Mn oxide, Nb oxide, Ti oxide and Al oxide are present between the Cr-based oxide layer and a base material.SELECTED DRAWING: None

Description

本発明は、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される改質器、熱交換器などの燃料電池高温部材に好適なオーステナイト系ステンレス鋼およびその製造方法に関する。   The present invention is suitable for high-temperature members of fuel cells such as reformers and heat exchangers used when reforming hydrocarbon fuels such as city gas, methane, natural gas, propane, kerosene, and gasoline into hydrogen. The present invention relates to an austenitic stainless steel and a method for producing the same.

最近、石油を代表とする化石燃料の枯渇化、CO2排出による地球温暖化現象等の問題から、従来の発電システムに替わる新しいシステムの普及が加速している。その1つとして、分散電源,自動車の動力源としても実用的価値が高い「燃料電池」が注目されている。燃料電池にはいくつかの種類があるが、その中でも固体高分子型燃料電池(PEFC)や固体酸化物型燃料電池(SOFC)はエネルギー効率が高く、将来の普及拡大が有望視されている。 Recently, the spread of new systems replacing conventional power generation systems is accelerating due to problems such as depletion of fossil fuels such as petroleum and global warming due to CO 2 emissions. As one of them, “fuel cell”, which has high practical value as a distributed power source and a power source for automobiles, is attracting attention. There are several types of fuel cells. Among them, polymer electrolyte fuel cells (PEFC) and solid oxide fuel cells (SOFC) have high energy efficiency, and are expected to expand in the future.

燃料電池は、水の電気分解と逆の反応過程を経て電力を発生する装置であり、水素を必要とする。水素は、都市ガス(LNG)、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を触媒の存在下で改質反応させることにより製造される。中でも都市ガスを原燃料とする燃料電池は、都市ガス配管が整備された地区において水素を製造できる利点がある。   A fuel cell is a device that generates electric power through a reaction process opposite to that of water electrolysis, and requires hydrogen. Hydrogen is produced by a reforming reaction of hydrocarbon fuels such as city gas (LNG), methane, natural gas, propane, kerosene, and gasoline in the presence of a catalyst. Above all, a fuel cell using city gas as a raw fuel has an advantage that hydrogen can be produced in an area where city gas piping is provided.

燃料改質器は、水素の改質反応に必要な熱量を確保するため、通常、200〜900℃までの高温で運転される。更に、このような高温運転下において、多量の水蒸気、二酸化炭素、一酸化炭素等を含む酸化性の雰囲気に曝され、水素の需要に応じて起動・停止による加熱・冷却サイクルが繰り返される。これまで、このような過酷な環境下において十分な耐久性を有する実用材料として、SUS310S(25Cr−20Ni)に代表される高合金ステンレス鋼が使用されてきた。将来、燃料電池システムの普及拡大に向けて、コスト低減は必要不可欠であり、使用材料の最適化による合金コストの低減は重要な課題である。   The fuel reformer is usually operated at a high temperature of 200 to 900 ° C. in order to ensure the amount of heat necessary for the hydrogen reforming reaction. Further, under such a high temperature operation, it is exposed to an oxidizing atmosphere containing a large amount of water vapor, carbon dioxide, carbon monoxide and the like, and the heating / cooling cycle by starting and stopping is repeated according to the demand for hydrogen. Hitherto, high-alloy stainless steel represented by SUS310S (25Cr-20Ni) has been used as a practical material having sufficient durability under such a severe environment. In the future, cost reduction is indispensable for the spread of fuel cell systems, and reduction of alloy costs by optimizing the materials used is an important issue.

特許文献1には、Cr:15〜25%、Ni:7〜15%、C:0.02〜0.1%、Si:1〜4%、Mn:2%以下、S:0.008%以下を含み、更にN:0.05〜0.20%、Mo:1.0〜3.0%、Nb:0.05〜0.50%の1種又は2種以上を含む石油系燃料改質器用オーステナイト系ステンレス鋼が開示されている。これらステンレス鋼は、50体積%H2O+20体積%CO2の雰囲気中、900℃の温度で100時間加熱した後の酸化皮膜にCr23が30質量%以上含まれていることを特徴としている。 In Patent Document 1, Cr: 15 to 25%, Ni: 7 to 15%, C: 0.02 to 0.1%, Si: 1 to 4%, Mn: 2% or less, S: 0.008% Petroleum-based fuel reforms containing one or more of N: 0.05 to 0.20%, Mo: 1.0 to 3.0%, Nb: 0.05 to 0.50% An austenitic stainless steel for a quality organ is disclosed. These stainless steels are characterized in that 30% by mass or more of Cr 2 O 3 is contained in an oxide film after heating for 100 hours at a temperature of 900 ° C. in an atmosphere of 50% by volume H 2 O + 20% by volume CO 2. Yes.

特許文献2には、Cr:15〜25%、Ni:7〜15%、C:0.01〜0.1%、Si:2.56〜4%、Mn:2%以下、S:0.008%以下を含み、更にN:0.05〜0.20%、Mo:0.1〜3.0%の1種又は2種を含むアルコール系燃料改質器用オーステナイト系ステンレス鋼が開示されている。これらステンレス鋼は、50体積%H2O+20体積%CO2の雰囲気中での耐水蒸気酸化性、耐赤スケール性に優れることを特徴としている。 In Patent Document 2, Cr: 15 to 25%, Ni: 7 to 15%, C: 0.01 to 0.1%, Si: 2.56 to 4%, Mn: 2% or less, S: 0.00. An austenitic stainless steel for alcohol-based fuel reformers containing 008% or less and further including one or two of N: 0.05 to 0.20% and Mo: 0.1 to 3.0% is disclosed. Yes. These stainless steels are characterized by being excellent in steam oxidation resistance and red scale resistance in an atmosphere of 50% by volume H 2 O + 20% by volume CO 2 .

特許文献1及び2のオーステナイト系ステンレス鋼は、50体積%H2O+20体積%CO2環境下での耐酸化性改善を指向し、Si添加によるCr系酸化皮膜の生成促進とREMやCa、AlのCr系酸化物への固溶による酸化皮膜の強化を技術思想としている。都市ガスを原燃料とした燃料電池の改質ガスは、水蒸気/二酸化炭素/一酸化炭素に加えて、多量の水素を含むことが特徴であり、このような改質ガス環境下の酸化特性については不明である。更に、オーステナイト系ステンレス鋼を燃料改質器に適用する際の主たる技術課題は、起動・停止に伴う加熱・冷却サイクルにおいて、鋼と表面に形成した酸化皮膜の熱膨張係数差により生じる酸化皮膜の剥離にある。上述した多量の水素を含む改質ガス環境下の酸化特性を踏まえた酸化皮膜の密着性に対して、特許文献1及び2のオーステナイト系ステンレス鋼の有効性については何ら言及されていない。すなわち、改質ガス環境下の耐久性の指標である酸化皮膜の密着性と経済性を兼備したオーステナイト系ステンレス鋼については未だ出現していないのが現状である。 The austenitic stainless steels of Patent Documents 1 and 2 are aimed at improving the oxidation resistance in an environment of 50% by volume H 2 O + 20% by volume CO 2, promoting the formation of a Cr-based oxide film by adding Si, REM, Ca, Al The technical idea is to strengthen the oxide film by dissolving it in a Cr-based oxide. The reformed gas of fuel cells using city gas as raw fuel is characterized by containing a large amount of hydrogen in addition to water vapor / carbon dioxide / carbon monoxide, and the oxidation characteristics under such reformed gas environment Is unknown. Furthermore, the main technical problem when applying austenitic stainless steel to a fuel reformer is that the oxide film produced by the difference in thermal expansion coefficient between the steel and the oxide film formed on the surface in the heating / cooling cycle accompanying start / stop It is in peeling. No mention is made of the effectiveness of the austenitic stainless steels of Patent Documents 1 and 2 with respect to the adhesion of the oxide film based on the oxidation characteristics in the reformed gas environment containing a large amount of hydrogen described above. In other words, the austenitic stainless steel that has both oxide film adhesion and economy, which is an index of durability under the reformed gas environment, has not yet appeared.

特許第3886786号公報Japanese Patent No. 3886786 特許第3886787号公報Japanese Patent No. 3886787

本発明は、上述した課題を解消すべく案出されたものであり、改質ガス環境下で起動・停止の加熱・冷却サイクルを繰り返しても、酸化皮膜の密着性を損なわない耐久性と経済性を兼備した燃料改質器用オーステナイト系ステンレス鋼板を提供するものである。   The present invention has been devised to solve the above-described problems, and has durability and economy that does not impair the adhesion of the oxide film even when the heating / cooling cycle of start / stop is repeated in a reformed gas environment. The present invention provides an austenitic stainless steel sheet for a fuel reformer having both properties.

(1)質量%にて、Cr:15〜25%、C:0.1%以下、Si:5%以下、Mn:3%以下、P:0.05%以下、S:0.01%以下、Ni:8〜18%、Cu:3%以下、Mo;3%以下、N:0.3%以下を含み、更にNb:0.01〜0.5%、Ti:0.01〜0.5%、V:0.01〜0.5%、Al:0.01〜0.5%、B:0.005%以下、Mg:0.005%以下の1種または2種以上を含み、残部がFeおよび不可避的不純物からなることを特徴とする酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼。
(2)前記鋼が、さらに質量%にて、Sn:0.5%以下、Sb:0.5%以下、Co:0.5%以下、W:0.5%以下、Ca:0.005%以下、Zr:0.5%以下、La:0.1%以下、Ce:0.1%、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種又は2種以上含有していることを特徴とする(1)に記載する酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼。
(3)表面にSi又は及びMnを含むCr系酸化物層を形成し、Cr系酸化物層と母材との間に、Si酸化物、Mn酸化物、Nb酸化物、Ti酸化物、Al酸化物の2種以上が混在することを特徴とする(1)または(2)に記載の酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼。
(4)水蒸気及び水素を含む雰囲気中において、300〜1000℃の範囲で熱処理することにより、ステンレス鋼表面に酸化皮膜を形成することを特徴とする(1)または(2)に記載の酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼の製造方法。
(1) In mass%, Cr: 15-25%, C: 0.1% or less, Si: 5% or less, Mn: 3% or less, P: 0.05% or less, S: 0.01% or less Ni: 8-18%, Cu: 3% or less, Mo: 3% or less, N: 0.3% or less, Nb: 0.01-0.5%, Ti: 0.01-0. 5%, V: 0.01 to 0.5%, Al: 0.01 to 0.5%, B: 0.005% or less, Mg: 0.005% or less, including one or more, An austenitic stainless steel for a fuel reformer having excellent oxide film adhesion, wherein the balance is Fe and inevitable impurities.
(2) The steel is further mass%, Sn: 0.5% or less, Sb: 0.5% or less, Co: 0.5% or less, W: 0.5% or less, Ca: 0.005 % Or less, Zr: 0.5% or less, La: 0.1% or less, Ce: 0.1%, Y: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less The austenitic stainless steel for fuel reformers having excellent oxide film adhesion as described in (1), wherein the austenitic stainless steel contains one or more.
(3) A Cr-based oxide layer containing Si or Mn is formed on the surface, and between the Cr-based oxide layer and the base material, Si oxide, Mn oxide, Nb oxide, Ti oxide, Al The austenitic stainless steel for fuel reformer having excellent adhesion of the oxide film according to (1) or (2), wherein two or more kinds of oxides are mixed.
(4) The oxide film according to (1) or (2), wherein an oxide film is formed on a stainless steel surface by heat treatment in an atmosphere containing water vapor and hydrogen in a range of 300 to 1000 ° C. For producing austenitic stainless steel for fuel reformer with excellent adhesion.

以下、上記(1)、(2)、(3)の鋼に係わる発明をそれぞれ本発明という。また、(1)〜(4)の発明を合わせて、本発明ということがある。   Hereinafter, the inventions related to the steels (1), (2), and (3) are referred to as the present invention. The inventions (1) to (4) may be collectively referred to as the present invention.

本発明者らは、前記した課題を解決するために、改質ガス環境を想定した多量の水素を含む水蒸気酸化雰囲気下でオーステナイト系ステンレス鋼表面に生成する酸化皮膜の密着性に及ぼすSiやMn及び微量元素のNb、Ti、Al、V、B、Mg、Nの作用について鋭意実験と検討を重ね、本発明を完成させた。以下に本発明で得られた知見について説明する。   In order to solve the above-mentioned problems, the present inventors have affected Si and Mn on the adhesion of an oxide film formed on the surface of an austenitic stainless steel in a steam oxidation atmosphere containing a large amount of hydrogen assuming a reformed gas environment. In addition, the present invention was completed by intensive experiments and studies on the effects of the trace elements Nb, Ti, Al, V, B, Mg, and N. The knowledge obtained by the present invention will be described below.

(a)水素が存在する改質ガス環境下では、大気や従来の水蒸気酸化環境と比較してCr系酸化皮膜の成長と内部酸化が助長される傾向にある。これら酸化促進メカニズムは未だ不明な点も多いが、水素や水蒸気のガスが酸化皮膜中の欠陥形成を助長したことによると推察される。
(b)上述した改質ガス環境下において、Si及びMnは、Cr系酸化皮膜へ固溶して、Cr系酸化皮膜の成長と内部酸化の抑制に寄与する新規な知見が得られた。更に、SiやMnはCr系酸化皮膜の直下にも濃化(内部酸化物を形成)することでも、水素や水蒸気による加速酸化を遅延させる。
(c)前記したCr系酸化皮膜の密着性を更に高めるには、Nb、Ti、Alの微量添加が有効である。これら微量元素の添加によるCr系酸化皮膜の密着性改善は、Nb、Ti、Alの内部酸化物を形成することによる。これより、900℃までの加熱・冷却サイクルにおけるCr系酸化皮膜の密着性を高めることを知見した。
(d)更に、Cr系酸化皮膜の密着性改善には、V、B、Mgの微量元素の添加も効果を発揮することが分かった。V、B、Mgの微量添加によって、粒界酸化を抑制することによって、酸化皮膜の密着性を改善する。
(A) In a reformed gas environment where hydrogen is present, the growth and internal oxidation of the Cr-based oxide film tend to be promoted as compared with the atmosphere and a conventional steam oxidation environment. Although many of these oxidation promotion mechanisms are still unclear, it is presumed that hydrogen or water vapor promotes defect formation in the oxide film.
(B) Under the above-described reformed gas environment, Si and Mn were dissolved in the Cr-based oxide film, and new findings were obtained that contribute to the growth of the Cr-based oxide film and the suppression of internal oxidation. Furthermore, Si or Mn also concentrates immediately under the Cr-based oxide film (forms an internal oxide), thereby delaying accelerated oxidation by hydrogen or water vapor.
(C) In order to further improve the adhesion of the Cr-based oxide film, it is effective to add a small amount of Nb, Ti, or Al. The improvement in the adhesion of the Cr-based oxide film by the addition of these trace elements is due to the formation of internal oxides of Nb, Ti, and Al. From this, it was found that the adhesion of the Cr-based oxide film in the heating / cooling cycle up to 900 ° C. was improved.
(D) Furthermore, it has been found that the addition of trace elements of V, B, and Mg is also effective for improving the adhesion of the Cr-based oxide film. The addition of a small amount of V, B, and Mg improves the adhesion of the oxide film by suppressing grain boundary oxidation.

上述したように、改質ガス環境下において、SiやMnによりCr系酸化皮膜の健全性を高め、Nb、Ti、Al、V、B、Mgの微量添加により、希土類元素やNiの添加に頼ることなく、耐酸化性と酸化皮膜の密着性を付与できる全く新規な知見が得られた。前記(1)〜(4)の本発明は、上述した検討結果に基づいて完成されたものである。   As described above, in the reformed gas environment, the soundness of the Cr-based oxide film is enhanced by Si or Mn, and depending on the addition of rare earth elements or Ni by adding a small amount of Nb, Ti, Al, V, B, or Mg. Thus, a completely novel finding that can impart oxidation resistance and adhesion of the oxide film was obtained. The present inventions (1) to (4) have been completed based on the above-described examination results.

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".

成分の限定理由を以下に説明する。   The reasons for limiting the components will be described below.

Crは、耐食性に加えて、本発明の目標とする耐酸化性を確保する上で基本の構成元素である。本発明においては、15%未満では目標とする基本特性が十分に確保されない。従って、下限は15%とする。しかし、過度な添加は高温雰囲気に曝された際、脆化相であるσ相の生成を助長することに加え、γ相の安定性も確保し難くなる。更に、本発明の目標とする合金コストの抑制から上限は25%とする。基本特性及び耐酸化性とコストの点から、好ましい範囲は17〜22%である。   In addition to corrosion resistance, Cr is a basic constituent element for securing the target oxidation resistance of the present invention. In the present invention, if it is less than 15%, the target basic characteristics cannot be sufficiently ensured. Therefore, the lower limit is 15%. However, excessive addition facilitates the formation of the σ phase, which is an embrittlement phase, when exposed to a high temperature atmosphere, and also makes it difficult to ensure the stability of the γ phase. Furthermore, the upper limit is set to 25% in order to reduce the alloy cost that is the target of the present invention. A preferable range is 17 to 22% from the viewpoint of basic characteristics, oxidation resistance, and cost.

Cは、Cr系炭化物となって、本発明の目標とする耐酸化性に有効なCr量を消費する。Cr系炭化物の析出は、高温強度やγ相の安定性を低下させる。従って、C含有量上限は0.1%とする。しかし、C量の低減に伴ってγ相の高温強度や組織安定性が低下するため、好ましくは0.02%以上とする。   C becomes a Cr-based carbide and consumes an amount of Cr effective for the oxidation resistance targeted by the present invention. Precipitation of Cr-based carbides reduces high temperature strength and γ phase stability. Therefore, the upper limit of the C content is 0.1%. However, since the high-temperature strength and structural stability of the γ phase are reduced as the amount of C is reduced, the content is preferably 0.02% or more.

Siは、本発明の目標とする耐酸化性を確保する上で重要な元素である。改質ガス環境下でCr系酸化皮膜へ固溶し、Cr系酸化皮膜の健全性を高める。これら効果は、1%から顕著になる。SiはCr系酸化皮膜の直下にも濃化(内部酸化物を形成)することでも、水素や水蒸気による加速酸化を遅延させる。一方、過剰な添加は鋼の加工性や溶接性の低下を招くため上限は5%とする。耐酸化性と基本特性の点から、好ましい範囲は2〜4%、より好ましい範囲は2.5〜3.5%である。   Si is an important element in securing the oxidation resistance targeted by the present invention. It dissolves in Cr-based oxide film in a reformed gas environment and improves the soundness of Cr-based oxide film. These effects become significant from 1%. Si also delays accelerated oxidation by hydrogen or water vapor by concentrating (forming an internal oxide) just below the Cr-based oxide film. On the other hand, excessive addition causes a decrease in workability and weldability of the steel, so the upper limit is made 5%. From the viewpoint of oxidation resistance and basic characteristics, a preferable range is 2 to 4%, and a more preferable range is 2.5 to 3.5%.

Mnは、γ相の安定性を高め、Niの代替成分として有効であることに加え、本発明の耐酸化性を確保する上でも効果のある元素である。改質ガス環境下でCr系酸化皮膜へSiとともに固溶し、Cr系酸化皮膜の健全性を高める。これら効果は、0.5%から顕著になる。一方、過度な添加は、鋼の耐食性や耐酸化性の低下にも繋がるため上限は3%とする。耐酸化性と基本特性の点から、好ましい範囲は0.5〜2.5%、より好ましくは0.8〜1.5%である。より好ましいMnの範囲では、Cr系酸化皮膜の直下にも濃化(内部酸化物を形成)しやすく、水素や水蒸気による加速酸化を遅延させる。SiとMnの一方又は両方がCr系酸化皮膜へ固溶してCr系酸化皮膜の成長と内部酸化の抑制に寄与するためには、鋼中のSiとMnの一方又は両方が、上記における下限以上の含有量であればよい。   Mn is an element that is effective in enhancing the stability of the γ phase and being effective as an alternative component of Ni, as well as ensuring the oxidation resistance of the present invention. Under the reformed gas environment, it dissolves together with Si in the Cr-based oxide film, improving the soundness of the Cr-based oxide film. These effects become significant from 0.5%. On the other hand, excessive addition leads to a decrease in the corrosion resistance and oxidation resistance of the steel, so the upper limit is made 3%. From the viewpoint of oxidation resistance and basic characteristics, the preferred range is 0.5 to 2.5%, more preferably 0.8 to 1.5%. In a more preferable range of Mn, concentration (internal oxide formation) is easy even immediately below the Cr-based oxide film, and accelerated oxidation by hydrogen or water vapor is delayed. In order for one or both of Si and Mn to dissolve in the Cr-based oxide film and contribute to the growth of the Cr-based oxide film and the suppression of internal oxidation, one or both of Si and Mn in the steel is the lower limit in the above What is necessary is just the above content.

Pは、鋼中に含まれる不可避的不純物元素であり、本発明の目標とする耐酸化性の低下を招く。従って、上限は0.05%とする。しかし、過度の低減は精錬コストの上昇を招く。従って、下限は0.01%とすることが好ましい。耐酸化性と製造性の点から,好ましい範囲は0.02〜0.03%である。   P is an unavoidable impurity element contained in the steel, and causes a reduction in the oxidation resistance targeted by the present invention. Therefore, the upper limit is 0.05%. However, excessive reduction leads to an increase in refining costs. Therefore, the lower limit is preferably 0.01%. From the viewpoint of oxidation resistance and manufacturability, the preferred range is 0.02 to 0.03%.

Sは、鋼中に含まれる不可避的不純物元素であり、本発明の目標とする耐酸化性を低下させる。特に、Mn系介在物や固溶Sの存在は、高温・長時間使用におけるCr系酸化皮膜を破壊する起点として作用する。従って、S量は低いほど好ましいが、過度の低減は原料や精錬コストの上昇を招く。従って、上限は0.01%とする。耐酸化性と製造性の点から、好ましい範囲は0.0005〜0.002%である。   S is an unavoidable impurity element contained in the steel and lowers the target oxidation resistance of the present invention. In particular, the presence of Mn-based inclusions and solute S acts as a starting point for destroying the Cr-based oxide film when used at high temperatures for a long time. Therefore, the lower the amount of S, the better. However, excessive reduction leads to an increase in raw materials and refining costs. Therefore, the upper limit is made 0.01%. From the viewpoint of oxidation resistance and manufacturability, the preferred range is 0.0005 to 0.002%.

Niは、γ相を維持するために必要不可欠な元素である。改質器の加熱・冷却サイクルにおいてもγ相の組織安定性や高温強度を維持するために、下限は、8%とする。しかし、18%を超える過剰の添加は、本発明の目標とする合金コストの上昇に加え、γ相の安定化による製造性の溶接性の低下を招く。基本特性と製造性・コストの点から、好ましい範囲は、9〜15%、より好ましい範囲は11〜14%である。   Ni is an indispensable element for maintaining the γ phase. In order to maintain the structural stability and high temperature strength of the γ phase even in the heating / cooling cycle of the reformer, the lower limit is 8%. However, an excessive addition exceeding 18% causes an increase in the alloy cost targeted by the present invention and a decrease in manufacturability due to stabilization of the γ phase. From the viewpoint of basic characteristics and manufacturability / cost, the preferable range is 9 to 15%, and the more preferable range is 11 to 14%.

Cuは、γ相の安定性を高め、Niの代替成分として有効であることに加え、耐食性や高温強度の改善に効果のある元素である。しかし、過度な添加は、熱間加工性や溶接性の低下にも繋がるため上限は3%とする。基本特性と製造性の点から、好ましい範囲は0.1〜2.5%、より好ましくは0.5〜2.0%である。   Cu is an element that increases the stability of the γ phase and is effective as an alternative component of Ni, and is effective in improving corrosion resistance and high-temperature strength. However, excessive addition leads to deterioration of hot workability and weldability, so the upper limit is made 3%. From the viewpoint of basic characteristics and manufacturability, the preferred range is 0.1 to 2.5%, more preferably 0.5 to 2.0%.

Moは、耐食性を著しく高め、NiやCuと同様に高温強度を高めるために効果のある元素である。しかし、過度な添加は、合金コストの上昇と製造性の低下にも繋がるため上限は3%とする。基本特性と製造性・コストの点から、好ましい範囲は0.1〜2.5%、より好ましくは0.5〜1.0%である。   Mo is an element that is effective for remarkably enhancing the corrosion resistance and increasing the high-temperature strength like Ni and Cu. However, excessive addition leads to an increase in alloy costs and a decrease in manufacturability, so the upper limit is made 3%. From the viewpoint of basic characteristics, manufacturability and cost, the preferred range is 0.1 to 2.5%, more preferably 0.5 to 1.0%.

Nは、Ni、Cu、Mnと同様にγ相の組織安定性と高温強度を高めるために効果のある元素である。しかし、過度な添加は、本発明の目標とする耐酸化性に有効なCr量を消費する。Cr系窒化物の析出は、高温強度やγ相の安定性を低下させる。従って、上限は0.3%とする。N量の過度な低減は製造性を阻害する。従って、下限は0.01%とすることが好ましい。耐酸化性を点から、好ましい範囲は0.01〜0.05%未満、20%を超えるCr量の場合、Nの添加は過度なNi添加に頼ることなくγ相の組織安定性を確保するためうえで有効に作用する。このように積極的に添加する場合、好ましくは0.18〜0.3、より好ましい範囲は0.2%超〜0.25%である。   N, like Ni, Cu, and Mn, is an element that is effective in enhancing the structural stability and high temperature strength of the γ phase. However, excessive addition consumes an amount of Cr effective for the target oxidation resistance of the present invention. The precipitation of Cr-based nitride decreases the high temperature strength and the stability of the γ phase. Therefore, the upper limit is made 0.3%. An excessive reduction in the amount of N inhibits manufacturability. Therefore, the lower limit is preferably 0.01%. From the viewpoint of oxidation resistance, the preferable range is 0.01 to less than 0.05%, and when the Cr amount exceeds 20%, the addition of N ensures the structural stability of the γ phase without depending on excessive Ni addition. It works effectively. Thus, when adding actively, it becomes like this. Preferably it is 0.18-0.3, and a more preferable range is more than 0.2%-0.25%.

Nb、Ti、V、Al、B、Mgは、本発明の改質ガス環境下の耐酸化性を高める上で有効な微量元素である。Cr系酸化皮膜直下に濃化し、Nb、Ti、AlはCr系酸化物層と母材との間の酸化物(内部酸化物)を形成し、本発明の目標とする900℃までの加熱・冷却サイクルにおいてCr系酸化皮膜の密着性を向上させる。V、B、Mgは、粒界酸化を抑制することによって、酸化皮膜の密着性を改善する。上記効果を得るために、Nb、Ti、V、Al、B、Mgを1種又は2種以上、添加するものとする。添加する場合、Nb、Ti、V、Alは0.01〜0.5%とし、好ましい範囲は0.05〜0.3%とする。B、Mgの場合は0.005%以下とし、好ましい範囲は0.0003〜0.0015する。   Nb, Ti, V, Al, B, and Mg are trace elements that are effective in enhancing the oxidation resistance under the reformed gas environment of the present invention. Concentrated directly under the Cr-based oxide film, Nb, Ti, and Al form an oxide (internal oxide) between the Cr-based oxide layer and the base material. In the cooling cycle, the adhesion of the Cr-based oxide film is improved. V, B, and Mg improve the adhesion of the oxide film by suppressing grain boundary oxidation. In order to obtain the above effects, one or more of Nb, Ti, V, Al, B, and Mg are added. When adding, Nb, Ti, V, and Al are 0.01 to 0.5%, and a preferable range is 0.05 to 0.3%. In the case of B and Mg, the content is 0.005% or less, and a preferable range is 0.0003 to 0.0015.

さらに必要に応じて、以下の元素を含有することとすると好ましい。   Furthermore, it is preferable to contain the following elements as required.

Sn、Sb、Co、Wは、Moと同様な固溶強化と耐食性に有効な元素であるものの、過度な添加は析出や偏析により製造性を阻害する作用を持つ。添加する場合の上限は0.5%、下限は0.01%とすることが好ましい。   Sn, Sb, Co, and W are elements effective for solid solution strengthening and corrosion resistance similar to Mo, but excessive addition has an effect of inhibiting productivity by precipitation or segregation. When added, the upper limit is preferably 0.5%, and the lower limit is preferably 0.01%.

Caは、熱間加工性を改善する作用を持つため選択的に添加することができる。添加する場合の上限は0.005%、下限は0.0001%とすることが好ましい。   Ca has an effect of improving hot workability and can be selectively added. When added, the upper limit is preferably 0.005%, and the lower limit is preferably 0.0001%.

Zr、La、Ce、Y、Hf、REMは、従来からCr系酸化皮膜の密着性を著しく高める作用を持つため選択的に添加しても良い。これら元素を添加する場合、本発明で規定する内部酸化物の形成は1種でも構わない。添加する場合の上限は、Zr:0.5%以下、La:0.1%以下、Ce:0.1%、Y:0.1%以下、Hf:0.1%以下、REM:0.1%とする。これら元素は極めて高価であるため、コスト対効果の点から、添加する場合の範囲は、総量で0.01〜0.05%とすることが好ましい。   Zr, La, Ce, Y, Hf, and REM may be selectively added since they have an effect of significantly improving the adhesion of the Cr-based oxide film. When these elements are added, the internal oxide defined in the present invention may be formed of only one type. The upper limit in the case of adding is Zr: 0.5% or less, La: 0.1% or less, Ce: 0.1%, Y: 0.1% or less, Hf: 0.1% or less, REM: 0.00. 1%. Since these elements are extremely expensive, the total amount is preferably 0.01 to 0.05% from the viewpoint of cost effectiveness.

本発明の燃料改質器用オーステナイト系ステンレス鋼は、上記成分を含有することにより、表面にSi又は及びMnを含むCr系酸化物層を形成し、Cr系酸化物層と母材との間に、Si酸化物、Mn酸化物、Nb酸化物、Ti酸化物、Al酸化物の2種以上が混在していると好ましい。これにより、酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼とすることができる。Cr系酸化物層中のSi、Mnの含有有無については、グロー放電質量分析法(GDS分析法)により、CrがOとともに50質量%以上検出された酸化皮膜中において、SiやMnが1質量%以上検出されるか否かによって判定することができる。またCr系酸化物層と母材との間の酸化物(内部酸化物)の有無については、酸化皮膜の断面をFE−SEM観察とEDS元素分析を行い、Cr系酸化皮膜直下にSi、Mn、Nb、Ti、AlがOとともに検出されるか否かによって判定することができる。   The austenitic stainless steel for fuel reformer of the present invention contains the above components, thereby forming a Cr-based oxide layer containing Si or Mn on the surface, and between the Cr-based oxide layer and the base material. It is preferable that two or more of Si oxide, Mn oxide, Nb oxide, Ti oxide, and Al oxide are mixed. Thereby, it can be set as the austenitic stainless steel for fuel reformers excellent in the adhesiveness of an oxide film. Regarding the presence or absence of Si and Mn in the Cr-based oxide layer, 1 mass of Si and Mn is contained in an oxide film in which Cr is detected together with O by 50 mass% or more by glow discharge mass spectrometry (GDS analysis). It can be determined by whether or not more than% is detected. In addition, regarding the presence or absence of an oxide (internal oxide) between the Cr-based oxide layer and the base material, the cross section of the oxide film is subjected to FE-SEM observation and EDS elemental analysis, and Si, Mn is directly under the Cr-based oxide film. Nb, Ti, Al can be determined based on whether or not it is detected together with O.

本発明のオーステナイト系ステンレス鋼を用いた鋼板は、主として,熱間圧延鋼帯を焼鈍あるいは焼鈍を省略してデスケ−リングの後冷間圧延し,続いて仕上げ焼鈍とデスケ−リングした冷延焼鈍板を対象としている。場合によっては、冷間圧延を施さない熱延焼鈍板でも構わない。さらに、ガス配管用としては、鋼板から製造した溶接菅も含まれる。配管は、溶接菅に限定するものでなく,熱間加工により製造した継ぎ目無し菅でもよい。上述した鋼の仕上げ焼鈍は、900〜1150℃とするのが好ましい。900℃未満では鋼の軟質化と再結晶が不十分となり,所定の材料特性が得られないこともある。他方,1150℃超では粗大粒となり,鋼の靭性・延性を阻害することもある。   The steel sheet using the austenitic stainless steel of the present invention is mainly cold-rolled annealing in which hot-rolled steel strip is subjected to cold rolling after descaling without annealing or annealing, followed by finish annealing and descaling. The board is the target. In some cases, a hot-rolled annealed plate that is not subjected to cold rolling may be used. Furthermore, for gas piping, a welding rod manufactured from a steel plate is also included. The pipe is not limited to a weld rod, and may be a seamless rod manufactured by hot working. The above-described finish annealing of the steel is preferably performed at 900 to 1150 ° C. If it is less than 900 ° C., softening and recrystallization of the steel become insufficient, and predetermined material characteristics may not be obtained. On the other hand, if it exceeds 1150 ° C., it becomes coarse and may impair the toughness and ductility of the steel.

さらに、長期使用を想定した耐久性は、上記オーステナイト系ステンレス鋼を燃料改質器用として使用する前に予備酸化を行い、システムの運転初期において、CrならびにSiやMnが濃化した緻密な酸化皮膜を鋼板表面に均一に形成しておくことが有効である。燃料改質器運転前、予め緻密な酸化皮膜を表面に形成しておくことで、金属表面の状態と比較して初期に形成される酸化皮膜の均一性・バリヤー性を高め、長期使用の耐酸化性と酸化皮膜の密着性を一層向上させることができる。予備酸化条件は、300〜1000℃で24hr以下とすることが好ましい。予備酸化は、水蒸気及び水素を含む雰囲気中で行うことができる。   Furthermore, the durability assumed for long-term use is a dense oxide film in which Cr, Si, and Mn are concentrated in the initial operation of the system by performing preliminary oxidation before using the austenitic stainless steel for fuel reformers. It is effective to uniformly form on the steel plate surface. By forming a dense oxide film on the surface in advance before the operation of the fuel reformer, the uniformity and barrier properties of the oxide film formed in the initial stage are improved compared to the state of the metal surface, and long-term acid resistance And the adhesion of the oxide film can be further improved. Pre-oxidation conditions are preferably 300 to 1000 ° C. and 24 hours or less. The pre-oxidation can be performed in an atmosphere containing water vapor and hydrogen.

以下に、本発明の実施例について述べる。   Examples of the present invention will be described below.

表1に成分を示す各種オーステナイト系ステンレス鋼を溶製し、熱間圧延、焼鈍酸洗、
冷間圧延、仕上げ焼鈍を経て板厚1.0mmの冷延焼鈍材を製造した。
Various austenitic stainless steels whose ingredients are listed in Table 1 are melted, hot rolled, annealed pickling,
A cold-rolled annealed material having a plate thickness of 1.0 mm was manufactured through cold rolling and finish annealing.

各オーステナイト系ステンレス鋼から試験片を切り出し、冷延焼鈍板を酸化試験に供した。酸化試験は、改質ガス環境下で鋼材が曝される雰囲気を想定し、26体積%H2O+7体積%CO2+7%体積%CO−60%H2の雰囲気とし、850℃に加熱し1000h継続した後で室温まで冷却した。酸化試験後のオーステナイト系ステンレス鋼板の表面酸化皮膜は、グロー放電質量分析法(GDS分析法)により、厚さと酸化物濃度を測定した。GDS分析法によりCrがOとともに50質量%以上検出された酸化皮膜中において、SiやMnが1質量%以上検出された場合をCr系酸化皮膜中に固溶していると判定し、表2の「Cr系酸化皮膜」の「Si」「Mn」欄に「○」を記入した。そうでない場合は「−」とした。また、クロスセクションポリシャーにより試料調整した酸化皮膜の断面をFE−SEM観察とEDS元素分析を行い、Cr系酸化皮膜直下にSi、Mn、Nb、Ti、AlがOとともに検出された場合をCr系酸化物層と母材との間の酸化物(内部酸化物)有りと判定し、表2の「内部酸化物」欄に「○」を表示すると共に検出された元素を記入した。 A test piece was cut out from each austenitic stainless steel, and the cold-rolled annealed plate was subjected to an oxidation test. The oxidation test assumes an atmosphere in which the steel material is exposed in a reformed gas environment, and is an atmosphere of 26 volume% H 2 O + 7 volume% CO 2 + 7% volume% CO-60% H 2 , heated to 850 ° C. and 1000 h After continuing, it was cooled to room temperature. The surface oxide film of the austenitic stainless steel plate after the oxidation test was measured for thickness and oxide concentration by glow discharge mass spectrometry (GDS analysis). In the oxide film in which Cr and O were detected by 50% by mass or more together with O by GDS analysis, it was determined that 1% by mass or more of Si or Mn was detected as being dissolved in the Cr-based oxide film. “◯” was entered in the “Si” and “Mn” columns of “Cr-based oxide film”. Otherwise, it was “−”. Also, FE-SEM observation and EDS elemental analysis were performed on the cross section of the oxide film prepared with a cross-section polisher. It was determined that there was an oxide (internal oxide) between the oxide layer and the base material, “◯” was displayed in the “Internal oxide” column of Table 2, and the detected element was entered.

さらに、上記改質ガス環境で生成した表面酸化皮膜の密着性は、大気中繰り返し酸化試験により評価した。加熱温度は800℃、850℃、900℃とし、1サイクルを25分加熱と5分空冷とし400サイクルまで実施し、表面の外観観察と重量変化を測定した。外観観察から、酸化皮膜に剥離を生じ、重量変化がマイナイスとなったものを密着性評価「×」、酸化皮膜の剥離がなく、重量変化がプラス3mg/cm2以下となったものを密
着性評価「○」とした。本発明の目標とする酸化皮膜の密着性は、加熱温度850℃以上の評価を「○」とする。
Furthermore, the adhesion of the surface oxide film produced in the modified gas environment was evaluated by repeated oxidation tests in the air. The heating temperature was 800 ° C., 850 ° C., and 900 ° C., and one cycle was heated for 25 minutes and air-cooled for 5 minutes until 400 cycles. The appearance of the surface was observed and the change in weight was measured. From the appearance observation, the oxide film was peeled off and the weight change was poor, and the adhesion evaluation was “x”. The oxide film was not peeled off and the weight change was plus 3 mg / cm 2 or less. The evaluation was “◯”. For the adhesion of the oxide film targeted by the present invention, an evaluation at a heating temperature of 850 ° C. or higher is “◯”.

Figure 2018066064
Figure 2018066064

Figure 2018066064
Figure 2018066064

得られた結果を表2に示す。No.1〜9は、本発明で規定する成分を有し、改質ガス環境を想定した酸化試験により健全なCr系酸化皮膜を生成し、本発明の目標とする酸化皮膜の密着性を満たしたものである。更に、No.3〜5は、より好ましいSi及びMn量に対して微量元素を添加した場合であり、加熱温度900℃においてもCr系酸化皮膜の密着性は良好であった。また、No.8は、内部酸化物の形成が1種であるものの、希土類元素を添加した場合であり、加熱温度900℃においても良好なCr系酸化皮膜の密着性を有した。No.9は、No.1と同鋼を25%H2O−8%CO2−8%CO−59%H2中、600℃で100h予備酸化して、Cr系酸化皮膜の密着性を改善したものであり、加熱温度900℃においても評価「○」となった。 The obtained results are shown in Table 2. No. 1 to 9 have the components specified in the present invention, produce a sound Cr-based oxide film by an oxidation test assuming a reformed gas environment, and satisfy the adhesion of the oxide film targeted by the present invention It is. Furthermore, no. 3 to 5 are cases where trace elements were added with respect to the more preferable amounts of Si and Mn, and the adhesion of the Cr-based oxide film was good even at a heating temperature of 900 ° C. No. 8 shows the case where a rare earth element was added, although the formation of the internal oxide was one, and it had good Cr-based oxide film adhesion even at a heating temperature of 900 ° C. No. No. 9 No. 1 and the same steel were pre-oxidized in 25% H 2 O-8% CO 2 -8% CO-59% H 2 at 600 ° C. for 100 h to improve the adhesion of the Cr-based oxide film. The evaluation was “◯” even at a temperature of 900 ° C.

鋼No.10〜12は、本発明で規定する鋼成分から外れるものであり、本発明の特長である微量元素を含まないものである。これら鋼は、加熱温度850℃以上において密着性評価「×」となった。   Steel No. Nos. 10 to 12 are not included in the steel components defined in the present invention, and do not include trace elements that are features of the present invention. These steels had an adhesion evaluation of “x” at a heating temperature of 850 ° C. or higher.

本発明によれば、改質ガス環境下において、SiやMnによりCr系酸化皮膜の健全性を高め、更にNb、Ti、Al、V、B、Mgの微量添加により、改質ガス環境下で起動・停止の加熱・冷却サイクルを繰り返しても、酸化皮膜の密着性を損なわない、希土類元素やNiの多量添加することなく、耐久性と経済性を兼備した燃料改質器用オーステナイト系ステンレス鋼を提供することができる。本発明のオーステナイト系ステンレス鋼は、特殊な製造方法によらず、工業的に生産することが可能である。   According to the present invention, in the reformed gas environment, the soundness of the Cr-based oxide film is enhanced by Si and Mn, and further, by adding a small amount of Nb, Ti, Al, V, B, and Mg, An austenitic stainless steel for fuel reformers that combines durability and economy without adding a large amount of rare earth elements or Ni without losing the adhesion of the oxide film even after repeated heating and cooling cycles of start and stop Can be provided. The austenitic stainless steel of the present invention can be industrially produced regardless of a special production method.

(1)質量%にて、Cr:15〜22%、C:0.1%以下、Si:0.4〜5%、Mn:0.81.5%、P:0.05%以下、S:0.01%以下、Ni:8〜18%、Cu:2.0%以下、Mo;3%以下、N:0.3%以下を含み、更にV:0.01〜0.5%を含み、残部がFeおよび不可避的不純物からなることを特徴とする酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼。
(2)前記鋼が、さらに質量%にて、Nb:0.01〜0.5%、Ti:0.01〜0.5%、Al:0.01〜0.5%の1種または2種以上を含み、さらに質量%にて、Sn:0.5%以下、Sb:0.5%以下、Co:0.5%以下、W:0.5%以下Zr:0.5%以下、La:0.1%以下、Ce:0.1%、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種又は2種以上含有し残部がFeおよび不可避的不純物からなることを特徴とする(1)に記載する酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼。
(3)前記鋼がさらに質量%にて、Ca:0.005%以下含有していることを特徴とする(1)または(2)に記載する酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼。
(4)前記鋼がさらに質量%にて、更にB:0.005%以下、Mg:0.005%以下の1種または2種を含有していることを特徴とする(1)から(3)のいずれか1つに記載する酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼。
(5)(1)から(4)のいずれか1つに記載の燃料改質器用オーステナイト系ステンレス鋼の表面にSi又は及びMnを含むCr系酸化物層形成されており、前記Cr系酸化物層と母材との間に、Si酸化物、Mn酸化物、Nb酸化物、Ti酸化物、Al酸化物の2種以上が混在することを特徴とす酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼。
(6)水蒸気及び水素を含む雰囲気中において、300〜1000℃の範囲で熱処理することにより、ステンレス鋼表面に酸化皮膜を形成することを特徴とする()に記載の酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼の製造方法。
(1) In mass%, Cr: 15 to 22 %, C: 0.1% or less, Si: 0.4 to 5%, Mn: 0.8 to 1.5 %, P: 0.05% or less , S: 0.01% or less, Ni: 8 to 18%, Cu: 2.0 % or less, Mo; 3% or less, N: 0.3% or less, and V: 0.01 to 0.5 An austenitic stainless steel for a fuel reformer excellent in adhesion of an oxide film, wherein the balance is made of Fe and inevitable impurities.
(2) The steel is further in mass%, Nb: 0.01 to 0.5%, Ti: 0.01 to 0.5%, Al: 0.01 to 0.5%, 1 type or 2 Containing more than seeds, and in mass%, Sn: 0.5% or less, Sb: 0.5% or less, Co: 0.5% or less, W: 0.5% or less , Zr: 0.5% or less La: 0.1% or less, Ce: 0.1%, Y: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less, and the balance is one or more. The austenitic stainless steel for fuel reformer having excellent oxide film adhesion as described in (1), characterized by comprising Fe and inevitable impurities .
(3) For the fuel reformer with excellent adhesion of the oxide film according to (1) or (2), wherein the steel further contains Ca: 0.005% or less by mass%. Austenitic stainless steel.
(4) (1) to (3) characterized in that the steel further contains one or two of B: 0.005% or less and Mg: 0.005% or less in terms of mass%. Austenitic stainless steel for fuel reformer excellent in the adhesion of the oxide film described in any one of the above.
(5) A Cr-based oxide layer containing Si or Mn is formed on the surface of the austenitic stainless steel for a fuel reformer according to any one of (1) to (4), and the Cr-based oxidation between the object layer and the base material, Si oxide, Mn oxide, Nb oxide, Ti oxide, two or more of Al oxide has excellent adhesion to the oxide film you characterized by mixed Austenitic stainless steel for fuel reformers.
(6) In an atmosphere containing water vapor and hydrogen, an oxide film is formed on the surface of the stainless steel by heat treatment in the range of 300 to 1000 ° C. The adhesion of the oxide film according to ( 5 ) An excellent method for producing austenitic stainless steel for fuel reformers.

以下、上記(1)、(2)、(3)、(4)、(5)の鋼に係わる発明をそれぞれ本発明という。また、(1)〜()の発明を合わせて、本発明ということがある。 Hereinafter, the inventions related to the steels (1), (2), (3) , (4), and (5) are referred to as the present invention. The inventions (1) to ( 6 ) may be collectively referred to as the present invention.

Claims (4)

質量%にて、Cr:15〜25%、C:0.1%以下、Si:5%以下、Mn:3%以下、P:0.05%以下、S:0.01%以下、Ni:8〜18%、Cu:3%以下、Mo;3%以下、N:0.3%以下を含み、更にNb:0.01〜0.5%、Ti:0.01〜0.5%、V:0.01〜0.5%、Al:0.01〜0.5%、B:0.005%以下、Mg:0.005%以下の1種または2種以上を含み、残部がFeおよび不可避的不純物からなることを特徴とする酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼。   In mass%, Cr: 15-25%, C: 0.1% or less, Si: 5% or less, Mn: 3% or less, P: 0.05% or less, S: 0.01% or less, Ni: 8-18%, Cu: 3% or less, Mo; 3% or less, N: 0.3% or less, Nb: 0.01-0.5%, Ti: 0.01-0.5%, V: 0.01 to 0.5%, Al: 0.01 to 0.5%, B: 0.005% or less, Mg: 0.005% or less, including one or more, the balance being Fe And an austenitic stainless steel for a fuel reformer excellent in adhesion of an oxide film, characterized by comprising inevitable impurities. 前記鋼が、さらに質量%にて、Sn:0.5%以下、Sb:0.5%以下、Co:0.5%以下、W:0.5%以下、Ca:0.005%以下、Zr:0.5%以下、La:0.1%以下、Ce:0.1%、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種又は2種以上含有していることを特徴とする請求項1に記載する酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼。   The steel is further in mass%, Sn: 0.5% or less, Sb: 0.5% or less, Co: 0.5% or less, W: 0.5% or less, Ca: 0.005% or less, One of Zr: 0.5% or less, La: 0.1% or less, Ce: 0.1%, Y: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less The austenitic stainless steel for a fuel reformer excellent in the adhesion of the oxide film according to claim 1, wherein two or more types are contained. 表面にSi又は及びMnを含むCr系酸化物層を形成し、Cr系酸化物層と母材との間に、Si酸化物、Mn酸化物、Nb酸化物、Ti酸化物、Al酸化物の2種以上が混在することを特徴とする請求項1又は2に記載の酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼。   A Cr-based oxide layer containing Si or Mn is formed on the surface, and Si oxide, Mn oxide, Nb oxide, Ti oxide, Al oxide are formed between the Cr-based oxide layer and the base material. The austenitic stainless steel for a fuel reformer having excellent oxide film adhesion according to claim 1 or 2, wherein two or more kinds are mixed. 水蒸気及び水素を含む雰囲気中において、300〜1000℃の範囲で熱処理することにより、ステンレス鋼表面に酸化皮膜を形成することを特徴とする請求項1または2に記載の酸化皮膜の密着性に優れた燃料改質器用オーステナイト系ステンレス鋼の製造方法。   The oxide film according to claim 1 or 2, wherein an oxide film is formed on the stainless steel surface by heat treatment in a range of 300 to 1000 ° C in an atmosphere containing water vapor and hydrogen. A method for producing austenitic stainless steel for fuel reformers.
JP2017235369A 2017-12-07 2017-12-07 Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same Active JP6498263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017235369A JP6498263B2 (en) 2017-12-07 2017-12-07 Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017235369A JP6498263B2 (en) 2017-12-07 2017-12-07 Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013125663A Division JP6423138B2 (en) 2013-06-14 2013-06-14 Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2018066064A true JP2018066064A (en) 2018-04-26
JP6498263B2 JP6498263B2 (en) 2019-04-10

Family

ID=62085714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017235369A Active JP6498263B2 (en) 2017-12-07 2017-12-07 Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same

Country Status (1)

Country Link
JP (1) JP6498263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114555851A (en) * 2019-08-29 2022-05-27 曼内斯曼不锈管有限责任公司 Austenitic steel alloy with improved corrosion resistance under high temperature load and method for producing tubular body therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111519091A (en) * 2020-04-27 2020-08-11 浙江丰原型钢科技有限公司 Processing technology of high-strength deformed steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279714A (en) * 1998-03-31 1999-10-12 Nippon Steel Corp Austenitic stainless steel for hydrogen generator excellent in scale peeling resistance
JP2004043903A (en) * 2002-07-12 2004-02-12 Nisshin Steel Co Ltd Austenitic stainless steel superior in red scale resistance
WO2006109727A1 (en) * 2005-04-11 2006-10-19 Sumitomo Metal Industries, Ltd. Austenitic stainless steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279714A (en) * 1998-03-31 1999-10-12 Nippon Steel Corp Austenitic stainless steel for hydrogen generator excellent in scale peeling resistance
JP2004043903A (en) * 2002-07-12 2004-02-12 Nisshin Steel Co Ltd Austenitic stainless steel superior in red scale resistance
WO2006109727A1 (en) * 2005-04-11 2006-10-19 Sumitomo Metal Industries, Ltd. Austenitic stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114555851A (en) * 2019-08-29 2022-05-27 曼内斯曼不锈管有限责任公司 Austenitic steel alloy with improved corrosion resistance under high temperature load and method for producing tubular body therefrom

Also Published As

Publication number Publication date
JP6498263B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP5645417B2 (en) Al-containing ferritic stainless steel with excellent oxidation resistance and electrical conductivity
JP5902253B2 (en) Ferritic stainless steel for fuel cells and method for producing the same
JP6190498B2 (en) Ferritic stainless steel and manufacturing method thereof
WO2016017692A1 (en) Ferritic stainless steel material for fuel cell, and method for producing same
WO2014010680A1 (en) Ferritic stainless steel sheet and method for producing ferritic stainless steel sheet with oxide coating film having excellent conductivity and adhesion
JP2010222638A (en) Al-CONTAINING HEAT RESISTANT FERRITIC STAINLESS STEEL FOR FUEL CELL, AND METHOD FOR PRODUCING THE SAME
JP6113359B1 (en) Al-containing ferritic stainless steel with excellent creep characteristics and fuel cell components
WO2017073093A1 (en) Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
JP6423138B2 (en) Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
JP3995978B2 (en) Ferritic stainless steel for heat exchanger
JP6006759B2 (en) Ferritic stainless steel for fuel reformer of fuel cell or heat exchanger of fuel cell and method for producing the same
JP6067134B2 (en) Ferritic stainless steel for fuel reformer and manufacturing method thereof
JP6765287B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6498263B2 (en) Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
JP6006893B2 (en) Ferritic stainless steel for fuel cells
JP2017125248A (en) Ferritic stainless steel for solid oxide type fuel cell excellent in heat resistance and production method therefor
JP6429957B1 (en) Austenitic stainless steel, manufacturing method thereof, and fuel reformer and combustor member
JP7233195B2 (en) Ferritic stainless steel, manufacturing method thereof, and fuel cell member
JP6971184B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6053994B1 (en) Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same
JP2014139342A (en) Al-CONTAINING HEAT RESISTANT FERRITIC STAINLESS STEEL FOR FUEL BATTERY AND ITS MANUFACTURING METHOD
JP6873020B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel reformers and combustor components
JP6655962B2 (en) Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance
JP6937716B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190312

R150 Certificate of patent or registration of utility model

Ref document number: 6498263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250